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Abstract

In standard practice, velocity addition rules are derived for point particles from Galilean and Lorentz
transformations. Such rules are then intuitively applied for waves to explain Doppler effect, following
what Doppler did himself originally. However, such application goes without any explanation in terms
of equations manifesting such frame dependence of velocity. We show that wave propagation should be
modeled with first order, not second order, partial differential equations so as to manifest such frame
dependence of wave velocity. From a historical point of view, this work settles the Doppler-Petzval
debate that was pivoted to the question of underlying differential equations for Doppler effect. From a
modern theoretical physics stand point, this work ignites a foundational debate regarding what can now
be considered as “equation for wave propagation”.
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1 Introduction: Doppler’s intuition and phenomenology

The standard practice of dealing with frame dependence of velocity of wave propagation and the effect of
the motion of the source and of the observer/detector, whether it may be sound, light, hydrodynamic or any
other type of wave, relies on our intuition of velocity transformation of a particle under Galilean and Lorentz
coordinate transformations. That is, velocity addition for waves is done only at the phenomenological level.
The practice started with Doppler [1–8], which got experimental support from Russell [9], Ballot [10] and
gave birth to other seminal works like those of Voigt [11,12] and Mach [13–15] who, especially, changed the
course of scientific queries regarding effects of motion on waves at the most elementary level by bringing in
the concepts of Mach cone, Mach number, etc. – for example see ref. [16]. Doppler effect and its various
other consequences have become a useful tool of the scientists for analyzing the characteristics of waves due
to the effect of motion [2–8]. Such a practice is justified by the empirical essence of the resulting formulas
such as those of Doppler-Fizeau effect [17, 18], reverse/inverse Doppler effect [19–39], Vavilov-Cherenkov
effect [40] leading to various experimental applications in optics, acoustics and hydrodynamics till date.
Also, it continues to foster research regarding basic concepts of physics [43–51].

Nevertheless, it can not be denied that it has hitherto not been analyzed whether an equation for wave
propagation actually manifests such velocity transformation like that of a particle. That is, when it is
written in words “velocity of a wave differs in two frames which are in constant relative velocity with respect
to each other”, such a statement is not explicated in terms of equations. To clarify and establish our
doubt/skepticism, we may quote Rayleigh from p.154 of ref. [52], who applied Doppler’s intuition [1], as
follows: “The pitch of a sound is liable to modification when the source and the recipient are in relative
motion. It is clear, for instance, that an observer approaching a fixed source will meet the waves with a
frequency exceeding that proper to the sound, by the number of wave-lengths passed over in a second of time.
Thus if v be the velocity of the observer and c that of sound, the frequency is altered in the ratio c ± v : c,
according as the motion is towards or from the source.”[“a” replaced by “c” if compared to original] and
then, we pose the following question, Q, in general for wave propagation.

Q: Let us suppose that there is an equation which explains the propagation of a wave, with velocity c
with respect to the preferred rest frame of the medium (e.g. air, water, optical medium, etc.). Is there an
equation that explains the same, with velocity c± v with respect to the observer, where ±v is the velocity of
the observer with respect to the preferred rest frame of the medium of wave propagation, to which the source
is attached?

On a historical note, we may point out that similar concern was raised by Petzval who asked for the underlying
differential equations for the frame dependence of velocity and frequency of waves [3, 5, 8, 53]. Our intent
is to search for an answer to Q. In course of doing that we reach a conclusion that velocity addition for
wave propagation can only be explained through first order partial differential equations (PDEs) and not
second order PDEs which is however the present standard understanding. In case the reader is misled by
the simplicity of our question and the concerned analyses, we suggest a consultation of Appendix (A) and
particularly the references cited therein; we have chosen to exclude such discussions from the main body of
this work so as to keep it simple and direct.

2 Analysis of propagation under Galilean transformation

In this section we revisit the velocity transformation of a point particle based on Galilean coordinate trans-
formation, along with suitable diagrammatic representations, and then proceed towards a similar analysis
to examine the frame dependence of wave velocity with an aim to identify what we can call “equation for
wave propagation”.

2.1 Revisiting particle propagation

Let us consider two frames S and S′, with origins O and O′ respectively, such that the latter is moving with
respect to the former, along x direction with constant velocity v. The Galilean transformation of coordinates

2



are well known (e.g. see ref. [55]) and given by:

x′ = x− σvt : σ = ±1, (1)

y′ = y, z′ = z, (2)

t′ = t. (3)

Here, the values of σ have the following significance:

1. “σ = +1” signifies “S′ (or O′) is moving along increasing/positive x direction and away from S (or
O)”. (Figure: 1a)

2. “σ = −1” signifies “S′(or O′) is moving along decreasing/negative x direction and towards S (or O′)”.
(Figure: 1b)

We may clarify a few points as follows which will help when we shall pass on to the scenario of wave
propagation. We consider here that the particle is thrown by a source located at O and it is observed
by an observer/detector located at O′. We note that in case of σ = −1, i.e. when O′ moves towards O,
there must be an initial separation between O and O′, say a. Therefore, we must have x′ = x + vt − a
so that the motion of O′ (x′ = 0) is given by x = a − vt in S frame. Thus, in general we must write
x′ = x − σvt + 1

2 (σ − 1)a : a > 0, in place of (1). However, this apparently does not affect the partial
derivatives that we are going to consider for the construction of equation for wave propagation. Hence, we
continue to ignore this subtlety about the effect of initial configuration on Galilean transformation.

For the motion of a point particle, the velocity transformation can be realized in a straightforward manner
as follows:

dx′

dt′
=
dx

dt
− σv ⇔ ηc′ = ηc− σv : ηc′ =

dx′

dt′
, ηc =

dx

dt
, (4)

where ηc and ηc′ are the velocities of the particle with respect to S and S′ respectively. Here, “η =
+1” signifies “forward propagating particle”(left to right) and “η = −1” signifies “backward propagating
particle”(right to left). Thus, the velocity transformation can be written as follows:

c′ = c− σ

η
v. (5)

� When η = +1 (i.e. forward propagation) and the observer at O′ is situated on the right side of O during
the course of the phenomenon,

1. for σ = +1, we have c′ = c− v. (Figure: 2a)

2. for σ = −1, we have c′ = c+ v. (Figure: 2b)

� When η = −1 (backward propagation) and the observer at O′ is situated on the left side of O during the
course of the phenomenon,

1. for σ = +1, we have −c′ = −c− v. (Figure: 3a)

2. for σ = −1, we have −c′ = −c+ v. (Figure: 3b)

� When η = −1 (backward propagation) and the observer at O′ is situated on the left side of O during the
course of the phenomenon,

1. for σ = +1, we have −c′ = −c− v. (Figure: 3a)

2. for σ = −1, we have −c′ = −c+ v. (Figure: 3b)
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Figure 1: Relative motions of S′ with respect to S.
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(a) Both the particle and S′ are forward prop-
agating. So the net velocity of the particle as
observed from S′ is c− v.
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(b) The particle is forward propagating but S′

is backward propagating. So the net velocity
of the particle as observed from S′ is c+ v.

Figure 2: Relative motions of S′ with respect to S with particle with forward propagating particle with S′

being on the right side of S for the entire motion
.

2.2 Properties of “equation for wave propagation”

Now, let us consider that S frame is the preferred frame of rest (e.g. air, water, optical medium, etc.) in
which the equation for wave propagation is constructed. The source is fixed with respect to this medium
and situated at the origin O of S. The observer/detector is situated at the origin O′ of S′ frame, which
moves with a constant velocity of magnitude v, with respect to the source. We expect that the “equation
for wave propagation” must have the following two properties.

P1: It must maintain its form, or remain invariant, under Galilean transformation so that we can actually
write “the wave is observed from both S and S′ frames”.

P2: It must showcase the velocity transformation corresponding to our explanation that “a wave propagates
with velocity ηc with respect to S” and “a wave propagates with velocity ηc′ with respect to S′”.

2.3 Analysis with 1st order PDE

We note that the partial derivatives transform as follows:

∂

∂x
⇔ ∂

∂x′
, (6)

∂

∂t
⇔ −σv ∂

∂x′
+

∂

∂t′
. (7)
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(b) Both the particle and S′ are backward
propagating. So the net velocity of the par-
ticle as observed from S′ is −c+ v.

Figure 3: Relative motions of S′ with respect to S with particle with backward propagating particle with S′

being on the left side of S for the entire motion
.

We write the propagating function as follows:

fη(x− ηct) : η = ±1, (8)

where

• “η = +1” signifies the “forward propagation/left to right” (along increasing x direction (Figure: 2)),

• “η = −1” signifies the “backward propagation/right to left” (along decreasing x direction (Figure: 3)).

Then, we can construct the following equation in S frame:

∂fη
∂x

= − 1

ηc

∂fη
∂t

, (9)

from which we can read off equations for “forward propagation” and “backward propagation” for η = +1
and η = −1 respectively, i.e., we write the following correspondence.

Forward propagation (η = +1):
∂f+
∂x

= −1

c

∂f+
∂t

, (10)

Backward propagation (η = −1):
∂f−
∂x

= +
1

c

∂f−
∂t

. (11)

The above two equations can represent “equation for wave propagation” on satisfaction of both P1 and
P2, which is indeed the case as we see in what follows. Using (6) and (7) we can write the eq.(9) transformed
to S′ frame as follows:

∂fη
∂x′

= − 1

ηc′
∂fη
∂t′

: c′ = c− σ

η
v. (12)

Also, we may note that the phase of the wave must remain invariant under transformation between S
and S′ frames, which leads to the fact that the wavelength remains invariant as well, as follows:

x− ηct = x′ − ηc′t′ ≡ h

(
1

λ
− 1

λ′

)
(x− ηct) = 0 ≡ λ = λ′ for arbitrary x, t satisfying x 6= ηct, (13)
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where λ and λ′ are the wavelengths of the wave in S and S′ frames respectively. We may now calculate
the relation between the frequencies of the wave, ν = c/λ and ν′ = c′/λ′, in S and S′ frames respectively, to
be given by the following relation:

ν′ = ν

(
1− σ

η

v

c

)
. (14)

So, from (12) and (14), we have the following cases for different values of η and σ.

� When η = +1 (forward propagation/left to right) and the observer at O′ is situated on the right side of
O during the course of the phenomenon (otherwise a forward propagating wave, originating from the source
at O, won’t reach the observer/detector/receiver at O′),

1. for σ = +1 (i.e. observer moving away from source in the increasing x direction, Figure: 4a), we have

∂f+
∂x′

= − 1

(c− v)

∂f+
∂t′

and ν′ = ν
(

1− v

c

)
, (15)

2. for σ = −1 (i.e. observer moving towards source in the decreasing x direction, Figure: 4b), we have

∂f+
∂x′

= − 1

(c+ v)

∂f+
∂t′

and ν′ = ν
(

1 +
v

c

)
. (16)
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(a) Both the wave and S′ are forward propagat-
ing. So the net velocity of the wave as observed
from S′ is c− v.
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(b) The wave is forward propagating but S′ is
backward propagating. So the net velocity of
the wave as observed from S′ is c+ v.

Figure 4: Relative motions of S′ with respect to S with particle with forward propagating wave with S′

being on the right side of S for the entire motion
.

� When η = −1 (backward propagation/right to left) and the observer at O′ is situated on the left hand
side of O during the course of the phenomenon (otherwise a backward propagating wave, originating from
the source at O, won’t reach the observer/detector/receiver at O′),

1. for σ = +1 (i.e. observer moving towards the source in the increasing x direction, Figure: 5a), we have

∂f−
∂x′

=
1

(c+ v)

∂f−
∂t′

and ν′ = ν
(

1 +
v

c

)
, (17)

2. for σ = −1 (i.e. observer moving away from the source in the decreasing x direction, Figure: 5b), we
have

∂f−
∂x′

=
1

(c− v)

∂f−
∂t′

and ν′ = ν
(

1− v

c

)
. (18)

In view of the above analysis, we may conclude that the 1st order PDEs encoded in (12), satisfy the prop-
erties P1 and P2 and, therefore, can be considered as equations for wave propagation. This mathematically
justifies Doppler’s intuition of considering frame dependent velocity of waves to explain frequency shifts,
as manifested through Rayleigh’s statement quoted earlier and the standard phenomenological practice of
velocity addition for waves.
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is forward propagating. So the net velocity of
the wave as observed from S′ is −c− v.
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(b) Both the wave and S′ are backward prop-
agating. So the net velocity of the wave as
observed from S′ is −c+ v.

Figure 5: Relative motions of S′ with respect to S with particle with backward propagating wave with S′

being on the left side of S for the entire motion
.

2.4 Settling the Doppler-Petzval debate (what could have been....)

We believe, in view of our analysis, it is worth devoting a section concerning the historical encounters between
Doppler [3] and Petzval [53] which we may call the Doppler-Petzval debate [3,5,8,53]. A very recent concise
account on this can be found in ref. [5], from which we use some quotes in the following remarks. As
has been noted in ref. [5], Doppler’s empirical analysis of frequency shift of light was countered with fierce
criticism from Petzval on the ground that Doppler’s analysis lacked any mathematical basis as “all natural
phenomena were the manifestations of underlying differential equations”. Instead of providing a reply based
on differential equations, Doppler’s defense relied on the question “whether an observed phenomenon must
be deemed nonexistent if it cannot be derived from differential equations.” and on the confidence due to the
empirical verification of Doppler effect by Russell [9] and Ballot [10] (also see the references cited in ref. [5]).
Doppler’s reply was not considered to be satisfactory enough by most of his contemporaries, especially given
the socio-scientific authority of Petzval at that time, which resulted in very disappointing, but undeserved,
consequences for Doppler. We believe that the analysis, which we have presented above, could have been
the appropriate reply by Doppler to “Petzval’s attack” [5], resulting in an avoidance of the unfortunate
consequences. Now, it is interesting to note that, since the present analysis appears for the first time in
the literature of science (up to the best of our knowledge), it indicates that the Doppler-Petzval debate has
remained unsettled and ignored since its conception in the 19th century. Therefore, we may claim that now
the Doppler-Petzval debate is settled as per our analyses.

2.5 Hearing sound backwards (Rayleigh)

Now, let us put some focus on the following particular fact. On p.154 of ref. [52], Rayleigh explained hearing
sound backwards as follows: “Since the alteration of pitch is constant, a musical performance would still
be heard in tune, although in the second case, when c and v are nearly equal, the fall in pitch would be
so great as to destroy all musical character. If we could suppose v to be greater than c, a sound produced
after the motion had begun would never reach the observer, but sounds previously excited would be gradually
overtaken and heard in the reverse of the natural order. If v = 2c, the observer would hear a musical piece
in correct time and tune, but backwards.” [“a” has been replaced by “c” if compared to the original text.]
This explanation is now mathematically realizable from eq.(15) and eq.(18) as follows.

� From (15), for v > c we have

∂f+
∂x′

=
1

(v − c)
∂f+
∂t′

and ν′ = −ν
(v
c
− 1
)

(19)

and for v = 2c we have
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∂f+
∂x′

=
1

c

∂f+
∂t′

and ν′ = −ν. (20)

Eq.(19) means the forward propagating wave appears to the observer at O′, who is situated on the right
hand side of O and moving away from O (towards positive x direction), to be propagating backward with
velocity of magnitude (v − c) and frequency ν(v/c − 1), where the negative sign of the frequency signifies
that the sound is heard backward or in reverse order. Eq.(20) signifies the same except it is a particular
case where the frequency is exactly same as the original in magnitude but the negative sign indicates the
backward or reverse order of the sound heard by the observer.

� From (18), for v > c we have

∂f−
∂x′

= − 1

(v − c)
∂f−
∂t′

and ν′ = −ν
(v
c
− 1
)

(21)

and for v = 2c we have

∂f−
∂x′

= −1

c

∂f−
∂t′

and ν′ = −ν. (22)

Eq.(21) means the backward propagating wave appears to the observer at O′, who is situated on the left
hand side of O and moving away from O (towards negative x direction), to be propagating forward with
velocity of magnitude (v − c) and frequency ν(v/c − 1), where the negative sign of the frequency signifies
that the sound is heard backward or reverse order. Eq.(22) signifies the same, except that it is a particular
case where the frequency is exactly same as the original in magnitude but the negative sign indicates the
backward or reverse order of the sound heard by the observer.

2.5.1 Inverse/Reverse Doppler Effect

The study of inverse/reverse Doppler is a matter of importance both from theoretical and experimental
point of view [19–39], which can now be realized directly in terms of PDEs from the above analysis just by
considering the case v > 2c. To see this let us write v = 2c + ve where ve > 0 and the subscript ‘e’ stands
for ‘excess over 2c’.

� For v = 2c+ ve : ve > 0, eq.(19) yields the following:

∂f+
∂x′

=
1

(ve + c)

∂f+
∂t′

and ν′ = −ν
(ve
c

+ 1
)
. (23)

Eq.(23) means the forward propagating wave appears to the observer at O′, who is situated on the right
hand side of O and moving away from O (towards positive x direction), to be propagating backward with
velocity of magnitude (ve + c) and frequency ν( vec + 1), where the negative sign of the frequency signifies
that the sound is heard backward or reverse order.

� For v = 2c+ ve : ve > 0, eq.(21) yields the following:

∂f−
∂x′

= − 1

(ve + c)

∂f−
∂t′

and ν′ = −ν
(ve
c

+ 1
)
. (24)

Eq.(21) means the backward propagating wave appears to the observer at O′, who is situated on the left
hand side of O and moving away from O (towards negative x direction), to be propagating forward with
velocity of magnitude (ve + c) and frequency ν( vec + 1), where the negative sign of the frequency signifies
that the sound is heard backward or reverse order.

Therefore, in both the above cases, the observer is moving away from the source, but the frequency is
increasing. This is called reverse/inverse Doppler effect, albeit restricted to the situation where the source
and the observer are moving away from each other and the source is fixed with the medium. An explanation
of inverse Doppler effect, for mutually approaching source and observer, requires few other subtleties to be
addressed, regarding which some remarks will follows shortly.

Now, there are two points which are worth noting here.
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• For ve = Nc : N = 1, 2, 3, · · · , we have ν′ = −ν(N + 1) i.e. integral multiple of the original frequency
is heard by the observer.

• The observed wave is backward only. That is, the reverse/inverse Doppler effect can only be perceived
with the wave propagating in the reverse direction compared to the original direction (w.r.t. the
source).

So, we may arrive at the following conclusion. If the alternation of direction of the wave due to the relative
velocity of the source and the observer is explained as a type of aberration, as has been done in ref. [41],
then inverse Doppler effect is always associated with an aberration effect. It will be interesting to see the
consequences of such analysis in case of cosmic microwave observations [42].

� Mutually approaching observer and source: Throughout our analyses we have kept the source to be
fixed with the medium. However, in case of the mutual approach of the source and the observer, for
explaining inverse Doppler effect, albeit within the Galilean framework, it is necessary for the source to be in
motion with respect to the medium. Additionally the situation raises some basic concerns about coordinate
transformations and equation for wave propagation. We explain the issues as follows.

The phenomenological formula that we generally deal with in such situation is written as [1]:

ν′ =
c+ vr
c− vs

ν

=
1 + βr
1− βs

ν such that βr =
vr
c
, βs =

vs
c
, (25)

where vr is the observer velocity w.r.t. the medium towards the source and vs is the source velocity w.r.t.
the medium towards the observer. Now, it is clearly visible from (25) that there is a signature change only
when vs > c, whereas there is no effect of vr. However, our common sense suggests that there should be
a dependence on vr as well (like the case of mutually moving away source and observer). So, the question
arises whether (25) is actually an approximation like the following:

ν′ =
1

(1− βr)(1− βs)
ν

' 1 + βr
1− βs

ν for βr � 1, (26)

where the dependence on vr (βr) is now manifest in a way that indicates a signature change for vr > c
(βr > 1), leading to an inverse Doppler effect, as well. If this is true, then a further question arises whether
Galilean coordinate transformation is applicable to handle the situation or we need to think about something
else e.g. see refs. [45] for a different perspective on waves and coordinate transformation. Furthermore,
refs. [48, 49] are suggestive of the fact that the Doppler formula indeed gets very subtle when the motions
of the source, the observer and the medium are involved. Therefore, the case of inverse Doppler effect needs
separately devoted attention, especially regarding the coordinate transformation and the structure of the
equation for wave propagation itself, which we plan to report elsewhere. In this work, we shall keep our
discussion restricted to Galilean transformation and the structure of equation for wave propagation, as our
main motto is to identify the equation for wave propagation that is consistent with the prevalent standard
coordinate transformations.

2.6 Analysis with 2nd order PDE

Now, let us analyze the situation with second order PDE. From (9), we construct the following equation
through the standard steps of calculations:

∂2fη
∂x2

=
1

η2c2
∂2fη
∂t2

, (27)

which we is generally identified as “equation for wave propagation” in the standard literature. However,
this equation does not transform to an “equation for wave propagation” in S′ frame and rather leads to the
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following result:

∂2fη
∂x′2

=
1

(η2c2 − σ2v2)

(
∂2fη
∂t′2

+ 2σv
∂2fη
∂x′∂t′

)
. (28)

The above equation can not be “equation for wave propagation” because of its failure to satisfy P1 and
P2. It is certainly true on mathematical ground that in S frame, the forward and backward propagating
functions and their linear superposition satisfy the second order PDE. However, it fails to retain its form in
S′ frame and, therefore, incapable of providing the mathematical support to Doppler’s intuition through a
manifestation of velocity addition.

3 Analysis of propagation under Lorentz transformation

In this section we do similar analyses with Lorentz transformations. We revisit the velocity transformation for
particles and then analyze propagating functions to decide what we may call “equation for wave propagation”.

3.1 Revisiting particle propagation

Let us consider two frames S and S′, with origins O and O′ respectively, such that the latter is moving with
respect to the former along x direction with constant velocity v. Then the Lorentz transformations that
relate these two frames are given as follows [55]:

x′ = γx− σγvt : σ = ±1 (29)

y′ = y, z′ = z, (30)

t′ = γt− σγ v
c2
x. (31)

σ can be either +1 or -1 with the following significance.

1. “σ = +1” signifies “S′ (or O′) is moving along increasing/positive x direction and away from S (or
O)”.

2. “σ = −1” signifies “S′(or O′) is moving along decreasing/negative x direction and towards S (or O′)”.

x

y

z

O
x′

y′

z′

O′

v

(a) σ = 1: S′ moving in the positive
x direction.

x

y

z

O
x′

y′

z′

O′

v

(b) σ = −1: S′ moving in the neg-
ative x direction.

Figure 6: Relative motions of S′ with respect to S.

The velocity transformation for a point particle goes as follows.

dx′

dt′
=

dx
dt − σv

1− σv
c2

dx
dt

=⇒ ηV ′ =
ηV − σv
1− σv

c2 ηV
: ηV ′ =

dx′

dt′
, ηV =

dx

dt
(32)
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η = +1 implies “forward propagating particle” and η = −1 implies “backward propagating particle”. Hence,
the velocity transformation can be written as

V ′ =
V − κv

1− κ v
c2V

, (33)

where κ = σ
η = ση.

� When η = +1 (i.e. forward propagation) and the observer at O′ is situated at the right side of O during
the course of phenomenon,

1. for σ = +1, we have V ′ = V−v
1− vV

c2
(Figure: 7a),

2. for σ = −1, we have V ′ = V+v
1+ vV

c2
(Figure: 7b).

x

y

z

O

V
x′

y′

z′

O′

v

(a) Both the particle and S′ are forward prop-
agating. The net velocity of the particle as ob-

served from S′ is

(
V−v

1− vV
c2

)
.

x

y

z

O

V
x′

y′

z′

O′

v

(b) The particle is forward propagating but S′

is backward propagating. The net velocity of

the particle as observed from S′ is

(
V +v

1+ vV
c2

)
.

Figure 7: Relative motions of S′ with respect to S with forward propagating particle with S′ being on the
right side of S for the entire motion.

� When η = −1 (i.e. backward propagation), and the observer at O′ is situated at the left side of O
during the course of phenomenon,

1. for σ = +1, we have V ′ = −V−v
1+ vV

c2
(Figure: 8a).

2. for σ = −1, we have V ′ = −V+v
1− vV

c2
(Figure: 8b).

3.2 Properties of “equation for wave propagation”

Now, let us consider that S frame is the preferred frame of rest in which the “equation for wave propagation”
is constructed. The source is fixed with respect to this preferred rest frame and situated at the origin O of
S. The observer/detector is situated at the origin O′ of S′ frame, which moves with a constant velocity of
magnitude v, with respect to the source. We expect that the “equation for wave propagation” must have
the following two properties.

L1: It must maintain its form, or remain invariant, under Lorentz transformation so that we can actually
write “the wave is observed from both S and S′ frames”.

L2: It must showcase the velocity transformation corresponding to our explanation that “a wave propagates
with velocity ηV with respect to S” and “a wave propagates with velocity ηV ′ with respect to S′”.

In what follows, we analyze first order and second order PDEs to find that L1 and L2 are only satisfied
by the first order PDEs, not second order PDEs, obtained from the usual propagating functions through
differentiation.
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x′

y′

z′

O′

v

x

y

z

O

V

(a) The particle is backward propagating but
S′ is forward propagating. So the net velocity

of the particle as observed from S′ is

(
−V−v

1+ vV
c2

)
.

x′

y′

z′

O′

v

x

y

z

O

V

(b) Both the particle and S′ are backward
propagating. So the net velocity of the par-

ticle as observed from S′ is

(
−V +v

1− vV
c2

)
.

Figure 8: Relative motions of S′ with respect to S with backward propagating particle with S′ being on the
left side of S for the entire motion.

3.3 Analysis with 1st order PDE

The partial derivatives transform as follows.

∂

∂x
≡ γ ∂

∂x′
− σγ v

c2
∂

∂t′
(34)

∂

∂t
≡ −σγv ∂

∂x′
+ γ

∂

∂t′
(35)

The propagating function can be written as follows.

fη(x− ηV t) : η = ±1. (36)

So the propagation equation can be written as,

∂fη
∂x

= − 1

ηV

∂fη
∂t

, (37)

where η = 1 signifies forward propagation and η = −1 signifies backward propagation. The propagation
velocity is V in S frame. We can write the following correspondence.

Forward propagation equation (η = +1):
∂f+
∂x

= − 1

V

∂f+
∂t

, (38)

Backward propagation equation (η = −1):
∂f−
∂x

= +
1

V

∂f−
∂t

. (39)

The same wave as viewed in S′, using (34) and (35), can be written as,

∂fη
∂x′

= −

(
1− ησ vVc2
ηV − σv

)
∂fη
∂t′

. (40)

� When η = +1 (i.e., forward propagation or left to right moving) and the observer at O′ is situated on the
right side of O for the entire course of phenomenon,

1. for σ = +1 (observer moving away from source in increasing x direction, Figure: 9a),

∂f+
∂x′

= −

(
1− vV

c2

V − v

)
∂f+
∂t′

(41)
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2. for σ = −1 (observer moving towards source in decreasing x direction, Figure: 9b),

∂f+
∂x′

= −

(
1 + vV

c2

V + v

)
∂f+
∂t′

(42)

x

y

z

O

V
x′

y′

z′

O′

v

(a) Both the wave and S′ are forward propagat-
ing. So the net velocity of the wave as observed

from S′ is

(
V−v

1− vV
c2

)
.

x

y

z

O

V
x′

y′

z′

O′

v

(b) The wave is forward propagating but S′ is
backward propagating. The net velocity of the

wave as observed from S′ is

(
V +v

1+ vV
c2

)
.

Figure 9: Relative motions of S′ with respect to S with forward propagating wave with S′ being on the right
side of S for the entire motion

.

� When η = −1 (i..e, backward propgation or right to left motion) and the observer at O′ is situated in
the lef hand side of O during the course of phenomenon,

1. for σ = +1 (observer moving towards the source in the increasing x direction, Figure: 10a),

∂f−
∂x′

= −

(
1 + vV

c2

−V − v

)
∂f−
∂t′

(43)

2. for σ = −1 (observer moving away from the source in the decreasing x direction, Figure: 10b),

∂f−
∂x′

= −

(
1− vV

c2

−V + v

)
∂f−
∂t′

(44)

It can be seen that when we substitute V = c in the above cases we get back equations for wave
traveling with velocity c. Further, from the above simple analyses it becomes evident that L1 and L2 are
mathematically in tandem with the first order PDEs. So, the above first order PDEs, which we have called
propagation equations, can now be termed as “equations for wave propagation”.

3.4 Analysis with 2nd order PDE

The question remains whether similar analyses can be done with second order PDEs. To begin with, from
(37), the following second order PDE can be written.

∂2fη
∂x2

− 1

V 2

∂2fη
∂t2

= 0. (45)

Using (34) and (35),

1− v2

V 2

1− v2

c2

∂2fη
∂x′2

−
2σv( 1

c2 −
1
V 2 )

1− v2

c2

∂2fη
∂x′∂t′

+
γ2

c2

(
v2

c2
− c2

V 2

)
∂2fη
∂t′2

= 0 (46)

13



x′

y′

z′

O′

v

x

y

z

O

V

(a) The wave is backward propagating but S′

is forward propagating. So the net velocity of

the wave as observed from S′ is

(
−V−v

1+ vV
c2

)
.

x′

y′

z′

O′

v

x

y

z

O

V

(b) Both the wave and S′ are backward prop-
agating. So the net velocity of the wave as

observed from S′ is

(
−V +v

1− vV
c2

)
.

Figure 10: Relative motions of S′ with respect to S with particle with backward propagating wave with S′

being on the left side of S for the entire motion.

The above equation can not be “equation for wave propagation” because of its failure to satisfy L1 and
L2. It is certainly true on mathematical ground that in S frame, the forward and backward propagating
functions and their linear superposition satisfy the second order PDE. However, it fails to retain its form in
S′ frame and, therefore, incapable of providing the mathematical support to Doppler’s intuition through a
manifestation of velocity addition.

4 Conclusion and Outlook

Based on this work we may conclude that wave equations should be modeled with first order partial dif-
ferential equations so that Doppler’s effect can be explained in terms of equations. Considering this work
as the first step of a new line of investigation concerning velocity transformation and the structure of wave
equation, we have restricted our work to one spatial dimension and considered the source to be fixed with the
medium wherever applicable. Certainly we plan to investigate the scenarios where the medium, the source
and the detector all are in motion and also generalize such investigations for three spatial dimensions.

Further, in view of the present work, we claim that the Doppler-Petzval debate, which has remained
ignored and unresolved for nearly two centuries, is now settled. However, such a settlement is not complete as
it comes with an association of some unsettling questions regarding some of the standard accepted structures
of theoretical physics which, however, may potentially open up new pastures of investigations concerning
the foundations of physics. Our work is of utmost significance in at least three different scenarios: (i) light
propagation in a material medium where various types of Doppler effect and Vavilov-Cherenkov effect have
become relevant topics of research with immediate practical applications (ii) light propagation in cosmic
observations where the concept of ether or a preferred rest frame are reemerging from various point of
views [66–71] (iii) de Broglie’s phase waves [63, 64] and compliance with the corresponding equations of
quantum mechanics e.g. Schroedinger equations [65]. The first two can force us to rethink about the
structure of the Maxwell equations and the last one can potentially affect the foundations of quantum
mechanics as the Schroedinger equations [65], which are the representatives of de Broglie’s phase waves
according to current understanding, come under scrutiny in the process. Indeed the present analysis can
provide the motivation to rethink about modeling de Broglie phase waves as far as the correspondence of
the wave function with physical reality is concerned [72,73]. We hope to report further developments along
such lines of investigation in the near future.
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A The principle of relativity, the principle of completeness and
frame dependence of wave velocity

The necessity of providing an explanation of the frame dependence of the velocity of a wave in terms of
equations can be motivated from two principles of physics, namely, the Principle of Relativity (PR) [61] and
the Principle of Completeness (PC) [62]. We state and explain their respective significance in the present
context as follows.

• PC: Every element of physical reality must have a counter part in the theory, where physical reality
takes the form of experiment and measurement realized through human sense experience.

• PR: The laws by which the states of physical systems undergo change are not affected, whether these
changes of state be referred to the one or the other of two systems of coordinates in uniform translatory
motion.

PC is the statement of Einstein-Podolsky-Rosen [62], otherwise discussed only in the context of quantum
mechanics and PR is just Galileo’s principle which was considered as the first postulate by Einstein in
ref. [61]. While PR is known and widely discussed, PC has remained out of focus but holds the potential
to radicalize our thinking e.g. ref. [56, 58]. Now, let us quote a few original paragraphs to explain the
significance of PC and PR as far as wave equation is concerned.

Russell, the discoverer of solitary waves or solitons in modern terminology, can be quoted from p1 of
ref. [54] as follows, which concerns his experience of seeing a hydrodynamic phenomenon: “... rolled forward
with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap
of water, which continued its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an
hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height.”

To proceed with our arguments, let us agree on the fact that, what Russell observed is a change of
state of a physical system, namely, the water in the canal. This change of state is what we may call a
hydrodynamic wave phenomenon. Of course, there are many types of them and Russell’s was one particular
type. According to PR, if we consider an equation to represent such a wave, which we may call the wave
equation, then the wave equation should remain unaffected under the coordinate transformation that relates
any two inertial frames which are in uniform translatory motion with respect to each other. This is because
the wave can be observed from both these frames. In Russell’s case, one frame is the rest frame of the bank
of the channel where he stood at first and the other frame is the horseback on which he rode so as to follow
the wave. PC demands that Russell’s observation of wave velocity and its dependence on how fast he rode
on the horseback must reflect in the wave equation as well. Combining these two point of views we may
demand that observation of a wave from two different inertial frames, with velocities corresponding to the
respective frames, must be reflected in the wave equation in a way such that

• the wave velocity manifests the frame dependence to take into account the physical reality of observing
different wave velocities from different inertial frames,

• the wave equation remains invariant under the coordinate transformation that connects these two
inertial frames so as to manifest the observation of the wave from both frames.

In a nutshell, we aim to extract the computational content of the verbal statements of physics which we
primarily construct to express our experience. That is, such a line of inquiry is actually concerned with the
refinement of the language of physics in relation to what we conceive of as physical or real, through our
experience and experimental observations. The significance of our demand and the potential consequences
of such a line of inquiry can be understood further by consulting refs. [56–60].
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