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Flatness of networks of two synaptically coupled excitatory-inhibitory
neural modules with maximal symmetry*

Florentina Nicolau1 and Hugues Mounier2

Abstract— We consider networks of two synaptically coupled
excitatory-inhibitory neural modules with maximal symmetry
of the connection strengths, and for which the nonlinearities are
described by a logistic sigmoidal function. It has been shown
that the connection strengths may slowly vary with respect to
time and that they can actually be considered as inputs of
the network. In the recent publication [13], we considered the
case of two synaptically coupled subnetworks and studied the
problem of determining which connection strengths should be
modified (in other words, which connection strengths should be
considered as inputs), in order to achieve flatness for the re-
sulting control system when no relation between the connection
strengths (in particular, no symmetry) is assumed. In this paper,
we consider a similar problem but under the assumption that
all interactions (interactions between subnetworks and local
interactions within the same subnetwork) are always symmetric.

I. INTRODUCTION
In this paper, we consider population-based networks

of N synaptically coupled excitatory-inhibitory neural mod-
ules or subnetworks (simply, EI networks) of the following
form [18], [19] (see also [1], [4]):
τeẋ

n
e=−xne + Fe

(∑N
m=1(wee(n,m)xme − wei(n,m)xmi )

)
τiẋ

n
i =−xni + Fi

(∑N
m=1(wie(n,m)xme − wii(n,m)xmi )

)
,

(1)
with xne , x

n
i ∈ R, and 1 ≤ n ≤ N . Each subnetwork

is labeled by the discrete index n and contains a pair
of mutually coupled local populations of excitatory and
inhibitory neurons. The equations describing the dynamics of
each subnetwork are usually called Wilson-Cowan equations
for cortical dynamics. The states of the system xne and xni are,
resp., the proportion of excitatory and inhibitory cells of the
n-th subnetwork which become active per unit time. We will
always use lower indices a ∈ {e, i} and b ∈ {e, i} to refer
to the excitatory or inhibitory character of the considered
objects, and integers 1 ≤ n ≤ N and 1 ≤ m ≤ N as upper
indicies to label the subnetworks. The gain functions Fe

and Fi are nonlinear, typically sigmoidal functions, τe and τi
are time constants, and wab(n,m), where a, b ∈ {e, i} and
1 ≤ n,m ≤ N , denote the strengths of connections between
xna and xmb (wab(n,m) enters into the dynamics of xna and
characterizes the action of xmb on xna ). It has been shown,
see for instance [3] and the references therein, that (some of)
the connection strengths wab(n,m) may slowly vary with
respect to time and can actually be considered as inputs of
dynamical system (1). Therefore, activity-dependent synaptic
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plasticity is believed to play a crucial role in the development
of neural circuits and it is thus possible to control a net-
work of synaptically coupled excitatory-inhibitory modules
through the connections strengths. An important question is
which connection strengths should be modified (equivalently,
which connection strengths should be considered as inputs
of the network), in order to achieve a desired property for
the resulting control system.

A property that is very useful in applications (e.g., for
trajectory tracking, constructive controllability or trajectory
generation) is that of flatness (see [5], [6]). In the recent
paper [13], we considered for the case of N = 2 synaptically
coupled subnetworks, the question of which connection
strengths among wab(n,m), for a, b ∈ {e, i}, 1 ≤ n,m ≤ 2,
should be modeled as control variables in order to obtain
flatness for the resulting control system when no relation
between the connection strengths (in particular, no symme-
try) is assumed. In this paper, we study a similar problem
but under the assumption that all involved interactions (that
is, interactions between subnetworks and local interactions
within the same subnetwork) are symmetric. This translates
into relations between the connection strengths of the type
wab(n,m) = wba(m,n), for all a, b ∈ {e, i} and 1 ≤ n,m ≤
N . A network of synaptically coupled excitatory-inhibitory
neural modules for which all those relations hold will be
called with maximal symmetry. Contrary to the case when
no relation between the connection strengths is assumed (for
which the control network becomes, after the application of
an invertible static feedback transformation, a control-affine
system), in general, control networks with maximal symme-
try are nonlinear with respect to the control (and cannot be
rendered control-affine via static feedback transformations)
which considerably complicates flatness analysis. In general,
flatness imposes particular configurations of the interactions
between the subnetworks or even for the local interactions
within a subnetwork and our goal is to identify network
configurations that are flat for one of the simplest possible
networks with maximal symmetry (i.e., for which N = 2).

We will study the following question: for flatness, are there
interactions between the subnetworks or local interactions
within the same network that are not allowed (translating
into zero w’s) or, on the contrary, that necessarily have to
take place (translating into nonzero w’s)? In the first case, we
will talk about structural conditions, while in the second case
we will call them regularity conditions. Of course, flatness
of a control network depends on the number of inputs.
Similarly to [13], we will show that if enough connection
strengths can be considered as inputs (at least 2 for a network



of 2 synaptically coupled subnetworks) and if we have
enough freedom in choosing which connection strengths are
modeled as inputs, then the control network can be rendered
flat without any restriction on the interactions between the
two subnetworks (so without structural conditions). Contrary
to [13], there are cases when the network is never flat or for
which we are not able to characterize flatness in general (in
those cases, we can however state that the control network
does not admit any flat output depending on the state and the
control variables only, so if the control network is flat, then
its flat output necessarily involves derivatives of the control).

The problem of deciding which connection strengths have
to be considered as inputs in order to achieve flatness for the
control network is related to that of constructing flat inputs
for a dynamical system [7], [14], [17], but several major
differences can be listed and we send the reader to [13] for
discussion and comparison.

II. DEFINITIONS AND PROBLEM STATEMENT
A. Flatness and linearization Consider the nonlinear
control system Ξ : ẋ = f(x, u), where x ∈ X ⊂ Rs,
u = (u1, . . . , uc) ∈ Rc. The dynamics f are C∞-smooth
and rk ∂f

∂u = c. Fix an integer l ≥ −1 and denote ūl =
(u, u̇, . . . , u(l)). For l = −1, the sequence ū−1 is empty.

Definition 1: The system Ξ : ẋ = f(x, u) is flat at
(x0, ū

l
0) ∈ X × Rc(l+1), for l ≥ −1, if there exist a

neighborhood Ol of (x0, ūl0) and c smooth functions φi =
φi(x, u, u̇, . . . , u

(l)), 1 ≤ i ≤ c, defined in Ol, having
the following property: there exist an integer r and smooth
functions γi, 1 ≤ i ≤ s, and δj , 1 ≤ j ≤ c, such that
xi = γi(φ, φ̇, . . . , φ

(r−1)) and uj = δj(φ, φ̇, . . . , φ
(r))

for any Cl+r-control u(t) and corresponding trajectory x(t)
that satisfy (x(t), u(t), . . . , u(l)(t)) ∈ Ol, where φ =
(φ1, . . . , φc) and is called a flat output.

If a flat system admits a flat output whose components
are functions of x only (resp., of (x, u) only), i.e., we have
φi = φi(x) (resp., φi = φi(x, u)) for all 1 ≤ i ≤ c,
then the system is called x-flat (resp., (x, u)-flat). Flatness
is closely related to the notion of feedback linearization. It
is well known that systems linearizable via invertible static
feedback are flat. The control system Ξ is locally linearizable
by static feedback if it can be transformed via a local
diffeomorphism x̃ = ϕ(x) and a local invertible feedback
transformation u = ψ(x, ũ) to a linear controllable system
Λ : ˙̃x = Ax̃ + Bũ (two systems that can be transformed
one into each other via transformations of that form are
called static feedback equivalent systems). The problem of
static feedback linearization was solved by [10] and [9]. In
general, a flat system is not linearizable by static feedback,
with the exception of the single-input case for which flatness
is equivalent to static feedback linearization (thus to the
necessary and sufficient conditions of [10]). Flat systems
can be seen as a generalization of static feedback linearizable
systems. Namely they are linearizable via dynamic, invertible
and endogenous feedback, see [5], [15] for those notions.
In our analysis, we will identify flat excitatory-inhibitory
networks that are either static feedback linearizable or be-
come static feedback linearizable after the application of a

one- or two-dimensional dynamic precompensator (actually
after prolonging one or two suitably chosen controls, which
is the simplest dynamic feedback). Given Ξ and an integer
p ≥ 1, we construct its p-fold prolongation Ξ̃p,0,...,0 by, first
applying an invertible feedback u = ψ(x, ũ) to get Ξ̃ : ẋ =
f̃(x, ũ), where f̃ = f(x, ψ(x, ũ)), and then prolonging the
first (feedback modified) control as ũ(p)1 = v1 (which justifies
the notation Ξ̃p,0,...,0) and keeping the remaining controls
ũℓ = vℓ, 2 ≤ ℓ ≤ c, unchanged, to obtain

Ξ̃p,0,...,0

{
ẋ = f̃(x, y1, v2, . . . , vc)
ẏj = yj+1, 1 ≤ j ≤ p− 1,
ẏp = v1,

where y1 = ũ1. If there exists an invertible feedback trans-
formation u = ψ(x, ũ) leading to a locally static feedback
linearizable p-fold prolongation Ξ̃p,0,...,0, then the system Ξ
is called dynamically linearizable via an invertible p-fold
prolongation. In a similar way, we can define the (p1, p2)-
fold prolongation Ξ̃p1,p2,0,...,0 obtained by prolonging the
feedback modified controls ũ1 and ũ2 as ũ(p1)

1 = v1 and
ũ
(p2)
2 = v2, resp., as well as dynamically linearizability via

an invertible (p1, p2)-fold prolongation.

B. Problem statement Consider a network of two synap-
tically coupled excitatory-inhibitory neural modules or sub-
networks of form (1). Following [18], [19], we adopt the
convention that xne = 0, xni = 0, 1 ≤ n ≤ 2, is the
resting state, and is assumed to reflect low-level background
activity and therefore, small negative values of xne and xni are
allowed, they have physiological significance and represent
depression or inhibition of resting activity. For simplicity,
from now on, we suppose that all time constants are equal to
one, i.e., τe = τi = 1, and that the gain functions Fe and Fi

are equal to the shifted logistic sigmoidal function (which
is a classical assumption when mathematically modeling
excitatory and inhibitory activity in localized populations of
neurons [18], [19]):

F (ξ)=Fe(ξ)=Fi(ξ)=S (ξ)−S (0),with S (ξ)=
1

1 + e−ξ
,

(2)
where ξ ∈ R, that is, we work with systems of the form

ẋ1e =−x1e + F (wee(1, 1)x
1
e + wee(1, 2)x

2
e

−wei(1, 1)x
1
i − wei(1, 2)x

2
i )

ẋ1i =−x1i + F (wie(1, 1)x
1
e + wie(1, 2)x

2
e

−wii(1, 1)x
1
i − wii(1, 2)x

2
i )

ẋ2e =−x2e + F (wee(2, 1)x
1
e + wee(2, 2)x

2
e

−wei(2, 1)x
1
i − wei(2, 2)x

2
i )

ẋ2i =−x2i + F (wie(2, 1)x
1
e + wie(2, 2)x

2
e

−wii(2, 1)x
1
i − wii(2, 2)x

2
i ),

(3)

with F given by (2). Denote by f = (f1e (x,w), f
1
i (x,w),

f2e (x,w), f
2
i (x,w)) the right-hand side of (3), i.e., we have

ẋ = f(x,w), (4)

where x = (x1e, x
1
i , x

2
e, x

2
i ) ∈ R4 is the state, and w =

(wee(1, 1), . . . , wii(2, 2)) denotes the connection strengths.
The problem that we are studying in this paper can be
formalized as follows:

Problem. Consider the EI network given by (3). For a
given integer 1 ≤ c ≤ 4, define c controls un,mab among



wab(n,m), for a, b ∈ {e, i} and 1 ≤ n,m ≤ 2, leading to
a control system ẋ = f(x, u), with rk ∂f

∂u = c, for which
the connection strengths not defined as inputs are assumed
constant, and study how the subnetworks have to interact
–equivalently, which are the conditions that the (constant)
configuration strengths have to verify– such that the obtained
control system ẋ = f(x, u) is flat.

C. Assumptions From now on, we assume the following:
(A1) All interactions are perfectly symmetric, that is:

wab(n,m) = wba(m,n), ∀a, b ∈ {e, i} and 1 ≤ n,m ≤ 2,
(5)

meaning that two subnetworks act on each other exactly in
the same way and, moreover, that the local interactions be-
tween the excitatory and the inhibitory populations within the
same network are also identical. In particular, if wab(n,m) =
0 (meaning that xmb does not directly impact the dynamics
of xna ), then we necessarily have wba(m,n) = 0, and xna
does not act on xmb either. A network for which (5) holds
will be called with maximal symmetry.

(A2) Any connection strength wab(n,m), for a, b ∈
{e, i} and 1 ≤ n,m ≤ 2, may be modeled as an input
for the control EI network and the corresponding input will
be denoted by un,mab , and since wab(n,m) = wba(m,n),
the input un,mab acts directly on xna and xmb (it is explicitly
involved into the expressions of ẋna and ẋmb ).

(A3) The connection strengths that are not modeled as
controls will always be supposed constant (zero or nonzero).

(A4) We work locally, around a nominal point
(x0, u0) = (x0, w0), where u0 corresponds to nominal
values of the connection strengths modeled as inputs, and
we always assume that control variables act independently
on the system, that is, if c is the number of connection
strengths modeled as inputs, then for the obtained control
system ẋ = f(x, u), we should have rk ∂f

∂u (x, u) = c, for all
(x, u) in a neighborhood of (x0, u0), implying, in particular
that x0 ̸= 0, see (2)-(4). Define the set of singularities

S = {(x, u) ∈ R4 × Rc : rk
∂f

∂u
(x, u) < c}. (6)

The control network will always be considered around regu-
lar points (x0, u0) ∈ R4 × Rc \ S. Moreover we suppose
that the number c of connection strengths that can be
modeled as inputs is strictly less than 4 (if c = 4, which
is the state dimension, the fact that the control variables act
independently on the system implies that flatness is trivial).

The constructed control system will always be nonlinear
with respect to the control (because of the nonlinear sig-
moidal function F ), but in the particular case when all inputs
correspond to connection strengths of the type waa(n, n),
it can be transformed via a local invertible static feedback
transformation into a control-affine one (this was always the
case for the control networks studied in [13]).

Flatness will often imply certain relations or conditions
involving the connection strengths (that are not modeled as
inputs). Conditions of the type wab(n,m) ̸= 0 (or more
generally, nonzero-type conditions) will be called regularity
conditions, they do not restrict the interactions between
different subnetworks or between excitatory and inhibitory

populations. On the other hand, conditions of the type
wab(n,m) = 0 (or more generally, zero-type conditions) will
be called structural conditions because they impose certain
constraints on the interactions (and the EI network is flat only
for certain configurations of the interactions between sub-
networks or between excitatory and inhibitory populations).
By interaction configuration between two subnetworks, we
will mean all possible values of the associated connection
strengths wab(n,m), a, b ∈ {e, i}, 1 ≤ n,m ≤ 2 (respecting
the maximal symmetry assumption). We say that there is no
interaction if all wab(n,m) are zero.

III. MAIN RESULTS
In this section we give our main results: we study flatness

of networks consisting of two synaptically coupled EI neural
subnetworks of form (3) with maximal symmetry, implying
that we have 9 candidates for the inputs. If all controls are
chosen among connection strengths of the type waa(n, n),
i.e., for fixed a ∈ {e, i} and 1 ≤ n ≤ 2, the corresponding
input is involved in the expression of ẋna only, and does
not appear in the dynamics of any xmb , for (b,m) ̸= (a, n),
then the resulting control system falls into the class of
control networks studied in [13], for which we identified and
characterized all possible flat configurations. In particular,
we showed that the control EI network can always be
rendered flat without constraints on the interactions between
subnetworks or on the local interactions within the same
network, except for the case when only one connection
strength is modeled as an input (for which we necessarily
need structural conditions). Therefore, from now on, we
make the following assumption:

(A5) We suppose that at least one input is defined as
wab(n,m), with a ̸= b or n ̸= m.

Assumption (A5) means that we either act on the coupling
of the local excitatory-inhibitory populations within the n-th
subnetwork (when wab(n, n), a ̸= b, plays the role of the
input) or on the interaction between the n-th and the m-th
subnetworks, when n ̸= m.

A. Control network with three inputs Assume that we can
model three connection strengths as controls. Recall that we
work around regular points (x0, u0) ∈ R4 × R3 \ S, with S
given by (6), and that control variables act independently
on the network, i.e., rk ∂f

∂u (x0, u0) = c = 3, with f =
(f1e , f

1
i , f

2
e , f

2
i ) the right hand-side of (3). To make matters

more definite, suppose that rk
∂(f1

e ,f
1
i ,f

2
e )

∂u (x0, u0) = 3 (all
other cases can be treated similarly). The control network is:
- case 1) either of the form
ẋ1e = f1e (x, u) ẋ2e = f2e (x, u)
ẋ1i = f1i (x, u) ẋ2i = f2i (x)

, with u ∈ R3,

(7)
where f2i is a function of x only, occurring when no
connection strength associated to the inhibitory population
of the second subnetwork (i.e., no wai(n, 2) = wia(2, n),
a ∈ {e, i}, 1 ≤ n ≤ 2) is modeled as an input;
- case 2) or of the form
ẋ1e = f1e (x, u) ẋ2e = f2e (x, u)
ẋ1i = f1i (x, u) ẋ2i = f2i (x, u)

, with u ∈ R3,

(8)



where all fna depend explicitly on u; which occurs if
connection strengths associated to both subnetworks and
both excitatory and inhibitory populations (i.e., wab(n,m) =
wba(m,n) such that all cases a = e, a = i, n = 1, and n = 2
are present) are necessarily modeled as inputs).

Therefore by applying the invertible (nonlinear) feedback
transformation:
ũℓ = fna (x, u), for (a, n) ∈ {(e, 1), (i, 1), (e, 2)}, 1 ≤ ℓ ≤ 3,

the three-input network, around (x0, u0) ∈ R4 × R3 \ S,
can always be transformed, in a neighborhood of (x0, ũ0)
with ũ0 such that ũℓ,0 = fna (x0, u0), 1 ≤ ℓ ≤ 3, resp., into:

ẋ1e = ũ1 ẋ2e = ũ3
ẋ1i = ũ2 ẋ2i = f2i (x),

(9)

for case 1), or into
ẋ1e = ũ1 ẋ2e = ũ3
ẋ1i = ũ2 ẋ2i = f̃2i (x, ũ),

(10)

for case 2), with the function f̃2i of the feedback modified
system depending explicitly (and in a nonlinear way) on at
least one control (actually, such that ∂2f̃2

i

∂ũ2
ℓ

̸= 0, for at least
one 1 ≤ ℓ ≤ 3).

It can be easily shown that control network (7) is flat at x0
if and only if (

∂f2
i

∂x1
e
,
∂f2

i

∂x1
i
,
∂f2

i

∂x2
e
)(x0) ̸= (0, 0, 0), equivalently

(wie(2, 1), wii(2, 1), wie(2, 2)) ̸= (0, 0, 0), and we actually
recover [13, Proposition 2] characterizing flatness for three-
inputs EI networks when no relation between the connection
strengths is assumed. This is due to the fact that after
applying suitable feedback transformations, both network (7)
and that of [13, Proposition 2]) can be transformed into the
equivalent control-affine one (9). First of all, notice that there
are no structural conditions (i.e., there are no connections
strengths that have to be zero or to satisfy a zero-type
relation) for flatness of the above three-input EI network and
that only a regularity condition is needed (translating into a
certain connection strength that has to be nonzero, which
is the case for generic systems). The regularity condition
means that either the first subnetwork directly affects the
second one (more precisely, its inhibitory population) or
that there are interactions between the excitatory and the
inhibitory populations within the second subnetwork. Finally,
observe that when the regularity condition is satisfied, control
network (7) is actually static feedback linearizable. The
next result identifies flat network configurations of form (8)
(actually, of the feedback equivalent form (10), for which the
conditions are easier to formulate and use simpler notations).

Proposition 1: Consider the three-input control EI net-
work given by (8) around (x0, u0) ∈ R4 × R3 \ S and its
feedback equivalent network (10) around (x0, ũ0).
(i) If there exists 1 ≤ ℓ∗ ≤ 3 such that ∂f̃2

i

∂ũℓ∗
≡ 0 and

∂f̃2
i

∂xn∗
a∗

(x0, ũ0) ̸= 0, where xn
∗

a∗ is such that ẋn
∗

a∗ = ũℓ∗ ,
then system (10) is flat at (x0, ũ0), implying that control EI
network (8) is flat at (x0, u0) as well. Moreover, system (8)
is dynamically linearizable via an invertible either 1-fold or
(1,1)-fold prolongation.
(ii) If ∂f̃2

i

∂ũℓ
̸≡ 0, for all 1 ≤ ℓ ≤ 3, then system (10) is not

x-flat thus (8) is not x-flat either.

Sketch of proof: (i) Without loss of generality, suppose
that ℓ∗ = 3, i.e., ∂f̃2

i

∂ũ3
≡ 0 and ∂f̃2

i

∂x2
e
(x0, u0) ̸= 0, then it is

obvious that (x1e, x
1
i , x

2
i ) is a flat output of (10) (and therefore

of (8) as well). Moreover, it is easy to see that the control
EI network (10) is never static feedback linearizable (the
necessary and sufficient conditions of [10] are not verified),
however its (1,1)-prolongation given by:

ẋ1e = y11 ẋ2e = v3
ẋ1i = y12 ẋ2i = f̃2i (x, y

1
1 , y

1
2),

ẏ11 = v1
ẏ12 = v2,

where (x, y11 , y
1
2), with y11 = ũ1, y12 = ũ2, is the state of

the prolonged system and v = (v1, v2, v3), with vℓ = ˙̃uℓ,
ℓ = 1, 2, and v3 = ũ3, is the new control, is locally static
feedback linearizable around (x0, ũ0). Observe also that in
the case when f̃2i depends on one control only (say ũ1) only a
1-fold prolongation of ũ1 is needed to dynamically linearize
the original system. Suppose now system (10) is flat.

(ii) To show that (10) is never x-flat, one can first prove
that a system of the form ẋ = f(x, u), x ∈ R4, u ∈ R3,
is x-flat if and only if it can be transformed via a local
diffeomorphism x̃ = ϕ(x) and an invertible static feedback
transformation u = ψ(x, ũ) into ˙̃xℓ = ũℓ, for 1 ≤ ℓ ≤ 3,
and ˙̃x4 = f4(x̃, ũ1, ũ2). This form actually falls into the
class of nonlinear control systems of codimension 1 (with
one input less than the number of states) considered in [12],
where a geometric characterization of that class is provided.
It is now enough to show that control network (10) with f̃2i
depending on all three inputs does not verify the necessary
and sufficient condition of [12]. □

If the function f̃2i of the feedback modified system (10)
depends on at most two controls among uℓ, 1 ≤ ℓ ≤
3, (equivalently, if each function fna of (8) involves at
most two controls1 un,mab ), then control EI network (10)
(equivalently, (8)) is flat without structural conditions, only
one regularity condition is needed. Contrary to the case of
control network (7) (and, of all results of [13] as well),
notice that the nonlinear feedback transformations introduce
singularities for flatness involving the state and the control
(at points (x, u) such that ∂f̃2

i

∂xn∗
a∗

(x, u) = 0). Notice that
Proposition 1(i) gives only sufficient conditions for flatness
of a network of form (10) and does not describe all possible
flat configurations. If f̃2i explicitly depends on all controls
(see Proposition 1(ii)), then the picture is even more com-
plicated that that of Proposition 1(i). Indeed, even in the
case of control systems nonlinear with respect to the control
with four states and three controls, the (general) problem
of flatness is still open. We can however show that the
system is never x-flat. The only possibility for f̃2i to involve
all three controls is that the inputs are necessarily defined
as wei(1, 2), wei(2, 2) and wii(1, 2). So in that case, if
the control network is flat, then its flat outputs necessarily

1Under the assumption that rk ∂(f1
e ,f1

i ,f2
e )

∂u
= 3, all functions fn

a of (8)
depend on at most two controls if at least one input is not of the form
wai(n, 2) = wia(2, n), with a ∈ {e, i}, 1 ≤ n ≤ 2.



depend on u or its time-derivatives and in general, flatness
would imply additional structural conditions.

Conclusion (three inputs): For both cases 1) and 2)
leading, resp., to (7) and (8), if we have enough freedom in
choosing which connection strengths are modeled as inputs,
then we can always identify EI network configurations that
are flat (actually x-flat) without structural conditions (i.e.,
there are no connections that have to be zero or to satisfy a
zero-type relation) and for flatness of the proposed control
EI network only a regularity condition is needed.

B. Control network with two inputs Assume that two
connection strengths are modeled as controls leading to a
control network ẋ = f(x, u), considered around a nominal
point (x0, u0) such that rk ∂f

∂u (x0, u0) = 2, that is, (x0, u0) ∈
R4×R2 \S, with S given by (6). According to Assumption
(A5), at least one input is defined as wab(n,m), with a ̸= b

or n ̸= m, and let us suppose that rk ∂(f1
e ,f

1
i )

∂u (x0, u0) = 2
(all remaining cases are similar and we do not treat them
here). The control network is:
- case 1) either of the form

ẋ1e = f1e (x, u) ẋ2e = f2e (x)
ẋ1i = f1i (x, u) ẋ2i = f2i (x)

, with u ∈ R2,

(11)
where f2e and f2i are functions of x only, occurring when
only connection strengths among wab(1, 1) = wba(1, 1), a ∈
{e, i} are modeled as inputs;
- case 2) or of the form
ẋ1e = f1e (x, u) ẋ2e = f2e (x, u)
ẋ1i = f1i (x, u) ẋ2i = f2i (x)

, with u ∈ R2,

(12)
where f2i is a function of the state only, occurring when
no connection strength among wai(n, 2) = wia(2, n), a ∈
{e, i}, 1 ≤ n ≤ 2, is modeled as an input;
- case 3) or of the form
ẋ1e = f1e (x, u) ẋ2e = f2e (x, u)
ẋ1i = f1i (x, u) ẋ2i = f2i (x, u)

, with u ∈ R2,

(13)
where all fna depend explicitly on u; this occurs if connection
strengths associated to both subnetworks and both excitatory
and inhibitory populations (i.e., wab(n,m) = wba(m,n)
such that all cases a = e, a = i, n = 1, and n = 2 are
present) are necessarily modeled as inputs.

By applying the invertible (nonlinear) feedback transfor-
mation (recall that rk ∂(f1

e ,f
1
i )

∂u (x0, u0) = 2):
ũℓ = f1a (x, u), for a = e, i, and 1 ≤ ℓ ≤ 2,

the control network, around (x0, u0) ∈ R4 × R2 \ S, can
always be transformed, in a neighborhood of (x0, ũ0) with ũ0
such that ũℓ,0 = f1a (x0, u0), a = e, i, and 1 ≤ ℓ ≤ 2, can
always be transformed either into:

ẋ1e = ũ1 ẋ2e = f2e (x)
ẋ1i = ũ2 ẋ2i = f2i (x),

(14)

for case 1), or into:
ẋ1e = ũ1 ẋ2e = f̃2e (x, ũ)

ẋ1i = ũ2 ẋ2i = f̃2i (x),
(15)

for case 2), with the function f̃2e of the feedback modified
system depending explicitly, in a nonlinear way, on at least
one control (actually, such that ∂2f̃2

e

∂ũ2
ℓ

̸≡ 0, for at least one

1 ≤ ℓ ≤ 2) and f̃2i depending on x only and remaining
unchanged with respect to (12), i.e., f̃2i (x) = f2i (x), or into:

ẋ1e = ũ1 ẋ2e = f̃2e (x, ũ)

ẋ1i = ũ2 ẋ2i = f̃2i (x, ũ),
(16)

for case 3), with each function f̃2e and f̃2i of the feedback
modified system depending explicitly on one (and only one)
control among ũ1 and ũ2. More precisely, form (16) is such
that for 1 ≤ ℓ′, ℓ′′ ≤ 2 with ℓ′ ̸= ℓ′′, we have f̃2e (x, ũ) =

f̃2e (x, ũℓ′) with ∂2f̃2
e

∂ũ2
ℓ′

̸≡ 0 (but ∂f̃2
e

∂ũℓ′′
≡ 0), and f̃2i (x, ũ) =

f̃2i (x, ũℓ′′) with ∂2f̃2
i

∂ũ2
ℓ′′

̸≡ 0 (but ∂f̃2
i

∂ũℓ′
≡ 0).

Similarly to Section III-A case 1), here as well flatness
in case 1) reduces to static feedback linearizability and
we actually recover [13, Proposition 3]. Thus all remarks
made in the aforementioned paper apply or can be adapted
for (11), in particular we can render the EI network flat
without structural conditions. Let us now turn to case 2).
Like for Section III-A case 2), we will identify flat network
configurations of form (12) when at least one input is not of
the form wae(n, 2) = wea(2, n), with a ∈ {e, i}, 1 ≤ n ≤ 2,
leading to the feedback equivalent form (15) with the func-
tion f̃2e depending on one control only (say ũ1). Therefore,
consider (15) and suppose that ∂f̃2

e

∂ũ1
̸≡ 0 (implying actually

that ∂2f̃2
e

∂ũ2
1

̸≡ 0) and ∂f̃2
e

∂ũ2
≡ 0. We will distinguish three

mutually exclusive subcases: (A) ∂f̃2
e

∂x1
i
̸≡ 0 but ∂f̃2

i

∂x1
i
≡ 0, (B)

∂f̃2
e

∂x1
i
≡ 0 but ∂f̃2

i

∂x1
i
̸≡ 0, and (C) ∂f̃2

e

∂x1
i
̸≡ 0 and ∂f̃2

i

∂x1
i
̸≡ 0. Notice

that both cases (A) and (B) necessarily impose structural
conditions on the interactions between subnetworks.

Proposition 2: Consider the two-input control EI net-
work given by (12) around (x0, u0) ∈ R4 × R2 \ S, and its
feedback equivalent network (15) around (x0, ũ0). Suppose
that f̃2e depends on one and only one control, say ũ1 (i.e.,
∂f̃2

e

∂ũ1
̸≡ 0 and ∂f̃2

e

∂ũ2
≡ 0). The following statements hold:

(i) If f̃2e and f̃2i are in case (A), with ∂f̃2
e

∂x1
i
(x0, ũ0) ̸= 0,

and if additionally (
∂f̃2

i

∂x1
e
,
∂f̃2

i

∂x2
e
)(x0) ̸= (0, 0), then system (15)

is flat at (x0, ũ0) with either φ = (x2e, x
2
i ) or φ = (x1e, x

2
i )

a flat output, implying that control EI network (12) is flat
at (x0, u0) as well. Moreover, system (12) is dynamically
linearizable via an invertible 1-fold prolongation.
(ii) If f̃2e and f̃2i are in case (B), with ∂f̃2

i

∂x1
i
(x0, ũ0) ̸= 0,

and if additionally ∂f̃2
e

∂x2
i
(x0, ũ0) ̸= 0, then system (15) is flat

at (x0, ũ0) with φ = (x1e, x
2
e) a flat output implying that

control EI network (12) is flat at (x0, u0) as well. Moreover,
system (12) is dynamically linearizable via an invertible 2-
fold prolongation.
(iii) If f̃2e and f̃2i are in case (C), then (15) is neither
x-flat nor (x, u)-flat and thus system (12) is not either.

Sketch of proof: The structural conditions (A) and (B)
translate into triangular forms which together with the reg-
ularity conditions of (i) and (ii), immediately guarantee that
the control network is flat and that it admits the flat outputs
given by conditions of (i) and (ii). Moreover, it is clear



that it becomes static feedback linearizable via at most 2-
fold prolongation of ũ1. If the functions f̃2e and f̃2i are in
case (C), then one can show that the system is neither x-
flat nor (x, u)-flat by applying, for instance, the results of
[8], [11] according to which a two-input (x, u)-flat systems
can be statically linearized after an at most dim(x)-fold
prolongation of a suitably chosen input. □

Notice that for all flat configurations of items (i) and (ii)
of the above proposition, we need a structural condition
(either condition (A) or condition (B)). If the control EI
network satisfies (C) and if it is possible for the system
to be flat (so with flat outputs necessarily depending on
the derivatives of u), then even if (C) does not contain
any structural conditions, flatness will necessarily imply that
some interactions are restricted. Let us now consider the case
when the connection strengths that are modeled as inputs lead
to the control network (13).

Proposition 3: The two-input control EI network given
by (13), or equivalently the feedback modified system (16),
is not flat.

Sketch of proof: One can use the ruled-manifold criterion
[5], [16] for the feedback modified system, for which f̃2e and
f̃2i are such that their second derivatives with respect to ũ
are nonzero. □

Conclusion (two inputs): If only two connection
strengths can be modeled as inputs, the only flat network
configuration that we are able to identify without constrain-
ing the interactions between the subnetworks (i.e., without
structural conditions) are those for which the control network
is of form (11) and can be transformed into a control-
affine system by feedback transformations. If the connection
strengths modeled as inputs yield a network of form (12), flat
configurations can be identified, they are in a triangular form,
and they involve a structural condition. We do not however
completely describe flatness of networks of form (12) (i.e.,
there may be flat control networks of form (12), for which
neither condition (i) nor condition (ii) of Proposition 2 is
satisfied, but if such a flat network exists, then flatness will
require structural conditions). If the connection strengths
modeled as inputs are such that the network is of form (13),
then the control network is never flat.
C. Control network with one input We consider next the
case when among all connection strengths, only one can
be modeled as an input. According to (A5), the input is
defined as wab(n,m), with a ̸= b or n ̸= m. Consider
the network around a point (x0, u0) ∈ R4 × R \ S, i.e.,
for which rk ∂f

∂u (x0, u0) = 1. Suppose that u = u1,1ei =
wei(1, 1) = wie(1, 1) (all remaining cases are similar and
we do not treat them here), implying in particular that x0 is
such that (x1e,0, x

1
i,0) ̸= (0, 0) and assume additionally that

x1e,0 ̸= 0. The control network is of the form:
ẋ1e = f1e (x, u) ẋ2e = f2e (x)
ẋ1i = f1i (x, u) ẋ2i = f2i (x),

(17)

and by applying the invertible (nonlinear) feedback transfor-
mation ũ1 = f1e (x, u), it can be transformed into:

ẋ1e = ũ1 ẋ2e = f2e (x)

ẋ1i = f̃1i (x, ũ1) ẋ2i = f2i (x),
(18)

with f̃1i depending explicitly on ũ1 and such that ∂2f̃1
i

∂ũ2
1
̸= 0.

Proposition 4: The single-input control EI network given
by (17), or equivalently the feedback modified system (18),
is not flat.

Sketch of proof: By [2], the single-input control network
is flat if and only if it is static feedback linearizable, that
is, satisfies the necessary and sufficient conditions of [10].
Consider the feedback modified system (18). Since ∂2f̃1

i

∂ũ2
1

̸=
0, it can be easily shown that the structural condition (the
involutivity of some distributions) of [10] is not verified,
implying that (18) is not static feedback linearizable thus
not flat, and consequently (17) is not flat either. □

Conclusion (N = 2, one input): If the input is defined
following Assumption (A5), then the single-input control
network is never flat. If we drop Assumption (A5), and we
define the control by u = un,naa = waa(n, n), with a = e
or a = i, then we recover the results of [13] according to
which it is possible to render the control network flat but in
order to do so, we always need structural conditions for the
interactions between the subnetworks and even for the local
interactions within the same subnetwork.
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approach equivalence and flatness of nonlinear systems. IEEE Trans.
Automat. Control, 44(5):922–937, 1999.

[7] K. Fritzsche, Y. Guo, and K. Röbenack. Nonlinear control of non-
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two-input systems by prolongations and applications to control design.
IFAC-PapersOnLine, 53(2):5479–5486, 2020.

[9] L. Hunt and R. Su. Linear equivalents of nonlinear time varying
systems. In Proc. MTNS, Santa Monica, CA, pages 119–123, 1981.

[10] B. Jakubczyk and W. Respondek. On linearization of control systems.
Bull. Acad. Polonaise Sci. Ser. Sci. Math., pages 517–522, 1980.
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