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The conservation of spectral asymmetry is a fundamental feature of the ideal four-wave mixing 

process as it exists in a medium combining quadratic chromatic dispersion and third-order 

nonlinearity. We test in this paper the robustness of this invariant in an experimental 

configuration where the excitation conditions of an optical fiber are sequentially updated, 

mimicking infinite propagation. This theoretical and experimental study reveals the high 

sensitivity of the asymmetry to very slight deviations from the ideal case, and we show that our 

idealized system behaves as an intermediate case between the ideal case of non-cascaded four-

wave mixing and propagation in a system governed by the nonlinear Schrödinger equation.  
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1. Introduction 

 

Optical fibers, owing to their minimal losses and their extended interaction lengths, have 

emerged as a crucial tool for exploring the intricate nonlinear dynamics arising from the 

interplay of dispersion and nonlinearity.[1] A well-established model to describe light evolution 

in single-mode fiber waveguides is the nonlinear Schrödinger equation (NLSE), one of the 

seminal equations of physics that is applicable not only to fiber systems but also to ocean waves, 

plasmas and Bose-Einstein condensates to cite only a few examples.[2] Among the well-known 

stable solutions of the NLSE is the bright soliton, a coherent structure that celebrates in 2023 

its 50th anniversary in fibers, and that propagates while preserving its temporal and spectral 

intensity profiles.[3] However, a range of other known NLSE solutions also exist, including the 

well-known family of solitons on a finite background, where the interaction with a continuous 

background results in periodic temporal or spatial localization,[4] or even double localization 

such as observed for the Peregrine soliton.[5] Coherent solutions on periodically modulated 

backgrounds, such as cnoidal or dnoidal waves, are also part of this rich landscape.[6] 

 

The analysis of the NLSE in the frequency domain offers remarkable insights into the spectral 

properties of these coherent waves, and specifically the dynamics of the four-wave mixing 

process (FWM) that rules the periodic energy exchanges among evolving spectral components. 

In the context of a focusing nonlinearity, FWM leads to modulation instability [7] and the 

generation of high-repetition rate trains of ultrashort localized pulses.[8] In the simplest 

configuration, called degenerate four-wave mixing, it only involves a high-intensity pump wave 

interacting with two other wave components at frequencies symmetrically located on both sides 

of the pump. Neglecting the existence of higher-order interactions, this dynamics is ruled by a 

system of three coupled differential equations. It exhibits a recurrent behavior which is an 
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example of the celebrated Fermi-Pasta-Ulam-Tsingou recurrence.[9] Although some analytical 

solutions exist,[10, 11] it is also convenient to interpret the wave interactions in the phase plane 

through two canonical conjugate variables [12, 13] that form closed orbits, ensuring that 

trajectories never venture beyond the boundaries of their respective orbits. Such recurrent 

features have been recently been quantitatively measured in experiments using a novel setup 

involving iterated propagation over short segments of fibers where periodic filtering of higher-

order spectral sidebands allows the framework of three ideal coupled equations to be retained, 

[14] and avoids higher-order effects such as third-order dispersion,[15] distributed losses,[16] 

Raman scattering [17] or accumulation of amplified spontaneous emission. [18] Experiments have 

seen excellent agreement between theory and experiment over several tens of kilometers of 

propagation. In addition, this system has allowed data collection for training of neural networks, 

[19] and a simple but efficient framework to control the phase space trajectory has been proposed 

and validated.[20] 

 

In this contribution, we further study the energy exchange dynamics between the spectral 

components in this system. In contrast to most of the literature, however, we do not restrict 

ourselves to a signal with a perfectly symmetric initial optical spectrum, and we place a 

particular focus on how the spectral asymmetry evolves longitudinally. Whereas the asymmetry 

is a constant of the ideal degenerate FWM, we stress that when propagation is ruled by cascaded 

interactions, a completely different picture is observed. More surprisingly, in the setup 

developed in [14] where significant cascade is not possible, the evolution of the asymmetry is 

also not conserved. A theoretical perturbation analysis is developed to explain the physical 

origin of the fundamental process at the origin of this discrepancy, and this is confirmed with 

experimental measurements. 
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2. Principle and numerical simulations 

 

2.1. Governing equations, normalization and conserved quantities 

We first review the theoretical description of ideal FWM dynamics in the NLSE. In an ideal 

single mode and loss-free fiber, the evolution of a slowly-varying electric field envelope ( , )z t

is governed by the nonlinear Schrödinger equation: [1] 
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with z  being the propagation distance and t  the time in a reference frame traveling at the group 

velocity. The group-velocity dispersion is 2  and the nonlinear Kerr coefficient is  . In the 

focusing regime of propagation ( 2  negative), we can rewrite the NLSE in normalized form : 
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Here, normalized propagation and co-moving time variables   and   are linked to the 

dimensional quantities in fiber optics by / NLz L =  and 2/ NLt L = . The characteristic length 

scale NLL  is defined as ( )
1

0NLL P
−

=  with 0P  the initial power, which in our case corresponds to 

the total average power of the evolving field i.e. taking into account pump and any sideband 

components.[1] The normalized field ( , )A    is related to its dimensional equivalent ( , )z t  by 

0( , ) ( , ) /A z t P  = . 

 We discuss the fundamental wave mixing processes in the NLSE by considering the 

injection of a modulated pump wave 0A  with two sidebands at relative offset frequencies   : 
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The carrier frequency 0  is omitted and normalized offset frequency   is related to 

dimensional offset frequency fm in Hz by: 2 02 /mf P  = . In general, the injection of such 
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a modulated signal in an optical fiber leads to the generation of multiple additional sidebands, 

but the FWM interaction can be idealized and truncated to describe only pump and first 

sideband energy exchange with distance. It leads to only three coupled equations that are well-

known in the field of parametric amplification [21] :  
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It is convenient to separate the complex spectral amplitude ( )iA   into its modulus ( )ia   and 

phase ( )i   : ( )( ) ( ) exp ( )i i iA a i   = . Contrary to most studies that have previously 

investigated this problem,[1] we do not limit ourselves to the case where the initial sidebands 

have symmetric amplitude with respect to the pump. As seen in Figure 1, panel (a), it is possible 

to describe the three-line asymmetric spectrum in terms of three variables  ,   and   that are 

physically related to the fraction of the total power in the central frequency component, the 

sideband-pump frequency component phase difference, and the asymmetry between the lateral 

sidebands of the spectrum :  
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Figure 1. (a) Illustration of the parameters involved in the reduced degenerate model. (b) 

Illustration of the two possible processes of energy exchange between the three components 

within the frame of Equation (4). 

 

 

In order to gain further insight into the nonlinear dynamics of this ideal system, it is essential 

to identify the invariants. First of all, given the conservation of energy in the lossless fiber, one 

may find a first invariant that is the average power, leading to: 

 2 2 2

1 1 0 1a a a−+ + = .  (6) 

Combined with Equation (5), this leads to the normalized power of the sidebands that can be 

expressed as : 
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Taking this relationship into account and given that 1 +  , the level of asymmetry that it 

will be possible to imprint for a given value of   will be bounded. 
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A second crucial invariant of the system is the asymmetry  , which arises from the Manley-

Rowe relations. Indeed, as a continuous wave (CW) or modulation at    are the only 

possibilities, the energy exchange among the waves has to be achieved through the two process 

shown in Figure 1(b). In one case, two photons from the pump generate one photon in each 

lateral sideband following the scheme ( ) ( )0 0 0 0 + →  + +  −   (Figure 1(b1)). In the 

other case (Figure 1(b2)), two photons at frequencies 0 +  and 0 −  lead to the emission 

of two new photons at 0 . Therefore, the conservation of the power difference between the two 

sidebands is in both cases ensured. 

 

A third conserved quantity is the Hamiltonian of the system. Indeed, it is possible to associate 

the problem with the one-dimensional conservative Hamiltonian [12] :  

 ( ) ( )
1/2

2 2 23
2 1 cos 1

2
H        = − − + − −

 
, (8) 

with 2 = −  being a normalized mismatch and with the canonical conjugate variables being 

 ,   as defined in Equation (5). 

 

 

2.2. The iterated segmented approach 

The experimental observation of the canonical dynamics of ideal FWM as described by 

Equation (4) remains a difficult challenge. Indeed, the growth of higher-order sidebands 

through cascaded FWM leads to the formation of an extended spectral comb structure [22]. As a 

consequence, the ideal FWM process cannot be studied in isolation. To circumvent this 

limitation, inspired by [23, 24], we have proposed an iterated segmented approach [14] as shown in 

Figure 2. Initial conditions of three spectral lines, the phase and amplitude of which have been 

conveniently tailored, are launched into a short span of optical fiber (assumed in a first 

approximation as lossless). The fiber segment is sufficiently short such that additional 
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sidebands located at 2   cannot reach a significant level. After propagation in the fiber, the 

signal is spectrally filtered to exclude low-amplitude cascaded components that might 

nevertheless have developed. In order to compensate for possible losses induced by this 

filtering, the new three-component signal is reamplified before it can be reinjected within the 

fiber as new initial conditions. 

 

 

 

 

  
 

Figure 2. Principle of the segmented approach with iterated initial conditions. 
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3. Comparison of the evolution of the asymmetry in the various configurations 

 

We now compare the non-linear dynamics that results from propagation governed by the full 

NLSE, the ideal FWM scheme and the iterated segmented approach described above. We 

devote special attention to the asymmetry parameter  . In order to illustrate the propagation, 

we have selected the following parameters based on our experiments that will be discussed in 

section 4. We have considered an initial asymmetry level 0  of 0.15, and an average power 

leading to 1.2 =− . Note that for this value of  , potential cascaded sidebands will not fall 

within the modulation instability gain bandwidth of the pump and therefore will not be 

efficiently amplified.[25] The fiber length involved in the segmented approach has a normalized 

length   of 0.21. We considered two initial conditions associated with 0 0.75 = , and phase 

0  of 0 or . Plotting the dynamics in the cylindrical coordinate system ( ,  ,  ) fully captures 

the physics of this problem. 

 

 

 

3.1. Results in the ideal FWM process 

We first discuss the dynamics expected for the ideal case. Figure 3 summarizes the evolution 

of the parameters observed for the two previously mentioned initial conditions located either to 

the right or to the left side of the separatrix separating bounded and unbounded phase behavior. 

Consistent with the conservation of the asymmetry parameter, the trajectory when represented 

in cylindrical coordinates is a fully closed orbit that is contained in the plane 0 = , which is 

also confirmed by the panels (c) as well as by the panels (b) where the difference between the 

intensity of the lateral components located on either side of the pump remains identical with 

propagation.  
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Figure 3. Results for ideal FWM (Equation (4)). Results obtained for an initial phase of 0 and 

 are displayed on panels (1) and (2), respectively. (a) Trajectory plotted in the cylindrical 

coordinate system ( ,  ,  ). The plane corresponding to the initial conditions 0  is colored. 

(b) Evolution of the normalized intensity of the three spectral bands. (c) Evolution of the 

asymmetry parameter.  

 

 

3.2. Evolution in the NLSE framework 

Let us now discuss the evolution of the same parameters in the case where the dynamics are 

dictated by the NLSE and the FWM cascade gives rise to a significant number of new spectral 

components. The results obtained from the numerical integration of Equation (2) with the split-

step Fourier algorithm are summarized in Figure 4 and show striking differences from the ideal 

behavior discussed previously. First of all, it is clear that the asymmetry parameter as defined 

in the context of ideal mixing is in no way preserved. The trajectory is no longer a simple closed 

orbit, nor is it at all contained in a single plane. A much larger volume of the parameter space 

is now explored, and we can note in particular a change in the sign of the asymmetry parameter. 

This implies in particular a passage through a zero asymmetry value. 
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Figure 4. Results in the case of a propagation ruled by NLSE. Results obtained for an initial 

phase of 0 and  are displayed on panels (1) and (2), respectively. (a) Trajectory plotted in the 

cylindrical plot ( ,  ,  ). The distance of propagation is highlighted by changing the color of 

the symbols (see colormap). (b) Evolution of the normalized intensity of the five inner spectral 

bands. (c) Evolution of the asymmetry parameter (the colors refer to the distance as used in the 

colormap of (a)). 

 

 

More details on the complete longitudinal evolution of the optical spectrum can be seen in 

Figure 5. In this case, there is a macroscopic built-up of energy in the 2a  and 3a  components 

(the level of the additional sidebands being normalized with respect to the level contained in 

the three central lines). Their levels are far from being negligeable : values up to 0.33 are 

reached for 2a  after propagation over a distance of 12.76 (30 km). The evolution of the extra-
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sidebands is complex and not necessarily synchronous. Panel (b) shows the spectrum at a 

distance of 1.79 (4.2 km) for which the asymmetry   is zero. We note that even though the 

first two lateral components have identical intensity, this is not the case for the higher-order 

components. Thus, the 2a−  component is almost twice its 2a+  counterpart. Consequently, the 

asymmetry has not disappeared, it has spread to the higher-order components. In other words, 

the simple metric based on    as defined by Equation (5) is no longer appropriate and an 

extended version is in this case relevant as discussed in [26]. 

 

 

 
 

Figure 5. (a) Longitudinal evolution of the full spectrum for ( 0 =  0.75, 0 = 0, 0 = 0.15). (b) 

Details of the spectrum when  = 0 after a propagation distance  =1.79 (see dashed line in 

panel (a)). 

 

 

3.3. Evolution in the iterated segmented approach 

By comparing the ideal model and the NLSE propagation, we observe to what extent the 

asymmetry of the first sidebands could have radically different evolution. In this part, we now 

discuss the evolution in the system introduced in section 2.2 where the growth of higher-order 

sidebands is suppressed at short and regular intervals, thus blocking the appearance of 
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significant cascades. Results over a propagation distance of 12.76 corresponding to 60 segments 

of length  = 0.21 are shown in Figure 6 and reveal an intermediate trend between the ideal 

case and the NLSE dynamics. Even though the asymmetry parameter is not preserved, we see 

that its evolution presents a much less complex structure than in the NLSE case, and the 

evolution of the powers in the different bands regains a simpler structure approaching the 

periodic behavior observed in the ideal case. From Figure 6(b) and the green and violet curves 

representing the level of the first cascaded sidebands, one may think that their intensity is not 

significant at first sight when plotted on a linear scale and that no energy can build up into extra 

sidebands. However, when magnifying the low levels, one can see more clearly that those extra 

sidebands oscillate but remain typically below 2% of the total power of the central sidebands. 

In the case where we start from initial conditions where the three bands are in phase (see panel 

(d1) from Figure 6), the asymmetry parameter decreases steadily, and the evolution can be 

adjusted by an exponential trend. The asymmetry value thus tends asymptotically towards zero 

and then does not change sign. After a propagation distance of 6.60, the level of the two lateral 

sidebands becomes nearly equal (i.e. with a relative difference below 0.001).  

 

The trends are slightly different when we consider the initial value 0 = . In that case, the 

asymmetry always decreases over the long term, but the evolution is not monotonic. Stages of 

decreasing asymmetry alternate with phases of increasing asymmetry, without however 

recovering its initial level. If we adjust the slow decay, we find a decay rate that is significantly 

lower than the rate obtained for components initially in phase (a factor of 17.60 is obtained 

between the two decrease rates). Additional numerical simulations carried out over much more 

significant distances (up to 64, results not shown here) have stressed the oscillatory behavior is 

only a transient stage and that for asymptotic propagation, the asymmetry value ultimately 

decreases monotonically down to 0. 
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Figure 6. Results in the case of a propagation ruled by the NLSE. Results obtained for an initial 

phase of 0 and  are displayed on panels (1) and (2), respectively. (a) Trajectory plotted in the 

cylindrical system ( ,  ,  ). The distance of propagation is highlighted by changing the color 

of the symbols (see colormap). (b) Evolution of normalized intensity of the five inner spectral 

bands plotted on a linear scale. (c) Evolution of normalized intensity of the five inner spectral 

bands but plotted on a logarithmic scale.  (d) Evolution of the asymmetry parameter (the colors 

refer to the distance as used in the colormap of (a)). Dashed lines refer to the fit of an exponential 

decrease.  

 

 

To take our physical understanding of the destabilization of asymmetry a step further, we turn 

to a more complete model that takes into account the existence of 2a  components, even if they 
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only covey a very small amount of the total energy. Thus, the NLSE can be rewritten by 

considering, instead of a field given by Equation (3), a field containing 5 spectral components:  

 ( )
2

2

( , ) ( )expn

n

A A in   
=−

= −  . (9), 

leading to the set of coupled equations describing the evolution of the various components : [22, 

26, 27] 
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where j,l,m,n = 0, ±1, ±2 and ,l m n . Here *

, ,l m n

  denotes the permutations of the indices l, m, 

and n such that j = l+m-n. The quantity lmnd  is a degeneracy factor that is unity when l=m and 

2 when l m .  

 

In this framework, new interactions between the various components occur compared to the 

ones described in Figure 1(b). This is a key difference point compared to Equation (4), that is 

even if the energy in the extra sidebands is almost negligeable, their existence allow new paths 

of nonlinear mixing that result eventually in different dynamics. By taking into account the 

interactions (a) and (b) described in Figure 7 for the sidebands 2a−  and 2a , respectively, and 

using the previously described normalization process, one may obtain the following differential 

equations to describe the evolution of the sidebands 2a : 
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where the variables are written in a rotating frame ( )2exp 2 (1 )a a i i  = − + + which results in 

simplification of terms ( )
21

2
jj A  and 

2
2

2

2 k j

k j
k

A A

=−

 , and the appearance of the respective phase 

factor. Note that we consider an initial spectral amplitude of 2a  equal to zero. In Equation (11), 

we have not included the interactions sketched in panel (c) of Figure 7. Indeed, as the spacing 

between 2a  components and the pump is 2  , the energy transfer is inefficient (for 1.2 =− , 

the 2a  components lie above the cutoff frequency of the modulation instability gain 

bandwidth). We also neglected the interactions that do not involve the pump (interaction 

between 1a  and 2a ). 

 
 
 

 
 
 

Figure 7. Various new combinations that develop when five spectral components are taken into 

account. 
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As the propagation distance   over one iteration is short enough, the growth of the higher-

order sidebands 2a  does not impact significantly the level of the other involved parameters so 

that the later can be considered as fixed to a first approximation. Also the resulting phase 

accumulation in ( )exp 2 (1 )i  − +   and we can consider a starting point with 1 1 − =  and 

0 0 =  so phase difference can be simplified. In that context, one may approximate the 

differential operator by a finite difference. Moreover, as 2 2a a   , one may obtain a fully 

explicit equation for the level 
2

2a  reached by the sideband after propagation in the segment 

of length   : 

 ( ) ( )
2 22 20 0 0 0

2 0 0 0 0

1 5 5
2cos 1

2 2
a

   
    

− −  
 =  + − − 

 
. (12) 

From these results illustrated in Figure 8, panel (a) for an initial asymmetry of 0 0.15 = , it is 

clear that the initial point ( 0 , 0 ) will affect the strength of the growth of the additional 

sideband and that the right part of the phase portrait will be much more affected than the left 

counterpart by the growth of the additional sidebands. Comparing the results of Equation (12) 

with the predictions obtained from the numerical integration of the NLSE over one iteration 

distance (panels b), one may note the excellent qualitative agreement between the approximate 

analytical model and the results taking into account all the possible nonlinear interactions 

without any simplifying assumptions. Note that given the condition linking 0  and 0 , the 

phase plane cannot be explored for values 0 0.85  . 
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Figure 8. Growth of the spectral sidebands 
2

2a  (panels 1 and 2 , respectively) after a 

propagation distance of  =0.21 according to the starting value on the phase portrait ( 0 , 0 ) 

for an initial value of the asymmetry 0 0.15 = . Results of the perturbative analytical model 

(Equation (12)) are compared with the results obtained from the numerical integration of the 

NLSE. 

 

 

We also derived the evolution of the asymmetry from the set of coupled Equations (10). Stating 

that  
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one may obtain the following equation: 
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It is then clear that the presence of the higher-order sidebands is required to observe a non-zero 

derivative of  . As the level of the higher-order sidebands remains well below -17dB, a 

perturbative approach can once again be implemented. Plugging the approximate solution of 

Equation (12)  into (14) (here we consider for to the value of 2a  its average value 2 / 2a  over 

the segment), one obtains using normalized notations :  
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2
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1 1 3 1 cos
2
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, (15) 

The results are plotted in panel (a) of Figure 9 and show good qualitative agreement with the 

results computed using the exact numerical integration of the NLSE over one segment of fiber. 

The remaining discrepancies that exist are attributed to the perturbative approach that we 

involve both to obtain 2a  as well as   and to the fact that the interactions (c) (see Figure 7) 

are not taken into account in the derivation of Equation (11). The results highlight that both 

sides of the separatrix exhibit very different behavior. First of all, when operating on the right 

side, values of   are always negative so that one may expect a trajectory occurring on that 

side to experience a monotonic evolution as exemplified by the trajectory plotted on panel (b), 

(solid black line), leading to the monotonic evolution plotted on panel (d1) of Figure 6. This 

contrasts radically with the behavior observed when operating on the left side where the 

trajectory (see dashed black line on panel b) experiences alternatively   with positive and 

negative values, leading to the oscillatory evolution plotted in Figure 6, panel (d2). One 

explanation of these very different features lies in the fact that for the right part of the phase 

plot, the phase remains bounded so that the cosine term involved in Equation (15) is always 

positive. On the contrary, on the left side, the phase is unbounded and the cosine term therefore 

explores both positive and negative values. From Equation (15), one can also make out that an 

opposite value of asymmetry 0  will lead to opposite values of  . When the initial 
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asymmetry becomes null,   also vanishes, which is consistent with the observations of Figure 

6(d), 0 =  being a stable configuration. 

 

 

 
 
 

Figure 9. Change in the asymmetry parameter over the phase plane for an initial asymmetry of 

0.15. The approximate analytical solution (Equation (15), panel (a)) is compared with the 

results obtained from the numerical integration of the NLSE (panel (b)). 

 

 

 

 

4. Experimental setup and results 

 

4.1. Setup and experimental limitations 

Experimentally recording the longitudinal evolution of the optical field is a challenging task. 

Various methods have been implemented in the case of the analysis of the dynamics occurring 

in the full NLSE system with symmetrical input conditions: destructive cut-back 

measurements,[28] the involvement of multiple fiber segments,[29] distributed optical time 
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domain reflectometry [30, 31] or evolution in a recirculating loop.[32, 33] To the best of our 

knowledge, none of these previous experimental studies has investigated the impact of 

asymmetric conditions. In all cases and even when dealing with symmetric conditions, 

management of optical losses is a critical issue and requires additional distributed gain in order 

not to deviate from the loss-free hypothesis.[30] Moreover, the discrepancy between experiments 

and ideal FWM dynamics becomes significant very quickly with a rise of the additional marked 

sidebands resulting from unwanted cascaded FWM.  

 

The experimental setup we developed to test the concept presented in 2.2 is shown in Figure 

10 and is made of commercially available telecommunications components. First, a laser 

operating at 1550 nm emits a continuous wave (CW) of high coherence required to observe 

optimal four-wave mixing.[34] A phase modulator driven by a 40 GHz RF sinusoidal modulation 

converts the monochromatic laser spectrum into a set of equally spaced coherent spectral 

lines.[35] The resulting symmetrical comb is then processed using a programmable filter 

(Finisar/II-VI Waveshaper device based on liquid crystal on silicon [36]) that carries out several 

operations: elimination of unwanted spectral components, the precise adjustment of the ratio 

n  between the central and lateral components as well as imprinting the targeted asymmetry 

n . The device also simultaneously implements the relative phase n . The tailored three-

component signal with the target ( n , n , n ) is then amplified by an erbium-doped fiber 

amplifier that delivers a tunable average power that does not depend on the input spectral 

content (and thus enables us to reach various   values, typically between -2.51 and -1.0). 

 

Nonlinear propagation takes place in single-mode optical fiber with dispersion and nonlinear 

parameters being respectively -7.6 ps2.m-1 and 1.7 W-1.km-1. The fiber length is 500 m, with 
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this length selected as a tradeoff between the sensitivity of the detection stage of our setup and 

the appearance of higher order nonlinear effects, such as Brillouin scattering. 

The output signal is then attenuated and split into two in order to record both its spectral phase 

and intensity. An optical spectrum analyzer (OSA, resolution 0.1 nm) provides directly the ratio 

1n +  and 1n + . The spectral phase offset 1n +  is retrieved from the temporal delay between the 

central and lateral sidebands as measured with a high-speed sampling oscilloscope. The 

experimentally measured values is then imprinted as new input values and the process can be 

iterated at will without any accumulation of deleterious amplified spontaneous emission and 

without any significant growth of unwanted spectral sidebands or noise. We typically 

investigated propagation distances up to 50 km, corresponding to 100 iterations. Note that we 

recently proposed an alternate non-iterative scheme benefiting from machine learning strategies 

based on a large set of initial random measurements that are then processed using artificial 

neural networks.[19] 

 

 

 
Figure 10. Implemented experimental setup. ASE: Amplified Spontaneous Emission source, 

PC: Polarization Controler, DCF: Dispersion Compensating Fiber, DSF: Dispersion-Shifted 

Fiber, VA: Variable Attenuator, PD: Photodiode, OSA: Optical Spectrum Analyzer 
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For the study we report here, one limitation of our experimental setup has to be kept in 

mind: the sensitivity of our spectral detection. We can estimate that we have any accuracy of 

the order of 0.01 on the value of  . Even if this value seems very low at first sight, its 

accumulation over iterations may become a problem. This leads us to favor experimental 

conditions leading to a rapid decrease in the asymmetry. We have therefore focused our studies 

on a value of   = -1.2 and for an initial condition that is already highly asymmetric ( 0  = 0.15). 

Unfortunately, even in this case, the possible accumulation of small errors at each iteration 

prevents us from studying with confidence the left-hand side of the separatrix, where the decay 

rate is significantly lower than for the right-hand side. Therefore, in order to exclude 

measurements with moderate accuracy, we have restricted our study to the part to the right of 

the separatrix where the phase is bounded. 

 

 

4.2. Experimental results 

The experimental results recorded for 0 0.75 =  and 0 0.15 =  are shown in Figure 11 where 

we can see that the trends predicted by numerical simulations of the NLSE (see Figure 6(d1)) 

are convincingly reproduced. The level of the three main sidebands oscillates and the difference 

between the 1a−  and 1a+  components tends to decrease. The amplitude of the 2a  sidebands is 

negligible at first sight and is only visible when plotted on a magnified view (panel b). The 

asymmetry decreases with a speed close to the one expected from numerical simulations. The 

small discrepancies can be ascribed to the limited accuracy of the experimental detection. The 

3D view of the trajectory is also in good qualitative agreement with the numerical expectations. 

  



24 

 

 

 
 

 
 
 
 

Figure 11. Experimental evolution of the system parameters: (a) Evolution of the parameters 

plotted in cylindrical coordinates (b) level of the normalized sidebands plotted on a linear scale 

(c) level of the normalized sidebands plotted on a logarithmic scale (c) Evolution of the 

asymmetry parameter. The experimental results are fitted with an exponential function (dashed 

line). Numerical simulations from Figure 6(d1) are shown with a full (blue) line.   
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Some additional measurements are shown in Figure 12. Carrying a large number of random 

measurements on the phase plane (500 points), we were able to measure the growth of the lateral 

sidebands 2a  (here, recorded for a null initial asymmetry). For improved visualization, the 

discrete set of measurements (panel (a1) is interpolated using the universal interpolation 

features of a simple neural network,[37] leading to panel (a2). The experiments clearly 

reproduced the qualitative expected trends recalled in panel (a3), with a much more pronounced 

growth of the extra-sidebands for the right side of the separatrix.  

 

We also performed measurements for the longitudinal evolution of the asymmetry coefficient 

for various values of 0  and for 0 0.15 =  , the initial sidebands being kept in phase. The 

experimental trends reported in panel (b1) of Figure 12 are in qualitative agreement with the 

one obtained numerically from the simulation of the full NLSE (panel (b2)). They confirm that 

an opposite value of the initial asymmetry leads to a mirror evolution, and that the absolute 

value of the asymmetry is also reduced over propagation, tending asymptotically to values close 

to zero. The results also stress that the decrease rate is not dramatically dependent on the value 

of 0 .  
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Figure 12. (a) Growth of the spectral sidebands 
2

2a  (panels 1 and 2 , respectively) after a 

propagation distance of  =0.21 according to the starting value on the phase portrait ( 0 , 0 ) 

for an initially symmetric waveform. The experimental measurements (a1) are interpolated 

using a neural network (a2) and compared with the perturbative analytical model (a3, Equation 

(12)). (b) Evolution of the asymmetry parameter for initial values 0 0.15 =   and for different 

values of 0 . Numerical simulations are compared with experimental results (panels c1 and c2, 

respectively). 
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5. Conclusion 

 

In conclusion, we have investigated in this paper how the asymmetry parameter between the 

three principal spectral components evolves in systems involving the four-wave mixing 

process. Whereas this quantity is conserved in an ideal system without any additional cascaded 

mixing, the generation of spectral components in the framework of the non-linear Schrödinger 

equation leads to different and more complex dynamics where the asymmetry fluctuates widely, 

possibly changing sign. The study of a third system based on iterated propagation and much 

closer to the ideal case revealed that the idealized description misses some key interaction paths 

that ultimately result in the loss of the asymmetry, even if the extra sidebands are kept 

unsignificant. Indeed, even a very weak generation of additional spectral components is enough 

to affect the asymmetry conservation, leading to a decay of this parameter down to a zero value 

and stabilizing the Fermi-Pasta-Ulam-Tsingou recurrent behavior. A perturbative analytical 

approach enabled us to gain a physical understanding of the physical processes that break this 

conservation law, as well as the impact of the initial phase. The dependence of the observed 

behavior on the position in the phase plane was also studied and these various trends were 

confirmed experimentally. Therefore, the modification of the difference level between the first 

lateral sidebands reveals existence of cascaded four-wave interactions.  

 

The study highlights the great care that has to be taken when discussing the conservation of 

invariants. While the growth of sidebands may seem insignificant at first sight, given their 50-

fold smaller amplitude, their cumulative effect nevertheless has a very real impact that cannot 

be overlooked. We have emphasized their impact on the asymmetry parameter but one can also 

mention other strong consequences such as the impossibility to generate a stationary wave in 

the system (at least not until the asymmetry has fully dropped down to zero). Indeed, the fixed 

point existing in the ideal four-wave mixing [12] is no longer fixed due to progressive drop of 
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the asymmetry down to zero. Other open questions remain such as the modelling of the 

dynamics over an arbitrary large distance by a single set of differential equations rather than 

the use of approximate solutions only valid over a short propagation distance. In that context, 

involving data driven discovery using sparse regression may provide some powerful clues.[38] 

For the typical range of parameters we have here considered ( 4 1−   − ), potential cascaded 

sidebands do not fall within the modulation instability gain bandwidth of the pump. However, 

the picture may become much more richer when considering 1 0−    and require a non-

perturbative treatment.[25] Our study was primarily focused on degenerate four-wave mixing 

but the approach can be straightforwardly extended to the non-degenerate case.[26, 39] Our 

conclusions can also be directly of interest to other physical systems implying four-wave 

mixing interactions and reduced models, as it has been developed in the field of hydrodynamics 

for example.[40, 41] We also anticipate it can be helpful in the  framework of three wave 

interactions and quadratic nonlinearities.[42, 43]  

 

 

 

Acknowledgements 

 

We thank Bertrand Kibler for fruitful discussions during the initial stages of the project. The 

work was funded by the Agence Nationale de la Recherche (Optimal project - ANR-20-CE30-

0004; I-SITE BFC  - ANR-15-IDEX-0003), the Région Bourgogne-Franche-Comté, the Institut 

Universitaire de France and the Centre National de la Recherche Scientifique (MITI 

interdisciplinary programs, ‘Evenements extrêmes’). 

 

 

  



29 

 

References 

[1] G. P. Agrawal, Nonlinear Fiber Optics, Sixth Edition (Academic Press, San Francisco, 

CA, 2019). 

[2] C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave 

collapse (Springer Science & Business Media, 2007), Vol. 139. 

[3] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 1973, 23, 142-144. 

[4] F. Copie, S. Randoux, and P. Suret, Reviews in Physics 2020, 5, 100037. 

[5] K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, 

Opt. Lett. 2011, 36, 112-114. 

[6] G. Xu, A. Chabchoub, D. E. Pelinovsky, and B. Kibler, Phys. Rev. Research 2020, 2, 

033528. 

[7] K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 1986, 56, 135-138. 

[8] A. Hasegawa, Opt. Lett. 1984, 9, 288-290. 

[9] E. Infeld, Phys. Rev. Lett 1981, 47, 717. 

[10] Y. Chen, J. Opt. Soc. Am. B 1989, 6, 1986-1993. 

[11] M. E. Marhic, J. Opt. Soc. Am. B 2013, 30, 62-70. 

[12] G. Cappellini and S. Trillo, J. Opt. Soc. Am. B 1991, 8, 824-838. 

[13] A. Mussot, C. Naveau, M. Conforti, A. Kudlinski, F. Copie, P. Szriftgiser, and S. Trillo, 

Nat. Photon. 2018, 12, 303-308. 

[14] A. Sheveleva, U. Andral, B. Kibler, P. Colman, J. M. Dudley, and C. Finot, Optica 

2022, 9, 656-662. 

[15] A. Mussot, A. Kudlinski, M. Droques, P. Szriftgiser, and N. Akhmediev, Phys. Rev. X 

2014, 4, 011054. 

[16] G. Vanderhaegen, P. Szriftgiser, A. Kudlinski, A. Armaroli, M. Conforti, A. Mussot, 

and S. Trillo, Phys. Rev. A 2023, 108, 033507. 

[17] G. Van Simaeys, P. Emplit, and M. Haelterman, J. Opt. Soc. Am. B 2002, 19, 477-486. 

[18] S. Wabnitz and B. Wetzel, Phys. Lett. A 2014, 378, 2750-2756. 

[19] A. Sheveleva, P. Colman, J. M. Dudley, and C. Finot, Opt. Lett. 2022, 47, 6317-6320. 

[20] A. Sheveleva, P. Colman, J. M. Dudley, and C. Finot, Opt. Commun. 2023, 129472. 

[21] M. E. Marhic, Fiber optical parametric amplifiers, oscillators and related devices 

(Cambridge university press, 2008). 

[22] J. R. Thompson and R. Roy, Phys. Rev. A 1991, 43, 4987-4996. 

[23] A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, Phys. Rev. X 2012, 2, 

011015. 



30 

 

[24] B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, Phys. Rev. A 

2014, 89, 023821. 

[25] M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J. M. Dudley, and G. 

Genty, Phys. Rev. Lett. 2011, 107, 253901. 

[26] D. L. Hart, A. Judy, T. A. B. Kennedy, R. Roy, and K. Stoev, Phys. Rev. A 1994, 50, 

1807-1813. 

[27] X. Liu, X. Zhou, and C. Lu, Phys. Rev. A 2005, 72, 013811. 

[28] K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, and 

J. M. Dudley, Opt. Lett. 2011, 36, 2140-2142. 

[29] G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot, Phys. Rev. 

E 2019, 99, 012207. 

[30] C. Naveau, G. Vanderhaegen, P. Szriftgiser, G. Martinelli, M. Droques, A. Kudlinski, 

M. Conforti, S. Trillo, N. Akhmediev, and A. Mussot, Front. Phys. 2021, 9, 637812. 

[31] X. Hu, W. Chen, Y. Lu, Z. Yu, M. Chen, and Z. Meng, IEEE Photon. Technol. Lett. 

2018, 30, 47-50. 

[32] J.-W. Goossens, H. Hafermann, and Y. Jaouën, Sci. Rep. 2019, 9, 18467. 

[33] F. Copie, P. Suret, and S. Randoux, Opt. Lett. 2022, 47, 3560-3563. 

[34] D. L. Hart, A. F. Judy, R. Roy, and J. W. Beletic, Phys. Rev. E 1998, 57, 4757. 

[35] K. Hammani, J. Fatome, and C. Finot, Eur. J. Phys. 2019, 40, 055301. 

[36] A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, J. Lightw. Technol. 

2010, 28, 97-103. 

[37] G. Cybenko, Mathematics of control, signals and systems 1989, 2, 303-314. 

[38] A. V. Ermolaev, A. Sheveleva, G. Genty, C. Finot, and J. M. Dudley, Scientific Reports 

2022, 12, 1-11. 

[39] S. Trillo, S. Wabnitz, and T. Kennedy, Phys. Rev. A 1994, 50, 1732-1747. 

[40] A. Armaroli, A. Gomel, A. Chabchoub, M. Brunetti, and J. Kasparian, Nonlinear Dyn. 

2020, 101, 1131-1145. 

[41] O. Kimmoun, H. C. Hsu, H. Branger, M. S. Li, Y. Y. Chen, C. Kharif, M. Onorato, E. 

J. R. Kelleher, B. Kibler, N. Akhmediev, and A. Chabchoub, Sci. Rep. 2016, 6, 28516. 

[42] A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, Phys. Reports 2002, 370, 

63-235. 

[43] H. M. Yin and K. W. Chow, Phys. Rev. E 2023, 107, 064215. 

 

 


