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On the kernel of vector ε-algorithm and related topics

Claude Brezinski∗ Michela Redivo-Zaglia† Ahmed Salam ‡

Abstract

The vector ε-algorithm of Wynn is a powerful method for accelerating the convergence
of vector sequences. Its kernel is the set of sequences which are transformed into constant
sequences whose terms are their limits or antilimits. In 1971, a sufficient condition charac-
terizing sequences in this kernel was given by McLeod. In this paper, we prove that such a
condition is not necessary. Moreover, using Clifford algebra, we give a formula for the vector
ε2-transformation, which is formally the same as in the scalar case, up to operations in a
Clifford algebra. Hence, Aitken’s ∆2 process is extended in this way to vectors. Then, we
derive the explicit algebraic and geometric expressions of sequences of the kernel of the ε2-
transformation. We also formulate a conjecture concerning the explicit algebraic expression
of kernel of the vector ε-algorithm.

Keywords : vector ε-algorithm, kernels, Shanks transformation, Aitken’s ∆2 process, Clifford
algebra.

1 Introduction

Let (Sn) be a sequence of numbers, vectors, matrices or tensors which converges to S. If its
convergence is too slow, it can be transformed into another sequence (or a set of sequences), say
(Tn), which, under certain assumptions, converges faster to the same limit, that is limn→∞ ‖Tn −
S‖/‖Sn − S‖ = 0. The mapping (Sn) 7−→ (Tn) is called a sequence transformation. Among the
many transformations which can be found in the literature, one of the most popular is Shanks’
transformation [18] which was first only defined for scalar sequences by

ek(Sn) =

∣∣∣∣∣∣∣∣∣
Sn Sn+1 · · · Sn+k

∆Sn ∆Sn+1 · · · ∆Sn+k
...

...
...

∆Sn+k−1 ∆Sn+k · · · ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣ /
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
∆Sn ∆Sn+1 · · · ∆Sn+k

...
...

...
∆Sn+k−1 ∆Sn+k · · · ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣ , (1)
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where ∆ is the usual forward difference operator. When k = 1, the usual Aitken’s ∆2 process is
recovered [1].

This transformation can be recursively implemented by the scalar ε-algorithm of Wynn [23]
whose rule is

ε
(n)
k+1 = ε

(n+1)
k−1 + [ε

(n+1)
k − ε(n)k ]−1, (2)

with ε
(n)
−1 = 0 and ε

(n)
0 = Sn for n = 0, 1, . . ., and it holds

ε
(n)
2k = ek(Sn), ε

(n)
2k+1 = [ek(∆Sn)]−1.

The transformation (Sn) 7−→ (ε
(n)
2k ), k fixed, is called the ε2k-transformation.

We have the following result

Theorem 1
A necessary and sufficient condition that, for all n, ε

(n)
2k = S is that, for all n, the sequence (Sn)

satisfies the linear homogeneous difference equation of order k

a0(Sn − S) + a1(Sn+1 − S) + · · ·+ ak(Sn+k − S) = 0,

with a0ak 6= 0 and a0 + a1 + · · ·+ ak 6= 0.

It does not restrict the generality to assume that the ai’s sum up to 1. A first proof of this result
was given in [4], but its complete proof only appeared in [7, Thm. 1]. The set of sequences satisfying
Theorem 1 is called the kernel of the scalar ε-algorithm (or of the Shanks’ transformation). It is
still valid if the sequence (Sn) does not converge, in which case S is called the antilimit of the
sequence.

In [24], Wynn extended his algorithm to vector sequences in Rp by defining the inverse of a non
null vector y ∈ Rp \ {0} as y−1 = y/(y, y) (called the Samelson inverse) in (2), where (x, y) = yTx
denotes the usual scalar product. Thus the rules of the vector ε-algorithm and of the scalar one
are the same up the extension to a vector inverse. However, the vectors ε

(n)
k it produces cannot be

represented by ratios of determinants of dimension k + 1 as in (1). They can be represented by
ratios of much larger determinants [9, 10] or as ratios of designants which generalize determinants
in a noncommutative algebra [17].
Using Clifford algebra, McLeod [13] proved the following result for the kernel of the vector ε-
algorithm

Theorem 2
Let (Sn) be a vector sequence of Rp that satisfies the linear homogeneous difference equation of

order k
a0(Sn − S) + a1(Sn+1 − S) + · · ·+ ak(Sn+k − S) = 0, ∀n

where ai ∈ R with a0ak 6= 0 and a0 + a1 + · · ·+ ak 6= 0. Then, for all n, ε
(n)
2k = S.

In Section 2, we will show that the kernel of the vector ε-algorithm is not only limited to the
sequences of Theorem 2, and, hence, that this condition is only sufficient. In Section 3, we recall the
main features of a Clifford algebra that will be used in this context. In Section 4, we highlight how
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the Clifford algebra’s tool can be helpful for obtaining explicit formulas for the ε2-transformation.
These formulas are formally the same as in the scalar case, up to operations in a Clifford algebra,
and hence, they are easier to understand. The extension of Aitken’s process to vectors is explained
in Section 5. The link with the ε2-transformation is established. The kernel of this transformation
is explicitly derived both in algebraic and geometric forms. Finally, a conjecture concerning the
explicit algebraic form of the vector ε2k-transformation is proposed for any k.

2 On the kernel of the vector ε2k-transformation

Let us first give an example showing that the kernel of the vector ε2-transformation contains vector
sequences which do not satisfy the condition of Theorem 2.

When k = 1, according to Theorem 2, the kernel of the ε2- transformation contains the sequences
of vectors of Rp satisfying ∀n, a0(Sn−S)+(1−a0)(Sn+1−S) = 0 where the real scalar a0 is different
from 0 and 1. Consider now three linearly independent vectors Sn, Sn+1 and Sn+2, and assume
they satisfy this difference equation. This is impossible. Indeed, we have a0Sn + (1 − a0)Sn+1 =
a0Sn+1 + (1− a0)Sn+2, that is a0Sn + (1− 2a0)Sn+1 − (1− a0)Sn+2 = 0, and the three coefficients
a0, 1− 2a0, 1− a0 cannot be simultaneously equal to 0 or 1.

We consider now the sequence (Sn) of vectors in R3 defined by

S3n = (1, 0, 0)T , S3n+1 = (0, 1, 0)T , S3n+2 = (0, 0, 1)T , n = 0, 1, . . .

Three consecutive vectors of this sequence are obviously linearly independent, and, thus, they do
not satisfy the condition of Theorem 2. Let us apply the vector ε-algorithm to this sequence with
the Samelson inverse for a vector.

We have, for all n,

∆S3n = (−1, 1, 0)T , (∆S3n)−1 = (−1, 1, 0)T/2,
∆S3n+1 = (0,−1, 1)T , (∆S3n+1)

−1 = (0,−1, 1)T/2,
∆S3n+2 = (1, 0,−1)T , (∆S3n+2)

−1 = (1, 0,−1)T/2,
∆S3n+3 = (−1, 1, 0)T , (∆S3n+3)

−1 = (−1, 1, 0)T/2.

Then

[(∆S3n+1)
−1 − (∆S3n)−1]−1 = (1,−2, 1)T/3,

[(∆S3n+2)
−1 − (∆S3n+1)

−1]−1 = (1, 1,−2)T/3,

[(∆S3n+3)
−1 − (∆S3n+2)

−1]−1 = (−2, 1, 1)T/3,

and we finally obtain

ε
(3n)
2 = (0, 1, 0)T + (1,−2, 1)T/3 = (1, 1, 1)T/3,

ε
(3n+1)
2 = (0, 0, 1)T + (1, 1,−2)T/3 = (1, 1, 1)T/3,

ε
(3n+2)
2 = (1, 0, 0)T + (−2, 1, 1)T/3 = (1, 1, 1)T/3,

which shows that our sequence belongs to the kernel of the vector ε2-transformation without sat-
isfying the condition of Theorem 2. Thus, this condition is only sufficient, and the kernel of the
ε2-transformation contains other sequences.
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Let us now give an example showing that the kernel of the vector ε2k-transformation contains
vector sequences which do not satisfy the condition of Theorem 2.

For an arbitrary integer k, according to McLeod’s Theorem (Thm. 2), the kernel of the vector
ε2k-transformation contains the sequences (Sn) of vectors of Rp satisfying

a0(Sn − S) + a1(Sn+1 − S) + · · ·+ ak(Sn+k − S) = 0, (3)

where ai are real numbers, with a0ak 6= 0 and a0 + a1 + · · ·+ ak 6= 0.
Consider now 2k + 1 linearly independent vectors Sn, Sn+1, . . . , Sn+2k (thus we must have p ≥

2k + 1) and assume they satisfy the difference equation (3). This is impossible since, otherwise,
from (3), Sn, Sn+1, . . . , Sn+2k would be linearly dependent because the coefficients ai’s cannot be
simultaneously equal to zero.

Let p = 2k + 1 and consider the sequence (Sn) of vectors in Rp defined by

Spn+l = el+1, l = 0, . . . , p− 1,

where el is the lth canonical vector of Rp. The p successive vectors of this sequence are obviously
linearly independent, and, thus, they do not satisfy (3) of Theorem 2. However, performing the com-

putations in Matlab, the vector ε-algorithm applied to this sequence, gives ε
(n)
2k = (1/p, . . . , 1/p)T

for all n.
The difficulties for understanding the vector ε-algorithm come from the fact that it is derived

from the scalar ε-algorithm by taking the same rules and extending the inverse of a non null
real number to a non null vector, via the Samelson inverse. Thus the algorithm obtained looks
like a “black box” for computing vectors without any theoretical support or justification, while
the scalar ε-algorithm presents comprehensive features, as for example its connection to Shanks’
transformation, Aitken’s ∆2 process or Padé approximants,.... Attempts following the scalar scheme
have been made for extending Shanks’ transformation to vector sequences. But all of them led to
vector generalizations and algorithms, such as the topological ε algorithms, which are different
from Wynn’s vector ε-algorithm. Such generalizations are based on computations in a linear space
Rp(+, .) having an algebraic structure such that an algebraic inverse of a vector has no meaning.
Contrarily, a Clifford algebra associated to Rp(+, .) is a powerful tool for our aim. It contains
Rp(+, .) and each non null vector u ∈ Rp has an inverse u−1 with respect to the multiplicative law
and this inverse coincides with the Samelson inverse. This property will allow us to overcome the
mentioned difficulties and to complete the study of the ε-algorithm

3 Clifford algebra, a powerful tool

In this Section we recall some definitions and properties of a Clifford algebra, that will be useful in
the following sections.

Let {e1, . . . , ep} be an orthonormal basis of the Euclidean real linear space Rp. There exists
a unitary, associative but non-commutative (for p > 1) algebra C`p(R), called the universal real
Clifford algebra associated to Rp (see [2, 14]), for which there exists an R-linear transformation
Φ : Rp → C`p(R) such that

∀u = (u1, . . . , up)
T ∈ Rp, (Φ(u))2 = (u, u)1, (4)
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where 1 is the unit element of C`p(R), and (u, v) denotes the usual scalar product of two real vectors
u and v.

We may identify

p∑
i=1

uiΦ(ei) ∈ C`p(R) with

p∑
i=1

uiei ∈ Rp and each λ1 ∈ C`p(R) with λ ∈ R.

According to this identification, one can consider Rp and R as subspaces of C`p(R). The Clifford
algebra C`p(R) is generated by the elements of the system {e1, . . . , ep}.

For sake of clarity, from now on we denote by C`p the Clifford algebra, and by ? the multiplication
in C`p. Thus relation (4) is rewritten as u ? u = u2 = (u, u). This algebra is also the real linear
space spanned by the products

ei1 ? · · · ? eir ; 1 ≤ i1 < · · · < ir ≤ p, 0 ≤ r ≤ p,

where the empty product (r = 0) is the identity element 1. Thus, the system

{1, ei1 ? · · · ? eir ; 1 ≤ i1 < · · · < ir ≤ p, 1 ≤ r ≤ p, }

is a basis of C`p and it is easy to see that its dimension is 2p.
Let us consider some definitions and the main properties of this algebra when u = (u1, . . . , up)

T =
p∑

i=1

uiei ∈ Rp, and v = (v1, . . . , vp)
T =

p∑
i=1

viei ∈ Rp are two real vectors.

Property 1
The following properties hold

1.
∀i, j ∈ {1, . . . , p}, i 6= j, ei ? ei = 1, ei ? ej = −ej ? ei, and (ei ? ej)

2 = −1.

2.
u ? u = (u, u) = ‖u‖2. (5)

3. From (4), the product u ? v is given by

u ? v = (u, v) +
∑
i<j

(uivj − ujvi)ei ? ej, and u ? v + v ? u = 2(u, v) ∈ Rp. (6)

4. From (6), we obtain
u ? v ? u = 2(u, v)u− ‖u‖2v ∈ Rp.

5. Let u ∈ Rp. From (5), the inverse of u is given by

u−1 =
u

‖u‖2
∈ Rp,

and we see that it coincides with the Samelson inverse of a real vector.
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4 Expression of the vector ε
(n)
2 using Clifford algebra

We will now see that the use of Clifford algebra allows us to overcome the operations that are
limited if we restrict ourselves only to the linear space Rp. Moreover, the expressions obtained are
more understandable. To this aim, we focus on the sequence (ε

(n)
2 ) which is the first even step of

the vector ε-algorithm. Let us derive it from the rules of the vector ε-algorithm.

Theorem 3
The ε2 − transformation : (Sn) 7−→ (ε

(n)
2 ) can be explicitly expressed as

ε
(n)
2 = Sn −∆Sn ? (∆2Sn)−1 ?∆Sn. (7)

Proof: We have
ε
(n)
2 = Sn+1 + [ε

(n+1)
1 − ε(n)1 ]−1 with ε

(n)
1 = [∆Sn]−1.

Thus

[(∆Sn+1)
−1 − (∆Sn)−1]−1 = [(∆Sn)−1 ? (∆Sn −∆Sn+1) ? (∆Sn+1)

−1]−1,

= [(∆Sn+1)
−1 ? (∆Sn −∆Sn+1) ? (∆Sn)−1]−1,

and it follows

ε
(n)
2 = Sn+1 −∆Sn ? [∆2Sn]−1 ?∆Sn+1 = Sn+1 −∆Sn+1 ? [∆2Sn]−1 ?∆Sn. (8)

This relation can also be written as

ε
(n)
2 = Sn + (Sn+1 − Sn)−∆Sn+1 ? [∆2Sn]−1 ?∆Sn

= Sn + ∆2Sn ? [∆2Sn]−1 ?∆Sn −∆Sn+1 ? [∆2Sn]−1 ?∆Sn

= Sn + (∆2Sn −∆Sn+1) ? [∆2Sn]−1 ?∆Sn

= Sn + (∆Sn+1 −∆Sn −∆Sn+1) ? [∆2Sn]−1 ?∆Sn,

= Sn −∆Sn ? (∆2Sn)−1 ?∆Sn

and we finally obtain ε
(n)
2 = Sn −∆Sn ? (∆2Sn)−1 ?∆Sn.

Remark 1 It is worth to notice that the expression (7) is formally the same as that of the scalar

case (scalar Aitken’s expression, scalar ε
(n)
2 ) up to use the product ? and the respect of the order of

the factors.

Let us develop this formula in the Clifford algebra. For two vectors u, v ∈ Rp, we have in the
Clifford algebra u ? v + v ? u = 2(u, v). Thus v ? u ? v = 2(u, v)v − (v, v)u (see Property 1, item 3),
and (7) becomes

ε
(n)
2 = Sn −

2(∆Sn,∆
2Sn)∆Sn − (∆Sn,∆Sn)∆2Sn

(∆2Sn,∆2Sn)
. (9)

This is an expression for ε
(n)
2 only using operations in Rp.
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The vectors ε
(n)
2k obtained by the vector ε-algorithm can be expressed as a ratio of determinants

of dimension 2k + 1 as given in [11, Thm. 1]. In particular, we have, for k = 1,

ε
(n)
2 =

∣∣∣∣∣∣
Sn Sn+1 Sn+2

0 ‖∆Sn‖2 2(∆Sn,∆Sn+1)
−‖∆Sn‖2 0 ‖∆Sn+1‖2

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
0 ‖∆Sn‖2 2(∆Sn,∆Sn+1)

−‖∆Sn‖2 0 ‖∆Sn+1‖2

∣∣∣∣∣∣
.

Thus ∣∣∣∣∣∣
Sn − ε(n)2 Sn+1 − ε(n)2 Sn+2 − ε(n)2

0 ‖∆Sn‖2 2(∆Sn,∆Sn+1)
−‖∆Sn‖2 0 ‖∆Sn+1‖2

∣∣∣∣∣∣ = 0,

and there exists a0, a1 and a2, which depend on n, such that

a0(Sn − ε(n)2 ) + a1(Sn+1 − ε(n)2 ) + a2(Sn+2 − ε(n)2 ) = 0
a1‖∆Sn‖2 + 2a2(∆Sn,∆Sn+1) = 0
−a0‖∆Sn‖2 + a2‖∆Sn+1‖2 = 0.

It does not restrict the generality to assume that a0 + a1 + a2 = 1 since this sum has to be different
from 0 to ensure the existence of ε

(n)
2 . Solving the system we find that

a0 = ‖∆Sn+1‖2/‖∆2Sn‖2, a1 = −2(∆Sn,∆Sn+1)‖∆2Sn‖2, a2 = ‖∆Sn‖2/‖∆2Sn‖2.

Thus
ε
(n)
2 = (‖∆Sn+1‖2Sn − 2(∆Sn,∆Sn+1)Sn+1 + ‖∆Sn‖2Sn+2)/‖∆2Sn‖2.

After some algebraic manipulations, it is easy to see that this expression reduces to (9).

5 The vector Aitken’s process

In this Section, we show how to built the vector Aitken’s ∆2 process. The successive steps of this
construction are similar to those which have to be followed for constructing many other sequence
transformations (see [5,19,20,22]). Namely, we start from an algebraic equation, named the implicit
kernel of the transformation, satisfied by the sequence (Sn). Then, this difference equation is solved
thus giving these sequences into a closed form named the explicit kernel of the transformation.
Finally, a sequence transformation transforming all these sequences into a constant sequence is
constructed. The drawback of such an approach is that one is confronted with inconsistent systems.
The details will be given below.

5.1 Construction of the vector Aitken’s ∆2

To extend Aitken’s process to vectors, one naturally tries to adapt the scalar approach to vec-
tors. Thus, let (Sn) be a sequence of vectors in Rp. A potential Aitken’s process could be the
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transformation t1 : (Sn) 7−→ (t
(n)
1 ) satisfying formally the system
a
(n)
0 (Sn − t(n)1 ) + a

(n)
1 (Sn+1 − t(n)1 ) = 0

a
(n)
0 (Sn+1 − t(n)1 ) + a

(n)
1 (Sn+2 − t(n)1 ) = 0

a
(n)
0 + a

(n)
1 = 1, with a

(n)
0 a

(n)
1 6= 0.

(10)

where a
(n)
0 ∈ R, a(n)1 ∈ R, t(n)1 ∈ Rp are unknown. The drawback of this approach, is that for p ≥ 2,

the system (10) is inconsistent. It presents more constraints than free parameters. To overcome
this inconvenient, the existing approaches found in the literature project the system, in one way or
another, as, for example, in this way

a
(n)
0 (∆Sn, y) + a

(n)
1 (∆Sn+1, y) = 0

a
(n)
0 + a

(n)
1 = 1,

t
(n)
1 = a

(n)
0 Sn + a

(n)
1 Sn+1.

,

where y is a chosen vector. These approaches lead to the class of the topological ε-algorithms and
all of them are far from the vector ε-algorithm.

The way which allows us to overcome the problem of inconsistency, is to consider the system
in Clifford algebra, precisely as follows : the vector Aitken’s ∆2 is the transformation t1 : (Sn) 7−→
(t

(n)
1 ) satisfying formally the system

a
(n)
0 ? (Sn − t(n)1 ) + a

(n)
1 ? (Sn+1 − t(n)1 ) = 0

a
(n)
0 ? (Sn+1 − t(n)1 ) + a

(n)
1 ? (Sn+2 − t(n)1 ) = 0

a
(n)
0 + a

(n)
1 = 1, with a

(n)
0 ? a

(n)
1 6= 0.

(11)

where a
(n)
0 ∈ C`p, a

(n)
1 ∈ C`p, t

(n)
1 ∈ C`p are unknown.

Viewed in this way, the problem of consistency disappear for the system (11). However, an

unexpected problem arises from this formulation : the quantity t
(n)
1 belongs to C`p, and at least at

first sight, is not necessarily in Rp. We will see that t
(n)
1 is guaranteed to belong to Rp as we wish.

The system (11) can be rewritten as
t
(n)
1 = Sn + a

(n)
1 ?∆Sn

∆Sn + a
(n)
1 ?∆2Sn = 0

a
(n)
0 + a

(n)
1 = 1, with a

(n)
0 ? a

(n)
1 6= 0,

which gives a
(n)
1 = −∆Sn ? (∆2Sn)−1 and hence t

(n)
1 = Sn − ∆Sn ? (∆2Sn)−1 ? ∆Sn = ε

(n)
2 ∈ Rp.

Thus, the vector Aitken’s ∆2 process coincides with the vector ε2-transformation. To complete our
purpose, we may now define the vector Shanks’ transformation as the transformation t1 : (Sn) 7−→
(t

(n)
1 ) satisfying the system (11).

5.2 Kernel of the vector Aitken’s ∆2 : implicit form

The kernel of vector Aitken’s ∆2 process or equivalently of vector ε2-transformation is the set of
vector sequences (Sn) that are transformed into a constant vector valued sequence (S). In other
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words, the set of vector sequences satisfying for all n the system
a
(n)
0 ? (Sn − S) + a

(n)
1 ? (Sn+1 − S) = 0

a
(n)
0 ? (Sn+1 − S) + a

(n)
1 ? (Sn+2 − S) = 0

a
(n)
0 + a

(n)
1 = 1, with a

(n)
0 ? a

(n)
1 6= 0.

(12)

where a
(n)
0 ∈ C`p, a(n)1 ∈ C`p, S ∈ Rp are unknown. Writing the system (12) for n and n + 1, we

get the system 
a
(n)
0 ? (Sn − S) + a

(n)
1 ? (Sn+1 − S) = 0

a
(n)
0 ? (Sn+1 − S) + a

(n)
1 ? (Sn+2 − S) = 0

a
(n+1)
0 ? (Sn+1 − S) + a

(n+1)
1 ? (Sn+2 − S) = 0

a
(n)
0 + a

(n)
1 = 1, a

(n+1)
0 + a

(n+1)
1 = 1,

from which we deduce{
(a

(n+1)
0 − a(n)0 ) ? (Sn+1 − S) + (a

(n+1)
1 − a(n)1 ) ? (Sn+2 − S) = 0

a
(n+1)
0 − a(n)0 + a

(n+1)
1 − a(n)1 = 0,

that is {
(a

(n+1)
1 − a(n)1 ) ? (Sn+2 − Sn+1) = 0

a
(n+1)
0 − a(n)0 + a

(n+1)
1 − a(n)1 = 0.

Assume that ∆Sn 6= 0, ∀n. We get (a
(n+1)
1 − a(n)1 ) = 0, ∀n, and hence (a

(n+1)
0 − a(n)0 ) = 0, ∀n.

Thus we have the implicit form of the kernel

Theorem 4
The vector ε2-transformation: (Sn) 7−→ (ε

(n)
2 ) is such that ∀n, ε(n)2 = S if and only if the vector

sequence (Sn) satisfies for all n the system{
a0 ? (Sn − S) + a1 ? (Sn+1 − S) = 0
a0 + a1 = 1, with an0 ? a

n
1 6= 0.

(13)

where a0 ∈ C`p, a1 ∈ C`p, S ∈ Rp.

The condition (13) of Theorem 4 can be expressed in the slightly different form

Sn = S + a0 ?∆Sn (14)

where 0 6= a0 ∈ C`p, S ∈ Rp and ∆Sn 6= 0, ∀n.

5.3 Kernel of the vector Aitken’s ∆2 : algebraic explicit form

The difference equation (13) (or (14)) has to be solved for obtaining the explicit form of the kernel.
We have the following result

Corollary 1
The kernel of the vector Aitken’s ∆2 process is the set of sequences satisfying, for all n,

Sn = S + ∆S0 ? (∆2S0)
−1 ? [∆S1 ? (∆S0)

−1]n ?∆S0. (15)
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Proof : From Theorem 4, the kernel of the vector ∆2 process or of the vector ε2-transformation
is the set of sequences (Sn) satisfying, ∀n, Sn = S + a0 ? ∆Sn, which, by applying the operator
∆ to both sides, gives ∆Sn = a0 ? ∆2Sn. Thus, for any value of n, a0 = ∆Sn ? (∆2Sn)−1. But
we also have ∆Sn = a0 ? (∆Sn+1 − ∆Sn), that is ∆Sn+1 = a−10 ? (1 + a0) ? ∆Sn. Setting γ =
a−10 ? (1 + a0), we have ∆Sn+1 = γ ? ∆Sn, and it follows by induction that ∆Sn = γn ? ∆S0. For
n = 1, we have ∆S1 = a−10 ? (1 + a0) ? ∆S0 = γ ? ∆S0, and we get γ = ∆S1 ? (∆S0)

−1. Finally
∆Sn = [∆S1 ? (∆S0)

−1]n ?∆S0, a0 = ∆S0 ? (∆2S0)
−1, and the result follows.

Remark 2
Notice that we also have 1 + a0 = ∆S1(∆

2S0)
−1, and γ = a−10 (1 + a0) = a−10 + 1 = ∆2S0(∆S0)

−1 +
∆S0(∆S0)

−1 = ∆S1(∆S0)
−1.

In the scalar case, the usual form of the kernel is recovered since, due to the commutativity, the
kernel is the set of sequences such that, for all n,

Sn = S + ∆S0(∆
2S0)

−1∆S0[∆S1 ? (∆S0)
−1]n = S + αλn,

with α = ∆S0(∆
2S0)

−1∆S0 = (∆S0)
2/∆2S0 and λ = ∆S1 ? (∆S0)

−1 = ∆S1/∆S0.
In fact, the result in Corollary 1 can be improved as follows

Theorem 5
The kernel of vector Aitken’s ∆2 process is the set of vector sequences satisfying,

∀n, Sn = S + α ? λn, (16)

where α = S0−S = e0 is an arbitrary non null vector of Rp and λ any arbitrary bivector λ = α−1?e1,
with e1 = S1 − S any arbitrary non null vector of Rp.

Proof: From Corollary 5, we have Sn = S+∆S0 ?(∆2S0)
−1 ? [∆S1 ?(∆S0)

−1]n ?∆S0. By induction,
we have (∆S0)

−1[∆S1 ? (∆S0)
−1]n ?∆S0 = [(∆S0)

−1 ?∆S1]
n. Hence, we obtain

Sn = S + ∆S0 ? (∆2S0)
−1 ?∆S0 ? [(∆S0)

−1 ?∆S1]
n = S + α ? λn, (17)

with α = ∆S0 ? (∆2S0)
−1 ?∆S0 and λ = (∆S0)

−1 ?∆S1. Taking n = 0 in equation (17), we get also
α = e0 and then for n = 1, we obtain λ = e−10 ? e1.

Thus, using the tool of Clifford algebra, we formally obtain the same expression for the kernel
as in the scalar case. It is also interesting to notice that α is a vector of Rp, but not λn. However,
the computation of α ? λn can be simply performed in the linear space (Rp,+, .)

5.4 Expression of the vector Aitken’s ∆2 with designants

In the scalar case, the Aitken’s ∆2 can be expressed as a ratio of two determiants as given in
equation (1). As we saw, the vector Aitken’s ∆2 is algebraically obtained by immersing the linear
space Rp into the Clifford agebra C`p. Since determinants do not exist in a non-commutative ring,
a determinantal formula similar to the scalar case does not exist. However, such a formula holds
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with designants introduced by Heyting in [12]. They play, in a non-commutative ring, the same
role as determinants in a commutative ring.

Thus, let a11, a12, a21, a22 be coefficients in C`p, with a11 invertible. The right designant of order
2, is defined as ∣∣∣∣ a11 a21

a21 a22

∣∣∣∣
r

= a22 − a12 ? a−111 ? a21,

which is formally the expression of a Schur complement in a ring of matrices. This is not surprising
since the construction of designants is based on an elimination process. In [17], using Clifford

algebra and designants, the following expression of the vector ε
(n)
2 was derived

ε
(n)
2 =

∣∣∣∣ ∆Sn Sn

∆Sn+1 Sn+1

∣∣∣∣
r

∣∣∣∣ ∆Sn 1
∆Sn+1 1

∣∣∣∣−1
r

.

Using properties of designants and the powerful tool of Clifford algebra, we derive below another
proof for the explicit form of the kernel of the vector Aitken’s ∆2 process. Thus, ε

(n)
2 = S,∀n is

equivalent to ∣∣∣∣ ∆Sn Sn − S
∆Sn+1 Sn+1 − S

∣∣∣∣
r

= 0, ∀n.

So

ε
(n)
2 = S ⇐⇒ (Sn+1−S)−(Sn−S)?(∆Sn)−1∆Sn+1 = 0⇐⇒ (Sn+1−S)?(∆Sn+1)

−1 = (Sn−S)?(∆Sn)−1,

from which, it is straightforward that

Sn = S + λn ? e0 with e0 ∈ Rp, λ ∈ C`p.

This formula can also be rewritten as

Sn = S + (e1 ? e
−1
0 )n ? e0 with e0 ∈ Rp, e1 ∈ Rp.

Notice that Theorem 5 gives Sn = S + e0 ? (e−10 ? e1)
n. In fact the two expressions are the same

since
e0 ? (e−10 ? e1)

n = (e1 ? e
−1
0 )n ? e0, ∀e0 ∈ Rp, ∀e1 ∈ Rp.

How can one see that wn = (e1 ? e
−1
0 )n ? e0 ∈ Rp and compute it in Rp? We have seen that, for

u ∈ Rp, v ∈ Rp, u ? u = (u, u) = ‖u‖22, u−1 = u/‖u‖2 ∈ Rd, u ? v ? u = 2(u, v)u − ‖u‖2v ∈ Rd.
Thus we obtain

u ? v ? (αu+ βv) ∈ span{u, v}

where α ∈ R, β ∈ R, that is the stability

u ? v ? span{u, v} ⊂ span{u, v}.

Then, we get iteratively
(u ? v)n ? span{u, v} ⊂ span{u, v}.

Thus, wn = (e1 ? e
−1
0 )n ? e0 ∈ Rd. Let us summarize this in a slightly more general way

11



Lemma 1 Let u, v be any vectors of Rp and x any vector of span{u, v}. Then

∀n ∈ N, (v ? u)n ? x ∈ span{u, v}, x ? (u ? v)n ∈ span{u, v}, and (v ? u)n ? x = x ? (u ? v)n.

Proof : The property is true for n = 0 since (v ? u)0 ? x = x = x ? (u ? v)0 ∈ span{u, v}.
Assume now (v ? u)j ? x ∈ span{u, v}, x ? (u ? v)j ∈ span{u, v}, and (v ? u)j ? x = x ? (u ? v)j,
for j ∈ {1, · · · , n}. For n + 1, we obtain (v ? u)n+1 ? x = (v ? u)n ? (v ? u) ? x. By the induction
hypothesis, y = (v ? u) ? x ∈ span{u, v} and (v ? u)n ? y ∈ span{u, v}. It follows

(v ?u)n+1 ?x = (v ?u)n ? y = y ? (u?v)n = (v ?u) ?x? (u?v)n = x? (u?v) ? (u?v)n = x? (u?v)n+1,

which ends the proof.

5.5 Kernel of the vector Aitken’s ∆2 : geometric explicit form

Let us now establish a geometric explicit form of vector Aitken’s ∆2 process from its algebraic
explicit form. To do this, we need what follows.

5.5.1 Rotation’s expression in C`p
We have the

Lemma 2 Let u, v be two vectors of Rp with ‖u‖2 = ‖v‖2 = 1 and consider the map R : Rp → Rp

defined by
∀x ∈ Rp, R(x) = (v ? u) ? x ? (u ? v). (18)

R is the rotation in the plane span{u, v}, of angle ψ with angle ∠(u, v) = ψ/2.

Proof: It is straightforward that R is a linear map. Firstly, let us check that R is an isometry.
In fact, ∀x ∈ Rp, ‖R(x)‖22 = (v ? u) ? x ? (u ? v) ? (v ? u)︸ ︷︷ ︸=1

? x ? (u ? v). Thus ‖R(x)‖22 =

(v ? u) ? x ? x ? (u ? v) = ‖x‖22 ? v ? u ? u ? v = ‖x‖22 ? ‖u‖22 ? ‖v‖22 = ‖x‖22.
On the one hand, for x ∈ span{u, v}⊥, we have R(x) = v?(u?x?u)?v = v?(−x)?v = −(−x) = x,
where span{u, v}⊥ denotes the orthogonal of span{u, v}. On the other hand, R(u) = (v ? u) ? u ?
(u ? v) = v ? u ? v = 2(u, v)v − u, which shows that R(u) is obtained by a rotation of angle
ψ on the plane span{u, v}, where the angle ∠(u, v) = ψ/2. In fact, (u, v) = cos(ψ/2). Hence
2(v,R(u)) = v ? R(u) + R(u) ? v = v ? (v ? u ? v) + (v ? u ? v) ? v = u ? v + v? = 2(u, v). Thus
∠(v,Ru) = ∠(u, v) = ψ/2. It follows that ∠(u,Ru) = ∠(u, v) + ∠(v,Ru) = ψ/2 + ψ/2 = ψ. In
a similar way, R(v) = (v ? u) ? v ? (u ? v) ∈ span{u, v}. To see now that R(v) is also obtained
from v by a rotation of angle ψ in the plane span{u, v}, we have to show that ∠(v,R(v)) = ψ.
In fact, we saw that ∠(v,R(u)) = ψ/2. Now, 2(R(u), R(v)) = R(u) ? R(v) + R(v) ? R(u) =
(v ? u ? v) ? (v ? u ? v ? u ? v) + (v ? u ? v ? u ? v) ? (v ? u ? v) = u ? v + v ? u = 2(u, v). Hence
∠(R(u), R(v)) = ψ/2. It follows then ∠(v,R(v)) = ∠(v,R(u)) + ∠(R(u), R(v)) = ψ/2 + ψ/2 = ψ.
Thus, R(u) (respectively R(v)) is obtained from u (respectively from v) by a rotation in span{u, v}
of angle ψ with ∠(u, v) = ψ/2.
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5.5.2 Geometric explicit form of the vector Aitken’s ∆2 kernel

The kernel of vector Aitken’s ∆2 process, expressed in terms of rotations, is as follows

Theorem 6 The kernel of vector Aitken’s ∆2 process is the set of vector sequences (Sn) given by

∀n, Sn = S + δnRn(e0), (19)

where R is the rotation in the plane span{e0, e1}, with e0 = S0 − S, e1 = S1 − S0 and moving ê0
into ê1 with ê0 = e0/‖e0‖2 and ê1 = e1‖e1‖2.

Proof: We showed that the kernel of vector Aitken’s ∆2 process is the set of vector sequences (Sn)
given by Sn = S + (e1 ? e

−1
0 )n ? e0 for any arbitrary vectors e0 = S0 − S and e1 = S1 − S. Setting

α = ‖e0‖2, β = ‖e1‖2, ê0 = e0/α, ê1 = e1/β, we get Sn = S + αδn(ê1 ? ê0)
n ? ê0, with δ = β/α.

Let ψ be the angle ψ = ∠(ê0, ê1) and v̂ in span{ê0, ê1} with ‖v̂‖2 = 1 and ∠(ê0, v̂) = ψ/2. Then,
the rotation R in span{ê0, ê1} of angle ψ is explicitly given by R(x) = v̂ ? ê0 ? x ? ê0 ? v̂. Thus
ê1 = R(ê0) = v̂ ? ê0 ? ê0 ? ê0 ? v̂ = v̂ ? ê0 ? v̂. Hence (ê1 ? ê0)

n = (v̂ ? ê0 ? v̂ ? ê0)
n = (v̂ ? ê0)

2n.
From Lemma 1, we have (v̂ ? ê0)

n ? ê0 = ê0 ? (ê0 ? v̂)n. It follows that (ê1 ? ê0)
n ? ê0 = (v̂ ?

ê0)
2n ? ê0 = (v̂ ? ê0)

n ? (v̂ ? ê0)
n ? ê0 = (v̂ ? ê0)

n ? ê0 ? (ê0 ? v̂)n = Rn(ê0) and finally we obtain
Sn = S + αδnRn(ê0) = S + δnRn(αê0) = S + δnRn(e0).

In [21], Steele et al. experimentally observed the result of Theorem 6 and gave a proof based
on a geometric construction using concepts of elementary geometry, typically the similarity and
congruence between triangles.

5.6 Kernel of the vector ε-algorithm : implicit form

The following result proved by Salam [16, Thm. 12] by using designants describes the implicit form
of the kernel of ε-algorithm

Theorem 7
The kernel of the ε2k-transformation:(Sn) 7−→ (ε

(n)
2k ) is the set of sequences satisfying, for all n,

Sn = S + a0 ?∆Sn + · · ·+ ak−1 ?∆Sn+k−1, (20)

where the coefficients ai are in the Clifford algebra.

The relation (20) is the implicit form of the kernel of the ε2k-transformation. It can also be written
under the form

α0 ? (Sn − S) + · · ·+ αk ? (Sn+k − S) = 0,

with αi ∈ C`p, α0 ? αk 6= 0, and α0 + · · ·+ αk = 1. It is a necessary and sufficient condition.
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5.7 Conjecture on the explicit form of the kernel of the vector ε-
algorithm

We conjecture that the explcit form of vector ε-algorithm kernel is given by

Conjecture 1
The kernel of the transformation ε2k : (Sn) 7−→ (ε

(n)
2k ) is the set of sequences satisfying, for all n,

Sn = S + α1 ? λ
n
1 + · · ·+ αk ? λ

n
k ,

where the coefficients αi, λi are in C`p, and such that αi ? λ
n
i ∈ Rp for i = 1, . . . , k and for all n. .

Intensive computations using Mathlab confirm the conjecture for k = 2, 4, 6. Theoretical investiga-
tions are actually under consideration.
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