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Abstract: After the death of Peter Wynn in December 2017, manuscript documents he left came to our
knowledge. They concern continued fractions, rational (Padé) approximation, Thiele interpolation,
orthogonal polynomials, moment problems, series, and abstract algebra. The purpose of this paper
is to analyze them and to make them available to the mathematical community. Some of them are
in quite good shape, almost finished, and ready to be published by anyone willing to check and
complete them. Others are rough notes, and need to be reworked. Anyway, we think that these
works are valuable additions to the literature on these topics and that they cannot be left unknown
since they contain ideas that were never exploited. They can lead to new research and results. Two
unpublished papers are also mentioned here for the first time.
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1. Introduction

Peter Wynn (1931–2017) was a mathematician, a numerical analyst, and a computer sci-
entist (see in Figure 1 a photo of him taken in 1975). In his scientific life he produced 109 pub-
lications (see References [1–109]), and he translated two books from Russian [110,111]. He
is mostly known for his discovery of the ε-algorithm [3], a recursive method for the imple-
mentation of the Shanks transformation for scalar sequences [112], for its extensions to the
vector, matrix, and confluent cases [12,13,23,24], and for his numerous reports and papers
on Padé approximants and continued fractions. His works influenced a generation of pure
and numerical analysts, with an important impact on the creation of new methods for the
acceleration of scalar, vector, matrix, and tensor sequences, on the approximation of func-
tions, and on iterative procedures for the solution of fixed point problems. Volume 80, No.
1 of the journal Numerical Algorithms was dedicated to him with his full biography. More
recently, a complete analysis of all his works was provided in Reference [113], together
with those of other scientists who worked and are still working on these domains.

Figure 1. Peter Wynn in 1975. © C. Brezinski.

Thus, one can wonder why it was necessary to publish an additional paper on Wynn’s
work. During the last years of his life, Peter Wynn was living in Zacatecas, Mexico. Each
year, he had to come back to the United States for some administrative reasons. On
one occasion, he was visiting friends in San Antonio and left them boxes containing
mathematical documents he did not want, for some unknown reason, to keep with him in
Mexico. In January 2020, C.B. was contacted by F.A.N., a colleague of these friends, who
informed him of the existence of these documents. This is how Wynn’s legacy came to
light. Then, the authors of this paper decided to analyze these unpublished works.

As everyone can understand, it was a quite difficult task. Only a part of the documents
have been extracted from the boxes and studied. The handwritten lists made by Wynn for
indicating the contents of the boxes show that he put together several kinds of documents.
What he named “rough notes” are very difficult to read and understand. In these lists,
he often indicated what he called “notes” and, in this case, they are usually well written
and understandable. The best documents are designated as “paper”. Moreover, Wynn
sometimes wrote new notes on the back of another document! In addition, he also made
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Xerox copies of documents, and inserted them into the boxes. However, his lists help us to
try to identify the kind of document we were considering. But, sometimes, this was quite
impossible. Moreover, most of the documents we found have no date and, often, pages
are not numbered. When unnumbered sheets of paper are stacked on top of each other,
without any separation, it has sometimes been difficult to know where a document begins
and where it ends. It is also possible that Wynn himself mixed up some texts. For these
reasons, certain groupings of pages may be questionable. Thus, we apologize in advance
for all possible mistakes contained in this paper.

Let us motivate the potential reader by giving an idea of the main themes covered by
Wynn. The most important documents left by Wynn, which are almost complete and in
a good shape are the following. One of them concerns Bürmann series over a field; they
generalize Taylor series and are used in the reversion of series. Another one (187 pages)
is on stability and F-functions that play a role in the solution of the differential equation
y′(t) = Ay(t), variation diminishing functions, interpolating rational functions, exponen-
tial fitting forms. The Hamburger-Pick-Nevanlinna problem is treated in a document of
179 pages. There is a document on continued fraction transformations of the Euler-Mclaurin
series that has 202 pages; it contains applications to various series. The convergence of
associated continued fractions, and truncation error bounds for Thiele’s continued fractions
are the topics of another document. Then, we analyze various documents on interpolation.
The first one is about functional interpolation, in which a recursive algorithm, which seems
to be new, is given for constructing interpolating rational functions. Interpolation by the use
of rational functions is studied in another document. Wynn gave two recursive algorithms
for their computation. They also seem to be new. A document extends a report of Wynn
on the abstract theory of the ε-algorithm [69]. The ε-algorithm is applied to sequences of
elements of a ring. An interesting pedagogical document is on iterated complex number
spirals. We present some numerical experiments illustrating Wynn’s ideas. There is a
document that looks like a book project on extrapolation, Padé approximation, continued
fractions, and orthogonal polynomials. It can certainly serve as a basis for lectures on
continued fractions, Padé approximation, and the ε-algorithm. Other documents are on
algebra. One of them (266 pages) is on S-rings. It is quite theoretical, without any applica-
tion nor reference to the literature. A second one treats factorisations of a triangular matrix.
There are also unfinished manuscripts on various topics, which can be of interest. Two
unpublished papers of Wynn are also mentioned here for the first time. The documents
left by Wynn show the intellectual process leading to the elaboration of new results until
their publication. They are also a testimony on the human side of research by describing
the friendship and the collaboration between researchers, and their mutual influence.

The purpose of this paper is to make this legacy available to the international math-
ematical community. It contains a description of the unpublished manuscripts of Wynn.
They offer many new results and developments. Despite the fact that not all documents
have been sorted yet, we decided to propose them immediately since we think that the
research must go on. We hope to encourage some readers to resume the work of Wynn and
bring it to an end. We are sure that several of his ideas are worth pursuing.

All the documents extracted up to now from the boxes left by Wynn have been digi-
tized, and they can be downloaded from the following URL (Legacy Archive: Peter Wynn).
The main material is mentioned in this paper. The unusable or incomplete documents we
found are not listed here, but they are also inserted in the same website together with a
small description. Other information on Peter Wynn can also be found in the site Mathemat-
ics Research of the Department of Mathematics at the University of Texas at San Antonio
(UTSA) https://mathresearch.utsa.edu/Legacy/Peter-Wynn/ (accessed on 30 April 2021).

The history of the discovery of these documents is told in Section 2 with the testimony
of F.A.N. and of the friends of Wynn who inherited them. For readers who are not familiar
with the topics touched upon by Wynn, a short mathematical introduction is provided in
Section 3. More details can easily be found in the literature, particularly in Reference [113].

https://mathresearch.utsa.edu/Legacy/Peter-Wynn/
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Some of the documents left by Wynn in San Antonio are analyzed and commented in
Section 4. Some others will be analyzed in a second paper if they are of interest.

All quotations from Wynn are in italics. Inside a quotation, our own comments (when
necessary) are in roman characters into square brackets. When Wynn mentions a reference
given at the end of his text, we replaced it by that of our own bibliography numbered in
arabic figures between square brackets [·]. The documents of Wynn are numbered in bold
italics arabic figures. For referring to them in the text, these numbers are placed between
curly brackets {·} to distinguish them from the bibliographical references. Concerning the
references of Wynn, we were able to update them, by inserting new DOI, MR (Mathematical
Reviews) and Zbl (Zentralblatt reviews) numbers, and by adding newly discovered papers.
Let us also mention that in 1960, the journal Mathematical Tables and Other Aids to Computation
(known in short as MTAC) changed its name and became Mathematics of Computation, and
that from its Volume 5, the journal Revue française de traitement de l’information, Chiffres
became simply Chiffres. Several papers and communications of Wynn, when he was at
the Stichting Mathematisch Centrum (now Centrum Wiskunde & Informatica) in Amsterdam,
from 1960 to 1964, can also be found at the CWI’s Institutional Repository at the address
https://ir.cwi.nl/ (accessed on 30 April 2021).

2. The Discovery

On 14 January 2020, C.B. received the following message from F.A.N.:

I have just now read your recent remembrance of Peter Wynn appearing in Numerical Algorithms.
I was charmed—thank you for that. But I am also very much interested because, serendipitously,
I have just today “inherited” from a retired colleague several rather heavy boxes of Wynn’s papers
which had been left with my colleague for safekeeping (or convenience) some years earlier.

I have not yet opened the boxes, but I will begin examining the contents soon. The reason
I am writing you is to ask if you would be willing to answer a couple of questions, which I
pose below.

As I begin looking at the material, I could find (1) drafts of papers that might be of interest
to mathematicians, (2) personal items that might be of interest to family or friends, (3) miscellany
that would be of little interest to anyone, or (4) items for which I am at a loss to know whether to
keep or discard [. . . ]

Here are my questions to you:
In case I find material that looks as if it might have some mathematical import, would you

be willing to take look at it, or could you suggest someone who would be?

The colleague he was speaking about is Manuel Philip Berriozábal. He was born in
1931. He was awarded the Bachelor of Science degree in mathematics from Rockhurst
College in 1952, a Master of Science degree in mathematics from the University of Notre
Dame in 1956, and a Ph.D. in mathematics from the University of California at Los Angeles
(UCLA) in 1961. After serving for one year as a lecturer at UCLA, he joined the faculty at
Tulane University as an Assistant Professor. Four years later, he moved to the University of
New Orleans as an Associate Professor. He was promoted to Professor six years later. In
1975, Manuel Berriozábal married Maria Antonietta Rodriguez (see Figure 2). He joined
the faculty at the University of Texas at San Antonio (UTSA) in 1976, and in 1979, he
started the now nationally recognized Prefreshman Engineering Program (PREP) at UTSA.
San Antonio PREP received a Presidential Award for Excellence in Science, Mathematics
and Engineering Mentoring and a La Promesa Program Award from the National Latino
Children’s Institute. Several years ago, TexPREP (Texas Prefreshman Engineering Program)
received a special commendation from the Texas Senate. These accomplishments caught
the attention of the Washington, DC-based Quality Education for Minorities Network and
resulted in Berriozábal being named one of the six Giants in Science at a conference held
in February 1998. In May 1998, he was a recipient of the San Antonio “I Have a Dream”
Foundation Endeavors Award. PREP has also been replicated on eight college campuses
in eight states outside of Texas. It was during his professorship at the Louisiana State
University in New Orleans that he became a close friend of Peter Wynn.

https://ir.cwi.nl/
https://ir.cwi.nl/
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Figure 2. Maria Antonietta and Manuel Philip Berriozábal. ©M.A. and M.P. Berriozábal.

Of course, C.B. and M.R.-Z. were very much interested in the contents of these boxes
since they were in the final preparation of their book which contains, among others, an
analysis of all the publications of Peter Wynn [113]. F.A.N. began to look at them, to scan a
lot of their material, and to send it to us. The correspondence with him was completely
taken up by M.R.-Z., since the same day C.B. received F.A.N.’s first message, he had to
enter a hospital for a health problem.

On 15 January, F.A.N. wrote to C.B. and M.R.-Z.:

I have opened two of the four boxes, looking thoroughly through the contents of one of them.
FIRST BOX

The first box was a smaller one containing several hundreds of pages of handwritten notes
and a few other random items. In this and the next message, I have attached several of the smaller
items that might be indicative of material to come. Nothing is dated so I have no idea whether
this material simply anticipates papers that have been completed and published or represents
new work. In addition, not much is paginated, so I generally presume that the order in which
pages appear is the order in which they were completed and assembled. Some of this material
was left with Dr. Berriozábal here in San Antonio after Peter had visited Mexico and there are
some suggestions (e.g., written accounts of receipts) that suggest that some of the material was
produced while he was living in Mexico. Whether this was after his last publication in 1981, I do
not know.

To Do List: The first document above appears to be a list of various topics he wished to
address, mainly through the construction of relevant notes.

Projects: This document lists a number of projects that he had planned and may well have
completed. Whether these “projects” have found their way into the literature as published papers,
I do not know. I’ve copied a snapshot from the document and you will note that some of the items
have been denoted with a “D__” . Perhaps this is Peter’s shorthand for “Done” or fait accompli. I
didn’t see in his publications any that specifically included, for example, “stratified commutative
ring” or “Bürmann series”, so perhaps this represents some work that hasn’t yet been published,
but will appear somewhere in his collection of notes. I did find the beginnings of what looks to be
a monograph on Interpolation Theory–the first in his list of projects and one that doesn’t seem to
have been completed at that time.

Duplicate List: This may reflect a list of some of the items that Peter included in his boxes
of documents.

The next messages will include 2 larger documents, one a bibliography and the other a
more extensive list of documents.

Other items in this first box include the aforementioned piece of a monograph on Interpola-
tion Theory, as well as a couple of hundred pages of paginated notes of another document. In
that case, I see pages 70–300+ so I can’t be sure of the initial title. There is another paginated
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treatment of a topic (I don’t recall exactly what at the moment), a book review, and some hundreds
of other pages of notes that do not appear to fit together well.
SECOND BOX

I’ll mention here that the second box, one that originally held a dozen reams of office paper,
now holds about 20 kg of handwritten notes. I have not yet examined these notes in detail, and
when I do, I want to be careful not to disturb the assembly of any documents.

Bibliography: This is likely not anything that you would use. I imagine Peter kept this
bibliography simply for reference purposes.

List of documents: This seems to be a list of documents and/or things he felt he needed
to do, such as copy this or Xerox that. I don’t know if it has any intrinsic value, but it might
reflect documents included among his papers.

In a message to F.A.N., 17 January 2020, Maria Antonietta Berriozábal wrote:

We liked his visits. Each time he came it was without much notice and we would just go out to
eat. For me I was so very busy for so many years and so was Manny [her husband Manuel]
that a surprise visit took creativity to get the three of us together, but we did it for Peter. He liked
nice places. And I loved hearing he and Manny talk old times. He would also talk about living in
Mexico which he loved.

He was such a mystery to me because he was pretty much alone and he liked it that way.
I do not recall meeting Peter when we were in New Orleans which was August 1975 to

June 1976 [. . .]
What I do recall is that after we married I was sorting and clearing papers for Manny from

our apartment which he had lived in for many years and I came across a letter from Peter written
around the time Manny and I met. In that letter I gathered Peter was a bachelor friend of Manny
who was not the marrying kind and he was commenting that Manny had met “the one”. He was
happy for Manny but it seemed to me Peter was happy being alone. Now that I think of it I don’t
think I ever got to know who Peter was. He had a wonderful smile. He liked to laugh and joke
and was very very blond.

C.B. and M.R.-Z. wrote to Maria Berriozábal and sent her the photo of Wynn in-
serted above (also see References [113,114]). She answered on 21 January 2020:

[. . .] The photos are valuable. I met Peter when he was a much older man but still had that
incredibly beautiful smile and lots and lots of hair!

Each time he came to the US for many years, he would call Manny and we would go to
dinner. If I recall correctly, it was mostly on Peter’s nickel and as I stated to Sandy [F.A.N.] we
went to nice restaurants, although Manny may have won some times and we would go to our
famous Luby’s Cafeteria—always the frugal Manny.

I do not recall Peter in New Orleans when I lived there with Manny the first nine months
of our marriage. I left San Antonio to join him as he was waiting and hoping to join UTSA. The
New Orleans scholars community from the four universities and colleges there met socially and
regularly at people’s homes but I do not recall Peter in any of that circle. It could have been that
he was no longer in New Orleans. This was August 1975 to June 1976.

This morning when I read your note the words that rang in my head is how youth is wasted
on the young. I wish I had paid more attention and had retained the conversations with Peter,
but at that time my life was incredibly full and so was Manny’s. There were times when I had
to make major changes in my schedule to join Manny and Peter and I always did and looked
forward to those dinners. My questions to Peter were always about Mexico and his life there.
That is what I wish I could recall more. I just know that he was very happy there. I do not recall
what his conversations with Manny were all about and now Manny is forgetting a lot of things.

On one of these trips which had to occur every six months, I believe, because that is how he
kept his US citizenship active he said he had some boxes with him and asked if we could store
them for him for safekeeping. I recall his taking them out of his car. When I looked at them again
seriously in recent years I saw how big the boxes were and soon learned how heavy they were.
Yet, I seem to recall Peter carrying them by himself. Maybe a Dolly helped. I just know he trusted
us with them.

One of my last year’s resolutions was to clean the garage and I did. It took some weeks but
with some help I did it. Peter’s boxes were the only things that were still in there without any
resolution. We had been telling each other for a couple of years that Peter had probably died since
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we did not hear from him anymore. He quit coming. Manny and I would comment from time to
time that we still had those boxes and that we needed to do something about them.

A year ago when the boxes were the last unsettled things in the garage I told our gardener
who was helping me with the project the story of the boxes. He said what if it is money. Since
it had been so long that Peter had left the boxes with us I gave myself permission to open them.
Hilario, my helper, even wondered if they were full of money! I only opened two boxes and all I
saw were reams of papers with math problems. Pages and pages and pages. When Sandy [F.A.N.]
helped us with Manny’s papers after he retired I decided to ask him to go over the papers and
determine what they were. Manny looked at them but had no idea what the material was. When
Sandy [F.A.N.] took the boxes out I saw how at least one of them had folders of some kind so the
papers were not only sheets of math problems. I hope someone who has Peter’s interest and his
career uppermost in their mind will continue to review it and possibly record it for posterity.

To close, thank you again for honoring Peter’s work.

3. Mathematical Background

Some documents written by Wynn are pure algebra or complex analysis. They require,
at least for some of them, quite a good knowledge of these fields. However, it is impossible
to give herein a full account of the definitions and notions necessary for their complete
understanding. We will restrict ourselves to the most specialized topics addressed by
Wynn in the domain of numerical analysis, namely the Shanks transformation and the
ε-algorithms, Padé approximation, continued fractions, and rational interpolation. In
this section, we only present the definitions and the main algebraic properties that are
sufficient for understanding most of the documents analyzed. The fundamental question
of convergence is not addressed. We refer to References [113,115–119] for more details.

3.1. The Shanks Transformation and the ε-Algorithms

When a sequence (Sn) of numbers is slowly converging to its limit S, and when
one has no access to the process building it, it can be transformed into a new sequence
(or a set of new sequences), which, under some assumptions, converge(s) faster to the
same limit. Many such sequence transformations exist and have been studied; see Refer-
ences [115,117–119]. Among them, one of the most well known, studied, and used is due
to Shanks [112]. It consists in transforming (Sn) into a set of sequences denoted {ek(Sn)},
indexed by k and n, and defined by

ek(Sn) =

∣∣∣∣∣∣∣∣∣
Sn Sn+1 · · · Sn+k

∆Sn ∆Sn+1 · · · ∆Sn+k
...

...
...

∆Sn+k−1 ∆Sn+k · · · ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

∆Sn ∆Sn+1 · · · ∆Sn+k
...

...
...

∆Sn+k−1 ∆Sn+k · · · ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣

, k, n = 0, 1, . . . . (1)

These numbers can be recursively computed by the scalar ε-algorithm of Wynn [3], whose
rule is

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε

(n)
k )−1, k, n = 0, 1, . . . , (2)

with ∀n, ε
(n)
−1 = 0 and ε

(n)
0 = Sn, and it holds ε

(n)
2k = ek(Sn), k, n = 0, 1, . . . The ε

(n)
2k+1 are only

intermediate results with no interest for our purpose. In fact, quantities with a different
parity can be eliminated from (2), thus leading to the cross-rule of Wynn [48] which only
links those of the same parity

(ε
(n)
k+2 − ε

(n+1)
k )−1 + (ε

(n+2)
k−2 − ε

(n+1)
k )−1 = (ε

(n+2)
k − ε

(n+1)
k )−1 + (ε

(n)
k − ε

(n+1)
k )−1,

with the initial conditions ε
(n)
−2 = ∞, ε

(n)
−1 = 0, and ε

(n)
0 = Sn for n = 0, 1, . . .
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It can be proved that ∀n, ε
(n)
2k = S if and only if the sequence (Sn) satisfies a linear

difference equation of order k

a0(Sn − S) + a1(Sn+1 − S) + · · ·+ ak(Sn+k − S) = 0, n = 0, 1, . . . ,

where the coefficients ai are such that a0ak 6= 0 and a0 + · · ·+ ak 6= 0. In other words, if
and only if Sn has the form

Sn = S +
p

∑
i=1

Ai(n)rn
i +

q

∑
i=p+1

[Bi(n) cos(bin) + Ci(n) sin(bin)]eωin +
m

∑
i=0

ciδin,

where Ai, Bi and Ci are polynomials in n such that, if di is the degree of Ai plus 1 for
i = 1, . . . , p, and the maximum of the degrees of Bi and Ci plus 1 for i = p + 1, . . . , q,
one has

m + 1 +
p

∑
i=1

di + 2
q

∑
i=p+1

di = k,

with the conventions that the second sum vanishes if there are no complex zeros, and
m = −1 if there is no term in δin (Kronecker’s symbol). The set of such sequences is named
the kernel of the transformation. Since many sequences produced by iterative methods
have this form or are close to it, it explains the success of this algorithm.

In Reference [24], Wynn extended his algorithm to the case where the Sn are vectors
or square matrices. In the matrix case, the significance of the power −1 in (2) is clear. For
vectors, the inverse y−1 of a vector y is defined as y−1 = y/(y, y), thus leading to the vector
ε-algorithm.

Similarly, when a function f (t) is slowly converging to its limit S when t tends to
infinity, it can be transformed into a set of functions converging faster to S under certain
assumptions. For that purpose, Wynn extended his algorithm to that case by proposing the
first confluent form of the ε-algorithm whose rule is, for all t,

εk+1(t) = εk−1(t) + (ε′k(t))
−1, k = 0, 1, . . . ,

with ε−1(t) = 0 and ε0(t) = f (t). Again the ε2k+1(t) are intermediate computation. It can
be proved that, for all t, ε2k(t) = S if and only if f satisfies the differential equation of order k

a0( f (t)− S) + a1 f ′(t) + · · ·+ ak f (k)(t) = 0,

with a0ak 6= 0, that is, in other words,

f (t) = S +
p

∑
i=1

Ai(t)erit +
q

∑
i=p+1

[Bi(t) cos(bit) + Ci(t) sin(bit)]eωit,

where Ai, Bi and Ci are polynomials in t such that, if di is the degree of Ai plus 1 for
i = 1, . . . , p, and the maximum of the degrees of Bi and Ci plus 1 for i = p + 1, . . . , q, one has

p

∑
i=1

di + 2
q

∑
i=p+1

di = k.

Moreover, the ε2k(t) can be expressed by a ratio of determinants quite similar to (1), but in
which the derivatives of f are replacing the powers of the difference operator ∆ (see, for
example, Reference [113] (p. 24) or Reference [115] (p. 257)).
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3.2. Padé Approximation

Let f be a formal power series

f (t) =
∞

∑
i=0

citi,

in which the coefficients ci and the variable t can be complex. A Padé approximant of f is a
rational function with a numerator of degree p at most and a denominator of degree q at most
such that its power series expansion agrees with f as far as possible, that is up to the degree
p + q inclusively. Such an approximant is denoted [p/q] f and, by construction, it holds

[p/q] f (t)− f (t) = O(tp+q+1), (t→ 0).

Let us set [p/q] f (t) = Np(t)/Dq(t) with

Np(t) = a0 + a1t + · · ·+ aptp and Dq(t) = b0 + b1t + · · ·+ bqtq.

Then, linearizing the conditions of the definition as f (t)Dq(t)− Np(t) = O(tp+q+1) leads
to the relations

a0 = c0b0

a1 = c1b0 + c0b1
...

ap = cpb0 + cp−1b1 + · · ·+ cp−qbq

0 = cp+1b0 + cpb1 + · · ·+ cp−q+1bq

...

0 = cp+qb0 + cp+q−1b1 + · · ·+ cpbq

with the convention that ci = 0 for i < 0 which allows to treat simultaneously the cases
p ≤ q and p ≥ q.

Setting b0 = 1 allows to solve the system formed by the preceding last q equations for
the coefficients b1, . . . , bq. Knowing the bi’s, the first p + 1 equations directly provide the ai’s.

It holds

[p/q] f (t) =

∣∣∣∣∣∣∣∣∣
tqfp−q(t) tq−1fp−q+1(t) · · · fp(t)
cp−q+1 cp−q+2 · · · cp+1

...
...

...
cp cp+1 · · · cp+q

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

tq tq−1 · · · 1
cp−q+1 cp−q+2 · · · cp+1

...
...

...
cp cp+1 · · · cp+q

∣∣∣∣∣∣∣∣∣,
where fm denotes the partial sum of f up to the term of degree m inclusively.

It is easy to see from (1) that, applying the ε-algorithm to Sn = ∑n
i=0 citi leads to

ε
(n)
2k = [n + k/k] f (t). Let g be the reciprocal series of f defined by f (t)g(t) = 1 (it exists if

and only if c0 6= 0). If the ε-algorithm is applied to the sequence of the partial sums of g,
then ε

(n)
2k = [n + k/k]g(t) = 1/[k/n + k] f (t).

3.3. Continued Fractions

A continued fraction is an expression of the form

C = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .

.
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For evident typographical reasons, it is written as

C = b0 +
a1
b1

+
a2
b2

+
a3
b3

+ · · ·

The numbers ak and bk are called the kth partial numerator and partial denominator, respec-
tively, ak/bk is the kth partial quotient, and

Cn = b0 +
a1
b1

+ · · ·+ an−1
bn−1

+
an
bn

is called the nth convergent of the continued fraction C (even if the sequence (Cn) does not
converge). A continued fraction is said to converge if the sequence (Cn) converges when n
tends to infinity.

After reducing to the same denominator, Cn can be written as Cn = An/Bn. It can be
computed by the recurrence relationships

Ak = bk Ak−1 + ak Ak−2

Bk = bkBk−1 + akBk−2, k = 1, 2, . . .

with

A0 = b0, A−1 = 1

B0 = 1, B−1 = 0.

Let (Cn) be the sequence of convergents of the continued fraction C and let (Cpn) be a
subsequence. The continued fraction

C′ = b′0 +
a′1
b′1

+
a′2
b′2

+
a′3
b′3

+ · · ·

whose convergents satisfy C′n = Cpn is given by

a′n =
Cpn−1 − Cpn

Cpn−1 − Cpn−2

, b′n =
Cpn − Cpn−2

Cpn−1 − Cpn−2

,

with b′0 = Cp0 , b′1 = 1 and a′1 = Cp1 − Cp0 . This operation is called a contraction of the
continued fraction. Usually, pn = 2n.

The analytic theory of continued fractions is concerned with continued fractions whose
partial numerators and/or denominators are functions of the complex variable z. Let us
consider the continued fraction

C = b0 +
a1z
1

+
a2z
1

+
a3z
1

+ · · ·

From the recurrence relations, we see that A2k−1, A2k and B2k are polynomials of degree
k in z and that B2k−1 is a polynomial of degree k − 1. The expansions of Ck and Ck−1
in ascending powers of z agree up to the term of degree k − 1 inclusively. It is possi-
ble to choose b0, a1, a2, . . . so that the expansion of Ck agrees with that of a given series
f (z) = c0 + c1z + c2z2 + · · · up to the term of degree k. This continued fraction is called
the continued fraction corresponding to the series f . By a contraction of this continued
fraction, with pk = 2k as explained above, we obtain a continued fraction whose conver-
gent C′k agrees with that of f up to the term of degree 2k. This is the continued fraction
associated to the series f . Thus, by the uniqueness property of Padé approximants, we have
C2k = [k/k] f (z) and C2k+1 = [k + 1/k] f (z).
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3.4. Rational Interpolation

Consider the continued fraction

C(n)(x) = α
(n)
0 +

x− xn

α
(n)
1

+
x− xn+1

α
(n)
2

+ · · · ,

with α
(n)
k = $

(n)
k − $

(n)
k−2 for k = 1, 2, . . ., and α

(n)
0 = $

(n)
0 = f (xn), and where the scalars $

(n)
k

are recursively computed by

$
(n)
k+1 = $

(n+1)
k−1 +

xn+k+1 − xn

$
(n+1)
k − $

(n)
k

(3)

with $
(n)
−1 = 0 and $

(n)
0 = f (xn). The quantities $

(n)
2k can be expressed as a ratio of two

determinants.
The kth convergent C(n)

k of this continued fraction satisfies the interpolation conditions

C(n)
k (xi) = f (xi) for i = n, . . . , n + k. The quantities $

(n)
k+1 are the reciprocal differences of f .

They formed the $-algorithm used by Wynn for rational extrapolation at infinity [2].
Let us now consider the confluent reciprocal differences of a function f defined by

$k+1(t) = $k−1(t) +
k + 1
$′k(t)

with $−1(t) = 0 and $0(t) = f (t). This formula will be used as an extrapolation method
for functions by Wynn, and named the confluent form of the $-algorithm [12].

Thiele’s expansion of a function f consists in the continued fraction

f (t + h) = f (t) +
h

α1(t)
+

h
α2(t)

+ · · · ,

with αk(t) = $k(t)− $k−2(t) for k = 1, 2, . . . Replacing t by 0 and h by x, we get

f (x) = f (0) +
x

α1(0)
+

x
α2(0)

+ · · ·

The successive convergents Ck(x) = Ak(x)/Bk(x) of this continued fraction are such that
f (x)− Ck(x) = O(xk+1). Since Padé approximants are uniquely defined, it holds

C2k(x) = [k/k] f (x), C2k+1(x) = [k + 1/k] f (x).

4. The Legacy

Let us now describe the various documents contained in the boxes left by Wynn at his
friends’ house in San Antonio. All, except two, are handwritten.

4.1. Main Documents

We tried to sort the documents by themes. However, our classification is only an
attempt since there are many connections between the topics, the documents are not dated,
and, maybe, some of them contain pages coming out from various sources since they are
not numbered and, maybe, inserted by Wynn in disorder into the boxes.

4.1.1. Complex Analysis and Continued Fractions

1 Bürmann series over a field
These titled notes (52 pages) are devoted to Bürmann series. They are mentioned in
documents {26–28}, and were probably written at the same time as {14}, since both
titles are listed together.
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The Bürmann series of a function f is a generalized form of a Taylor series in which,
instead of a series in powers of z − z0, we have a series in powers of the analytic
function φ(z) − φ(z0). It is used in the reversion of series which consists, starting
from z = f (w), in expressing w as w = g(z). The problem was considered by
Joseph Louis Lagrange (1736–1813) in 1770 [120] and generalized by Hans Heinrich
Bürmann (?–1817). A report on Bürmann’s theorem by Joseph-Louis Lagrange and
Adrien-Marie Legendre (1752–1833) appeared in Rapport sur deux mémoires d’analyse
du professeur Bürmann, Mémoires de l’Institut National des Sciences et Arts: Sciences
Mathématiques et Physiques, vol. 2, pages 13–17 (1799). An exhaustive treatment
of this topics is given in Reference [121] (pp. 55 ff.). The Lagrange-Bürmann series,
as it is often called, also allows for two functions f and g, both holomorphic in the
neighborhood of a point, to be expanded in a power series of the other one in two
overlapping regions. Series reversion related to Hankel determinants, continued
fractions, and combinatorics as explained in Section 6.10.4 of Reference [113] about
combinatorics; also see Reference [122]. Wynn wrote:

This paper is directed towards the transformation of series expansions [...]
The general results derived are illustrated by application to a problem concerning the trans-
formation of asymptotic relationships.
Notation. Let n > 0 be fixed finite integer.
(1) With w a fixed point in C, the finite part of the complex plane, Ω(w) an open set of
points in C\{w} with limit point at w, Ω̄(w) ≡ {w}⋃Ω(w), and p, q mappings of Ω̄(w)
into C,

p(z) '(w,Ω) q(z)

means that p(z)− q(z) = o{(z− w)n} as z tends through Ω(w) to w.
(2) Let M be a nonvoid set of points in C. For each w ∈ M, let Ω(w), Ω̄(w) be as in (1) and
p(w, ·), q(w, ·) : Ω̄(w)→ C.

p(w, z) '[M,Ω] q(w, z)

means that for each w ∈ M, p(w, z) '(w,Ω) q(z). [We have] Ω̄ =
⋃

w∈M Ω̄(w) and
Ω′ =

⋃
w∈M Ω′(w) where {Ω′(w) : z− w for all z ∈ Ω̄(w)}.

The main problem considered has a simple form as follows: let aj, f j ∈ C (j : n) [This
notation means that j runs from 1 to n. The notation (j : 0, n) means that j goes from
0 to n] with a1 6= 0 and, with w ∈ C fixed, let a, f : Ω̄(w)→ C be such that

a(z) '(w,Ω) a(w) +
n

∑
j=1

aj(z− w)j

f (z) '(w,Ω) f (w) +
n

∑
j=1

f j(z− w)j.

Determine gi ∈ C for which

f (z) '(w,Ω) f (w) +
n

∑
i=1

gi{a(z)− a(w)}j.

In the general form of the problem aj, f j : M→ C (j : n) are mappings with a1(w) 6= 0 for
all w ∈ M; for each w ∈ M, a(w, ·) : Ω̄(w)→ C is such that

a(w, z) '[M,Ω] a(w, w) +
n

∑
j=1

aj(w)(z− w)j

the mapping f : Ω̄→ C satisfies the relationship

f (z) '[M,Ω] f (w) +
n

∑
j=1

f j(w)(z− w)j



Mathematics 2021, 9, 1240 13 of 45

and gi : M→ C for which

f (z) '[M,Ω] f (w) +
n

∑
i=1

gi(w){a(w, z)− a(w, w)}i

are to be determined.

Then, Wynn described three variants of the problem corresponding to various properties
of the function a. The particular case of polynomials is treated. The text ends by:

The function c(z) = ln(1 + z) is inverse to a(z) = ez − 1. c(eiθ) = ln{2(1 + cos θ)}+
iθ/2 maps the segment −π ≤ θ ≤ π onto a curve C, symmetric about the real axis,
enclosing its nonpositive part, containing the real point ln(z), the imaginary points ±iπ/3,
and having as asymptotes the lines z = ±iπ/2, D being the open domain bounded by C, a
maps D bijectively onto the unit open disc.

2 On Stability Functions
The handwritten paper On stability functions (mentioned in {26} as “Paper, latest
version”) contains 187 pages with a bibliography at the end. Its first section is an
introduction and a presentation of the notations:

This paper is concerned with functions of the form

(1) f (z) = 1 +
az

1− az/2 + z2s(z)

where 0 < a < ∞, and

(2) s(z) =
∫ ∞

0

dψ(t)
1 + z2t

where ψ(t) is a nondecreasing function of bounded variation for 0 ≤ t ≤ ∞ such that all
moments

(3) cν =
∫ ∞

0
tν dψ(t)

for ν = 0, 1, . . . exist.
A function f of this form will be called an F-function. If the context permits, the notation
f ∈ F or, where convenience dictates, f (z) ∈ F, will be used. The function s in the
representation (1) plays a significant role in the theory of the function f . A function of
the form (2) with ψ as described will be called an S-function; again the notations s ∈ S or
s(z) ∈ S will be used.
The mapping properties of F- and S-functions, in particular, will be investigated.

Then, Wynn stated that an F-function f is real for finite negative values of z with
f (z) > 0 for all sufficiently small negative values of z, is asymptotically represented
as z tends to zero over an open set in the sector π/2, 3π/2 with the limit point 0,
and that the function f can be asymptotically represented by a series of the form
f (z) = ∑∞

ν=0 cνzν (formula scratched) which generates an associated continued frac-
tion whose even convergents map the closed infinite left half-plane L into the closed
unit disc D if and only if f is an F-function. The proof is given with a reference to his
paper (Reference [98]) for details. An example of an F-function is ez, and Wynn added:

The study of F-functions was motivated by the following consideration: With A a bounded
linear operator, the solution of the differential equation

(9)
dy(t)

dt
= Ay(t)

with y(0) prescribed, satisfies the relationship

(10) y(nh + h) = exp(Ah)y(nh)

for n = 0, 1, . . . If 0 < h < ∞ and the eigenvalues of A lie in L, those of exp(Ah) lie in
D. ‖y(nh)‖ remains bounded and, indeed, decreases to zero as n increases indefinitely. An
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approximation y∗(t) to the solution of Equation (9) may be obtained by use of a Taylor series
method based upon use of an approximate identity

(11)
m

∑
i=0

ai
diy∗(t + h)

dti =
n

∑
i=0

bi
diy∗(t)

dti .

Setting m = n = r and taking the ai and bi to be the denominator and numerator coefficients
of powers of z in C2r(hz), where C2r(z), with r ≥ 1 fixed, is a convergent of the continued
fraction associated with the exponential series, and setting t = nh, the special form of the
approximate identity (11) applied to Equation (10) yields the relationship

(12) y∗(nh + h) = C2r(Ah)y∗(nh)

for n = 0, 1, . . . As a consequence of the mapping properties of C2r(t) described above, the
eigenvalues of C2r(Ah) lie in D, and the remarks concerning the behaviour of ‖y(nh)‖ apply
with equal force to ‖y∗(nh)‖: the exact and approximate solutions of Equation (9) behave in
the same way. The practical details of the way in which relation (12) is implemented are not
of immediate concern; any method for the approximate solution of Equation (9) based upon
use of recursion (12) is stable.

Let us remember that the convergent C2r of the associated continued fraction to a
series is its [r/r] Padé approximant. Since the computation of Padé approximants to
the exponential function are highly numerically unstable (see References [123,124])
one can doubt the practical usefulness of the procedure mentioned.
Other examples of F-functions are given. Wynn claimed that they open up the possi-
bility of constructing stable schemes for the approximate solution of certain nonlinear
differential equations. A characterisation of F-functions which is independent of the
continued fraction theory is given. Based on the proof of this result, Wynn asserted that
it is possible to demonstrate the existence of functions with mapping properties less
specific than those of F-functions. Indeed, a number of F-functions can be derived from
a given F-function. This remark reminds the way some totally monotone sequences
can be derived from a totally monotone one as explained in Reference [125]. Then,
Wynn proved that F-functions are closed with respect to multiplication. Meromorphic
F-functions are then considered.
The next part of the work deals with variation diminishing functions. Let (xi) be a
sequence of real numbers. The transformation (xi) 7−→ (yj) given by yj = ∑n

i=0 an−ixi,
j = 0, 1, . . . (it seems that n should be replaced by j), is said to be variation diminishing
if the number of changes of sign of the yj is less than or equal to the number of
changes of sign of the xi. Wynn wrote: Transformations of this type underly the theory
of many smoothing operations, and also occur in the numerical solution of certain partial
differential equations by iterative methods, and he referred to Reference [126]. Several
results are proved.
The next section of this manuscript is devoted to interpolation. Wynn wrote:

It is possible to construct a rational F-function whose derivative values agree with those of
a generating F-function up to prescribed orders not only at the origin but at a prescribed
sequence of points in L; furthermore this rational function may be derived by the use of
purely algebraic methods of rational function interpolation.

A theorem is proved and recurrences for the coefficients occurring in the interpolating
rational F-function are given. A long discussion, where orthogonal polynomials
play a role, follows. The algebraic problem of determining a rational function with
denominator and numerator of degrees equal to m and m − 1 respectively, which
satisfies the interpolation conditions may be solved by a recursive process which
is described and justified in his Appendix 3 Extremal solutions of the Pick-Nevanlinna
problem. It could be of interest to code and test this algorithm, and to compare it with
the other existing ones.
Exponential fitting forms the topic of the following section. Since differential systems
of the form (9) constitute a very restricted class, Wynn now considered the system
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dy(x)/dx = f (y(x)). Linearizing it yields dy(x)/dx = f (0) + Jy(x) where J is the
Jacobian matrix of f . Assuming its nonsingularity, we have

y(x + h) = eJh[y(x) + J−1 f (0)]− J−1 f (0).

Assuming that the eigenvalues λj of J are distinct, and . . . what follows is not clearly
stated and it seems that one page of the manuscript is missing. Anyway, Wynn
constructed a rational function such that its derivatives of prescribed orders agree
with those of eJh at the points λjh, and he wrote:

It is eminently desirable that a method for the construction of general rational functions
mapping L into D and having prescribed orders of contact with the exponential function
at the origin and other specified points in L should be made available. This is precisely the
service offered by Section [not identified] of this paper. In Theorem 4 [not identified],
the F-function producing the interpolation data is taken to be the exponential function; the
results of that theorem then show that the required function is obtained simply by means of
rational function interpolation.

A section on meromorphic F-functions follows in which the properties of the corre-
sponding continued fractions they generate are studied. The even and odd convergents
are examined.
The first Appendix has the title The asymptotic expansion of positive real functions. Ap-
pendix two is on The construction of functions belonging to certain classes. It deals with a
general theory of the derivation of functions of the form

F(λ) =
∫ ∞

−∞
(λ− t)−1 dσ(t)

from others of the same form. In a previous Appendix (without a number) Wynn
already treated the same problem for S-functions. The third Appendix, already men-
tioned above, considers the Pick-Nevanlinna problem in a wider setting. Let us
remember that this problem consists in finding a holomorphic function ϕ that inter-
polates the data λ1, . . . , λn ∈ D subject to the constraint |ϕ(λ)| < 1 for all λ ∈ D; see
Reference [127]. Wynn wrote:

It is clear from the above conspectus of results from the Pick-Nevanlinna theory, that the
solution of the problem of determining a rational function which satisfies the mapping and
interpolation conditions described above differs from that of constructing a rational function
which satisfies interpolation conditions alone in at least two respects: in the solution of the
first problem a combination of function-theoretic and algebraic methods is involved, while in
that of the second, algebraic methods are exclusively deployed; furthermore, each stage of the
solution of the first problem results, not in the construction of a single interpolating function
as is the case for the second problem, but in that of a family of functions with the required
properties.

Developments and theoretical results follow. A bibliography of 26 items ends the
paper. One can wonder why Wynn never published it.

3 The Hamburger-Pick-Nevanlinna problem
This manuscript contains 179 pages but with many portions scratched (it probably
contains a mixing of a draft of a paper, notes and rough notes all cited in {26,28}).
Let p, q, r be finite positive integers, let aν (ν : 0, 2p− 2) be finite real numbers, let
xk (k : q) be distinct real argument values, T(1, k) (k : q) be the corresponding
finite positive integers, and bk,ν (k : q | ν : 0, 2T(1, k)− 1) sets of finite real valued
coefficients, let λk (k : r) be distinct argument values in L, T(2, k) (k : r) be the
corresponding finite positive integers, and ck,τ (k : r | τ : 0, T(2, k)− 1) sets of finite
complex valued coefficients. The problem is to determine a function G which satisfies
the asymptotic relationship
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λ2p−1

{
G(λ)−

2p−2

∑
ν=0

aνλ−ν−1

}
= O(1)

as λ tends to infinity in a sector of the form π < γ ≤ arg(λ) ≤ δ < 2π, and satisfies
also the asymptotic relationship for k : q

(λ− xk)
−2T(1,k)

{
G(λ)−

2T(1,k)−1

∑
ν=0

bk,ν(λ− xk)
ν

}
= O(1)

as λ tends to xk over an open set contained in L with limit point at xk, for k : r, and
moreover satisfies the interpolation conditions λτG(λk)/τ! = ck,τ for τ : 0, T(2, k)− 1,
and finally maps L into D (or U?). According to Wynn The proof of the principal theorem
of this section is largely based upon results, due to M. Riesz, in the theory of linear functionals.
Since this part is a draft in quite bad shape, we will not pursue its analysis.
The document contains another interesting section

Matrix criteria
In this section Akhiezer’s treatment of the simple Pick-Nevanlinna problem is extended to
the diminished Hamburger-Pick-Nevanlinna problem; conditions that are necessary and
sufficient for the solubility of the latter problem are established and, assuming this problem
to be nondegenerate, inclusion discs for its solutions are located.

As a preliminary, a Hermitian matrix is constructed from the data which leads to an
extension of a theorem on the existence of inclusion discs for the values of all solutions
to the Hamburger problem and the simple Pick-Nevanlinna problem.
Wynn concluded:

The results of the above theorem are exclusively concerned with the diminished version of
the Hamburger-Pick-Nevanlinna problem. It is possible to extend the method of proof to the
treatment of the Hamburger-Pick-Nevanlinna problem itself, to examine the structure of
the rational function solutions to this problem and its diminished form, and to describe the
relative positions of the inclusion discs deriving from a sequence of subordinate problems.
These matters are, however, more conveniently dealt with methods described in the following
section, in which explicit expressions for the general solutions to the interpolation problems
concerned are described.

Unfortunately, this following section of the manuscript is not under a form which allows
to give a clear account of it.

4 Continued fraction transformations of the Euler-Mclaurin series
The document is 202 pages long. It dates from December 1976. The first part of the
document is in a quite good shape (probably a draft of the paper mentioned in {26},
with an abstract and a bibliography) with some corrections done with a pencil. Not all
pages have been written with the same pen. Some of them are missing or not in the
right order since all of them are not numbered (they could be some additional notes on
integral transform and analytic continuation). Moreover, references to some formulas
are missing, and some authors quoted in the text are not listed into the bibliography
given at the end. An in-depth study of this document is needed to fully understand it
if possible to exploit it.
It begins by a long abstract from which we extract the main points.

Results concerning the convergence of forward diagonal sequences of quotients in the Padé
table are given. In particular, it is shown that, if (∗) fν =

∫ ∞
0 tν dσ(t) (ν = 0, 1, . . .),

σ being a bounded nondecreasing real valued function such that all moments (∗) exist,
and (∗∗) fν = O{(χν)!ξν} (0 < χ ≤ 2, 0 < ξ < ∞) then all forward diagonal se-
quences of Padé quotients derived from the series ∑∞

ν=0 fνzν converge uniformly over any
bounded region in the z-plane not containing any point of the nonnegative real axis to (∗ ∗ ∗)
f (z) =

∫ ∞
0 (1− zt)−1 dσ(t), f (z) being the le Roy or (B, χ) sum of the given series for all

finite z in the sector χπ/2 ≤ arg(z) ≤ (4− χ)π/2.
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This result extends results given by various authors, and it can also be extended to
the case where the lower limit in (∗) and (∗ ∗ ∗) is replaced by −∞. These results are
applied to the delayed Euler-Mclaurin series

∞

∑
ν=0

bj+νD2j+ν+1Ψ(µ)k2ν,

(j ≥ 0, and D being d/dµ) regarded as a series expansion in ascending powers of
k2. Convergence results for the Padé approximants of this series are derived, and
also for the same series in which single zeros are inserted between its successive
terms. Applications to Stirling’s asymptotic expansion of the logarithm of the gamma
function, and to the asymptotic expansion of the generalised Riemann zeta-function
are presented.

5 Convergence and truncation error bounds for associated continued fractions
This is a short document (13 pages), probably only the notes mentioned in {26}.
In this work, he proposes to give a convergence theorem for the functions $2r{ψ(µ)},
where, presumably, $2r is the 2rth convergent of Thiele’s continued fraction. He begins
to prove other results (not reproduced herein since they contain too many erasures)
upon which the proof of the theorem is based. It is:

Theorem 3. Let [α, β] be a fixed interval of the finite real axis, and ξ(s) be a bounded
nondecreasing real valued function for α ≤ s ≤ β, and not a step function with a finite
number of salti. Let µ ∈ (−∞, ∞)× [α, β] be fixed and

ψ(µ) =
∫ β

α
(µ− s)−2 dξ(s)

${ψ(µ)} =
∫ β

α
(µ− s)−1 dξ(s).

Then limr=∞ $2r{ψ(µ)} = ${ψ(µ)}, and

|${ψ(µ)} − $2r{ψ(µ)}| ≤ (β− α)|ψ(µ)|p(µ; α, β)2r−1, r = 1, 2, . . .

where p(µ; α, β) =
∣∣∣|µ− α|1/2 − |µ− β|1/2

∣∣∣/∣∣∣|µ− α|1/2 + |µ− β|1/2
∣∣∣.

According to what precedes, it seems that the sign that looks like× in µ ∈ (−∞, ∞)× [α, β]
has to be replaced by /∈ [α, β]. We do not know if this result had been later rediscovered
by other researchers. Thus, it was interesting to reproduce it here.

4.1.2. Interpolation

6 Functional Interpolation
This very well handwritten manuscript has 52 pages and seems to be the paper
mentioned several times in all the list of documents, projects and activities, with a
bibliography with a last reference dating from 1984. The first section is Interpolation
and extrapolation with a subsection 1.1–Procrustean technique. This word was already
used by Wynn in the title of the published paper of Reference [2] where he introduced
a particular form of the $-algorithm for extrapolation at infinity by a rational function
in n (see Reference [113]). It describes situations where different properties are fitted
to an arbitrary standard. In the Greek myth, Procrustes was a son of Poseidon. He
compelled travelers to lie on a bed, he cut off their legs that were longer than bed, and
stretched the feet of those who were too small. The manuscript begins by:

Most general theories arise from investigations of particular problems, and in this respect the
theory to be described is not exceptional. By way of motivation, the problem of deriving an
extrapolation method from an interpolatory formula and its converse are considered.
It is first supposed that an interpolatory function of complex variables

(1) F(m)
r (d | y; λ) = F(m)

r (dm, . . . , dm+r | ym, . . . , ym+r; λ)
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is available for which (a) F(m)
r (d | y; yν) = dν (ν ∈ Im,m+r; throughout the paper Ii,j is

the sequence i, i + 1, . . . , i + j; Ii is the sequence i, i + 1, . . .; I is I0) and (b) for certain
distributions of the dν and yν

G(m)
r (d | y) = lim F(m)

r (d | y; λ) (λ→ ∞)

exists. The function F(m)
r serves as the basis of an extrapolation method: given the sequence

Sν(ν ∈ I) the number G(m)
r (d | y) obtained by setting dν = Sν(ν ∈ Im,m+r) in G(m)

r (d | y)
is an estimate of lim Sν(ν → ∞). (The numbers yν used are suggested by the process
producing the sequence {Sν}: the choice yν = ν(ν ∈ I) is natural; the choice yν = 2ν

arises, for example, in Romberg’s method of integration [2 references] in which the number
of integration subranges is doubled at each stage, F(m)

r being a polynomial in λ−1.)

Then, Wynn illustrates the method by taking F(m)
2i as the quotient of two polyno-

mials of degree i in λ. Subject to certain existence conditions, the coefficient of λi

in the denominator is 1, and that in the numerator is $
(m)
2i (d | y) which can be ex-

pressed as the quotient of two determinants involving dτ , yτ , τ ∈ Im,m+2i. In this

case G(m)
2i = $

(m)
2i (d | y). Replacing dτ by Sτ , the determinantal formula for $

(m)
2i (d | y)

gives the extrapolated limit. These numbers can be recursively computed by Thiele’s
reciprocal difference algorithm (see (3) in Section 3.4), and they can be displayed in a
two dimensional array for which Wynn does not use the usual notation but a new one,
and he writes:

[The process] involves numbers εi,j which may be set at the intersections of the full rows
and columns and of the half rows and columns of a chipped triangular array in which the
row index i ranges over Ī−1/2 (Īk is the sequence k, k + 1/2, k + 1, . . . ; Ī is Ī0) and the
column index j over the range Ii, the number ε−1/2,−1/2 being missing. The numbers εi,j
are constructed from the initial vales ε0,j = Sj (j ∈ I), ε′0,j = 0 (j ∈ I) (the dash is used
to indicate a displacement operation acting upon numbers with two suffixes, whose effect
is illustrated by the relationships ε′0,j = ε−1/2,j+1/2 and ε′i,j = εi−1/2,j+1/2) by use of
the relationship

(3) (∆jεi,j)(∆iε
′
i,j) = wi,j

for i ∈ Ī, j ∈ Ii where ∆j is the difference operator ∆jεi,j = εi,j+1 − εi,j and ∆i is similarly
defined. With

wi,j = (yi+j+1 − yj−i)
−1 (i ∈ Ī, j ∈ Ii)

[it holds]
$
(m)
2i (S | y) = εi,i+m (i, m ∈ I).

And he concludes with his personal sense of humor:

We have called an extrapolation method of the above type a Procrustean technique [2],
although in fitting function values to a sequence, i.e. the bed to the victim, we are a little
kinder than Procrustes is reputed to have been.

He continues:

If in formula (1) λ is fixed and one of the yν is very large, eν [not defined] is approxi-
mately equal to lim F(m)

r (λ) (λ → ∞): if λ is fixed and the yτ 6= yν are fixed and finite,
lim F(m)

r (λ) = eν (λ → ∞). This observation may be made in terms of the behaviour of
G(m)

r (d | y) as yν tends to infinity, the other yτ remaining finite; expressed in terms of the
Sτ it is that, under suitable conditions, lim G(m)

r (S | y) = Sν (yν → ∞).

There should be an error in what Wynn wrote. Since he states that λ is fixed, λ→ ∞
should be replaced by yν → ∞ (remark of one of the reviewers). Wynn concludes
that this property is, for example, satisfied by the ratio of determinants expressing
G(m)

r (S | y) which, thus, tends to Sν as yν tends to infinity.
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The second subsection is named 1.2–Interpolatory functions. He claims that The steps taken
in the above derivation of an extrapolation method from an interpolatory formula may be reversed.
Then, he shows how to reverse the recursive rule given in the preceding subsection.

[. . . ] set dν = d(yν), eν(z) = e(yν, z) and fν(z) = f (yν, z) (ν ∈ I). Suppose that a
function of complex variables

G(m)
r (S | y) = G(m)

r (Sm, . . . , Sm+r | ym, . . . , ym+r)

for which lim G(m)
r (S | y) = Sν as yν → ∞ (ν ∈ Im,m+r), obtained either from an

interpolatory or from an extrapolation method or in some other way is available. Set

H(m)
r (e, f | z) = G(m)

r (em(z), . . . , em+r(z) | fm(z)−1, . . . , fm+r(z)−1).

[. . . ] Thus in view of the property attributed to G(m)
r (S | y) just described, lim H(m)

r (e, f | z) =
dν as z → yν over Z (ν ∈ Im,m+r): [Z is an open set of points in C] H(m)

r (e, f | z) is
an interpolatory function. If the G(m)

r (S | y) (r, m ∈ I) may be computed by means of a
recursive process, appropriate modification yields a process for computing numerical values
of the H(m)

r (e, f | z) (r, m ∈ I).

Then, Wynn develops the particular case of the extrapolation estimate $2i(S | y), and
he obtains a set of rational functions r(m)

i,j (z). He proves that lim r(m)
i,j (z) = dν as

z→ yν (ν ∈ Im,m+i+j). Imposing the further condition

eν(z)− dν = O{ fν(z)} (z→ yν; ν ∈ I)

it follows that

(7) r(m)
i,j (z)− dν = O{ fν(z)} (z→ yν; ν ∈ Im,m+i+j; m, i, j ∈ I).

The interpolatory function derived from the extrapolation estimate $
(m)
2i (d | y) is

r(m)
i,i (z). He proves that lim r(m)

i,j (z) = dν as z→ yν (ν ∈ Im,m+i+j). Then

Setting now ε′0,j = 0, ε0,j = ej(z) (j ∈ I) and wi,j = { f j−i(z)−1 − fi+j+1(z)−1} (i ∈

Ī, j ∈ I1), r(m)
i,i (z) = εi,i+m(z) (i, m ∈ I).

In this result, the conditions of the simple case in which

(8) e(y, z) = d(y), f (y, z) = z− y

may be imposed upon e and f . Now eν(z) = dν is a constant, independent of z (ν ∈ I) and
fν(z) is the difference z− yν (ν ∈ I). In this case, r(m)

i,i is the quotient of two ith degree

polynomials in z, the rational function from which the extrapolation limit $
(m)
2i (S | y) was

derived. The above process now reduces to an algorithm for rational function interpolation
due to Brezinski [128] of which a generalisation has been proposed by Cordellier [129].
The discussion of interpolatory formulæ and extrapolation methods is terminated by the
remark that under appropriate conditions cyclic derivation of extrapolation methods from
interpolatory formulæ and conversely may be repeated indefinitely.

Section 2 of this document is entitled Approximants of general order. In the simple case
(8), r(m)

i,j is a ratio of two polynomials of degree i. In this Section, he proposes to study

the more general system of approximants r(m)
i,j . The first subsection is Nonuniform

approximation. Under the condition (8), the relationship (7) reduces to r(m)
i,j (z)− dν =

O(z− yν): approximation is uniform, the form of the function z− yν being the same
for all relevant yν. Wynn notices that a suitable choice of the functions fν in the non
simplified case, non uniform approximation is possible.
The next subsection is Remainder term formulæ. Wynn explains that
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In certain circumstances an interpolation property of the form (7) holding at points induces
on the function possessing it a corresponding property of approximation over a set containing
the points. By imposing severe restrictions upon the functions e and f it is possible in a
few lines to exhibit the r(m)

i,j as approximations to a function defined over Z, and to provide
associated remainder terms.

He imposes the conditions

e(y, z) = d(y), f (y, z) = φ(z)− φ(y)

with φ′(y) 6= 0 for all y in Z. By a straightforward (as he writes) adaptation of an
argument of Nörlund [130] (Ch. 15, §3), Wynn obtains the expression of the error.
The following subsection is on Algorithms for approximation evaluation in which Wynn
gives formulæ for the recursive computation of the approximant values r(m)

i,j (z) for a
fixed z ∈ Z. After quite long developments involving Lagrange forms and divided dif-
ferences, Wynn shows that his relationship (3) can be applied with wi,j = fm+i+j+1(z)−1

to yield r(m)
i,j (z) = εi,j (i, j ∈ I) starting from two different sets of initializations. How-

ever, in (3), the ε′i,j are intermediate computations which can be eliminated, and he
arrives at the rule

(23) ∆j{wi,j(∆jεi,j)
−1} = ∆i{w′i,j(∆iεi−1,j+1)

−1},

where εi,−1 = 0 (i ∈ I), ε−1,j = ∞ (j ∈ I). The initializations are ε0,j = L(m)
j (z) in

the row by row order i ∈ I, j ∈ I−1 or εi,0 = M(m)
i (z) (i ∈ I) in the column order

j ∈ I−1, i ∈ I with

L(m)
j (z) =

j

∑
ν=0

em+ν(z)
j

∏
τ=0
τ 6=ν

fm+τ(z)
fm+τ(z)− fm+ν(z)

(m, j ∈ I)

and

M(m)
i (z) =


i

∑
ν=0

em+ν(z)−1
i

∏
τ=0
τ 6=ν

fm+τ(z)
fm+τ(z)− fm+ν(z)


−1

(m, j ∈ I).

Recursive relations for the L(m)
j ’s and the M(m)

i (z)’s are also given. Using divided
differences, they are also expressed in Newton form. Determinantal formulæ are
related to the recursive rules given.
It is showed that particular cases for the eν and the fν give back the usual Lagrange
interpolation formula, the Neville-Aitken scheme, and Newton series. The work of
Stoer on interpolation by rational functions [131] and the variant of the ε-algorithm
due to Claessens [132] are also recovered as special cases.
The next subsection is named Termination. When e(y, z) is a polynomial or rational
function of f (y, z), termination of the algorithms previously given is proved.
The following subsection treats Confluence that is when some argument values coincide.
Wynn examines what happens to the previous formulæ and recursions. In that case,
for n ∈ I2,

(31) f (y, z)−
n−1

∑
ν=1

cν(y, z)x(y, z)ν = O{x(y, z)n}

(32) e(y, z)− d(y)−
n−1

∑
ν=1

bν(y, z)x(y, z)ν = O{x(y, z)n},
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and formulæ for the computation of the coefficients cν and dν are given. They im-
plement a truncated composition of polynomials. The dν’s are the coefficients of the
Newton series representations of the corresponding Lagrange forms, which are con-
fluent forms of the functional divided differences. They are related to the bν, but all
details are too complex to be given herein.
Then, comes a subsection on Zero finding algorithms. Under suitable conditions, the
above algorithm for the truncated composition of polynomials can be used for the
inversion of formal power series. Moreover

In so doing it serves as the basis of a number of algorithms for determining the zeros
of a function and motivates the use of the approximants r(m)

i,j (z) for the same purpose.
Setting e(y, z) = z− y and f (y, z) = φ(z)− φ(y), φ being the function under treatment,
relationships of the form (31,32) hold with x(y, z) = z− y, cν(y, z) = φ(ν)(y)/ν! (ν ∈ I1)
are Taylor series coefficients, d(y) = 0, b1(y, z) = 1 and bν(y, z) = 0 (ν ∈ I2).
[. . . ] Taking the points y0, y1 and y2 to be confluent, the Lagrange forms [. . . ] are

L(0)
0 = z− y0

L(0)
1 = L(0)

0 − (φ′0)
−1{φ(z)− φ0}

L(0)
2 = L(0)

1 − (φ′0)
−3φ

′′
0{φ(z)− φ0}2/2

where φ0 = φ(y0), . . . , φ
′′
0 = φ

′′
(y0). Newton’s process z = y0 − φ0/φ′0 is obtained

from L(0)
1 (z) by equating the latter to zero after setting φ(z) = 0. The third order process

z = y0 − {φ0/φ′0} − {
1
2 φ2

0φ
′′
0/φ

′3
0 } is obtained from L(0)

2 in the same way. Applying

relationship (3) to the initial values ε0,j = L(0)
j (z) (j ∈ I0,2 with w0,0 = w1,1 = w1/2,1/2 =

{φ(z)− φ0}−1 (since y1 = y2 = y0) and using ε1,1 = r(0)1,1 (z) as just described, the further
third order process z = y0 − φ0φ′0/{φ′2 − 1

2 φ0φ
′′
0} is obtained.

The artifice described above is capable of further application.

For example, if y1 6= y2, L(1)
1 (z) leads to the method regula falsi z = (y2φ1 −

y1φ2)/(φ1 − φ2). If y0 = y1, then Wynn obtains two combinations of Newton’s
method and regula falsi

z = y− (φ0/φ′0)− {φ2
0(φ2 − φ0 − (y2 − y0)φ

′
0}/{(φ2 − φ0)

2φ′0}
z = y0 + φ0/{[φ0/(y2 − y0)]− [φ′0φ2/(φ2 − φ0)]}.

In the same way, an nth order single point iteration process can be obtained. The
subsection ends by

The more general theory yields multipoint processes (for a further application of the ε-
algorithm to the problem of finding the zeros of a function, see [133,134]).

The last subsection of this document is entitled Extensions of the Lagrange-Bürmann
expansion. Wynn claims that The above treatment of the confluent case offers an interpretation
of the theory of this paper. He first gives the Lagrange-Bürmann expansion of d(z) in
powers of φ(z)−φ(yµ) where yµ belongs to a close contour in the complex plane. Then,
he obtains an algorithm for determining the coefficients in the Lagrange-Bürmann
expansion and in an asymptotic version of it from the Taylor series coefficients of
d(z)− d(y) and φ(z)− φ(y) at the point y = yµ. The case of confluence is also treated.
In addition, in this case, we do not know why Wynn never published this work since
it was ready to be submitted.

7 Interpolation by the use of rational functions
This handwritten complete paper of 90 pages with a bibliography of 27 items, the last
one dated 1979, is present in the projects and in the Lists of documents, and it was
never published. It seems to be related to the previous manuscript {6}.
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In the Section 1 of this document, titled The Thiele-Nörlund interpolation theory, Wynn
reminds how to construct rational interpolating functions C(m)

2s in which the numerator

and the denominator have degree s, and C(m)
2s+1 with a numerator of degree s + 1 and

a denominator of degree s and such that C(m)
r (xi) = fi for i = m, . . . , m + r, where

the xi and the fi are assumed to be complex numbers. After having constructed the
reciprocal differences $

(m)
r by Thiele process (this is the $-algorithm (3), where now r

and m are arbitrary indexes)

$
(m)
r+1 = $

(m+1)
r−1 + (xm+r+1 − xm)($

(m+1)
r − $

(m)
r )−1

for r, m = 0, 1, . . . with $
(m)
−1 = 0 (m = 1, 2, . . .) and $

(m)
0 = fm (m = 0, 1, . . .), it holds

C(m)
r (λ) =

N(m)
r (λ)

D(m)
r (λ)

=
λ− xm

$
(m)
1 − $

(m)
−1

+
λ− xm+1

$
(m)
2 − $

(m)
0

+ · · ·+
λ− xm+r−1

$
(m)
r − $

(m)
r−2

.

The successive numerators and denominators are recursively computed by

N(m)
r (λ) = ($

(m)
r − $

(m)
r−2)N(m)

r−1(λ) + (λ− xm+r−1)N(m)
r−2(λ)

D(m)
r (λ) = ($

(m)
r − $

(m)
r−2)D(m)

r−1(λ) + (λ− xm+r−1)D(m)
r−2(λ)

with
N(m)
−1 (λ) = 1, N(m)

0 (λ) = fm, D(m)
−1 (λ) = 0, D(m)

0 (λ) = 1.

Wynn asserts that conditions to ensure that all rational functions C(m)
r can be con-

structed by the above scheme and that they have the required interpolation properties
can be formulated in terms of determinants, and that determinantal formulæ can also
be given for the numbers and the functions involved, and he claims that Such formulae
are made more concise by the use of a special notation. It takes 6 pages to establish these
notations. After quoting a remark in German by Nörlund [130] (Ch. 15, p. 420) that
Wynn finds perhaps a little exuberant, he writes that:

It is the principal purpose of this paper to point out that, using another very simple relationship
(namely, in particular, that, if xi is replaced by (λ− xi)

−1, $
(m)
2r becomes C(m)

2r (λ)) many
results suggested by the behaviour of reciprocal differences may be obtained for convergents.

These procedures are described in Section 2 of this document, titled The σ- and µ-
algorithms. After explaining how to obtain them, Wynn writes

Theorem 1. Let λ be a fixed finite complex number unequal to xi (i = 0, 1, . . .). Set zi =

(λ− xi)
−1 for i = 0, 1, . . . [. . . ] Numbers σ

(m)
r (λ) (r, m = 0, 1, . . .) can be constructed

from the initial values σ
(m)
−1 (λ) = 0 (m = 1, 2, . . .), σ

(m)
0 (λ) = fm (m = 0, 1, . . .) by use

of the relationship

(16) σ
(m)
r+1(λ) = σ

(m+1)
r−1 (λ) + {zm+r+1(λ)− zm(λ)}{σ(m+1)

r (λ)− σ
(m)
r (λ)}−1

with r, m = 0, 1, . . . and, in particular,

σ
(m)
2s (λ) = C(m)

2s (λ)

for s, m = 0, 1, . . .

Then, the document becomes unclear. It seems that replacing in the above recurrence,
zi by zi fi (this is the unclear point), and renaming µ

(m)
r ’s the σ

(m)
r ’s, Wynn obtains

µ
(m)
2s+1(λ) = C(m)

2s+1(λ)
−1. A proof of this result is given.

Section 3 of this document is entitled Interpolation and extrapolation. It is interesting to
quote its introduction which contains general comments by Wynn on these topics.
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The simple observation that, if the argument values xi are replaced by functions (λ− xi)
−1

the reciprocal differences $
(m)
2s become interpolating functions C(m)

2s (λ) has already produced
the σ-algorithm of relationship (16), the simplest and most economical method, subject to
the stated conditions, for evaluating these functions; the observation also leads directly, as
will be shown below, to new interpolatory theory. Once made, the observation is trivial, and
its implications are not difficult to work out; perhaps its most interesting feature is that it
has not been made before. The simple relationship between reciprocal differences and rational
interpolating functions was not so much discovered as forced upon the author’s attention
while working out the consequences of principles underlying the process of interpolation
and the transformation of divergent series. These two subjects have recently became in-
creasingly important in computational mathematics; new theory in what once might have
been considered dead subjects is constantly being developed (mention may be made of recent
generalisations of polynomial interpolation described in [135–138]); it is highly probable
that the principles concerned will find further applications, and for this reason they are
now outlined.

It is difficult to summarize what follows without quoting large parts of the document.
Moreover, some notations and their inferences are not clear enough. Basically, Wynn
comes back to the link between interpolation and extrapolation already discussed in
the document {6}, that he named Functional Interpolation. In particular, he considered
the following extended ε-algorithm (which contains the $-algorithm and some other
extensions [128])

(25) ε
(m)
r+1 = ε

(m+1)
r−1 + γ

(m)
r (ε

(m+1)
r − ε

(m)
r )−1,

with γ
(m)
r = ψ(m + r + 1)− ψ(m). He considers the particular case γ

(m)
r = 1, which

corresponds to the ε-algorithm. He reminds that, when applied to the partial sums of
a formal power series, this algorithm furnishes the Padé approximants belonging to
the lower half, diagonal included, of the Padé table, and that he derived (no reference)
various determinantal formulæ from a more general form of approximating fractions
given by Jacobi [139]. He also mentions that, in its special form, the problem was also
studied by Frobenius [140] and Padé [141], and he adds the following remark in which
he explains how he obtained his ε-algorithm

While idly investigating the formulæ resulting from the choice γ
(m)
r = 1 in the relationship

(25) [. . . ] the author noted that expressions obtained for the numbers ε
(m)
2r were equivalent to

extrapolatory determinantal expressions, simplified versions of those due to Jacobi and used
by Frobenius, previously published by Schmidt [142] and republished by Shanks [112]. In
this way the ε-algorithm was discovered.

Then, Wynn notices that (25) has been used by Claessens with γ
(m)
r = (λ− xm+r+1)

−1,
and applied to the partial sums of the Newton interpolation series, for obtaining ratio-
nal interpolating functions [132], and he explains the theoretical basis of this algorithm

Claessens was led to the discovery of the extended ε-algorithm by the consideration of interpo-
latory continued fractions not of Thiele form, but of a form introduced by Kronecker [143] in
connection with a process initiated by Rosenhain [144] and Borchardt [145] for constructing
the resolvent of two polynomials from systems of their numerical values.

If all the xi tend to a common value x, the interpolation fractions tend to the Padé
approximants and the extended ε-algorithm (25) tends to the usual one. When
γ
(m)
r = m + r + 1, (25) gives back the $-algorithm studied by Wynn in Reference [2].

The following Section is on Lozenge algorithms, which are algorithms relating quantities
located at the four corners of a lozenge in a table where the lower index indicates
a columns and the upper index a descending diagonal. The ε-algorithm and its
generalizations [146], the $-algorithm, and the algorithms numbered by Wynn (23)
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(see the manuscript {6}), (16) and (25) (see above in this manuscript) enter into this class.
They share some algebraic properties when, instead of applying them to a sequence
(Sn), they are applied to (aSn + b), when γ

(m)
r in (25) is multiplied by a constant, and

when a fractional linear transformation is applied to the elements with an even lower
index (property named homographic invariance). In these algorithms, the quantities with
an odd lower index are only intermediate results with no interest for their purpose.
They can be eliminated and a new rule relating five quantities disposed at the center
and at the extremities of a cross are obtained. The first algorithm to have been treated
in that way is the ε-algorithm for which Wynn obtained this cross rule [48]. Concerning
this rule, he writes in the document under consideration Despite the author’s pianissimo
protests, this relationship and others of its kind have been referred to by various writers as
Wynn identities. This extended cross rule and the homographic invariance property
were independently presented by Cordellier in his Doctoral Thesis [147]. They were
also published by the same author in Reference [129] without, of course, knowing this
unpublished document by Wynn. On the contrary, Wynn was knowing Cordellier’s
results through his correspondence with C.B., and he indeed refers to Reference [129]
for the extension of his cross rule. The homographic invariance for the σ’s and the µ’s
presented above is treated. In the same document, Wynn also discusses the possible
breakdown of these relations when a denominator becomes zero. Singular rules for
continuing the computations in the case of only one isolated singularity are given.
They extend the singular rules he gave in References [20,36] for the usual ε-algorithm.
All these results are gathered into Theorem 2 in which Wynn also gives the cross
rule for formulæ (16) and (25). If the relationship γ

(m)
2s + γ

(m+1)
2s = γ

(m+1)
2s−1 + γ

(m)
2s+1 is

satisfied between the γ, then the cross rule also holds as described with the five ε’s
replaced by (αε + β)(γε + δ)−1. Then, if an extended cross rule holds between five
numbers as explained above, Wynn looks at which conditions a recurrence relationship
of the form (25) holds between them.
The following Section deals with Invariance properties. Denoting by $

(m)
r (x, f ) the

reciprocal differences obtained by Thiele’s formula (that is the $-algorithm given by
(3)) from the argument and functions values xi, fi, i = 0, 1, . . ., and setting yi = Axi + B
and gi = (α fi + β)/(γ fi + δ) with αδ− βγ 6= 0, Wynn proves that

$
(m)
2s (y, g) =

α$
(m)
2s (x, f ) + β

γ$
(m)
2s (x, f ) + δ

.

If γ = 0, a property for $
(m)
2s (y, g) is also given. These invariance properties have their

counterparts for the convergents C(m)
s .

Section 4 is on Confluent algorithms. Up to now, all the xi have been assumed to
be distinct. Now Wynn sets xi = x + ih and allows h to tend to zero. The func-
tions C(m)

r (λ) evolve, in particular, to a confluent form Cr(λ, x) and become the
successive convergents of the continued fraction corresponding to the Taylor series
∑∞

i=0 f (i)(x)(λ− x)i/i!. The coefficients of this continued fraction may be expressed
in terms of Thiele’s reciprocal derivatives. He refers to Reference [130] (Ch. 15) for
the corresponding theory, and explains that the confluent forms of the algorithms of
formulæ (16) are

σr+1(λ, x) = σr−1(λ, x) + (r + 1)(λ− x)−2{dσr(λ, x)/dx}−1,

with σ−1(λ, x) = 0 and σ0(λ, x) = f (x). Determinantal formulæ for these σ’s are
given. The functions µ are treated similarly. Complete proofs are given.
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4.1.3. The ε-Algorithm

8 Sequel to the abstract theory of the ε-algorithm
In February 1971, when he was working at the Centre de Recherches Mathématiques
of the Université de Montréal, Wynn published a report on the abstract theory of the
ε-algorithm [69]. In the boxes he left with his friends, we found a document with
the title Notes on sequel to the abstract theory of the ε-algorithm. All topics treated are
in the noncommutative case. It probably corresponds to the rough notes indicated
in {26}. It consists of 153 pages including numerous corrections and additions as well
as strikethrough passages, and pages from Reference [69] intercalated. In the lists, a
corresponding paper is also mentioned, but, unfortunately, we have not found it yet.
The document begins with a discussion about the application of Euclid’s algorithm to
rational functions in a ring with a zero and a unit element. Another one on noncom-
mutative continued fractions follows. Recurrence relations for the numerators and
the denominators of their successive convergents are given. They are the same as the
usual ones. Wynn claims that:

the theory of continued fractions may be used to recover the original rational function from
the sequence of polynomials {Br(z)} produced by means of Euclids’ algorithm. [. . . ] The
above theorem offers a method for determining the rational function of the form Ñ(z)D̃(z)−1

equivalent to a given function D(z)−1N(z).

Then, he discusses Euclid’s algorithm for formal power series with coefficients over
a ring. Wynn proves that they have two sided reciprocal series. It is difficult to
extract some results from this part without much work. Then, he considers systems of
continued fractions derived from a single power series. Notions on C-regularity and
semi-normality are introduced. Applying a recursive algorithm whose rule is that of
the vector ε-algorithm, that is E(m)

r+1 = E(m+1)
r−1 + (E(m+1)

r − E(m)
r )−1, but without giving

the definition of the inverse, to the partial sums of a semi-normal series he proves that
E(m)

2r = D(z)−1N(z) for a certain value of r. Other theoretical results are given, but
they are difficult to exploit. Then, pages 93–96 of Reference [69] are reproduced which
leads to think that what precedes is a complement to that report. Wynn then shows
that both halves of the Padé table can be constructed via this algorithm under certain
assumptions. A cross-rule is given for each half.
Pages on vector continued fractions follow. Arithmetic operations upon vectors and
formal power series with vector coefficients are first explained. But the pages, the
concepts (vector valued rational functions, McLeod isomorphism [148], . . . ), and the
results are so entangled that it seems difficult to extract something coherent. There are
pages on Euclid’s algorithm for formal power series with vector valued coefficients,
a vector qd-algorithm, and the vector ε-algorithm. However, an interesting result is
given but it needs to be verified. Let us give it after a simplification of the notations.
Summations are over ν:

Theorem. If the finite dimensional vectors of the sequence { fν} satisfy a system of relation-
ships of the form

r′

∑
0

dr′−ν fm+ν = 0, m = 0, 1, . . . ,

where the {dν} are real numbers, then the series ∑ fνzν is generated by a vector values
rational function f (z). If vector value rational functions ε

(m)
r (r = 1, . . . , 2r′; m = 0, 1, . . .)

can be constructed from the initial values

ε
(m)
−1 = 0 ε

(m)
0 =

m−1

∑
0

fνzν (m = 1, 2, . . .)

by means of the recursion

ε
(m)
r+1 = ε

(m+1)
r−1 + {ε(m+1)

r − ε
(m)
r }−1
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for r = 0, . . . , 2r′ − 1, m = 0, 1, . . ., then ε
(m)
2r′ = f (z), m = 0, 1, . . .

Looking at the proof, which is not complete, one can understand that the words the
series ∑ fνzν is generated by the rational function f (z) means that

f (z) = (
r′

∑
0

dνzν)−1
r′−1

∑
0

ηνzν,

where ∑r
0 dν fr−ν = ηr (r = 0, . . . , r′ − 1).

The vector valued Padé table is presented. Then, Wynn gives some elementary results in
the theory of ε-algorithm as applied to sequences of elements of a ring. In particular, a cross
rule is obtained. Rational functions with coefficients over a ring are discussed.
Then, Wynn studies the application of the ε-algorithm to a sequence of numbers
satisfying an inhomogeneous linear difference equation. He proves the following
result (notations slightly changed)

Theorem. Let the numbers Sν satisfy the recursion ∑r
0 dνSm+ν = H, m = 0, 1, . . . and no

recursion of a similar form with r replaced by a smaller integer; set ∑r
0 dν = D. It is not

possible that both D and H are both factors of zero.

It is then proved that, for such a sequence, ε
(m)
2r = D−1H for all m. Other results of

a lower interest are given. Then, Wynn looks at the properties of the hierarchies of
ε-arrays, as defined in Reference [79], that are obtained for such sequences. Since
pages 23–28 of his report from the Université de Montréal corresponding to the paper of
Reference [79] are inserted here between the pages of the manuscript, and preceded by
If followed by a difference equation, what precedes can be considered as an addition
to them. Using the vector-matrix isomorphism of McLeod [148], Wynn writes that, for
recursions involving vectors, it is a relatively simple matter to derive results analogous to
those of the preceding section. Further notes end the document.

9 How to find the centre of a spiral
This handwritten document contains 49 pages that correspond to the slides for a talk.
There are parts in the text separated by numbers in bold from 1 to 30 in large square
boxes (see {28}). Its title could be How to find the centre of a spiral, and it was delivered
by Wynn after 1987 since a book dating 1987 is quoted. After there are 30 pages where
the same content is detailed and illustrated very carefully, probably some notes to
copy and distribute.
The document gives an interesting new interpretation of extrapolation by the ε-algorithm.

We start with a fixed complex number λ. If the modulus of λ is less than 1, λ lies inside the
unit circle. If the modulus of λ is greater than 1, λ lies outside the unit circle.
Next, we form the successive powers λ0, λ1, λ2, . . . of λ. They lie on a spiral in the complex
plane. The argument of λ2 is twice arg(λ), the argument of λ3 is three times arg(λ) and so
on. If the modulus of λ is less than 1, the powers of |λ| tend to zero and the spiral contracts
to the origin. If the modulus of λ is greater than 1, the spiral expands away from the origin.
Then, we multiply each of the points λ0, λ1, λ2, . . . by a constant complex number b. This
does no more than rotate the spiral through arg(b) and magnify or diminish it by a factor of
|b|. But a contracting spiral remains contracting and an expanding spiral remains expanding.
Lastly we add a constant C to each of the transformed points and produce members

si = C + bλi (i = 0, 1, . . .)

of a first order spiral sequence. In the case in which |λ| < 1, the sequence converges to C
and the spiral upon which its members lie contracts toward C. In the case in which |λ| > 1,
the spiral expands away from C. If limi→∞ si is finite, limi→∞ si = C.
Already we may pose a problem in connection with first order spiral sequences. It is known
that three successive members Sk, Sk+1 and Sk+2 of a sequence have the form

Sk = C + bλk, Sk+1 = C + bλk+1, Sk+2 = C + bλk+2
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but the values of C, b, λ and k are unknown. Find the value of C alone. If we can solve this
problem then what we are able to do is fit a first order spiral sequence to the subsequence
Sk, Sk+1 and Sk+2 and find its centre.

Then, Wynn shows that the problem can be solved by computing ε
(k)
2 by a rule which

is that of the ε-algorithm (without mentioning its name). He gave the formulæ for ε
(k)
1

and ε
(k+1)
1 . Then, he computes ε

(k)
2 , and shows that it holds ε

(k)
2 = C. Thus, the spiral

has been fitted without the determination of the values of b and λ. Then, he considers
three other members Sk+1, Sk+2 and Sk+3 having the form

Sk+1 = C′ + b′λ
′k+1, Sk+2 = C′ + b′λ

′k+2, Sk+3 = C′ + b′λ
′k+3.

Another spiral can be fitted through these three numbers, and a similar computation
leads to ε

(k+1)
2 = C′. He mentions that ε

(k+1)
1 is identical to the one computed before.

The same process can be continued with Sk+2, Sk+3 and Sk+4, and so on. For each
value of the upper index, the center of the spiral can be computed by the rule

ε
(m)
r+1 = ε

(m+1)
r−1 +

1

ε
(m+1)
r − ε

(m)
r

from ε
(m)
−1 = 0, and ε

(m)
0 = Sm, m = 0, 1, . . . This is the ε-algorithm [3]. Wynn mentions

that, if S0, S1, S2, . . . are successive members of the same first order spiral sequence,
that is Si = C + bλi for i = 0, 1, . . ., then ε

(i)
2 = C for all i. This set of sequences is the

kernel of the sequence transformation (Sm) 7−→ (ε
(m)
2 ) which is, in fact, Aitken’s ∆2

process. Then, Wynn considers a second spiral entangled into the first one.

The members of a second order spiral sequence have the representation

si = C +
h

∑
j=1

λi
j

{
τ(j)

∑
ν=0

bj,νiν

}
;

h

∑
j=1
{τ(j) + 1} = 2

(i = 0, 1, . . .). This sequence has two forms: either
(a) only one geometric term accompanied by a linear function of i is present and

si = C + λi
1(b1,0 + b1,1i)

or
(b) two geometric terms accompanied by constant coefficients are present and

si = C + b1,0λi
1 + b2,0λi

2

In the latter case a second order spiral sequence may be regarded as a first order spiral
sequence whose members are represented by b2,0λi

2 whose center moves on a further first
order spiral upon which the points C + b1,0λi

1 lie.

In these forms, the kernel of the transformation (Sm) 7−→ (ε
(m)
4 ) is recognized.

Then, Wynn considers nth order spirals with the si satisfying the same formula but
now with the condition ∑h

j=1{τ(j) + 1} = n, and he discusses their various special
forms. The center C of such spirals can be obtained via the ε-algorithm which, starting
from Sk, . . . , Sk+2n, delivers ε

(k)
2n = C. Since he writes that: There is no time to give a

proof of this result this confirms that these notes were written for lectures. The same
process is repeated with Sk+1, . . . , Sk+2n+1, and it gives ε

(k+1)
2n = C′. As before, the two

schemes have some ε in common, and, if S0, S1, . . . are successive members of the same
nth order spiral, then, for all m, ε

(m)
2n = C. This is a known property of the ε-algorithm

since the sequence (Sn) belongs to the kernel of the transformation (Sm) 7−→ (ε
(m)
2n ).
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If the parameters C, b and λ in the equation of the first order spiral are real, the
si = C + bλi, i = 0, 1, . . ., still lie on a spiral in the complex plane, but the numbers si
themselves lie on the real axis. In that case, the ε are also real.
Then, Wynn explains how the process for finding the centres of spirals which we have
described serve as the basis of a method for obtaining estimates of the limit of a sequence.
Starting from S0, S1 and S2, the center ε

(0)
2 of the corresponding first order spiral is an

estimate of the limit. Then, from S1, S2 and S3, a second estimate ε
(1)
2 is obtained, and

so on. Now, from S0, . . . , S4, the center ε
(0)
4 of the second order spiral passing through

these numbers furnishes another estimate of the limit. The process can be repeated
by increasing the number of terms of the sequence (Sm) used in the construction of
the successive spirals. And Wynn writes This method of estimating the limit of a sequence
is known as the ε-algorithm [...]A question now arises: does this method work? Wynn
gives two numerical examples: partial sums of the series 1− 1/2 + 1/3− 1/4 + · · ·
which converge to ln 2, and those of the series ∑i Ci

−1/21/(i + 1) (Ci
−1/2 represents the

binomial coefficient) which tends to 2(21/2 − 1). He tentatively explains the success of
the process:

Perhaps a happier interpretation is to suggest that a great deal of information lies lurking
in the first few members of a sequence: we have only to think of a way of getting it out.
This interpretation serves us a little better when we come to consider the transformation of
divergent sequences.

In saying that, Wynn is too much optimistic. Indeed, the behavior of a sequence can
completely change after a certain number of terms, and change again later. As proved
in Reference [149], an algorithm to accelerate the convergence of all sequences cannot
exist. It is the same even for restricted classes of sequences [150]. Then, Wynn gives
examples of divergent series and explains that the reasons why the ε-algorithm works
in these examples are found in the classical theory of continued fractions.
After that, he describes the use of the algorithm in the solution of the fixed point
problem x = f (x). He explains graphically the convergence of the Picard iterates,
and what the notion of order of convergence of a sequence is. Since Newton’s and
higher order methods require the use of the derivatives of f , he explains how this
drawback can be avoided. He starts from an initial estimate C(0) of the fixed point,
sets S0 = C(0), performs the iterations Si+1 = f (Si) for i = 0, . . . , 2r− 1, and finds the
center C(1) = ε

(0)
2r of the spiral constructed from these iterates, and restarts the Picard

iterates from S0 = C(1). When r = 1, this is exactly Steffensen’s method which has
order 2. Wynn claims that under suitable conditions C(k+1) − x = O((C(k) − x)r). Let
us mention that this claim has never been proved.
Then, Wynn explains that the ε-algorithm can be applied to sequences of functions, of
vectors, of a field or of any mathematical system over which addition, subtraction and the
formation of an inverse are defined, and that the theory of continued fractions has been
developed for such cases.
The continuous case of the preceding method is considered. It is aimed at the estima-
tion of limt→∞ S(t). In what precedes, i is replaced by t and λi

j by e−αjt, and he names
an rth order spiral function, the expression

S(t) = C +
h

∑
j=1

e−αjt

{
τ(j)

∑
ν=0

bj,νtν

}
;

h

∑
j=1
{τ(j) + 1} = r.

Wynn proposes to estimate limt→∞ S(t) by fitting a spiral function s(t) to S(t) at one
value x of t, and to take its center as this estimate. For that purpose, he assumes that
limt→x S(i)(t) are given for i = 0, . . . , 2n, but that the value of x itself is unknown. For
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finding the center C of the nth order spiral function, Wynn gives the following lozenge
algorithm (defined in Reference [88,89]):

ω
(m)
2r+1 = ω

(m+1)
2r−1 +

ω
(m)
2r

ω
(m+1)
2r

, ω
(m)
2r+2 = ω

(m+1)
2r (ω

(m)
2r+1 −ω

(m+1)
2r+1 ),

with ω
(m)
−1 = 0 and ω

(m)
0 = S(m), he obtains ω

(0)
2n = C, and writes This method of

estimating the limit of a function is known as the ω-algorithm. He adds:

This method has application in estimating the end-point of the trajectory of an aerodynamic
vehicle, given its position, velocity components, etc. [. . . ]
Since Texas is an oil-producing state the last problem we consider is that of the owner of a
well producing oil with cast price c per barrel who wishes to determine
(a) the price P par barrel which maximizes his profit
and
(b) his profit at the optimal price P.
We now describe a solution and hasten to say that the economic part of the argument is
taken directly from the mid nineteenth century French economist Cournot who considered
the problem of the owner of a spring producing mineral water at zero cost per bottle.

After giving the solution of this problem, Wynn proposes some references for those
who are interesting in studying the matter further. Among them, the book of Antoine
Augustin Cournot (1801–1877) [151]. As said before, at the end, there are 30 particularly
nicely written pages with figures about spirals (see Figure 3), implementation schemes
for the ε and the ω algorithms, an illustration of Picard iterates, numerical results,
illustrations for the order of convergence, details about the problem of oil pricing policy,
and references. It seems that these pages were ready to be copied for distribution to
participants. Since the application was about an oil problem in Texas, this document
could have been prepared for a seminar at the University of Texas at San Antonio.

Figure 3. Second order spiral of form (b) drawn by Wynn.

Let us mention that the interpretation of the scalar and vector Aitken’s process
and ε-algorithm by means of spirals was independently rediscovered in 2014 by
Berlinet [152], together with other interesting geometrical analyses of them.
We did some numerical experiments with the spirals introduced by Wynn, and, in partic-
ular, we wanted to test his drawing reproduced in Figure 3. Remember that, according to
Wynn’s nomenclature, a first order spiral has the form (our notation) Sn = C + a1λn

1 ,
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and that a second order spiral can have two forms (a) Sn = C + λn
1 (a1 + b1n) or (b)

Sn = C + a1λn
1 + a2λn

2 . If the ε-algorithm is applied to a first order spiral, then,

∀n, ε
(n)
2 = C, which is Aitken’s ∆2 process. Applied to a second order spiral of form

(a) or (b), this algorithm gives ∀n, ε
(n)
4 = C, while the iterated ∆2 process (that is the ∆2

process applied to the sequence (ε
(n)
2 )) does not possess this property.

Wynn’s drawing of Figure 3 corresponds to the case (b). He wanted to illustrate the
fact that Sn = C + a1λn

1 + a2λn
2 can be written as Sn = Cn + a2λn

2 , with Cn = C + a1λn
1 ,

which he described as the spiral a2λn
2 with center moving on spiral C + a1λn

1 .
In our numerical experiments, we always took C = 1.5 + i. In Figure 4, we show two
first order spirals with a1 = 1− i: the one on the left is obtained with λ1 = 0.8− 0.5i,
and it converges to C, the one on the right is with λ1 = −0.8 + 0.6i and does not
converge or diverge since |λ1| = 1.
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Figure 4. First order spirals with λ1 = 0.8− 0.5i (left) and λ1 = −0.8 + 0.6i (right).

Now, we consider second order spirals of forms (a) and (b). We took, for the form (a),
a1 = 2− 4i, b1 = 2.3− 0.3i, λ1 = 0.92 + 0.2i, and, for the form (b), a1 = 1− i, λ1 =
0.8 + 0.5i, a2 = 1.2 + 2i, λ2 = 0.7 + 0.65i. All spirals are converging to C since |λ1| < 1
and |λ2| < 1. Figure 5 shows the corresponding second order spirals: (a) on the left
and (b) on the right.
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Figure 5. Second order spirals: (a) on the left and (b) on the right.

In Figure 6, we see the results obtained by the ∆2 process applied to second order
spirals: (a) on the left and (b) on the right. Comparing these curves with those of
Figure 5 shows that, in fact, Aitken’s process acts as if it was suppressing one of the
spirals of the curve (which contains two of them) since the sequence (ε

(n)
2 ) still looks

like another spiral, and is not reduced to a single point as in the case where only one
spiral was present.
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Figure 6. ∆2 process applied to second order spirals: (a) on the left and (b) on the right.

Indeed, if (Sn) has the form (b) with |λ2| > |λ1|, we have Sn − C = O(λn
2 ). It is easy

to see that

ε
(n)
2 = C +

a1a2λn
1 λn

2 (λ2 − λ1)
2

a1λn
1 (λ1 − 1)2 + a2λn

2 (λ2 − 1)2

= C +
a1a2λn

1 (λ2 − λ1)
2

a1(λ1/λ2)n(λ1 − 1)2 + a2(λ2 − 1)2 = O(λn
1 ),

which shows the gain brought by Aitken’s process by almost suppressing the role
played by λ2, the most important one.
If (Sn) has the form (a), that is Sn = C+(a1 + b1n)λn, then Sn−C = O(nλn). Aitken’s
process leads to

ε
(n)
2 = C−

b2
1λn+2

(λ− 1)((a1 + b1n)(λ− 1) + 2b1λ)
= O(λn),

which shows the acceleration brought by suppressing the leading error term.
In Figure 7, we see the results obtained by the iterated ∆2 process applied twice to
second order spirals: (a) on the left and (b) on the right. Thus, the iterated ∆2 process
does not gives the exact value of C, which should be a single point and not a curve
although (ε

(n)
2 ) is a spiral (see Figure 6), while (ε(n)4 ), in exact arithmetic, gives exactly

C. However, the iterated ∆2 process has a faster convergence, and it also has the form
of a spiral.
Spirals with different values of the parameters can have various shapes. It is sufficient,
for instance, to change one sign in λ1 or λ2. We intend to deepen this subject in a
forthcoming paper.
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Figure 7. Iterated ∆2 process applied to second order spirals: (a) on the left and (b) on the right.
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4.1.4. Project for a Book

We separated this document from the others since it treats a large range of topics and
seems to be an advanced skeleton for a book.

10 Book on ε-algorithm
This 120 pages document is clearly a preparatory work for a book. Looking at its
contents, it is probably the Resumé of book on the ε-algorithm, mentioned by Wynn
in {26}, and also at the end of his document {28}, with an O (ongoing) in front of the
name. In this manuscript, he stated in detail what he intended to treat. It contains
an incredible succession of theorems whose proofs are not given, and comments and
explanations between them are missing. It is divided into chapters.
Chapter 1: Theorem concerning determinants. It contains identities for compound deter-
minants, Schweins’ lemmata, simple and extended Hankel determinants.
Chapter 2: Prediction based upon a linear model. Its sections are on exponential extrapola-
tion (that is, the Aitken ∆2 process), and extrapolation using a linear recursion (that is
the Shanks transformation).
Chapter 3: The epsilon algorithm. The sections are on the auxiliary numbers ε

(m)
2r+1, the

fundamental formulæ, and the algebraic theory of the epsilon algorithm (invariance
properties and the cross rule).
Chapter 4: The Padé table. Sections are on the Padé quotients and the Padé table.
Chapter 5: The epsilon algorithm and the Padé table. The first section is on the even order
epsilon numbers and the Padé table. The second section studies the epsilon array
associated with a rational function. The next one is on the extended epsilon array,
that is the second half of the Padé table. Recursions for primitive Padé quotients are
then given.
Chapter 6: Continued fractions. The chapter begins by the general theory (definitions, re-
currences, equivalence transformation, contraction and extension, the Euler-Minding
formulæ). The second section is about continued fractions derived from power series
(corresponding and associated continued fractions). Then, the connection between
continued fractions and the Padé table is studied. The continued fractions of the even
order epsilon array are then discussed, and again those derived from power series.
Transformations of corresponding continued fractions are presented, and a method of
deriving an associated continued fraction is explained.
Chapter 7: The epsilon algorithm and orthogonal polynomials. Definition, determinantal
formula, associated polynomials, recurrence relationships in the case of formal orthog-
onality are first given. The qd-algorithm and Bauer’s bridge are presented.
Chapter 8: The convergence behaviour of the row and column sequences of the Padé table.
There is a section on Hadamard’s theory of the Taylor series, and two sections on the
convergence of the rows and columns of the Padé table. Another section deals with
the construction and convergence of the even order epsilon-array.
Chapter 9: The convergence of the sequence {ε(n)2 }. It presents Samuel Lubkin’s lemmata,
and consequences.
Chapter 10: Some analysis. The chapter gives classical results on functions of a real vari-
able, definition and properties of the Stieltjes integral, theorems of choice, orthogonal
polynomials derived from a positive distribution, the problem of moments, the Haus-
dorff moment problem, completely monotonic functions, complex variable theory.
Chapter 11: Integral transforms. The first section is on the Riesz-Herglotz theorem, fol-
lowed by one on Hamburger-Nevanlinna functions. Then, Wynn gives results on the
Laplace transform, the Stieltjes inversion formula, the Riesz-Herglotz-Wall functions.
Chapter 12: Power series. The chapter begins by the series generated by Hamburger-
Nevanlinna and Stieltjes functions. Then, asymptotic series are discussed. The next
section is on the transformation of divergent power series (Borel integrals and Watson-
Nevanlinna lemma).
Chapter 13: The convergence of associated and corresponding continued fractions. The
first section considers the associated continued fractions generated by Hamburger-
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Nevanlinna functions. It is followed by a study of nested circular value regions.
Convergence criteria expressed in terms of the coefficients of the continued fraction
and of those of the series are then given. The next section is on what Wynn names
theorems of access (logarithmic derivatives and Laplace transforms). The equivalence
between the method of Borel and the use of continued fractions is then discussed. A
characterisation of Stieltjes fractions is proposed.
Chapter 14: The diagonal sequences of the Padé table and the even order ε-array. Wynn
begins by the structure of the Padé table associated with a Hamburger-Nevanlinna
and a Stieltjes function. The convergence of the diagonals of the Padé table for such
functions is discussed, and, then, the construction and the convergence of the diagonal
sequences of the even order epsilon array. There is a section on the Padé table derived
from a Stieltjes series. A comparison between the epsilon algorithm and the gener-
alised Euler transformation is proposed. Then, Wynn considers the epsilon algorithm
and the transformation of trigonometric series, and that of operational formulæ in
numerical analysis.
Chapter 15: The operator epsilon algorithm. The chapter treats noncommutative continued
fractions and orthogonal polynomials, the operator qd-algorithm, the noncommutative
version of Bauer’s bridge. Wynn gives a fundamental theorem concerning operator
valued orthogonal polynomials.
Chapter 16: The vector epsilon algorithm. McLeod’s isomorphism and Clifford algebra
are explained. Then, come the vector valued and the functional Padé tables.
Chapter 17: The first confluent form of the epsilon algorithm: the rational function limit and
the continued fraction limit. This chapter has two sections where these topics are treated.
Chapter 18: The second confluent form of the epsilon algorithm: the definition of an integral
as the limit of a continued fraction. After defining this second confluent form, Wynn
explains the connection between both forms. Then, he treats the rational function and
the continued fractions integrals. Euler integration ends the chapter.
Chapter 19: The rational function integral. The degenerate theory in treated in the first
section, and the general theory in the second one. A special convergence result is
then given.
Chapter 20: The continued fraction integral. The chapter begins by the degenerate theory
before coming to a remarkable equivalence.
Chapter 21: The third and fourth confluent forms of the epsilon algorithm. The fourth one is
given but not the third one.
Chapter 22: A partial differential equation associated with the epsilon algorithm. The first
section is about a so-called φ-array. Then, partial differential equations are derived
for it. The cases of the epsilon algorithm and that of the Padé surface are then treated.
The following section is about self conjugate systems of partial differential equations
for symmetric algorithms. Adjoint partial differential equations are discussed, and
special solutions of the partial differential equation of the Padé surface are given.
Chapter 23: Error analyses of the epsilon algorithm. The chapter begins by a perturbation
analysis. Then, the convergence and stability of the epsilon algorithm are studied. The
singular rule for the algorithm is given.
This preparatory work for a book is in an advanced form since the results are well
positioned in it. It only remains to link them by explanations and to give the proofs of
the theoretical results (or the corresponding references to the literature).

4.1.5. Algebra

11 Theory of stratified commutative field
This document presents a total of 266 pages. These notes, mentioned in many of the
lists of Wynn, seem in a final form because they contain no erasures.
After defining his notations for the ranges of the indexes, Wynn writes (all indexes are
in Z):
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Definition. A stratified commutative ring, or S-ring, is a system S of numbers arranged into
strata S{j} such that
(i) the members of S{j} form an additive Abelian group;
(ii) commutative and associative multiplication is defined between elements of the various
S{j}: with a ∈ S{j}, b ∈ S{k}, ab = ba ∈ S{j + k} and (ab)c = a(bc) for such products;
(iii) multiplication is distributive with respect to addition within appropriate strata: with
a, b ∈ S{j}, c ∈ S{k}, (a + b)c = ac + bc, addition on the left being within S{j}, that on
the right within S{j + k}.
A number belonging to the above system is an S-number and the S{j} to which it belongs is
its stratum.
S is the class of S-rings.
It is not assumed in the above definition that addition and subtraction between disparate
strata should be possible, although in special cases this may be so. It is so, for example, when
all S{j} are the same additive Abelian group; S is then simply a commutative ring. More
generally, it is also possible between congruent strata if S{j} ≡ S{k} when j = k mod m,
m being a prescribed integer.

Two special S-rings are described, and then:

The above examples serve to draw attention to a salient feature of theory to follow. It will
be shown that the end results of certain computations involving S-numbers are members of
fixed strata–for example that certain bilinear forms with S-number coefficients are expressible
as linear sums of squares with coefficients that are S-numbers.

The rest of the document cannot be summarized without going into detail. It is a
purely theoretical work. No practical application is given, and there are no references
to the literature.

12 Stratified field, determinantal identities and LU decomposition in such field
This document of 105 pages probably follows the preceding document {11}. It contains
theoretical notes about determinantal identities and LU decomposition over stratified
commutative ring. He defines the so-called P-numbers that, in fact, have the same
definition of the S-number of the document {11}. He defines the P-array and the P-
matrices that are different in their definition. Several result were proved, concerning,
for instance Jacobi’s theorem on the adjugate, product of determinants, Sylvester’s and
Schweins’ determinantal identities, and so on. A LU decomposition is also proposed.
This document, purely theoretical, is in almost good shape, and it seems to be complete
since the numbered pages correspond to what Wynn indicates in {26}.

13 Equations in field extensions
This theoretical document, without title, contains 37 pages numbered from 1 to 37.
Probably it is also intended to follow the work {11}, since inside there are references to
that theory. It is perhaps what Wynn called Last notes (see {26}).

14 Factorisations of a triangular matrix
This document contains 43 pages of well written notes with this title. This work is
mentioned in {26–28}, together with the notes {1} on Bürmann series.
As usual in many of his works, Wynn begins by introducing a plethora of notations
which makes the results more difficult to apprehend. However, we need to give some
of them.

[. . . ] (2a) (i : j; k) indicates that the integer i should take the values i = j, . . . , k. (b) If
the lower limit j is unity, it and the subsequent semi-colon are omitted, thus (i : k) is an
abbreviation for i = 1, . . . , k. Conjoint descriptions are separated by a vertical bar, thus
(i : n | j : i) is an abbreviation for i = 1, . . . , n; j = 1, . . . , i. [. . . ]
For (i : n | j : n− i + 1), a(i, j) is the jth order determinant formed from the array whose
τth row contains the elements ai+τ−1,ν (ν : j) for (τ : j); when j < 1, a(i, j) = 1 (i : n).

A bunch of results are then presented but without any explanation on their purpose.
However, it seems that the final goal is the following one:
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Notation. A being a lower triangular n× n matrix with elements ai,j ∈ K, a(i, k; j) is, for
(i, k : n | j : min(n− i + 1, n− k + 1), the jth order determinant formed from the array
whose τth row (τ : j) contains the elements ai+τ−1,k+ν−1 (ν : j). Also, a(i, k; 0) = 1 (i :
n | k : i) [. . . ]
Theorem. Let ai,j (i : n | j : i) be the elements of a nonsingular lower triangular matrix, and
ci,j (i : n | j : i) those of its inverse. Then

c(i, k; j) =
(−1)i+ka(j + k, k; i− k)

∏
i+j−1
τ=k aτ,τ

(i : n | k : i | j : min(n− i + 1, n− k + 1).

Proof. The formula

ci,k = c(i, k; 1) =
(−1)i+ka(k + 1, k; i− k)

∏i
τ=k aτ,τ

is obtained from the system of equations

ak,kck,k = 1,
µ

∑
ν=k

aµ,νcν,k = 0 (µ : k + 1; i).

The result is correct when j = 1. A short inductive proof based upon the use of the formula,
suffices to show that the result is true as stated.

The last page of the document is a list of possible applications, not all of them being in-
telligible. But Wynn also mentions: Examine band matrix decomposition for ai,j deriv-
ing from differential equation; Partial sum transformation ∑i

τ=0 fτxτ 7−→ ∑i
τ=0 gτa(x).

Convergence acceleration; Integral transform of transformation as in motivation of
γ-algorithm; Band matrix decomposition of C{a} and Newton series extension; Exten-
sion of Bernoulli polynomials {a(xy) + 1}β(x)j = ∑ β

(j)
ν (y)xν, etc.

4.1.6. Software

15 Numal in FORTRAN
Numal was a library of numerical algorithms written in Algol 60 and developed by
members of the Mathematical Center in Amsterdam. Remember that Wynn belonged
to this Center from 1960 to 1964. During his stay in München, he privately partici-
pated actively to the development of Algol 60 and used it for his programmes (see,
i.e., References [33,44,55]). When he was in North America, he supervised a transla-
tion of the library into a FORTRAN version suitable for mini-computers and wrote a
detailed documentation. As he wrote [. . . ] the translation it self was carried out almost
single-handedly by H.T. Lau. It is interesting to remark that Hang T. Lau made the same
for C-language and Java, and published two books on that, respectively in 1994 and
in 2003. According to the Wynn explanation, this is a translation into Fortran of a
Numerical Algorithms Library written in Algol 60. Its table of contents shows that it
covers the main domains of numerical analysis: computer arithmetic, linear algebra,
polynomials, series, numerical solution of differential equations, numerical integra-
tion, Fourier series, zero finding algorithms, minimisation, parameter estimation and
special functions. The document found, submitted on 11 February 1981 has 29 pages
and a preface, and it is the first part of this work and it is entitled 0. Introduction and
Summary. The titles and contents of the other parts are given. This part begins by a
comparison of the respective merits of Algol and FORTRAN. Then, Wynn describes
the modifications he did and the improvements he brought. He also explains how the
translation was performed and that the FORTRAN versions of the Algol procedures
are far longer because the petty restrictions with which FORTRAN is afflicted cannot di-
rectly be overcome. Finally, he describes the machine and compiler dependent features
which had to be taken into consideration.
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4.2. Unpublished Typewritten Documents

We found two typewritten documents which seem to be ready for publication. They
are reproduced in the website.

16 Commuting Cayley numbers
This is a one page note but complete with abstract and references. It can be downloaded
from our website. A necessary and sufficient conditions are given for α and β, belonging
to a division algebra of generalized Cayley numbers, to satisfy the relationship αβ = βα.
References and the AMS subject classifications are given. Cayley numbers, also known
as octonions, are elements of the 8-dimensional normed division algebra over the field
of real numbers. It is the only 8-dimensional real alternative algebra without zero
divisors. The Cayley algebra is an algebra with unique division and with an identity;
it is alternative, non-associative and non-commutative.
Octonions were discovered by John Thomas Graves (1806–1870) in December 1843,
two months after the discovery of quaternions by Hamilton. Graves communicated
his discovery to Hamilton in a letter dated 4 January 1844 but it was only published in
1848 after having been rediscovered by Arthur Cayley (1821–1895) in 1845. Since then
they have been called Cayley numbers; see Reference [153]. Wynn already discussed
them in several of his publications [65,66,69,99].

17 On rational approximations to the exponential function
This is a 8 pages paper that can be downloaded from our website. In the personal
document {25}, this paper is mentioned as to appear in 1981 or after. It seems that it
was never published. It is on the precise locations for the roots with large modulus of
the equation [ν/µ]ez = ez. Notice that the approximants [ν/µ]ez were given in closed
form by Padé [141].

4.3. Other Documents
4.3.1. Drafts on Analysis

18 Connections between various classes of functions of a complex variable
The first page of this document of 18 pages only contains the title. It seems to be a
copy of Wynn’s original notes, and unfortunately it is incomplete since it contains
only pages 8–14, 21–25, 28–32. Only the first two theorems are exploitable:

Th 1. f (z) maps Re(z) < 0 into | f (z)| < 1 iff

f (z) = eiφ

{
1 +

2z
A + (ic′ − 1)z + iz

∫ ∞
−∞

z−it
zt+i dσ′(t)

}

where −∞ < φ < 0, 0 ≤ A < ∞,−∞ < c′ < ∞, σ′ bounded nondecreasing over
(−∞, ∞).
Th 2. f (z) maps Re(z) < 0 into | f (z)| < 1 and f (z) ∼ ∑ tνzν as z → 0 in π/2 + δ <
arg(z) < 3π/2− δ (for δ < (0, π/2) fixed) iff

f (z) = eiφ

1 +
2z

A + (ic− 1)z + z2
∫ ∞
−∞

dσ(t)
1−itz


where −∞ < φ < 0, 0 ≤ A < ∞,−∞ < c < ∞, σ bounded nondecreasing over (−∞, ∞)
such that all moments

∫ ∞
−∞ tνdσ(t) exist.

The following pages are not in a sufficiently good shape to be analyzed.
19 Generalization of the β- and γ-algorithm integration processes

Unfortunately these notes (may be a copy of the original) start from the page numbered
8 and, thus, it is difficult to analyze them. Perhaps the other pages have not yet been
found in the boxes left by Wynn. As the title explains, they contain an attempt to
generalize the β- and γ-algorithm integration processes. This generalization consists
in considering I(ψ, µ) = f (µ)J(µ) =

∫ ∞
µ ψ(µ′) dµ′, where J(µ) is approximately
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constant (slowly varying), and −ψ(µ) = f ′(µ)J(µ) + f (µ)J′(µ), and he assumes that
the sequence (eν) such that ψ(µ)/ f ′(µ) = ∑ eν( f (µ))ν is known. Then, he introduces
many notations and conditions upon them, but after 20 pages, no clear conclusion
follows from this work.
In the same document, there is the original review of 11 pages written by Wynn himself
of his paper in Reference [106]. It appeared, shortened, in Zentralblatt MATH, as Zbl
0531.40002. Wynn almost surely put these pages together since they both concern the
computation of integrals of the form

∫ ∞
µ ψ(µ′) dµ′.

20 Extraction of totally monotone sequences from convergents of a continued fraction
This document is a partial copy (pages 31–35) of original notes. There are some pages
on an attempt to extract a totally oscillating sequence from the successive convergents
of a continued fraction

Ci =
a1
b1

+ · · ·+ ai
bi

.

If ∀i, ai = $($ − 1) with $ ∈ (1, ∞), then Ci tends to $ − 1, and the sequence
(C2i+1 − C2i+3) is totally monotone. No other interesting result can be extracted
from this partial document.
Then, there are 2 pages of rough notes on “Auxiliary sequence transformation before
application of the ε-algorithm”, which could be related to what precedes, and 3 pages
on “Transformation of monotonic sequences by means of the ε-algorithm”, which seem to be
independent of the topic.

4.3.2. Drafts on Algebra

21 Interpolation Theory
This is an unfinished document of 60 pages, not numbered but in a good shape,
entitled Interpolation theory. It is probably a part of a monograph (an important project)
referenced in several documents (see {26,28}).
Wynn wrote:

The following notes concern interpolation in a field by the use of polynomials and rational
functions, the interpolatory argument values being assumed to be discrete. The notes
serve both as a basis for subsequent more general theory concerning interpolation in the
presence of confluent arguments and as a framework for the theory of the transformation of
Schweins’ series.
I. Notations, definitions and classes of matrices and mappings
II. Formulae from the calculus of finite differences
III. Matrix formulations of finite difference formulae
IV. Interpolation by the use of polynomials and rational functions

Only the part I. has been found. It is a list of notations and it is too vague to be
of interest. A Schweins’ series is related to minor identities for quasi-determinants
of noncommutative matrices; see, for example, Reference [154]. Schweins obtained
it in 1825 for the quotient of two n-rowed determinants which differ only in one
column [155].

22 Linear equations in a commutative ring
This untitled document of 38 pages (numbered from the 9th one) begins by a first
list of 7 topics he wanted to treat. Then, 8 pages that look like two tables of contents
with several topics covered follow. After that, these items are detailed and, hopefully,
Wynn also inserted in front of them the number of the pages where each subitem can
be found. In the first page, Wynn inserted also a sketch of the following notes {23}.
The first section begins by

1. Linear equations in a commutative ring.
It is proposed to study the systems of solutions of equations of the form

bx = a mod I
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where, W being a prescribed commutative ring, a, b, x ∈ W, and I being a system of
numbers in W, the above equation is to be interpreted in the sense that u ∈ I exists for which
bx− a = u.

The other main sections are:

2. Systems of numbers
3. Divisibility
4. Numerator systems
5. Solution systems
6. Square free ideals
7. The ideal reduction

A complete analysis of this first section, also if it looks quite complete, seems to
be difficult.

23 Mapping
This only theoretical handwritten draft of 81 pages (there is a page 18 followed by
page 18’) and is about what Wynn named Aggregates. A sketch of these notes can be
found in {22}. It is quite difficult to understand what it is about since the manuscript
is not entirely well written, and seems not to have been finished.
Let R, S ⊆W. A nonvoid aggregate σ in (R, S) is composed of a nonvoid set I(σ) ⊆ R
and a system of nonvoid sets M(σ, a) ⊆ S defined for each a ∈ I(σ). Then, other
definitions and properties follow. Parts of the document are on mappings and classes
of aggregates. There is no indication of the purpose of this work, and, searching on
internet, nothing similar or related was found.

24 Factor relationships of the form c = Ed
This is a long theoretical text of 115 pages, entitled Factor relationships of the form c = Ed,
where c, E, and d are mapping systems. At the beginning, there is a sketch of the topics
that are developed in the sequel.
After introducing a lot of notations, Wynn treated the existence of domains of con-
stancy and intersection mapping systems. Then, there is a section on invariance of
spaces with respect to sequence rearrangement, one on the properties of domains of
constancy, another one on properties of prequotient spaces with respect to domains
of constancy and intersection systems, a section giving complete factorisation results,
and one on spaces of ordered pairs of mapping systems.

4.3.3. Personal Documents

25 Curriculum vitæ of Peter Wynn
This document is a typewritten curriculum vitæ by Wynn himself (born 1 September
1931; Hoddesdon, Herts (U.K.)). Then, he reports his education, his professional
experience from 1952 to 1980 (thus, it does not contain his positions after that). In this
curriculum, we can see that he occupied several positions in different countries in the
World. Moreover, we were able to confirm his date and place of birth with certainty.
This curriculum contains a bibliography with publications from 1956 to 1981. In this
bibliography, Wynn mentioned two references that we did not know: a paper
On rational approximations to the exponential function, 1981, to appear, which was found
in the boxes and is reproduced at the end of this paper, and a monograph, Numal in
Fortran. 0, Comunicaciones Técnicas, Universidad Nacional Autónoma de México,
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), México.
The number of the reports written by Wynn were 48.0–48.11. Certainly it is a completed
project (he mentioned it in {28}, with an O) and, looking into the web, we found that
the report 48.0 was published in Serie azul, monografías–Instituto de Investigaciones en
Matemáticas Aplicadas y en Sistemas. UNAM, México, 1981, Pag. 1–93. On the URL
https://biblat.unam.mx/en/buscar/wynn-p/ (accessed on 30 April 2021) the part
48.0 is cited (93 pages). We found the number 48.0 in one of the boxes (see {15}).

https://biblat.unam.mx/en/buscar/wynn-p/
https://biblat.unam.mx/en/buscar/wynn-p/
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26 Lists of documents
In each of the two opened boxes, we found a list of documents (one of them with the
title Duplicate list. They are probably the lists of documents (xerox copies, handwritten
notes and papers, reviews, and so on) that Wynn holds, and that he inserted into
the boxes, since we also found a (sometime) partial correspondence mixed with the
documents found and analyzed in this paper. There are plenty of what Wynn named
“rough notes”. Among these rough notes, we find the ones showed in Figure 8, that
lead us to think he was looking for a determinantal expression for the even vectors
obtained by the vector ε-algorithm.
Since the text could be difficult to read, we reproduce below what Wynn wrote:

Rough notes on extensions of determinantal relationships, algorithmic recursions, etc. to noncom-
mutative, possibly nonassociative elements, by use of linear algebraic equations.
Rough notes of derivation of expressions representing ε-algorithm vectors by differentiation of
scalar expressions involving inner product.
Rough notes on expression in closed form of vectors produced by vector ε-algorithm & other forms.

Thus, one can wonder if Wynn was trying to express the vectors computed by his
vector ε-algorithm as ratios of some kind of (generalized) determinants. Such a result
would be of great interest for the understanding of this algorithm, but, unfortunately,
it has not been obtained yet. In any case, these rough notes are difficult to read and
understand!

Figure 8. Notes of Peter Wynn on the vector ε-algorithm.

27 List of activities
This is a list of activities that have to be accomplished: construct notes and Resumé
on different topics. The activities are structured in subitems of an itemized list (from
(A) to (J)). Are they separated subjects or the skeleton of a book or for other papers? It
is difficult to say. The itemized main topics are: Preparatory algebraic theory; Poly-
nomials and rational functions; Interpolation theory; Moment problem and stability
functions; Anti-derivative theory; An array of functions; Functions defined by an
integral transform; the Euler-Maclaurin and Boole series; Sequence transformations
(a subtopic is about auxiliary transformation before application of the ε-algorithm,
a problem addressed in Reference [156]). The item (J) Low priority seems to contains
activities having another scope (documentation for Algol programmes, preparation of
talks, and another Resumé).
This document was probably written after 1981 since Reference [109] is mentioned.

28 List of projects
There are 3 pages containing a list of projects. Some of them were probably realized
(those preceded by a D) and some of them, with an O, perhaps meaning Ongoing. But
we are not sure that some other remained in the state of projects, although some of them
are preceded by a D. Among this list, we find: theory of stratified commutative ring,
functional interpolation, variants of the remainder terms in the Euler Maclaurin and
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Boole series, auxiliary sequence transformation before application of the ε-algorithm
(such a pre-processing or preconditioning as already evoked in References [56,72]),
extension of determinantal identities and algorithmic recursions to noncommutative
and nonassociative forms by use of linear algebraic equations, numerical experiments
in nonassociative algebras, numerical experiments in optimisation, vector ε-algorithm,
etc., the analytic continuation of functions defined by an integral transform. And,
finally, there is a mention of a book on the ε-algorithm.

29 Bibliography of various authors
It is a list of references by various authors, probably a list of Xerox copied papers.

30 Reviews of Wynn for zbMATH
This document contains two papers published in the journal Ukrainskii Matematich-
eskii Zhurnal (Ukrainian Mathematical Journal) in Russian. The first one is authored
by R. I. Mikhal’chuk & M. S. Syavavko and its title (in English) is A continual analog
of continued fraction (Vol. 34, No. 5, pp. 559–564, September–October (1982), doi:
10.1007/BF01093130 for English translation). The second one is the paper by Y.R.
Batyuk & M.S. Syavavko entitled Integral continued fractions, Dokl. Akad. Nauk Ukrain.
SSR Ser.A7, 6–8 (1984), also in Russian. This is not strange since Wynn knew Russian
(and also German, Duch, Spanish, and some French) and translated two books in this
language [110,111]. There are also four handwritten reviews written for zbMATH.
The first two are related to the papers (Zbl 0579.40001, Zbl 0571.40003) on continued
fractions previously indicated, and the last one (Zbl 0554.65003) to a paper by Naoyuki
Tokuda (A new application of Lagrange-Bürmann expansions. I. General principle, Z. Angew.
Math. Phys. 34, 697–727 (1983)). Wynn, during his stay in Mexico, was a very active
mathematical reviewer for zbMATH (145 reviews) by analyzing papers and books
published from 1971 to 2011, some of them in Russian. The last one, very detailed,
contains a review of a paper on rational function interpolation and the ε-algorithm,
but it is not present in zbMATH.
The first three handwritten reviews have been shortened when published in zbMATH.
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