Polyhedral Reductions for Petri nets
Nicolas Amat, Bernard Berthomieu, Silvano Dal Zilio, Didier Le Botlan

To cite this version:
Nicolas Amat, Bernard Berthomieu, Silvano Dal Zilio, Didier Le Botlan. Polyhedral Reductions for Petri nets. Modélisation des Systèmes Réactifs (MSR’23), Nov 2023, Toulouse, France. hal-04355257

HAL Id: hal-04355257
https://hal.science/hal-04355257
Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Polyhedral reductions for Petri nets
Nicolas Amat, Bernard Berthomieu, Silvano Dal Zilio, Didier Le Botlan

Polyhedral equivalence

\((N_1, m_1) \equiv_E (N_2, m_2)\)

Polyhedral equivalence defines a linear dependence relation \((E)\) between the reachable markings of two nets, where \(E\) is a Presburger formula, or a system of linear Diophantine equations. This equivalence, denoted \((N_1, m_1) \equiv_E (N_2, m_2)\), preserves enough information in \(E\) so that we can rebuild the state space of \(N_1\) knowing only the one of \(N_2\).

We say that two markings \(m_1, m_2\) are compatible up to \(E\) denoted \(m_1 \equiv_E m_2\), when formula \(E \land m_1 \equiv m_2\) is satisfiable, with \(m\) the conjunction \(\bigwedge_{p \in P} p \equiv m(p)\) (e.g., \((p_5 = 5) \land (p_0 = 0) \land \ldots\))

Nets

\((N_1, m_1)\) and \((N_2, m_2)\) are \(E\)-equivalent when:

1. \(E \land m_2\) is satisfiable for all markings \(m\) in \(R(N_1, m_1)\) or \(R(N_2, m_2)\);
2. initial markings are compatible: \(m_1 \equiv_E m_2\);
3. assume \(m_1', m_2'\) are markings of \(N_1, N_2\) such that \(m_1' \equiv_E m_2'\), then \(m_1'\) is reachable iff \(m_2'\) is reachable.

Lemma (Reachability Checking)

Given \(m_2'\) reachable in \(N_2\) then \(m_1' \equiv_E m_2'\) implies \(m_1' \in R(N_1, m_1)\).

Lemma (Invariance Checking)

For all \(m_1'\) in \(R(N_1, m_1)\) there is \(m_2'\) in \(R(N_2, m_2)\) such that \(m_1' \equiv_E m_2'\).

We use this property in a SMT-based model-checker with structural reductions. It supports generalized reachability formulas of the form:

\[A \equiv (p_1 + p_1 \geq 5) \lor (p_2 < p_3) \]

Counting using SDD

\[\text{Count} \text{\# instances: } 4471223 \text{ markings, } 19756224 \text{ transitions} \]

Reachability using SMT

To check if property \(F_1\) is reachable in \(N_1\), it is enough to check its \(E\)-transform \(F_2\) on \(N_2\):

\[F_2(y) \equiv \exists x \cdot E(x, y) \land F_1(x) \]

Automatic equivalence checking

The problem of checking whether two nets are equivalent is undecidable. But we have implemented a sound, complete procedure in the case of equivalence between parametric nets \((N_1, C_1) \equiv_E (N_2, C_2)\).

Some examples

- **SmallOperatingSystem-PT-MT0016DC0008**

- **AirplaneLD-PT-0050**

Prevalence of reductions in the MCC

The number of instances: 4471223 markings, 19756224 transitions.