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Conservation of a Spectral Asymmetry Invariant in Optical
Fiber Four-Wave Mixing

Anastasiia Sheveleva, Pierre Colman, John M. Dudley, and Christophe Finot*

The conservation of spectral asymmetry is a fundamental feature of the ideal
four-wave mixing process as it exists in a medium combining quadratic
chromatic dispersion and third-order nonlinearity. The robustness of this
invariant in an experimental configuration where the excitation conditions of
an optical fiber are sequentially updated, mimicking infinite propagation is
tested in this paper. This theoretical and experimental study reveals the high
sensitivity of the asymmetry to very slight deviations from the ideal case, and
the idealized system behaves as an intermediate case between the ideal case
of noncascaded four-wave mixing and propagation in a system governed by
the nonlinear Schrödinger equation is shown.

1. Introduction

Optical fibers, owing to their minimal losses and their extended
interaction lengths, have emerged as a crucial tool for exploring
the intricate nonlinear dynamics arising from the interplay of dis-
persion and nonlinearity.[1] A well-established model to describe
light evolution in single-mode fiber waveguides is the nonlin-
ear Schrödinger equation (NLSE), one of the seminal equations
of physics that is applicable not only to fiber systems but also
to ocean waves, plasmas, and Bose-Einstein condensates, to cite
only a few examples.[2] Among the well-known stable solutions
of the NLSE is the bright soliton, a coherent structure that cele-
brates in 2023 its 50th anniversary in fibers, and that propagates
while preserving its temporal and spectral intensity profiles.[3]

However, a range of other known NLSE solutions also exists,
including the well-known family of solitons on a finite back-
ground, where the interaction with a continuous background re-
sults in periodic temporal or spatial localization,[4] or even double
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localization such as observed for the Pere-
grine soliton.[5] Coherent solutions on pe-
riodically modulated backgrounds, such
as cnoidal or dnoidal waves, are also part
of this rich landscape.[6]

The analysis of the NLSE in the fre-
quency domain offers remarkable in-
sights into the spectral properties of these
coherent waves, and specifically the dy-
namics of the four-wave mixing process
(FWM) that rules the periodic energy ex-
changes among evolving spectral com-
ponents. In the context of a focusing
nonlinearity, FWM leads to modulation

instability[7] and the generation of high-repetition-rate trains of
ultrashort localized pulses.[8] The simplest configuration, called
degenerate four-wave mixing, only involves a high-intensity
pump wave interacting with two other wave components at
frequencies symmetrically located on both sides of the pump.
Neglecting the existence of higher-order interactions, this
dynamics is ruled by a system of three coupled differential equa-
tions. It exhibits a recurrent behavior which is an example of the
celebrated Fermi-Pasta-Ulam-Tsingou recurrence.[9] Although
some analytical solutions exist,[10,11] it is also convenient to
interpret the wave interactions in the phase plane through two
canonical conjugate variables[12,13] that form closed orbits, ensur-
ing that trajectories never venture beyond the boundaries of their
respective orbits. Such recurrent features have been recently
quantitatively measured in experiments using a novel setup in-
volving iterated propagation over short segments of fibers where
periodic filtering of higher-order spectral sidebands allows the
framework of three ideal coupled equations to be retained,[14] and
avoids higher-order effects such as third-order dispersion,[15] dis-
tributed losses,[16] Raman scattering[17] or accumulation of ampli-
fied spontaneous emission.[18] Experiments have seen excellent
agreement with theory over several tens of kilometers of propa-
gation. In addition, this system has allowed data collection for the
training of neural networks,[19] and a simple but efficient frame-
work to control the phase space trajectory has been proposed and
validated.[20]

In this contribution, we further study the energy exchange
dynamics between the spectral components in this system. In
contrast to most of the literature, however, we do not restrict
ourselves to a signal with a perfectly symmetric initial optical
spectrum, and we place a particular focus on how the spectral
asymmetry evolves longitudinally. Whereas the asymmetry is a
constant of the ideal degenerate FWM, we stress that when prop-
agation is ruled by cascaded interactions, a completely different
picture is observed. More surprisingly, in the setup developed
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in[14] where a significant cascade is not possible, the evolution
of the asymmetry is also not conserved. A theoretical perturba-
tion analysis is developed to explain the physical origin of the
fundamental process at the origin of this discrepancy, and this is
confirmed with experimental measurements.

2. Principle and Numerical Simulations

2.1. Governing Equations, Normalization, and Conserved
Quantities

We first review the theoretical description of ideal FWM dynam-
ics in the NLSE. In an ideal single mode and loss-free fiber, the
evolution of a slowly varying electric field envelope 𝜓(z, t) is gov-
erned by the nonlinear Schrödinger equation[1]:

i
𝜕𝜓

𝜕z
−
𝛽2

2
𝜕2𝜓

𝜕t2
+ 𝛾 |𝜓|2 𝜓 = 0 (1)

with z being the propagation distance and t the time in a ref-
erence frame traveling at the group velocity. The group-velocity
dispersion is 𝛽2 and the nonlinear Kerr coefficient is 𝛾 . In the fo-
cusing regime of propagation (𝛽2 negative), we can rewrite the
NLSE in normalized form:

i 𝜕A
𝜕𝜉

+ 1
2
𝜕2A
𝜕𝜏2

+ |A|2A = 0 (2)

Here, normalized propagation and co-moving time variables
𝜉 and 𝜏 are linked to the dimensional quantities in fiber optics
by 𝜉 = z∕LNL and 𝜏 = t∕

√|𝛽2|LNL. The characteristic length scale
LNL is defined as LNL = (𝛾P0)

−1 with P0 the initial power, which
in our case corresponds to the total average power of the evolv-
ing field, i.e., taking into account the pump and any sideband
components.[1] The normalized field A(𝜉, 𝜏) is related to its di-
mensional equivalent 𝜓(z, t) by A(𝜉, 𝜏) = 𝜓(z, t)∕

√
P0.

We discuss the fundamental wave mixing processes in the
NLSE by considering the injection of a modulated pump wave
A0 with two sidebands at relative offset frequencies ± Ω:

A(𝜉, 𝜏) = A0(𝜉) + A−1(𝜉) exp (iΩ𝜏) + A1(𝜉) exp (−iΩ𝜏) (3)

The carrier frequency Ω0 is omitted and normalized offset fre-
quency Ω is related to dimensional offset frequency fm in Hz by
Ω = 2𝜋 fm

√|𝛽2|∕𝛾P0. In general, the injection of such a modu-
lated signal in an optical fiber leads to the generation of multiple
additional sidebands, but the FWM interaction can be idealized
and truncated to describe only pump and first sideband energy
exchange with distance. It leads to only three coupled equations
that are well-known in the field of parametric amplification:[21]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−i
dA0

d𝜉
=
(||A0

||2 + 2||A−1
||2 + 2||A1

||2)A0 + 2 A−1A1A
∗
0

−i
dA−1

d𝜉
+ 1
2
Ω2A−1 =

(||A−1
||2 + 2||A0

||2 + 2||A1
||2)A−1 + A∗

1A
2
0

−i
dA1

d𝜉
+ 1
2
Ω2A1 =

(||A1
||2 + 2||A0

||2 + 2||A−1
||2)A1 + A∗

−1A
2
0

(4)

Figure 1. a) Illustration of the parameters involved in the reduced degen-
erate model. b) Illustration of the two possible processes of energy ex-
change between the three components within the frame of Equation (4).

It is convenient to separate the complex spectral ampli-
tude Ai(𝜉) into its modulus ai(𝜉) and phase 𝜑i(𝜉) : Ai(𝜉) =
ai(𝜉) exp(i 𝜑i(𝜉)). Contrary to most studies that have previously
investigated this problem,[1] we do not limit ourselves to the case
where the initial sidebands have symmetric amplitude with re-
spect to the pump. As seen in Figure 1, panel (a), it is possi-
ble to describe the three-line asymmetric spectrum in terms of
three variables 𝜂, 𝜙, and 𝛼 that are physically related to the frac-
tion of the total power in the central frequency component, the
sideband-pump frequency component phase difference, and the
asymmetry between the lateral sidebands of the spectrum:

⎧⎪⎪⎨⎪⎪⎩

𝜂 =
a20

a20 + a2−1 + a2+1
𝜙 = 𝜑1 + 𝜑−1 − 2𝜑0

𝛼 = a2−1 − a2+1

(5)

In order to gain further insight into the nonlinear dynamics of
this ideal system, it is essential to identify the invariants. First of
all, given the conservation of energy in the lossless fiber, onemay
find a first invariant that is the average power, leading to:

a21 + a2−1 + a20 = 1 (6)

Combined with Equation (5), this leads to the normalized
power of the sidebands that can be expressed as:

⎧⎪⎨⎪⎩
a20 = 𝜂

a2±1 =
1 − 𝜂 ∓ 𝛼

2

(7)

Taking this relationship into account and given that |𝛼| + 𝜂 ≤
1, the level of asymmetry that it will be possible to imprint for a
given value of 𝜂 will be bounded.
A second crucial invariant of the system is the asymmetry

𝛼, which arises from the Manley-Rowe relations. Indeed, as
a continuous wave (CW) or modulation at ± Ω are the only
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Figure 2. Principle of the segmented approach with iterated initial condi-
tions.

possibilities, the energy exchange among the waves has to be
achieved through the two processes shown in Figure 1(b). In one
case, two photons from the pump generate one photon in each
lateral sideband following the scheme Ω0 + Ω0 → (Ω0 + Ω) +
(Ω0 − Ω) (Figure 1(b1)). In the other case (Figure 1(b2)), two pho-
tons at frequencies Ω0 + Ω, and Ω0 − Ω lead to the emission of
two new photons at Ω0. Therefore, the conservation of the power
difference between the two sidebands is in both cases ensured.
A third conserved quantity is the Hamiltonian of the system.

Indeed, it is possible to associate the problem with the 1D con-
servative Hamiltonian[12]:

H = 2𝜂
[
(1 − 𝜂)2 − 𝛼2

]1∕2
cos𝜙 + (1 − 𝜅) 𝜂 − 3

2
𝜂2 (8)

with 𝜅 = −Ω2 being a normalized mismatch and with the canon-
ical conjugate variables being 𝜂, 𝜙 as defined in Equation (5).

2.2. The Iterated Segmented Approach

The experimental observation of the canonical dynamics of ideal
FWM as described by Equation (4) remains a difficult chal-
lenge. Indeed, the growth of higher-order sidebands through cas-
caded FWM leads to the formation of an extended spectral comb
structure.[22] As a consequence, the ideal FWM process cannot
be studied in isolation. To circumvent this limitation, inspired
by,[23,24] we have proposed an iterated segmented approach[14] as
shown in Figure 2. The phase and amplitude of the three spec-
tral lines are first adjusted in order to get the input conditions
𝜂n ,𝜙n and 𝛼n of the n

th iteration. The resulting signal with an av-
erage power enabling the operation at a fixed 𝜅 is launched into
a short span of optical fiber (assumed in a first approximation as
lossless). The fiber segment is sufficiently short so that additional
sidebands located at ± 2Ω cannot reach a significant level. After
propagation in the fiber, the signal is spectrally filtered to com-
pletely exclude low-amplitude cascaded components that might
nevertheless have developed. In order to compensate for possible
losses induced by this filtering, the new three-component signal
is reamplified before it can be reinjected within the fiber as new
initial conditions 𝜂n+1, 𝜙n+1, and 𝛼n+1.

Figure 3. Results for ideal FWM (Equation (4)). Results obtained for an
initial phase of 0 and 𝜋 are displayed on panels (1) and (2), respectively.
a) Trajectory plotted in the cylindrical coordinate system (𝜂, 𝜙, 𝛼). The
plane corresponding to the initial conditions 𝛼0 is colored. b) Evolution of
the normalized intensity of the three spectral bands. c) Evolution of the
asymmetry parameter.

3. Comparison of the Evolution of the Asymmetry
in the Various Configurations

We now compare the nonlinear dynamics that result from prop-
agation governed by the full NLSE, the ideal FWM scheme, and
the iterated segmented approach described above.We devote spe-
cial attention to the asymmetry parameter 𝛼. In order to illustrate
the propagation, we have selected the following parameters based
on our experiments which will be discussed in section 4.We have
considered an initial asymmetry level 𝛼0 of 0.15, and an average
power leading to 𝜅 = −1.2. Note that for this value 𝜅, potential
cascaded sidebands will not fall within the modulation instabil-
ity gain bandwidth of the pump and therefore will not be effi-
ciently amplified.[25] The fiber length involved in the segmented
approach has a normalized lengthΔ𝜉 of 0.21. We considered two
initial conditions associated with 𝜂0 = 0.75, and phase 𝜙0 of 0 or
𝜋. Plotting the dynamics in the cylindrical coordinate system (𝜂,
𝜙, 𝛼) fully captures the physics of this problem.

3.1. Results in the Ideal FWM Process

Wefirst discuss the dynamics expected for the ideal case. Figure 3
summarizes the evolution of the parameters observed for the two
previously mentioned initial conditions located either to the right
or to the left side of the separatrix separating bounded and un-
bounded phase behavior. Consistent with the conservation of the
asymmetry parameter, the trajectory when represented in cylin-
drical coordinates is a fully closed orbit that is contained in the
plane 𝛼 = 𝛼0, which is also confirmed by panels (c) as well as by
the panels (b) where the difference between the intensity of the
lateral components located on either side of the pump remains
identical with propagation.

Ann. Phys. (Berlin) 2024, 2300489 © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH2300489 (3 of 11)
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Figure 4. Results in the case of a propagation ruled by NLSE. Results ob-
tained for an initial phase of 0 and 𝜋 are displayed on panels (1) and (2),
respectively. a) Trajectory plotted in the cylindrical plot (𝜂, 𝜙, 𝛼). The dis-
tance of propagation is highlighted by changing the color of the symbols
(see colormap). b) Evolution of the normalized intensity of the five inner
spectral bands. c) Evolution of the asymmetry parameter (the colors refer
to the distance as used in the colormap of (a)).

3.2. Evolution in the NLSE Framework

Let us now discuss the evolution of the same parameters in the
case where the dynamics are dictated by the NLSE, and the FWM
cascade gives rise to a significant number of new spectral compo-
nents. We used the split-step Fourier algorithm[1] to numerically
integrate Equation (2). We carefully chose the temporal and spec-
tral grid parameters so that the frequency Ω and all its multiples
perfectly match the grid, leading to Dirac functions when plot-
ted and enabling us to precisely recover the amplitude and phase
parameters of the propagated field. Results are summarized in
Figure 4 and show striking differences from the ideal behavior
discussed previously. First of all, it is clear that the asymmetry
parameter as defined in the context of ideal mixing is in no way
preserved. The trajectory is no longer a simple closed orbit, nor is
it at all contained in a single plane. A much larger volume of the
parameter space is now explored, and we can note in particular a
change in the sign of the asymmetry parameter. This implies in
particular a passage through a zero-asymmetry value.
More details on the complete longitudinal evolution of the op-

tical spectrum can be seen in Figure 5. In this case, there is a
macroscopic build-up of energy in the a±2, and a±3 components
(the level of the additional sidebands being normalized with re-
spect to the level contained in the three central lines). Their lev-
els are far from being negligible: values up to 0.33 are reached

Figure 5. a) Longitudinal evolution of the intensity of the various spectral
components for (𝜂0 = 0.75, 𝜙0 = 0, 𝛼0 = 0.15). b) Details of the full spec-
trum when 𝛼 = 0 after a propagation distance 𝜉 = 1.79 (see dashed line in
panel (a)). The horizontal dashed and dotted lines are visual guidelines.

for a±2 after propagation over a distance of 12.76 (30 km). The
evolution of the extra-sidebands is complex and not necessarily
synchronous. Panel (b) shows the spectrum at a distance of 1.79
(4.2 km) for which the asymmetry 𝛼 is zero. We note that even
though the first two lateral components have identical intensity,
this is not the case for the higher-order components. Thus, the
a−2 component is almost twice its a+2 counterpart. Consequently,
the asymmetry has not disappeared, it has spread to the higher-
order components. In other words, the simple metric based on
𝛼 as defined by Equation (5) is no longer appropriate, and an ex-
tended version is in this case relevant as discussed in.[26]

3.3. Evolution in the Iterated Segmented Approach

By comparing the ideal model and the NLSE propagation, we ob-
serve to what extent the asymmetry of the first sidebands could
have a radically different evolution. In this part, we now discuss
the evolution in the system introduced in section 2.2 where the
growth of higher-order sidebands is completely suppressed at
short and regular intervals, thus blocking the appearance of sig-
nificant cascades. Results over a propagation distance of 12.76
corresponding to 60 segments of length Δ𝜉 = 0.21 are shown in
Figure 6 and reveal an intermediate trend between the ideal case
and the NLSE dynamics. Even though the asymmetry parameter
is not preserved, we see that its evolution presents a much less
complex structure than in the NLSE case, and the evolution of
the powers in the different bands regains a simpler structure ap-
proaching the periodic behavior observed in the ideal case. From
Figure 6(b) and the green and violet curves representing the level
of the first cascaded sidebands, onemay think that their intensity
is not significant at first sight when plotted on a linear scale and
that no energy can build up into extra sidebands. However, when
magnifying the low levels, one can see more clearly that those ex-
tra sidebands oscillate but remain typically below 2% of the total
power of the central sidebands. In the case where we start from
initial conditions where the three bands are in phase (see panel
(d1) from Figure 6), the asymmetry parameter decreases steadily,
and the evolution can be adjusted by an exponential trend. The
asymmetry value thus tends asymptotically toward zero and then

Ann. Phys. (Berlin) 2024, 2300489 © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH2300489 (4 of 11)
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Figure 6. Results in the case of a propagation in an iterated segmented
approach. Results obtained for an initial phase of 0 and 𝜋 are displayed on
panels (1) and (2), respectively. a) Trajectory plotted in the cylindrical sys-
tem (𝜂, 𝜙, 𝛼). The distance of propagation is highlighted by changing the
color of the symbols (see colormap). b) Evolution of normalized intensity
of the five inner spectral bands plotted on a linear scale. c) Evolution of the
residual ±2 spectral lines but plotted on a logarithmic scale. d) Evolution
of the asymmetry parameter (the colors refer to the distance as used in
the colormap of (a)). Dashed black lines refer to the fit of an exponential
decrease whereas the dashed red line in panel (b1) is the linear decrease
rate as predicted by the perturbative approach of Equation (16). The inset
figures of panels (d) are panels (a) plotted in the (𝜂, 𝜙) plane.

does not change sign. After a propagation distance of 6.60, the
level of the two lateral sidebands becomes nearly equal (i.e., with
a relative difference below 0.001).
The trends are slightly different when we consider the initial

value 𝜙0 = 𝜋. In that case, the asymmetry always decreases over
the long term, but the evolution is not monotonic. Stages of de-
creasing asymmetry alternate with phases of increasing asymme-
try, without, however, recovering its initial level. If we adjust the
slow decay, we find a decay rate that is significantly lower than the
rate obtained for components initially in phase (a factor of 17.60
is obtained between the two decrease rates). Additional numeri-
cal simulations carried out over muchmore significant distances
(up to 64, results not shown here) have stressed the oscillatory
behavior is only a transient stage and that for asymptotic propa-
gation, the asymmetry value ultimately decreases monotonically
down to 0. We also note that in the unbounded phase case, the
trajectory tends to spiral toward one of the fixed points of the sys-
tem. This feature is beyond the scope of the present manuscript
and will be discussed in a subsequent devoted work.

Figure 7. Various new combinations develop when five spectral compo-
nents are taken into account. Processes a,b) are taken into account in our
approximate modeling whereas processes of panel c) are neglected.

To take our physical understanding of the destabilization of
asymmetry a step further, we turn to a more complete model
that takes into account the existence of a±2 components, even
if they only convey a very small amount of the total energy.
Thus, the NLSE can be rewritten by considering, instead of
a field given by Equation (3), a field containing five spectral
components:

A(𝜉, 𝜏) =
2∑

n=−2
An(𝜉) exp (−in Ω 𝜏) (9)

leading to the set of coupled equations describing the evolution
of the various components:[22,26,27]

−i
dAj

d𝜉
+ 1
2

(
jΩ
)2
Aj =

⎛⎜⎜⎜⎝
|||Aj

|||2 + 2
2∑

k≠j
k=−2

||Ak
||2
⎞⎟⎟⎟⎠
Aj +

∑
l,m,n

∗dlmn AlAmA
∗
n

(10)

where j, l, m, n = 0,±1,±2 and l, m ≠ n. Here
∑∗

l,m,n denote the
permutations of the indices l, m and n such that j = l +m − n.
The quantity dlmn is a degeneracy factor that is unity when l = m
and 2 when l ≠ m.
In this framework, new interactions between the various com-

ponents occur compared to the ones described in Figure 1(b).
This is a key difference point compared to Equation (4), that
is even if the energy in the extra sidebands is almost negligi-
ble, their existence allows new paths of nonlinear mixing that
result eventually in different dynamics. By taking into account
the interactions (a) and (b) described in Figure 7 for the side-
bands a−2 and a2, respectively, and using the previously described
normalization process, one may obtain the following differential
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equations to describe the evolution of the sidebands a±2:

𝜕ã±2
𝜕𝜉

= i
√
𝜂

[(
1 − 𝜂 + 𝛼

2

)
ei 𝜙 +

√
(1 − 𝜂)2 − 𝛼2

]

× exp
(
−2i(1 ± 𝜅)𝜉

)
exp

(
i(𝜑0 + 𝜑±1 − 𝜑∓1)

)
(11)

where the variables are written in a rotating frame ã =
a exp(−2i(1 + 𝜅)𝜉 + i 𝜑2) which results in the simplification of
terms 1

2
(jΩ)2Aj and 2

∑2
k≠j
k=−2

|Ak|2Aj, and the appearance of the

respective phase factor. Note that we consider an initial spectral
amplitude of a±2 equal to zero. In Equation (11), we have not in-
cluded the interactions sketched in panel (c) of Figure 7. Indeed,
as the spacing between a±2 components and the pump is 2 Ω, the
energy transfer is inefficient (for 𝜅 = −1.2, the a±2 components
lie above the cutoff frequency of the modulation instability gain
bandwidth). We neglected energy exchange mechanisms that do
not involve the pump (interaction between a±1 and a±2).
As the propagation distance Δ𝜉 over one iteration is short

enough, the growth of the higher-order sidebands a±2 does not
impact significantly the level of the other involved parameters so
that the latter can be considered as fixed to a first approximation.
Also the resulting phase accumulation is exp(−2i (1 + 𝜅) Δ𝜉)
and we can consider a starting point with 𝜑−1 = 𝜑1 and 𝜑0 = 0
so that phase difference can be simplified. In that context, one
may approximate the differential operator by a finite difference.
Moreover, as Δa±2 ≃ |Δã±2| and taking into account that the in-
tensity of the extra-sidebands is null at the input of the segment
(the extra-sidebands are completely canceled at each iteration),
one may obtain a fully explicit equation for the level |Δa±2|2
reached by the sideband after propagation in the segment of
length Δ𝜉:

||Δa±2||2 = Δ𝜉2 𝜂0
1 − 𝜂0 ∓ 𝛼0

2

×
[
5 − 5𝜂0 ± 𝛼0

2
+ 2 cos

(
𝜙0

)√(
1 − 𝜂0

)2 − 𝛼20
]

(12)

From these results illustrated in Figure 8, panels (a) for an
initial asymmetry of 𝛼0 = 0.15, it is clear that the initial point
(𝜂0, 𝜙0) will affect the strength of the growth of the additional
sideband and that the right part of the phase portrait will be
much more affected than the left counterpart by the growth of
the additional sidebands. Note that given the condition linking 𝜂0
and 𝛼0, the phase plane cannot be explored for values 𝜂0 > 0.85.
Comparing the results of Equation (12) with the predictions
obtained from the numerical integration of the NLSE over
one iteration distance (panels b), one may note the qualitative
agreement between the approximate analytical model and the re-
sults taking into account all the possible nonlinear interactions.
The absolute error between the two approaches is provided in
panels (c) and stresses that the scale of the error is one order of
magnitude smaller than the changes under study. This there-
fore validates the various simplifying assumptions (neglected
wave mixings, use of finite differences instead of derivatives,
etc).

Figure 8. a,b) Growth of the spectral sidebands |Δa±2|2 (panels 1 and
2, respectively) after a propagation distance of Δ𝜉 = 0.21 according to
the starting value on the phase portrait (𝜂0, 𝜙0) for an initial value of the
asymmetry 𝛼0 = 0.15. Results of the perturbative analytical model (Equa-
tion (12), panels a) are compared with the results obtained from the nu-
merical integration of the NLSE (panels b). c) Absolute error between the
two approaches (NLSE being taken as a reference).

We also derived the evolution of the asymmetry from the set
of coupled Equations (10). Stating that

d𝛼
d𝜉

=
d||a−1||2
d𝜉

−
d||a+1||2
d𝜉

= a∗−1
da−1
d𝜉

+ a−1
da∗−1
d𝜉

− a∗+1
da+1
d𝜉

− a+1
da∗+1
d𝜉

(13)

one may obtain the following equation:

d𝛼
d𝜉

= −4 a2−1 a−2a0 sin
(
𝜑0 + 𝜑−2 − 2𝜑−1

)
− 4 a−2 a1a−1a0 sin

(
𝜑−2 + 𝜑1 − 𝜑−1 − 𝜑0

)
+ 4 a21 a2a0 sin

(
𝜑0 + 𝜑2 − 2𝜑1

)
+ 4 a2 a1a−1a0 sin

(
𝜑2 + 𝜑−1 − 𝜑1 − 𝜑0

)
(14)

It is then clear that the presence of the higher-order sidebands
is required to observe a non-zero derivative 𝛼. As the level of the
higher-order sidebands remains well below −17 dB, a perturba-
tive approach can once again be implemented. Plugging the ap-
proximate solution of Equation (12) into (14) (here we consider
for the value of a±2 its average value Δa±2∕2 over the segment),

Ann. Phys. (Berlin) 2024, 2300489 © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH2300489 (6 of 11)
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Figure 9. Change in the asymmetry parameter over the phase plane for
an initial asymmetry of 0.15. The approximate analytical solution (Equa-
tion (15), panel (a)) is compared with the results obtained from the nu-
merical integration of the NLSE (panel (b)). The trajectory followed for
initial conditions 𝜂0 = 0.75, 𝛼0 = 0.15 and 𝜙0 of 0 or 𝜋 are plotted with
dotted and dashed lines, respectively.

one obtains using normalized notations:

Δ𝛼 =
𝜂0 Δ𝜉2

2

×
[(
1 − 𝜂0 − 𝛼0

)3∕2(√
1 − 𝜂0 − 𝛼0 + 3

√
1 − 𝜂0 + 𝛼0 cos𝜙0

)
−
(
1 − 𝜂0 + 𝛼0

)3∕2(√
1 − 𝜂0 + 𝛼0 + 3

√
1 − 𝜂0 − 𝛼0 cos𝜙0

)]
(15)

The results are plotted in panel (a) of Figure 9 and show good
qualitative agreement with the results computed using the exact
numerical integration of the NLSE over one segment of fiber. The
remaining discrepancies that exist are attributed to the perturba-
tive approach that we involve both to obtain Δa±2 as well as Δ𝛼
and to the fact that the interactions (c) (see Figure 7) are not taken
into account in the derivation of Equation (11). The results high-
light that both sides of the separatrix exhibit very different behav-
ior. First of all, when operating on the right side, values of Δ𝛼
are always negative so that one may expect a trajectory occurring
on that side to experience a monotonic evolution as exemplified
by the trajectory plotted on panel (b), (dotted white line), lead-
ing to the monotonic evolution plotted on panel (d1) of Figure 6.
This contrasts radically with the behavior observed when operat-
ing on the left side where the trajectory (see dashed white line
on panel b) experiences alternatively Δ𝛼 with positive and nega-
tive values, leading to the oscillatory evolution plotted in Figure 6,
panel (d2). One explanation of these very different features lies in
the fact that for the right part of the phase plot, the phase remains
bounded. Consequently the cosine term involved in Equation (15)
is always positive. On the contrary, on the left side, the phase is

Figure 10. Evolution of the decay rate of the asymmetry parameter accord-
ing to the fiber length Δ𝜉. The predictions of Equation (16) (solid black
line) are compared with the results of the numerical integration of the
NLSE (red circles). The blue circle corresponds to the parameter under
study in this paper. The results are obtained for initial conditions 𝜂0 = 0.75,
𝛼0 = 0.15 and 𝜙0 of 0.

unbounded and the cosine term therefore explores both positive
and negative values. From Equation (15), one can also notice that
an opposite value of asymmetry 𝛼0 will lead to opposite values of
Δ𝛼. When the initial asymmetry becomes null,Δ𝛼 also vanishes,
which is consistent with the observations of Figure 6(d1), 𝛼 = 0
being a stable configuration.
From Equation (15), one can straightforwardly derive the lon-

gitudinal decay rate 𝜕𝛼∕𝜕𝜉 of the asymmetry parameter:

𝜕𝛼

𝜕𝜉
≃ Δ𝛼

Δ𝜉
= Δ𝜉

𝜂0

2

×
[(
1 − 𝜂0 − 𝛼0

)3∕2(√
1 − 𝜂0 − 𝛼0 + 3

√
1 − 𝜂0 + 𝛼0 cos𝜙0

)
−
(
1 − 𝜂0 + 𝛼0

)3∕2(√
1 − 𝜂0 + 𝛼0 + 3

√
1 − 𝜂0 − 𝛼0 cos𝜙0

)]
(16)

Equation (16) is particularly relevant in the case of the bounded
phase where it can successfully predict the initial linear behavior
of the exponential decrease (see Figure 6(d1), red dashed line).
One important feature revealed by this analytical expression is
the influence of the spacing Δ𝜉 between two iterations that can-
cel the higher-order spectral components. Indeed, from Equa-
tion (16) and from Figure 10, one clearly observes that the de-
crease rate of the asymmetry is directly proportional toΔ𝜉. When
the spacing tends to zero, the ideal case is retrieved. Compari-
son with simulations of the NLSE (circles) stresses the excellent
agreement between the perturbative approach and the explicit
computation. Some discrepancies may appear but for values of
Δ𝜉 well above the ones considered throughout this article.

4. Experimental Setup and Results

4.1. Setup and Experimental Limitations

Experimentally recording the longitudinal evolution of the opti-
cal field is a challenging task. Various methods have been imple-
mented in the case of the analysis of the dynamics occurring in
the full NLSE systemwith symmetrical input conditions: destruc-
tive cut-backmeasurements,[28] the involvement ofmultiple fiber
segments,[29] distributed optical time domain reflectometry[30,31]

Ann. Phys. (Berlin) 2024, 2300489 © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH2300489 (7 of 11)

 15213889, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300489 by C

ochrane France, W
iley O

nline L
ibrary on [13/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 11. Implemented experimental setup. RF clock: radio-frequency clock, RF- amp.: radio-frequency amplifier, EDFA: erbium-doped fiber amplifier,
PC: polarization controller, att.: attenuator, OBPF: optical band-pass filter, PD: photodiode.

or evolution in a recirculating loop.[32,33] To the best of our knowl-
edge, none of these previous experimental studies has investi-
gated the impact of asymmetric conditions. In all cases and even
when dealing with symmetric conditions,management of optical
losses is a critical issue and requires additional distributed gain
in order not to deviate from the loss-free hypothesis.[30] Moreover,
the discrepancy between experiments and ideal FWM dynam-
ics becomes significant very quickly with a rise of the additional
marked sidebands resulting from unwanted cascaded FWM.
The experimental setup we developed to test the concept pre-

sented in 2.2 is shown in Figure 11 and is made of commercially
available telecommunications components. First, a laser operat-
ing at 1550 nm emits a continuous wave (CW) of high coherence
required to observe optimal four-wave mixing.[34] A phase modu-
lator driven by a 40 GHz RF sinusoidal modulation converts the
monochromatic laser spectrum into a set of equally spaced coher-
ent spectral lines.[35] The resulting symmetrical comb is then pro-
cessed using a programmable filter (Finisar/II-VI Waveshaper
device based on liquid crystal on silicon[36]) that carries out sev-
eral operations: elimination of unwanted spectral components,
the precise adjustment of the ratio 𝜂n between the central and
lateral components as well as imprinting the targeted asymmetry
𝛼n. The device also simultaneously implements the relative phase
𝜙n. The tailored three-component signal with the target (𝜂n, 𝜙n,
𝛼n) is then amplified by an erbium-doped fiber amplifier that de-
livers a tunable average power that does not depend on the input
spectral content (and thus enables us to reach various 𝜅 values,
typically between −2.51 and −1.0).
Nonlinear propagation takes place in single-mode optical fiber

with dispersion and nonlinear parameters being −7.6 ps2 m−1

and 1.7 W−1 km−1, respectively. The fiber length is 500 m, with
this length selected as a tradeoff between the sensitivity of the

detection stage of our setup and the appearance of higher-order
nonlinear effects, such as Brillouin scattering.
The output signal is then attenuated and split into two in order

to record both its spectral phase and intensity. An optical spec-
trum analyzer (OSA, resolution 0.1 nm) provides directly the ra-
tio 𝜂n+1 and 𝛼n+1. The spectral phase offset 𝜙n+1 is retrieved from
the temporal delay between the central and lateral sidebands as
measured with a high-speed sampling oscilloscope. The experi-
mentally measured values are then imprinted as new input val-
ues and the process can be iterated at will without any accumula-
tion of deleterious amplified spontaneous emission and without
any significant growth of unwanted spectral sidebands or noise.
We typically investigated propagation distances up to 50 km, cor-
responding to 100 iterations. Note that we recently proposed an
alternate non-iterative scheme benefiting frommachine learning
strategies based on a large set of initial random measurements
that are then processed using artificial neural networks.[19]

For the study we report here, one limitation of our experimen-
tal setup has to be kept in mind: the sensitivity of our spectral
detection. We can estimate that we have any accuracy of the or-
der of 0.01 on the value of 𝛼. Even if this value seems very low at
first sight, its accumulation over iterations may become a prob-
lem. This leads us to favor experimental conditions leading to a
rapid decrease in the asymmetry. We have therefore focused our
studies on a value of 𝜅 = −1.2 and for an initial condition that is
already highly asymmetric (𝛼0 = 0.15). Unfortunately, even in this
case, the possible accumulation of small errors at each iteration
prevents us from studying with confidence the left-hand side of
the separatrix, where the decay rate is significantly lower than for
the right-hand side. Therefore, in order to excludemeasurements
with moderate accuracy, we have restricted our study to the part
to the right of the separatrix where the phase is bounded.

Ann. Phys. (Berlin) 2024, 2300489 © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH2300489 (8 of 11)
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Figure 12. Experimental evolution of the system parameters. a) Evolution
of the parameters plotted in cylindrical coordinates. b) Level of the nor-
malized sidebands plotted on a linear scale. c) Level of the normalized
sidebands plotted on a logarithmic scale. The solid lines of panels (b) and
(c) are for the experimental data whereas the numerical simulations are
plotted with dashed lines. d) Evolution of the asymmetry parameter. The
experimental results are fitted with an exponential function (full black line).
Numerical simulations from Figure 6(d1) are shown with a dashed red
line.

4.2. Experimental Results

The experimental results recorded for 𝜂0 = 0.75 and 𝛼0 = 0.15 are
shown in Figure 12where we can see that the trends predicted by
iterated numerical simulations of the NLSE (see Figure 6(d1)) are
convincingly reproduced. The level of the three main sidebands
oscillates and the difference between the a−1 and a+1 components
tends to decrease (panel b). The amplitude of the a±2 sidebands
is negligible at first sight and is only visible when plotted on a
magnified view (panel c). The levels of these sidebands are fully
consistent with the simulations, even if some mismatch is vis-
ible concerning the period of the recurrent behavior. This may
be ascribed to the accumulation of small errors, that are linked
to uncertainties in the exact parameters of the fiber, over 100 it-
erated measurements. The asymmetry (panel d) decreases with
a speed close to the one expected from numerical simulations.
The small discrepancies can be here ascribed to the limited accu-
racy of the experimental detection. The 3D view of the trajectory
(panel a) is also in good qualitative agreement with the numerical
expectations.
Some additional measurements are shown in Figure 13. Car-

rying out a large number of randommeasurements on the phase
plane (500 points), we were able to measure the growth of the lat-

Figure 13. a) Growth of the spectral sidebands |Δa±2|2 (panels 1 and 2,
respectively) after a propagation distance of Δ𝜉 = 0.21 according to the
starting value on the phase portrait (𝜂0,𝜙0) for an initially symmetric wave-
form. The experimentalmeasurements (a1) are interpolated using a neural
network (a2) and compared with the NLSE simulation over one segment
(a3). b) Evolution of the asymmetry parameter for initial values 𝛼0 = ±0.15
and for different values of 𝜂0. Numerical simulations are compared with
experimental results (panels c1 and c2, respectively).

eral sidebandsΔa±2 (here, recorded for a null initial asymmetry).
For improved visualization, the discrete set of measurements
(panel (a1)) is interpolated using the universal interpolation fea-
tures of a simple neural network,[37] leading to panel (a2). The
experiments clearly reproduced the qualitative expected trends
recalled in panel (a3), with a much more pronounced growth of
the extra-sidebands for the right side of the separatrix.
We also performed measurements for the longitudinal evolu-

tion of the asymmetry coefficient for various values of 𝜂0 and for
𝛼0 = ±0.15, the initial sidebands being kept in phase. The exper-
imental trends reported in panel (b1) of Figure 13 are in qual-
itative agreement with the ones obtained numerically from the
simulation of the full NLSE (panel (b2)). They confirm that an
opposite value of the initial asymmetry leads to a mirror evolu-
tion and that the absolute value of the asymmetry is also reduced
over propagation, tending asymptotically to values close to zero.
The results also stress that the decrease rate is not dramatically
dependent on the value of 𝜂0.

5. Conclusion

In conclusion, we have investigated in this paper how the asym-
metry parameter between the three principal spectral compo-
nents evolves in systems involving the four-wavemixing process.
Whereas this quantity is conserved in an ideal system without
any additional cascaded mixing, the generation of spectral com-
ponents in the framework of the non-linear Schrödinger equa-
tion leads to different and more complex dynamics where the
asymmetry fluctuates widely, possibly changing sign. The study

Ann. Phys. (Berlin) 2024, 2300489 © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH2300489 (9 of 11)
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of a third system based on iterated propagation and much closer
to the ideal case revealed that the idealized description misses
some key interaction paths that ultimately result in the loss of
the asymmetry, even if the extra sidebands are kept insignificant.
Indeed, even a very weak generation of additional spectral com-
ponents is enough to affect the asymmetry conservation, leading
to the decay of this parameter down to a zero value and stabiliz-
ing the Fermi-Pasta-Ulam-Tsingou recurrent behavior. A pertur-
bative analytical approach enabled us to gain a physical under-
standing of the physical processes that break this conservation
law, as well as the impact of the initial phase. The dependence of
the observed behavior on the position in the phase plane was also
studied and these various trends were confirmed experimentally.
Therefore, the modification of the difference level between the
first lateral sidebands reveals the existence of cascaded four-wave
interactions.
The study highlights the great care that has to be taken when

discussing the conservation of invariants. While the growth of
sidebands may seem insignificant at first sight, given their 50-
fold smaller amplitude, their cumulative effect nevertheless has
a very real impact that cannot be overlooked. We have empha-
sized their impact on the asymmetry parameter but one can also
mention other strong consequences such as the impossibility of
generating a stationary wave in the system (at least not until the
asymmetry has fully dropped down to zero). Indeed, the fixed
point existing in the ideal four-wave mixing[12] is no longer fixed
due to the progressive drop of the asymmetry down to zero. Other
open questions remain such as the modeling of the dynamics
over an arbitrarily large distance by a single set of differential
equations rather than the use of approximate solutions only valid
over a short propagation distance. In that context, involving data-
driven discovery using sparse regressionmay provide some pow-
erful clues.[38]

For the typical range of parameters we have here considered
(−4 < 𝜅 < −1), potential cascaded sidebands do not fall within
the modulation instability gain bandwidth of the pump. How-
ever, the picture may become much richer when considering
−1 < 𝜅 < 0 and may require a non-perturbative treatment.[25]

Our study was primarily focused on degenerate four-wave mix-
ing but the approach can be straightforwardly extended to the
non-degenerate case.[26,39] Our conclusions can also be directly
of interest to other physical systems implying four-wave mixing
interactions and reduced models, as it has been developed in the
field of hydrodynamics for example.[40,41] We also anticipate it
can be helpful in the framework of three-wave interactions and
quadratic nonlinearities.[42,43]
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