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Abstract

A methodology for the formulation of the stiffness matrix of an enriched finite element, called
continuum macro-element (CME), representing for the full length of a bonded overlap and
both the adhesive and the adhesive in only one four-node elements, is presented. Compared
to earlier macro-elements modelling the bonded overlap as beams on elastic foundation, the
CME supposed the adherends and the adhesive as plane continuum media, for which higher-
order displacement fields is supposed for the adhesive. The formulation of the stiffness matrix
for the adherend outside of the overlap is presented as well to address the stress analysis of
single-lap bonded joint for assessment purpose. The assessment is performed by comparisons
with the results from (i) a plane strain finite element and (ii) two recent papers by Nguyen
and Le Grognec [1] and Methfessel and Becker [2]. Good agreements are shown.
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1. Introduction

The sizing of structural adhesively bonded joints is currently subjected to investigations by
research teams worldwide. The sizing process mainly consists in comparing design values to
criteria; the design values are measured thanks to experimental tests, while the criteria need
the assessment of suitable mechanical fields provided by a stress analysis. Detailed finite
element (FE) analyses can address the stress analysis of bonded joints. Nevertheless, these
detailed FE analyses can be costly in terms of preprocessing, computation and postprocessing,
so that simplified stress analyses providing accurate results are attractive.
In 1909, Arnovljevic [3] developed a model for a composite bar made of a pipe filled by a
rod axially loaded. The pipe and the rod are joined all over their contact surface. The
load transfer between the pipe and the rod is performed at the interface through a shear
stress supposed to be proportional to the relative displacement at the interface: a shear-lag
approach. The model aimed at assessing the maximal sustainable load as a function of the
shear strength of the interface. In 1938, Volkersen [4] provided a model for the stress analysis
of single-lap bonded joint in-plane loaded, the objective of which was to assess the load
transfer distribution within a bonded joint. In this model, both adherends are seen as bars
and the load transfer is performed by shearing the adhesive layer, assuming a shear stress
proportional to the relative displacement of adherends at the interface. These first models
consider then the adherends as bars linked by a bed of shear springs, allowing for the load
transfer, by the adhesive layer in the case of the model by Volkersen. It comes that the
system of ordinary differential equations (ODE) to solve is only dependent on the adherend
longitudinal displacements, which are coupled through the stiffness associated to the adhesive.
In other words, the local equilibrium of the adhesive layer is not considered. This modelling
approach includes the models based on beams or plate on elastic foundation: the Volkersen
model is based on bars on one-parameter foundations. In this paper, this type of model
is called discrete model, since the load transfer is ensured by the deformation of discrete
elements: the springs representing for the adhesive layer. The stress analysis developed
in 1944 by Goland and Reissner [5] is a discrete model (plate on two-parameters elastic
foundation) for which the bending of adherends, non-linearly dependent on the in-plane
tensile force due to the neutral line lag, is considered as well as the associated adhesive peel
stress. The discrete model by Goland and Reissner has then been enriched by modifying the
simplifying hypotheses, in terms of local equilibrium equations of adherends and kinematics
for the adhesive and adherends by several authors such as for example Hart-Smith [6], Ojalvo
et Eidinoff [7], Oplinger [8] or Luo and Tong [9, 10, 11]. It is indicated that the previous
models provide closed-form ready-to-use solutions, valid on a restricted application field in
terms of boundary conditions and nature of joined materials. To overcome the restriction
due to the boundary conditions, stress analyses of the bonded overlap only were developed
and are referred to sandwich type analyses [12, 13, 14, 15, 16]. The loading applied on the
adherends at overlap ends, in terms of force and/or displacement, is supposed to be known.
Moreover, depending on the constitutive equations of joined adherends, the governing system
of ODEs can show a coupling level leading to the necessary use of a computer program to
assess the roots and integration constants. Some authors suggested simplification reducing
the level of coupling even for sandwich type analysis [13, 17]. In particular, the discrete model
by Zhao et al. [17] involves adherends modeled as plane stress or plane stain continuum
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media. Finally, to extend the application field of discrete models to various geometrical
configurations under various boundary conditions and loadings, including nonlinear material
behaviors, dedicated resolution schemes were developed such the approach by Mortensen
et al. [18, 19] based on the multi-segment integration scheme or the macro-element (ME)
modelling by Paroissien et al. [20, 21]. A ME is representing both the adherends and the
adhesive layer in one four-nodes FE with one or three degrees of freedom (DoF) per node
depending on the kinematics chosen for the adherends. The interpolation functions are not
supposed a priori but take the shape of the solution of the governing system of ODEs, so
that only one ME is sufficient to represent for the entire bonded overlap: discretization
is not necessary for a linear material computation. The ME results in the computation
of the stiffness matrix K, similar to elementary stiffness matrix from finite element (FE)
theory. Therefore, it could be possible to compute existing capabilities from FE theory
such as the consideration of non-linear law behaviour. A second category of simplified stress
analyses can gather the models which consider the local equilibrium equations for the adhesive
layer. In this paper, this type of models is called continuum model. These models do
not lead to parametrical closed-form ready-to-use equations and need a computer program
to assess the roots and integration constants [22, 23, 24, 25], eventually associated with a
dedicated resolution scheme [26, 27]. Recently, Nguyen and Le Grognec [1] or Methfessel and
Becker [2] published models involving higher-order displacement approaches associated with
a dedicated resolution scheme. Particularly, Nguyen and Le Grognec formulated an enriched
FE representing both adherends and the adhesive layer in one FE, similarly to the ME. This
enriched FE is a three-nodes FE element with nine DoF per node and using a quadratic
interpolation and a discretization of the overlap is need to assess the mechanical answer.
During the last decade, different methodologies for the formulation of stiffness and mass ma-
trices of ME have been developed to allow for the enrichment of MEs, modelling a bonded
– eventually multi-layered – overlap [20, 28, 21, 29, 30]. However, all these methodologies
consider discrete MEs (DME) only. The objective of this paper is to present a methodology
for the formulation of a stiffness matrix of a continuum ME (CME) based on higher-order
displacement approach along the y-axis and to be able to represent an entire bonded over-
lap. The enriched CME approach give to a structure designed with it, a quick access to the
longitudinal, transversal/shear and peel stresses along the x-axis and y-axis, thanks to its
FE-similarities, without meshing part. The adherends and the adhesive are regarded as plane
strain or stress continuum media under small displacements and with a linear elastic material
behaviour. The case of a non-linear geometry behaviour and non-linear material behaviour,
such as plasticity or damage, are not considered. No crack or failure are considered. The
adherends are considered under the first-order shear deformation while the adhesive kine-
matics is assumed to follow a second and third-order description for axial and transversal
displacement. The CME is assessed by comparing the predicted adhesive stress distributions
with those provided by a refined plane strain FE model and by two recent paper models: (i)
Nguyen and Le Grognec [1] and (ii) by Methfessel and Becker [2].
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2. Formulation of continuum macro-element

2.1. Underlying assumptions

In order to keep the model simple, some assumptions are taken and provided in this section.
Materials are assumed to be homogeneous and isotropic. The considered behavior is linear
elastic, with a Young’s modulus Ei and a Poisson’s coefficient νi. The subscript i refers either
to the adhesive (denoted “a”) or to an adherend i where i = 1 for the upper adherend and
i = 2 for the lower adherend (see Figure 1). The material is seen as a 2D continuous solid (in
the xy-plane) with the possibility to satisfy the plane stress or the plane strain hypothesis.
Therefore E

′
i , G

′
i and ν

′
i are used for general formulation, and can be expressed as:

• Plane stress: ∣∣∣∣∣∣
E

′
i = Ei

G
′
i = Gi

ν
′
i = νi

(1)

• Plane strain: ∣∣∣∣∣∣∣
E

′
i =

Ei

1−ν2i

G
′
i = Gi

ν
′
i =

νi
1−νi

(2)

Two type of ME have been developed and described in the following sections. The first ME
is a beam that represents the full length li of the adherend “i”. The width is quoted b. The
stiffness matrix of this element will be usefull to model the SLJ with MEs (see Section 3).
The second ME is the CME that represents the full length L of the bonded overlap made of
both adherends “i” and of the adhesive “a” whom the thickness are 2hi with i = 1, 2, a. The
width is quoted b as well.
For both previous MEs, the adherends are considered under the first-order shear deformation.
The adhesive kinematics is assumed to follow a second and third-order description for axial
and transversal displacement. Finally, the loading is considered to be quasi-static and small
strain and displacements are considered.

2.2. Virtual work principle

The virtual work principal is used to produce a set of equilibrium equations [31] as:

δW = δWint + δWext = 0 ∀δU1, δU2, δUa (3)

where δU1, δU2 and δUa are considered as kinematically admissible and as the virtual varia-
tions of the unknown displacement fields U1, U2 and Ua, in the upper/lower substrate and in
the adhesive layer. The variational internal and external work are respectively denoted δWint

and δWext. For the current problem, the first variation of the internal (i.e. strain) energy
δWint,i of an element i is written as:

δWint,i = −
∫
Ωi

δεTi σi dΩi = −
∫
Ωi

δεi,xxσi,xx + δεi,yyσi,yy + δεi,xyσi,xy dΩi (4)

where Ωi, δε
T
i and σi are respectively the volume, the variational strain and the stress.
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2.3. Adherend component

The upper and lower adherends are considered under the first-order shear deformation. The
general displacement field is composed of a longitudinal and a transversal displacement of
the centröıd axis, respectively noted ui(x) and vi(x), and the rotation θi(x) of its section
around the z-axis. The general displacement field Ui of this beam for an element subscript i
is:

Ui(x, y) =

∣∣∣∣ ui(x) + θi(x).y
vi(x)

(5)

The strain vector of an element i is:

εi =

 εi,xx
εi,yy
2εi,xy

 =

dui(x)
dx

+ dθi(x)
dx

.y
0

dvi(x)
dx

+ θi(x)

 (6)

From the Hooke’s Law, the stress vector can be computed as:

σi =

σi,xx

σi,yy

σi,xy

 =

 E
′
i ν

′
iE

′
i 0

ν
′
iE

′
i E

′
i 0

0 0 G
′
i

 εi,xx
εi,yy
2εi,xy

 (7)

σi =

E ′
i (εi,xx + νi

′εi,yy)
E

′
i (ν

′εi,xx + εi,yy)
2G

′
iεi,xy

 =

 E
′
i
dui(x)
dx

+ E
′
i
dθi(x)
dx

y

E
′
iν

′ dui(x)
dx

+ E
′
iνi

′ dθi(x)
dx

y

G
′
i

(
dvi(x)
dx

+ θi(x)
)

 (8)

By considering the variational form of Eq. 6 and performing integration by parts on the
derivative of the displacement δui(x), δvi(x), and δθi(x), to have them without derivation,
Eq. 4 can be written as:

δWint,i = −
∫
Ωi

δεi,xxσi,xx + δεi,xyσi,xy dΩi

= −
∫
Ωi

dδui(x)

dx
.σi,xx +

dδθi(x)

dx
y.σi,xx +

dδvi(x)

dx
σi,xy + δθi(x)σi,xy dΩi

=

∫
li

δui(x)
dNi,xx

dx
+ δθi(x)

(
dMi,zz

dx
−Ni,xy

)
+ δvi(x)

dNi,xy

dx
dx

− [δui(x)Ni,xx + δθi(x)Mi,zz + δvi(x)Ni,xy]
li
0

(9)

with

Ni,xx =

∫
Si

σi,xx dSi Mi,zz =

∫
Si

y.σi,xx dSi Ni,xy =

∫
Si

σi,xy dSi (10)

where li and Si are respectively the longitudinal length and the transversal surface of an
element i.
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2.4. Adhesive component

For the adhesive, the displacement field is defined through a polynomial series in terms of
y-coordinate. The general displacement field for the adhesive a is assumed to be written
under the following shape:

Ua(x, y) =

∣∣∣∣∣∣∣
n∑

i=0

ua
i (x) y

i

m∑
i=0

vai (x) y
i

(11)

Due to the polynomial shape along the y-axis of the displacement field, it is possible to have
a good agreement of the physical behavior by choosing the right couple (n,m). According
to [1], in order to have a proper stress and strain distribution through the thickness, it is
proposed to take n = 2 and m = 3, leading to the following expression:

Ua(x, y) =

∣∣∣∣ ua
0(x) + ua

1(x).y + ua
2(x).y

2

va0(x) + va1(x).y + va2(x).y
2 + va3(x).y

3 (12)

The strain vector is then deduced such as:

εa =


dua

0(x)

dx
+

dua
1(x)

dx
.y +

dua
2(x)

dx
.y2

va1(x) + 2va2(x).y + 3va3(x).y
2(

ua
1(x) +

dva0 (x)

dx

)
+
(
2ua

2(x) +
dva1 (x)

dx

)
y +

dva2 (x)

dx
.y2 +

dva3 (x)

dx
.y3

 (13)

From the Hooke’s Law (see Eq. 7), the stress vector is computed as:

σa =


E

′
a

(
dua

0(x)

dx
+ νa

′va1(x)
)
+ E

′
a

(
dua

1(x)

dx
+ 2νa

′va2(x)
)
y + E

′
a

(
dua

2(x)

dx
+ 3νa

′va3(x)
)
y2

E
′
a

(
νa

′ dua
0(x)

dx
+ va1(x)

)
+ E

′
a

(
νa

′ dua
1(x)

dx
+ 2va2(x)

)
y + E

′
a

(
νa

′ dua
2(x)

dx
+ 3va3(x)

)
y2

G
′
a

(
ua
1(x) +

dva0 (x)

dx

)
+G

′
a

(
2ua

2(x) +
dva1 (x)

dx

)
y +G

′
a
dva2 (x)

dx
.y2 +G

′
a
dva3 (x)

dx
.y3


(14)

By considering the variational form of Eq. 13, Eq. 4 can be written as:

δWint,a = −
∫
Ωi

dδua
0(x)

dx
.σa,xx +

dδua
1(x)

dx
y.σa,xx +

δua
2(x)

dx
.y2σa,xx

+ δva1(x)σa,yy + 2δva2(x).yσa,yy + 3δva3(x).y
2σa,yy

+

(
δua

1(x) +
dδva0(x)

dx

)
σa,xy +

(
2δua

2(x) +
dδva1(x)

dx

)
yσa,xy

+
dδva2(x)

dx
.y2σa,xy +

dδva3(x)

dx
.y3σa,xy dΩi

(15)

For simplification purpose, the following expressions are considered:

Na,xx =

∫
Sa

σa,xx dSa Ma,xx,n =

∫
Sa

yn.σa,xx dSa

Na,yy =

∫
Sa

σa,yy dSa Ma,yy,n =

∫
Sa

yn.σa,yy dSa

Na,xy =

∫
Sa

σa,xy dSa Ma,xy,n =

∫
Sa

yn.σa,xy dSa

(16)

6



where la and Sa are respectively the longitudinal length and the transversal surface of the
adhesive a. By using Eq. 16 and performing integration by parts on the derivative of the
displacement δua

0(x), δu
a
1(x), δu

a
2(x), δv

a
0(x), δv

a
1(x), δv

a
2(x), and δva3(x), to have them without

derivation, Eq. 15 can be simplified in:

δWint,a =

∫
la

δua
0(x)

dNa,xx

dx
+ δua

1(x)

(
dMa,xx,1

dx
−Na,xy

)
+ δua

2(x)

(
dMa,xx,2

dx
− 2Ma,xy,1

)
+ δva0(x)

dNa,xy

dx

+ δva1(x)

(
dMa,xy,1

dx
−Na,yy

)
+ δva2(x)

(
dMa,xy,2

dx
− 2Ma,yy,1

)
+ δva3(x)

(
dMa,xy,3

dx
− 3Ma,yy,2

)
dx

− [δua
0(x)Na,xx + δua

1(x)Ma,xx,1 + δua
2(x)Ma,xx,2 + δva0(x)Na,xy

+δva1(x)Ma,xy,1 + δva2(x)Ma,xy,2 + δva3(x)Ma,xy,3]
L
0

(17)

2.5. Governing equations

To determine the stiffness matrix of the adherend without adhesive and the stiffness matrix
of the macro-element representing the entire bonded overlap made of both adherends and of
the adhesive, a set of ODEs needs to be established and be solved. To obtain this set, the
virtual work principal presented in Section 2.2 is used, where Eq. 3 with the kinematically
admissible field leads to the constrain that each term of the sum of Eq. 4 needs to be null.

2.5.1. Adherend without adhesive

Starting from Eq. 3, the set of ODEs for an adherend i without adhesive comes from:

δWint,i + δWext = 0 ∀δui(x), δvi(x), δθi(x) (18)

The substitution of Eq. 9 into Eq. 18 results in the following set of ODEs:

dNi,xx

dx
= 0

dMi,zz

dx
−Ni,xy = 0

dNi,xy

dx
= 0

(19)

with: 

Ni,xx = 2bhiE
′

i

dui(x)

dx

Ni,xy = 2bhiG
′

i

(
dvi(x)

dx
+ θi(x)

)
Mi,zz =

2

3
bh3

iE
′

i

dθi(x)

dx

(20)
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2.5.2. Bonded part

The adherends are modeled as in Section 2.3, and the adhesive part as in Section 2.4. Starting
from Eq. 3, the set of ODEs comes from:

δWint,1 + δWint,a + δWint,2 + δWext = 0

∀δua
0(x), δu1(x), δθ1(x), δu2(x), δθ2(x), δv

a
0(x), δv

a
1(x), δv1(x), δv2(x)

(21)

The displacement fields are continuous at the interface adherend to adhesive, so that the
following equations hold:

U1(x, y = −h1) = Ua(x, y = ha)

U2(x, y = h2) = Ua(x, y = −ha)
(22)

The insertion of Eq. 5 and Eq. 12 in Eq. 22 leads to:

ua
1(x) = − h2

2ha

θ2(x)−
h1

2ha

θ1(x)−
1

2ha

u2(x) +
1

2ha

u1(x)

ua
2(x) =

h2

2h2
a

θ2(x)−
h1

2h2
a

θ1(x)−
1

h2
a

ua
0(x) +

1

2h2
a

u2(x) +
1

2h2
a

u1(x)

va2(x) =
1

2h2
a

v2(x) +
1

2h2
a

v1(x)−
1

h2
a

va0(x)

va3(x) = − 1

h2
a

va1(x)−
1

2h3
a

v2(x) +
1

2h3
a

v1(x)

(23)

By inserting Eq. 23 into Eq. 9 and Eq. 17, and using them into Eq. 21, it leads to the following
set of ODEs:

dNa,xx

dx
− 1

h2
a

(
dMa,xx,2

dx
− 2Ma,xy,1

)
= 0

dN1,xx

dx
+

1

2ha

(
dMa,xx,1

dx
−Na,xy

)
+

1

2h2
a

(
dMa,xx,2

dx
− 2Ma,xy,1

)
= 0

dN2,xx

dx
− 1

2ha

(
dMa,xx,1

dx
−Na,xy

)
+

1

2h2
a

(
dMa,xx,2

dx
− 2Ma,xy,1

)
= 0

dM1,zz

dx
−N1,xy −

h1

2ha

(
dMa,xx,1

dx
−Na,xy

)
− h1

2h2
a

(
dMa,xx,2

dx
− 2Ma,xy,1

)
= 0

dM2,zz

dx
−N2,xy −

h2

2ha

(
dMa,xx,1

dx
−Na,xy

)
+

h2

2h2
a

(
dMa,xx,2

dx
− 2Ma,xy,1

)
= 0

dNa,xy

dx
− 1

h2
a

(
dMa,xy,2

dx
− 2Ma,yy,1

)
= 0

dMa,xy,1

dx
−Na,yy −

1

h2
a

(
dMa,xy,3

dx
− 3Ma,yy,2

)
= 0

dN1,xy

dx
+

1

2h2
a

(
dMa,xy,2

dx
− 2Ma,yy,1

)
+

1

2h3
a

(
dMa,xy,3

dx
− 3Ma,yy,2

)
= 0

dN2,xy

dx
+

1

2h2
a

(
dMa,xy,2

dx
− 2Ma,yy,1

)
− 1

2h3
a

(
dMa,xy,3

dx
− 3Ma,yy,2

)
= 0

(24)
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with: 

Na,xx = 2bhaE
′

a

(
dua

0(x)

dx
+ νa

′va1(x)

)
+

2

3
bh3

aE
′

a

(
dua

2(x)

dx
+ 3νa

′va3(x)

)
Ma,xx,1 =

2

3
bh3

aE
′

a

(
dua

1(x)

dx
+ 2νa

′va2(x)

)
Ma,xx,2 =

2

3
bh3

aE
′

a

(
dua

0(x)

dx
+ νa

′va1(x)

)
+

2

5
bh5

aE
′

a

(
dua

2(x)

dx
+ 3νa

′va3(x)

) (25)



Na,yy = 2bhaE
′

a

(
νa

′du
a
0(x)

dx
+ va1(x)

)
+

2

3
bh3

aE
′

a

(
νa

′du
a
2(x)

dx
+ 3va3(x)

)
Ma,yy,1 =

2

3
bh3

aE
′

a

(
νa

′du
a
1(x)

dx
+ 2va2(x)

)
Ma,yy,2 =

2

3
bh3

aE
′

a

(
νa

′du
a
0(x)

dx
+ va1(x)

)
+

2

5
bh5

aE
′

a

(
νa

′du
a
2(x)

dx
+ 3va3(x)

) (26)



Na,xy = 2bhaG
′

a

(
ua
1(x) +

dva0(x)

dx

)
+

2

3
bh3

aG
′

a

dva2(x)

dx
.y2

Ma,xy,1 =
2

3
bh3

aG
′

a

(
2ua

2(x) +
dva1(x)

dx

)
+

2

5
bh5

aG
′

a

dva3(x)

dx

Ma,xy,2 =
2

3
bh3

aG
′

a

(
ua
1(x) +

dva0(x)

dx

)
+

2

5
bh5

aG
′

a

dva2(x)

dx

Ma,xy,3 =
2

5
bh5

aG
′

a

(
2ua

2(x) +
dva1(x)

dx

)
+

2

7
bh7

aG
′

a

dva3(x)

dx

(27)

The expression of Ni,xx, Ni,xy and Mi,zz with i ∈ [1, 2] are obtained from Eq. 20.

2.6. Stiffness matrix

To compute the stiffness matrix of the adherend without adhesive (see Section 2.3) and the
stiffness matrix of the bonded part (see Section 2.4), the system of ODEs (respectively Eq.
19-20 and Eq. 24-25) need to be independently solved through a matrix formulation. The
matrix representation is a powerful tool to manage complex systems of ODEs. A set of ODEs
can be rewritten under the matrix form as:

dY (x)

dx
= A.Y (x) (28)

where A is a squared matrix. This matrix is provided in Appendix A.2 for the adherend i
only and for the bonded part case. The vector Y and its derivative are:

Y (x) =
[
q(x) dq(x)

dx

]T
dY (x)

dx
=

[
dq(x)
dx

d2q(x)
dx2

]T (29)
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where the superscript T indicates the transposition of a vector. The vector q(x) is expressed
as: 

q(x) =
[
ui(x) vi(x) θi(x)

]
→ for the adherend i ∈ [1, 2] (see Section 2.5.1)

q(x) =
[
ua
0(x) u1(x) θ1(x) u2(x) θ2(x) va0(x) va1(x) v1(x) v2(x)

]
→ for the CME (see Section 2.5.2)

(30)

A well-known solution of this differential equation is:

Y (x) = eA.x.C (31)

where C is the vector of unknown integration constants. The adherend and the CME have
respectively 6 and 18 unknown integration constants. The matrix exponential can be com-
puted manually using the Jordan approach as in [29], or using the built-in function of calculus
software. The last approach is retained. The vector q(x) (see Eq. 30) can be extracted from
the vector Y (x), allowing to expression the displacement field at any point x.
Using the resulting vector q(x), the nodal displacement vector U and the nodal force vector
F can be respectively expressed in term of integration constants as U = D.C and F = L.C
where D and L are squared matrices. For each macro-element, the displacement and loading
vector U and F are detailed in Appendix A.1. Finally, the stiffness matrix K is computed
as K = L.D−1 [21, 29, 30].

3. Validation

3.1. Case study

In the present paper, a focus is given on the SLJ configuration. The SLJ configuration (see
Figure 1) has a depth b (i.e. in the z-direction) and both adherends (denoted “1” for the
upper and “2” for the lower adherend) are considered to eventually be dissimilar. The length
of overlap region (i.e. along the x-axis) is termed L and the length of the out-bonded part
(i.e. part without adhesive) are respectively termed l1 and l2 for the upper and lower ad-
herends. The thickness of the adhesive (i.e. along the y-axis) is 2ha and for the upper and
lower adherend, they are respectively termed 2h1 and 2h2. The adherends have the same

F

Beam BeamCME

Adherend 1

Adhesive a

Adherend 2

Figure 1: Representation of a Single Lap Joint (SLJ) and its modeling using macro-elements

geometry and material properties. The SLJ is simply supported and under a quasi static

10



force loading F . With the hypothesis of having a linear geometric behavior, the solicitation
leads to small displacements. Material properties and geometric parameters used are given
in each dedicated subsection.
The SLJ can be divided into three parts. Each part are modeled with only one ME, resulting
in a total of three MEs to represent the SLJ configuration. From Section 2.6, the stiffness
matrices for the adherend part without adhesive and for the bonded part is computed and
are then assembled to represent the SLJ geometry (see Figure 1) such as in the traditional
FE theory. With this modeling, it is possible to have the same advantages than with the FE
theory, such as flexibility on boundary conditions and on the loading. The minimization of
the potential energy lead to the classical linear system FS = KS.US is then solved, where FS

and US are respectively the vector of nodal forces and nodal displacements of the structure
which as a stiffness matrix KS.
The proposed model is compared against a 2D FE model using the commercial FE codes
SAMCEF/SIEMENS on the SLJ configuration, and against two recent analytical models, (1)
Nguyen and Le Grognec model in 2021 [1] and (2) Methfessel and Becker model in 2022 [2].

3.2. 2D finite element model

i

j
k
l
m
n

a b c d e f g h

Figure 2: Mesh strategy for the SLJ geometry

The SLJ geometry is meshed with 4-nodes linear element, two degrees of freedom per node
under normal integration and plane-strain assumption. To decrease the number of nodes
and elements while keeping accuracy, a mesh strategy has been established. As shown in
Figure 2, the SLJ geometry has been divided into several meshing domains. The FE mesh
is distributed with a ration of 5 following the arrows, where the arrow direction provides the
monotonic growth of the mesh, in Figure 2. An aspect and an transition ratio both equal
to 1 are considered. Thus, the free overlap edges (i.e. at x = 0 and x = L) are meshed of
squared through the adhesive thickness. The final results is visible on Figure 3 and related
parameters are given in Table 1. The geometric and material parameters considered are
respectfully detailed in Table 2 and Table 3. A load F of 100 N/mm is applied. In Figure
4, the variation of the maximal mid-plane adhesive stresses are provided in function of the
number of elements in the adhesive thickness. The model is then considered to be converged
at around 8 elements in the thickness. For precision, the model with 12 elements is retained.
The distributions of the adhesive stresses along the mid-plane (i.e. y = 0) and the lower
interface (i.e. y = −ha) of the adhesive layer are provided in Figure 5 and Figure 6 re-
spectively for the FE and the ME model. The longitudinal (σxx), transverse/peel (σyy), and

11



𝑢 = 0
𝑣 = 0

𝑣 = 0

F

Figure 3: Mesh distribution with aspect/transition ratio in x = 0 and in x = L both equal to 1 for a SLJ
geometry under the SAMCEF/SIEMENS software

a (mm) b (mm) c (mm) d (mm) e (mm) f (mm) g (mm) h (mm)
46 4 4 21 21 4 4 46

i (mm) j (mm) k (mm) l (mm) m (mm) n (mm)
1 1 0.1 0.1 1 1

Table 1: FEM - Geometric parameters

l1 (mm) l2 (mm) L (mm) h1 (mm) h2 (mm) ha (mm) b (mm)
50 50 25 1 1 0.25 25

Table 2: FEM - Geometric parameters

E1 (MPa) E2 (MPa) Ea (MPa) ν1 ν2 νa
70000 70000 2500 0.35 0.35 0.4

Table 3: FEM - Material properties

shear (σxy) adhesive stresses distributions provided by both models have good agreements.
On these stresses in the mid-plane, there is a relative difference of respectively 15.7%, 3.33%
and 23.8% on the maximum stresses in the mid-line of the adhesive layer. It can be observed

12
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Figure 4: Convergence analysis of the SLJ mesh

the presence of a negative stress peak and values are significantly higher for the presented
model. The longitudinal, peel and shear stresses at the free overlap end are negative with
the presented model while it tends to zero for the longitudinal stress and remains positive
for the peel and the shear stress with the FE model. Thus, on all stresses, an edge effect is
present.
To summarize, the presented ME model is an acceptable approximation of the FE model.
The three maximal adhesive stresses along the mid-plane are underestimated. On the in-
terfaces, the ME model provides finite stresses values at x = 0 and at x = L, as well as
high stress gradients. The longitudinal stress on the free adhesive edges tends to zero on the
FE model while a high peak of negative stress is observable on the presented model. The
assumption on the displacement field through the thickness could be the reason by being not
enough enriched.

3.3. Recent paper models

3.3.1. Nguyen and Le Grognec model

In their paper [1], the adhesive layer is modeled as a 2D continuous solid satisfying the plane
stress hypothesis. The displacement field of the adhesive is identical to the present model
(see Eq. 12). The reduced modulus λ

′
a =

2λa

λ+2µa
and µa are used. The Lamé constant can be

expressed in terms of Ea and νa with the relation λa = Eaνa
(1+νa)(1−2νa)

and µa = Ea

2(1+νa)
. From

Eq. 7 and [1], the following expression can be extracted:σa,xx = E
′

aεa,xx + E
′

aν
′

aεa,yy

σa,xx =
(
λ

′

a + 2µa

)
εa,xx + λ

′

aεa,yy
(32)

Therefore, considering the notation used in this paper, Eq. 32 is equivalent to:
E

′

a =
Ea

1− ν2
a

G
′

a = Ga =
Ea

2(1 + νa)

ν
′

a = νa

(33)
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(b) Shear stresses
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(c) Peel stresses

Figure 5: Comparison between the presented model and the finite element model stresses along the mid-line
(i.e. y = 0) of the adhesive layer along the overlap (left) and a zoom on the first 2mm (right)

For the upper and lower adherends, Nguyen and Le Grognec [1] considers Timoshenko beams
with a shear correction factor k. The Young’s modulus Ei, the shear modulus Gi, and the
Poisson coefficient νi, of the adherend i with i ∈ [1, 2], are used in such way that:

E
′

i = Ei

G
′

i = kGi with Gi =
Ei

2(1 + νi)
and k =

5

6

ν
′

i = 0

(34)
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(c) Peel stresses

Figure 6: Comparison between the presented model and the finite element model stresses along the lower
interface (i.e. y = −ha) of the adhesive layer along the overlap (left) and a zoom on the last 2mm (right)

The geometric and material parameters considered are respectfully detailed in Table 4 and
Table 5. A load F of 5000 N is applied. In Figure 7 and Figure 8, the longitudinal (σxx),

l1 (mm) l2 (mm) L (mm) h1 (mm) h2 (mm) ha (mm) b (mm)
75 75 25 1 1 0.2 25

Table 4: Nguyen and Le Grognec model [1] - Geometric parameters

transverse/peel (σyy), and shear (σxy) adhesive stresses are plotted along the overlap length
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E1 (MPa) E2 (MPa) Ea (MPa) ν1 ν2 νa
210000 210000 6500 0.3 0.3 0.36

Table 5: Nguyen and Le Grognec model [1] - Material properties

at the mid-line (i.e. y = 0) and at the interface (i.e. y = −ha) of the adhesive layer.
The longitudinal, shear and peel stress distributions provided by both models are in close
agreement. On these stresses, there is a relative difference of respectively 10.5%, 12.4% and
4.60% on the maximum stresses in the mid-line of the adhesive layer, and respectively 68.4%,
27.3% and 68.3% in the upper interface (i.e. y = +ha). The noticeable difference appears
on the adhesive edges (i.e. at x = 0 and x = L). Both models provides longitudinal stress
having tendencies to drop to zero at free overlap end (i.e. x = 0 and x = L). In the same
way as in Section 3.2, for both models, it can be observed the presence of a negative stress
peak and values are significantly higher for the presented model. The shear stress at the free
overlap end remains positive with the model of Nguyen and Le Grognec while it is negative
with the presented model.
To summarize, the presented model is able to have close agreement with the Nguyen and
Le Grognec model. The same displacement field, for the adherends and the adhesive, is
used for both approaches. The difference relies on the resolution scheme. In [1], numerical
integrations using Gaussian points are employed for the calculation whereas in the presented
approach, an analytical solution is established.

3.3.2. Methfessel and Becker model

In their paper [2], the adhesive layer is modeled as a continuum media, using a special polyno-
mial approaches of higher order and by considering the Ojalvo and Eidinoff [7] displacement
approach. The displacement field of the adhesive has a different shape compared to the pre-
sented model. It is mainly composed of the adherends displacement and polynomial functions
through the adhesive thickness multiplied with unknown adhesive deformation functions. The
polynomial functions have been set to vanish at the interface adherend-adhesive. From the
three dimensional isotropic Hooke’s law and considering the plane strain assumption, the
constitutive equations are derived as:σ(a)

xx = E(a)∗ (1− ν(a)
)
εxx + E(a)∗ν(a)εzz with E(a)∗ =

E(a)

(1 + ν(a)) (1− 2ν(a))

σa,xx = E
′

aεa,xx + E
′

aν
′

aεa,yy

(35)

Considering the notation used in this paper, the following parameters need to be set as:

E
′

a =
Ea (1− νa)

(1 + νa) (1− 2νa)

G
′

a = Ga =
Ea

2(1 + νa)

ν
′

a =
νa

1− νa

(36)
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(a) Longitudinal stresses
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(b) Shear stresses
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(c) Peel stresses

Figure 7: Comparison between the presented model and the Nguyen and Le Grognec model [1] stresses along
the mid-line (i.e. y = 0) of the adhesive layer along the overlap

For the upper and lower adherends, Timoshenko beams with a shear correction factor k are
considered in [2]. The Young’s modulus Ei, the shear modulus Gi, and the Poisson coefficient
νi, of the adherend i with i ∈ [1, 2], are the same than Eq. 34.
The geometric and material parameters considered are respectfully detailed in Table 6 and
Table 7. A load F of 5000 N is applied. In Figure 9, the longitudinal (σxx), transverse/peel
(σyy), and shear (σxy) stresses along the mid-line (i.e. y = 0) of the adhesive layer are
displayed. In general, good agreements are noticeable. It can be observed the ME model
tends to overestimate the maximum shear stress of 19.8% whereas the longitudinal and the
peel stresses are well fitted with a relative difference of 0.452% and 1.92% respectively. It
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(b) Shear stresses
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(c) Peel stresses

Figure 8: Comparison between the presented model and the Nguyen and Le Grognec model [1] stresses along
the upper interface (i.e. y = +ha) of the adhesive layer along the overlap

l1 (mm) l2 (mm) L (mm) h1 (mm) h2 (mm) ha (mm) b (mm)
50 50 25 1 1 0.25 25

Table 6: Methfessel and Becker model [2] - Geometric parameters

should be noted Methfessel and Becker show in [2] that their model underestimates the shear
stress compared to those coming from a FE model. A possible justification to this stresses
underestimation is the formulation of the displacement field and the stress singularity due
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E1 (MPa) E2 (MPa) Ea (MPa) ν1 ν2 νa
210000 210000 2460 0.33 0.33 0.4

Table 7: Methfessel and Becker mode [2] - Material properties

to the geometry, the bi-material interface and boundary conditions. In the same way as
in Section 3.3.1, it can be observed the presence of a negative stress peak and values are
significantly higher for the presented model. The peel stress at the free overlap end remains
positive with the model of Nguyen and Becker while it is negative with the presented model.
To summarize, the presented model is able to provide similar results to the Methfessel and
Becker model. The displacement field for the adherends is the same for both approaches
while for the adhesive it is not. The polynomial degree along the y-coordinate through the
adhesive thickness is the same but the adhesive displacement field is expressed in terms of the
adherends displacement. The approach for the resolution of ODEs uses as well the matrix
exponential but without the stiffness matrix generation such as in this paper.

4. Discussion and conclusion

In this paper, a methodology for the formulation of the stiffness matrix of enriched elements,
called continuum macro-element, is presented. The adherends and adhesive are seen as 2D
plane continuum media under plane stress or plane strain. The formulation allows for the
representation in only one element the full length of a beam. Similarly, when applied to
a bonded overlap, the continuum macro-element is modelling in only one element both the
adherends and the adhesive all along the overlap length. The resulting SLJ modelling has
24 degree of freedom (DoF). Using only DME as in [21], the structure has 18 DoF but
the description of the stress distribution through the thickness is not possible. The DME
modelling hypotheses lead to a constant stress distribution along the y-axis in the bounded
part. In comparison with the FE model which has 338 333 DoF, the advantage of the
CME modelling is clearly visible. It leads to an impressive reduction of computer cost, as
highlighted in [32].
The current formulation allows to switch between plane-stress and plane-strain hypotheses.
The material parameters used for the formulation allows to cover Timoshenko kinematics, as
well as various formulations in the literature, such as [1]. A comparison with finite elements
shows acceptable agreement. The proposed model tend to underestimate the longitudinal,
shear and peel stresses in the mid-line of the adhesive. A solution to address this phenomena
could be the increasing interpolation degree along the y-coordinate (i.e. through the adhesive
thickness): it is regarded by the authors as a future work. Moreover, a comparison against
two recent models, Nguyen and Le Grognec model [1] and Methfessel and Becker model [2],
have shown a good agreement, even if both models use different modelling hypotheses. Some
adaptations to the presented model was possible and have been performed to be in line with
material properties and to take into consideration the use of Timoshenko beams (see Section
3.3.1 and Section 3.3.2). Beside that, differences still occur. The Nguyen and Le Grognec
model [1] needs to mesh the simplified structure with several elements and to use Gaussian
quadrature in order to have numerical integrations along both x and y axes. The Methfessel
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(c) Peel stresses

Figure 9: Comparison between the presented model and the Methfessel and Becker model [2] stresses along
the mid-line (i.e. y = 0) of the adhesive layer along the overlap (left) and a zoom on the first 2mm (right)

and Becker model [2] use a displacement field along x-axis considering the Ojalvo and Eidinoff
displacement approach [7]. The proposed model, available on Github, is able to produce
close agreements to those two recent models, with no need of meshing. The SLJ geometry is
represented by only 3 elements (see Figure 1), where as the FE modelling needs way more. In
addition, the displacement field result in the solution of the sets of ODEs using an analytical
approach, allowing the generation of stiffness matrices, in contrast with the FE theory which
rely on the supposition of the shape function. As previously demonstrated with the DMEs
[23], the ME modelling takes benefits from the existing knowledge on the FE method. Once
the elementary stiffness matrices is established, it allows for a simple introduction of various
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boundary conditions and loadings, geometrical configurations or material behaviors. This
type of modelling wants to be an alternative solution to FE modelling in term of computer
efficiency, but using all advantage from FE theory. Its flexibility allows anyone to implement
the approach in any language such as Python, or directly inside an existing FE software.
The presented approach presents some limitation. As highlighted in the introduction section,
a non-linear geometry behaviour and non-linear material behaviours are not addressed for the
presented model. The introduction of the models dedicated to crack onset and propagation
could be considered in further steps, following the FE method. Indeed, it was already done
with discrete macro-element modelling (see [32]). The free overlap stress is not reached and
non-linear geometric behaviour is not possible in the current state. These limitations can be
addressed as future work. In general, the use of non-linearity will allow to model complex
real life cases.
In a near future, the presented formulation would allow the formulation of an extended version
of the CME with the use of a n-order displacement field for the adherend and the adhesive.
An improvement of a functionally graded SLJ along the x-axis [33] could be done by adding
the y-axis. Based on [29], it would be possible to formulate a multi-layer macroelement,
which can be used for the geometry analysis of composite-based material. Finally, as an
ultimate improvement, it could be able to address 2D or 3D FE modelling with the use of
the presented ME technique.
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Appendix A. Details

Appendix A.1. Nodal force and displacement vector

For the Timoshenko beam (i.e. adherends without the adhesive), the following formulas is
used:

U =


ui (0)
ui (L)
vi (0)
vi (L)
θi (0)
θi (L)

 = D.C and F =


−Ni,xx (0)
Ni,xx (L)
−Ni,xy (0)
Ni,xy (L)

−Mi,zz,1 (0)
Mi,zz,1 (L)

 = L.C (A.1)

D and L are squared 6× 6 matrix.

For the bonded part (i.e. CME), the following formulas are used:

U =



u1 (0)
ua
0 (0)

u2 (0)
u1 (L)
ua
0 (L)

u2 (L)
v1 (0)
va0 (0)
v2 (0)
v1 (L)
va0 (L)
v2 (L)
θ1 (0)
va1 (0)
θ2 (0)
θ1 (L)
va1 (L)
θ2 (L)



= D.C and F =



−N1,xx (0)
−Na,xx (0)
−N2,xx (0)
N1,xx (L)
Na,xx (L)
N2,xx (L)
−N1,xy (0)
−Na,xy (0)
−N2,xy (0)
N1,xy (L)
Na,xy (L)
N2,xy (L)

−M1,zz,1 (0)
−Ma,xy,1 (0)
−N2,zz,1 (0)
M1,zz,1 (L)
Ma,xy,1 (L)
M2,zz,1 (L)



= L.C (A.2)

D and L are squared 18× 18 matrix.

Appendix A.2. Matrix representation

The matrix form of the set of ODEs for the Timoshenko kinematics (i.e. adherends without
the adhesive):

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

0
3G

′
i

h2E
′
i

0 0 0
3G

′
i

h2E
′
i

0 0 0 0 −1 0


(A.3)
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The matrix form of the set of ODEs for the CME:

A =



0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
a11
a10

a12
a10

a13
a10

a14
a10

a15
a10

0 0 0 0 0 0 0 0 0 a16
a10

a17
a10

a18
a10

a19
a10

a21
a20

a22
a20

a23
a20

a24
a20

a25
a20

0 0 0 0 0 0 0 0 0 a26
a20

a27
a20

a28
a20

a29
a20

a31
a30

a32
a30

a33
a30

a34
a30

a35
a30

0 0 0 0 0 0 0 0 0 a36
a30

a37
a30

a38
a30

a39
a30

a41
a40

a42
a40

a43
a40

a44
a40

a45
a40

0 0 0 0 0 0 0 0 0 a46
a40

a47
a40

a48
a40

a49
a40

a51
a50

a52
a50

a53
a50

a54
a50

a55
a50

0 0 0 0 0 0 0 0 0 a56
a50

a57
a50

a58
a50

a59
a50

0 0 0 0 0 a61
a60

a62
a60

a63
a60

a64
a60

a65
a60

a66
a60

a67
a60

a68
a60

a69
a60

0 0 0 0

0 0 0 0 0 a71
a70

a72
a70

a73
a70

a74
a70

a75
a70

a76
a70

a77
a70

a78
a70

a79
a70

0 0 0 0

0 0 0 0 0 a81
a80

a82
a80

a83
a80

a84
a80

a85
a80

a86
a80

a87
a80

a88
a80

a89
a80

0 0 0 0

0 0 0 0 0 a91
a90

a92
a90

a93
a90

a94
a90

a95
a90

a96
a90

a97
a90

a98
a90

a99
a90

0 0 0 0


(A.4)
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a20 = hah1E
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