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ABSTRACT
Optimizing IO in a type I hypervisor such as Xen is difficult because
of the cost of exchanging data between a VM and the driver. We
address this challenge by proposing FastXenBlk, a new IO driver for
Xen. FastXenBlk uses three mechanisms to improve IO performance.
First, it uses several threads that poll multiple virtual IO queues that
are exposed to a guest in order to execute IOs in parallel. Second, it
batches requests in order to minimize the number of hypercalls to
Xen. And third, it uses kernel bypass in order to avoid system calls
during IOs. We evaluate FastXenBlk using the FIO benchmark with
different access patterns and IO sizes. Our evaluation shows that
FastXenBlk consistently improves the latency and the throughput
for all workloads as compared to tapdisk, the driver currently used
in production, by a factor of up to 3×.
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1 INTRODUCTION
While a few years ago, the cost to access storage mainly came from
the hardware, this is not the case anymore. Modern servers switched
from SATA I solid state drives (SSDs) with a maximum bandwidth
of 0.15GB/s1 to NVMe devices that are directly connected to the
PCIe bus with a bandwidth of up to 3.5 GB/s. As a result, the soft-
ware mechanisms used to virtualize the storage devices now play a
critical role in terms of performance.

With a modern device, optimizing the IO path in a type I hyper-
visor is particularly difficult. A type I hypervisor, such as Xen [3],
enforces security by running the device drivers inside an isolated
virtual machine (VM) named dom0. By isolating the drivers, a type I
hypervisor drastically reduces the attack the surface as compared to
a type II hypervisor (e.g., KVM/Qemu), which runs the hypervisor
on top of a full kernel [4]. For example, in Xen, the attack surface
is limited to a small virtualization layer of only 337 thousand lines
1Up to 0.6 GB/s with SATA III, the latest version of SATA.
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of C code, while the attack surface of KVM/Qemu includes Linux
and its 24 million lines of C code (70 times more lines of code).
However, due to the secure design of Xen, the memory of the VMs
is not visible from dom0 [8]. The device driver located in dom0
thus cannot configure a device to directly access the memory of a
VM that performs an IO. The driver can only read and write data
from/to the memory of dom0, which means that any IO leads to a
costly operation to exchange the read or written data between the
memory of dom0 and the memory of the VM that performs the IO.
With a modern device, this operation to exchange data significantly
slows down IOs. For example, with tapdisk, the main IO driver
of Xen, we measure that exchanging data for a sequential read of
1MiB contributes to more than 80% of the execution time.

In this paper, we explore how we can optimize IO in a type I
hypervisor without breaking the isolation between dom0 and the
VMs. To that end, we propose to combine three different techniques.
The first technique consists in increasing the throughput by running
multiple IOs in parallel. To that end, we propose to expose multiple
virtual IO queues in the VM, and to use multiple threads in dom0
to execute the IOs.

The second technique consists in batching the operations that
are used to exchange data between a VM and dom0. We measure
that for small IOs, the overhead of exchanging data mostly comes
from the cost of performing a hypercall to a copy or remap function
in Xen. By batching the hypercalls to this function, we significantly
decrease the cost of exchanging data.

The last technique consists in optimizing the control path as
much as we can. The driver can either run inside the kernel of
dom0, or as a userland process in dom0. We choose the second
option due to industrial considerations, since doing so eases (i) the
deployment of the driver as it does not require changes to the Linux
source code, and (ii) the implementation of advanced features such
as snapshotting. We bypass the kernel of dom0 by using the Stor-
age Performance Development Kit (SPDK) [9]. SPDK is a userland
library which makes it possible to bypass the kernel of dom0 by
directly mapping the hardware queues of a storage device inside a
userland process—the driver, in our design. Thanks to SPDK, the
driver executes each IO in dom0 without requiring system calls or
a copy between the driver and the kernel of dom0.

We implement our three optimizations in a new driver for Xen
named FastXenBlk. FastXenBlk consists of 1,600 lines of code. At a
high level, FastXenBlk is a userland process in dom0 which (i) runs
multiple threads to handle multiple virtual IO queues in parallel,
(ii) relies on batching to minimize the number of hypercalls to Xen,
and (iii) relies on SPDK to bypass the kernel of dom0. FastXenBlk
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Parallelism Usability Isolation Performance
Driver Virtual Queues Threads Features Isolated from VM Reception Control path

blkback multiple single simple yes kernel blkback → hardware
tapdisk single single advanced yes userland tapdisk → libaio → hardware
virtio-blk multiple single advanced no userland qemu → libaio → hardware
FastXenBlk multiple multiple advanced yes userland FastXenBlk → hardware
orange: kernel module blue: userland process

Table 1: Main virtual IO devices

is being developed as part of our effort to improve IO performance
in the XCP-ng distribution of Xen.2

We evaluate FastXenBlk with FIO [2]. FIO covers a wide range
of access patterns, which highlights how FastXenBlk will behave in
production, with real workloads. Our evaluation shows that when
FastXenBlk exposes 4 virtual queues to the guest VM, it has a an
at least 2.88× higher throughput than tapdisk, the driver currently
used in production in Xen. FastXenBlk can reach a throughput of
1,438MiB/s, which represents 65% of the maximal possible through-
put that we observe when running FIO in native Linux.

We also compare FastXenBlk with KVM/Qemu and its state-of-
the-art virtio-blk device driver. As already stated, KVM/Qemu is
a type II hypervisor with a much larger attack surface than Xen.
However, the type II design is more efficient for IOs than the type I
design since, in the type II design, the device driver has full access
to VM memory. The driver can thus configure the storage device to
directly access the memory of the VMs that use the device, which
avoids the costly operation that is used in a type I hypervisor
to exchange data between dom0 and the VM. Our results show
that the throughput of FastXenBlk is between 3× lower and 1.7×
higher than the throughput of virtio-blk. We identify that the lower
performance of FastXenBlk is due to the type I hypervisor design,
which trades direct access to VM memory for better isolation. This
result shows that, with modern storage devices, there is a trade-off
between the strong isolation of type I hypervisors and the high
performance of type II hypervisors.

To summarize, this paper presents the following contributions:
• It proposes FastXenBlk, a virtual disk IO driver for Xen that
uses parallelism, batching, and kernel bypass to optimize IO
performance in a type I hypervisor.

• It evaluates FastXenBlk with FIO, and shows that, thanks to
the three optimizations described above, FastXenBlk has at
least a 2.88× higher throughput than tapdisk, the driver that
is currently used in production by Xen.

• It shows that FastXenBlk remains up to 3× less efficient than
virtio-blk due to the cost to exchanging data between dom0
and the VM that perform the IOs.

• It shows that the performance of modern storage devices in-
troduces a new trade-off between security and performance.

The remainder of the paper is organized as follow. §2 presents
the background, §3 the design of FastXenBlk, and §4 the evaluations,
§5 related work, and §6 the conclusions.

2 BACKGROUND
The software architecture used to virtualize a storage device con-
sists in three components: a communication channel, a frontend
2https://xcp-ng.org/

driver, and a backend driver. The communication channel connects
the frontend driver to the backend driver. The frontend driver is
located inside the guest operating system of a VM. It exposes an
interface to access the storage to the guest operating system, and
forwards the requests to the backend driver. The backend driver is
located inside the host system for a type II hypervisor, and inside
the dom0 VM for a type I hypervisor. It receives the requests from
the frontend and execute them on the real hardware.

The remainder of this section discusses several implementations
of this overall design that were proposed for KVM/Qemu and Xen.

2.1 Communication channels
This section presents the main communication channels used in
Xen and in KVM/Qemu.

2.1.1 XenStore (Xen). In Xen, all VMs can access a key-value store
named the XenStore. The XenStore is located in dom0. It interprets
a key as a path, and a VM is only granted access to the values
associated to a subset of the paths. To access data, a VM sends a get
or put request to dom0, and triggers the execution of the request in
dom0 by sending an IRQ.

2.1.2 Grant tables (Xen). Communicating through the XenStore
is inefficient because of the IRQ, which triggers an hypercall to
Xen and then an upcall to dom0. Accessing the XenStore is also
inefficient because the XenStore handles the put and get requests
sequentially. For this reason, the XenStore is often used during boot
time to establish more efficient communication channels. To that
end, Xen provides grant tables.

A grant table is a structure used by a granter (a VM or dom0)
to expose regions of its physical address space. In detail, a grant
table is an array of entries that is indexed by a grant identifier. An
entry contains the identifier of a grantee (another VM or dom0),
and a description of the shared memory region. Typically, at boot
time, a granter inserts an entry into the grant table and sends the
grant identifier to the grantee by registering it into the XenStore.
When the grantee finds the grant identifier in the XenStore, it
performs a hypercall to map or copy the memory region of the
granter in its physical address space. In the case of a map, typically,
the granter and the grantee do not use the XenStore anymore: they
only communicate through a ring buffer that is stored inside the
shared memory region.

2.1.3 Virtio (KVM/Qemu). In KVM/Qemu, communication is im-
plemented by using a virtio device. A virtio device is a virtual PCIe
device that is exposed in the physical address space of the guest.
The guest sends requests by writing inside the memory of the virtio
device, and receives responses by reading its memory. The requests

https://xcp-ng.org/


FastXenBlk: high-performance virtualized disk IOs without compromising isolation (industry track) Middleware ’23, December 11–15,2023, Bologna, Italy

Kernel
User

User process

Syscalls

Block
layer

blkfront

libaio

Requests
Responses

Tapdisk

NVMe

Dom0 DomU

IO
Queue

NVMe
Driver

Block
layer

Kernel
User

User process

Syscalls

Block
layer

blkfront

FastXenBlk

NVMe

Dom0 DomU

Queue
3

Requests
Responses

Queue
2

Queue
1

(i) tapdisk (ii) FastXenBlk

Figure 1: Tapdisk and FastXenBlk architectures.

are transmitted through a ring buffer in a memory region that is
shared between the host and the guest.

Since KVM/Qemu already has full access to the memory of the
VMs, it does not need a mechanism to dynamically create new
memory regions that are shared between the host and the guest.
This property makes communication in KVM/Qemu simpler than
in Xen. The ring buffers of virtio are sufficient to exchange mes-
sages between the host and the guest, and, if the message contains
pointers to the memory of the guest, the host directly uses them to
access the memory of the guest.

2.2 Frontend drivers
In our study, we focus on the most efficient frontend drivers for an
NVMe device in Xen and Linux/KVM.

2.2.1 Blkfront (Xen). Blkfront is a Linux kernel module. It exposes
a classical block device interface. It can handle one or multiple
virtual IO queues. Each virtual queue is a memory region that is
shared with the backend driver through the grant tables.

A virtual queue is implemented as a ring buffer. It is used to
exchange requests between the VM and dom0. A request contains
the type of operation (read, write or discard), a location on the
storage device, and a set of grant identifiers, which allows dom0
to access the IO buffers of the VM. Because the size of a request
is limited to 4KiB, a request cannot contain more than 11 grant
identifiers, which translates to request of at most 44 KiB.

When blkfront prepares a request, it adds the IO buffers one by
one to the grant table. It removes them from the grant table when
dom0 sends an acknowledgment.

2.2.2 Virtio-blk (KVM/Qemu). Virtio-blk [1] is a Linux kernel mod-
ule that also exposes a classical block device interface. As blkfront,
virtio-blk can handle one or multiple virtual IO queues, which
allows the guest to execute IOs in parallel.

Instead of virtio-blk, a guest can use virtio-scsi, which considers
that the virtual PCIe exposed by virtio implements the SCSI protocol.
However, virtio-blk is more efficient than virtio-scsi for NVMe
devices, which are the focus of our work. Therefore, we do not
consider virtio-scsi in the rest of this paper.

2.3 Backend drivers
Several backend drivers have been proposed for KVM/Qemu and
Xen. As shown in Table 1, they implement different trade-offs be-
tween parallelism (e.g., support for multiple virtual queues), usabil-
ity (e.g., support for disk snapshots), isolation (between the driver
and the VM), and performance (e.g., shorter control path).

2.3.1 Blkback (Xen). blkback is a backend for blkfront. It is im-
plemented as a Linux kernel module for dom0 in Xen. It supports
multiple virtual IO queues and exhibits excellent parallelism. Since
blkback runs inside the kernel, its control path is especially sim-
ple: it accesses the storage from the kernel directly. In terms of
features, blkback is, however, particularly lacking. It can only use
one full physical partition on the storage device. It also cannot take
a snapshot of the disk, and thus cannot be used for VM migration.
Advanced features could be implemented inside blkback, but due
to the large amount of code that would be required, the Xen de-
velopers consider that it is preferable to implement such features
in userspace. As a result, while blkback is integrated inside the
kernel tree, it is only rarely used in production because it remains
minimalistic in terms of features.

2.3.2 Tapdisk (Xen). Tapdisk is the default storage backend that
is shipped with the XenServer and XCP-ng distribution. It offers
advanced features such as disk snapshot, virtual disks, or disks
stored on logical volume. As shown in Figure 1.(i), tapdisk is im-
plemented as a userland process. It receives blkif requests from
blkfront directly in userland. When it executes a request, it copies
the IO buffers from/to the VM by using the grant tables. In order to
execute an IO request, tapdisk has to call the kernel of dom0. To that
end, it uses libaio, an interface of the Linux kernel which handles
the IOs asynchronously. In term of parallelism, tapdisk is relatively
inefficient. It only implements aminimal blkif interface with a single
virtual queue, and it only uses a single thread to handle requests.

2.3.3 Vhost-blk (KVM/Qemu). Vhost-blk is a backend for virtio-
blk. It runs inside Qemu and has direct access to the memory of
the VM. It offers advanced features, and, like tapdisk, uses libaio to
transfer the requests to the Linux kernel. In terms of parallelism,
performance and features, virtio-blk is by far the most efficient
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backend, especially because it does not have to copy or map the IO
buffers in its address space to handle a request. In terms of isolation,
as discussed in the introduction, the design of KVM/Qemu is not
secure because vulnerabilities in KVM, Qemu, or virtio-blk may be
exploited to maliciously access the memory of the VM.

3 DESIGN AND IMPLEMENTATION
As shown in the previous section, none of the existing backends
provide isolation, performance, parallelism, and usability at the
same time. In order to provide these features, we propose to combine
different techniques: (i) the implementation of FastXenBlk as a
userland process in order to ease its deployment in production and
in order to implement advanced features, (ii) the use of multiple
virtual IO queues and multiple threads to handle the queues, (iii) the
use of batching to decrease the number of calls to Xen to exchange
data between the VM and dom0, (iv) kernel bypass to avoid costly
system calls, and (v) the implementation of FastXenBlk in dom0 by
using the grant tables to enforce isolation.

Figure 1.(ii) presents the overall architecture. Like with tapdisk,
FastXenBlk is a userland process that receives blkif requests directly
from blkfront. Contrarily to tapdisk, which only handles a single
virtual IO queue, FastXenBlk handles multiple IO queues with mul-
tiple threads. Moreover, while tapdisk relies on libaio to send the
requests to Linux, which slows down the control path, FastXenBlk
relies on SPDK. SPDK is a userland library which bypasses Linux
by exposing the hardware IO queues in a process.

3.1 Polling threads and batching
SPDK uses its own lightweight scheduler inside the application.
FastXenBlk integrates itself as an SPDK application by defining
lightweight SPDK threads. FastXenBlk associates a lightweight
polling thread to each virtual IO queue. A polling thread executes a
request from the beginning to the end. FastXenBlk also associates
each polling thread to a single hardware queue of the NVMe, which
is used to actually execute the request.

In order to reduce the number of hypercalls used to copy the IO
buffers, FastXenBlk batches calls to Xen. In detail, when a polling
thread receives a request, it fetches all the requests of the virtual
queue, and calls Xen once to copy or map the IO buffers.

A polling thread handles the requests asynchronously. It executes
a loop, which (i) polls the pending requests from the virtual IO
queues, (ii) handles the pending requests if they exist, (iii) polls the
hardware completion queues of the NVMe, and (iv) acknowledges
the completed IOs to the VM when requests are completed.

3.2 Grant table in FastXenBlk
In order to access the IO buffers of a VM, FastXenBlk can optionally
copy or map the IO buffers.

3.2.1 Grant copy. When FastXenBlk is configured to copy the IO
buffers, it handles a write request by first calling Xen in order to
copy the IO buffers in large pages of 2MiB inside its address space.
FastXenBlk then forwards the request to the NVMe device through
a hardware queue.

For a read request, FastXenBlk transforms the request in order
to read data from the NVMe device into large buffers of 2MiB that
are located inside its address space. When FastXenBlk receives

the completion message from the NVMe device, it copies its local
memory to the IO buffers of the VM with a single hypercall.

3.2.2 Grant map. When FastXenBlk is configured to map the IO
buffers, it maps them inside its address space just after having
received a read or write request. Then, FastXenBlk forwards the
request to the NVMe device, which accesses the memory of the VM
in-place, without requiring an extra copy since the IO buffers of
the VM are mapped inside dom0.3 Moreover, upon reception of the
completion message from the NVMe, FastXenBlk unmaps the IO
buffers from dom0 by executing an hypercall.

3.3 Virtual versus physical addresses
FastXenBlk runs as a process in userland and thus uses guest virtual
addresses. However, NVMe devices address the memory of dom0 by
using guest physical addresses, not by using guest virtual addresses.
Thus, FastXenBlk has to convert the virtual addresses of the buffers
into guest physical addresses before emitting a request to the NVMe.
To that end, FastXenBlk uses a mechanism provided by SPDKwhich
relies on the /proc/self/pagemap interface provided by the Linux
kernel. This interface is slow: each access to /proc/self/pagemap
triggers a system call to inspect the page table of the process. For
this reason, SPDK uses two techniques to minimize the number of
accesses to /proc/self/pagemap. First, SPDK only considers large
pages of 2MiB. By only considering large pages, a single access to
/proc/self/pagemap gives the physical addresses of 4,096 pages
of 4 KiB. And second, SPDK maintains, in userland, a map which
caches the physical addresses of 2MiB-long IO buffers that are
recycled between the IOs.

When FastXenBlk copies the IO buffers of the VM inside the mem-
ory of dom0, it can recycle the SPDK buffers, which allows SPDK
to avoid costly accesses to /proc/self/pagemap. Unfortunately,
when FastXenBlkmaps the IO buffers of the VM inside the memory
of dom0, it creates new buffers for which the physical addresses
are not yet known. This leads to accesses to /proc/self/pagemap.
Moreover, while SPDK has support for 2MiB pages, a blkif request
only contains pages of 4 KiB. For this reason, FastXenBlk has to use
/proc/self/pagemap for each 4 KiB-page of a blkif request, which
still slows down FastXenBlk when it maps the IO buffers.

4 EVALUATION
This section presents our experiments.

4.1 Hardware and software settings
We use a 2-socket machine Intel Xeon E5-2637 v2 CPUs @ 3.50GHz
and an Intel Optane SSD 900PNVMe drive. For the Xen experiments,
we use the XCP-ng Xen distribution version 8.2. It includes Xen
version 4.13.4 (XCP-ng release 9.21.2.xcpng8.2) for the virtualization
layer, and a custom XCP-ng CentOS-based distribution of Linux
for dom0 (Linux 4.19.19 release 7.0.15.3.xcpng8.2, gcc 4.8.5, glibc
2.17 release 222.el7, and tapdisk 3.37.3 release 1.0.1.xcpng8.2). The
VM runs an Arch Linux distribution (Linux 5.18.15, gcc 12.1.1, and
glibc 2.36). For the Linux/KVM experiments, the guest runs the
same Arch Linux distribution, and the host runs Debian 11 (Linux

3The NVMe directly accesses the physical address space of dom0 because the IOMMU
maps the guest physical address of dom0 to the host physical addresses of the machine.
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Figure 2: Throughput of the backends.
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Figure 5: Scalability of FastXenBlk_copy with multiple queues.

5.10.179, and glibc 2.35) with Qemu 5.2.0. In all experiments, the
drive is formatted as ext4.

We evaluate FastXenBlk in two flavors: FastXenBlk_copy copies
the data from the VM to dom0 (see §3.2.1) while FastXenBlk_map
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dynamically remaps the IO buffers (see §3.2.2). We compare Fast-
XenBlk with tapdisk in Xen, with virtio-blk in KVM/Qemu, and
with a native version that maximizes the throughput by using SPDK.
In Figures 2, 3 and 4, FastXenBlk_copy, FastXenBlk_map and virtio-
blk expose 4 virtual IO queues to the guest VM. In Figure 5, we vary
the number of virtual IO queues.

We evaluate the different configuration with the state-of-the-art
disk benchmarking tool FIO version 3.29. FIO runs 4 processes. Each
process accesses 5GiB of data by using a single thread. Therefore,
in total, a run accesses 20GiB of data. We present the performance
with IOs of 4 KiB and of 1MiB block sizes in order to study how the
drivers react with both small and large IOs. Moreover, we present
experiments with both sequential and random access patterns, as
they exhibit different performance behaviors.

4.2 Comparison between the backends
FastXenBlk_copy versus tapdisk. In Figure 2, we observe that
with small IOs of 4 KiB, FastXenBlk_copy exhibits a speedup in
terms of throughput of 2.88× to 3.02×, as compared to tapdisk,
thanks to batching and better parallelism. In Figure 3, we observe
that FastXenBlk_copy also divides latency by 2.94× to 3.13× thanks
to kernel bypass (i.e., the use of SPDK). For large IOs of 1MiB,
FastXenBlk_copy exhibits a speedup in terms of throughput of
1.51× to 1.61× (Figure 2). FastXenBlk also divides latency by 1.52×
to 1.64× (Figure 4) in this case. Overall, these results show the
benefits of our different optimizations.

FastXenBlk_copy versus FastXenBlk_map. In Figures 2, 3
and 4, we also observe that FastXenBlk_copy significantly outper-
forms FastXenBlk_map. With FastXenBlk_map, FastXenBlk has
to map the read and written memory regions, and then it has to
unmap them, which multiplies by two the number of hypercalls to
Xen as compared to FastXenBlk_copy (see §3.2.1 and §3.2.2). More-
over, as discussed in §3.3, in FastXenBlk_map, SPDK has to retrieve
the physical address of the pages after the remapping. This opera-
tion significantly slows down IOs as compared to FastXenBlk_copy,
which uses pre-mapped SPDK buffers of 2MiB.

FastXenBlk_copy versus virtio-blk. In Figures 2 and 4, we
observe that virtio-blk is almost at the level of native with large
buffers of 1MiB. With a large buffer, the time to forward the request
from the VM to the storage device becomes negligible as compared
to the time spent in the storage device to copy the data between the
device and the memory. Since the NVMe device directly accesses
the memory of the VM with virtio-blk, the performance is almost
as good as that of native. We also observe that, with a large buffer,
the throughput of FastXenBlk_copy is between 1.5× to 2× lower
than with virtio-blk. By using Linux perf, we identify that almost
all the overhead is caused by the hypercall that is used to copy
memory between dom0 and the VM. This result highlights the cost
of exchanging data between a VM and dom0 in a type I hypervisor.

In Figures 2 and 3, we observe that FastXenBlk_copy outperforms
virtio-blk in terms of throughput and in terms of latency for random
reads and random writes. This is caused by the optimized IO path of
FastXenBlk_copy: thanks to kernel bypass, FastXenBlk_copy avoids
costly communication between FastXenBlk and the kernel, while
virtio-blk relies on the libaio interface of the host kernel to execute

IOs. As shown by Yang et al. [10], replacing libaio in KVM/Qemu
eliminates this cost.

With sequential reads and writes, virtio-blk still performs 1.5×
to 2.9× better than FastXenBlk_copy in terms of throughput and
latency. With a sequential access pattern, the guest kernel quickly
detects that prefetching data is useful. It thus sends large IO requests,
and thus behaves similarly as with large IOs of 1MiB.

4.3 Scalability
Figure 5 presents the scalability of FastXenBlk_copy. We observe
that adding more virtual IO queues in FastXenBlk_copy increases
the throughput, regardless of the configuration (random or sequen-
tial, read or write, or small or large IOs). This result is explained by
the use of threads to handle the IO queues in FastXenBlk, which
execute the submitted IOs in parallel.

5 RELATEDWORK
One of the notable works on Xen is the implementation of virtio
over grants, which is an ongoing effort in the Xen community [5].
This implementation is at its early stage, and therefore, we can not
yet compare the performance of FastXenBlk and virtio over grants.
The virtio over grants implementation relies on ARM features such
as the use of MMIO transport to create the communication ring.
As a result, this implementation is not easily portable to other
architectures such as x86_64. This is not the case of FastXenBlk
since FastXenBlk only relies on generic and portable components.
Moreover, the current implemented backend of virtio over grants
does not use kernel bypass, and since the code is not yet available,
we do not know if it implements multiple threads or batching.

On KVM, other works lower the cost of multiplexing hardware.
For example, Peng et al. [6] directly expose the NVMe hardware
queues inside the guest, and require minimum request rewriting in
order to share the devices among VMs [6]. However, implementing
advanced features such as backup or migration seems difficult with
this architecture because the VMs do not coordinate when they
access the disk. With FastXenBlk, we use a centralized driver, which
relies on SPDK and already provides such advanced features.

Using SPDK as a backend driver in KVM/Qemu was proposed by
Yang et al. [10]. Their implementation has excellent performance,
but it requires full access to VM memory. In FastXenBlk, we also
use SPDK, but we preserve the isolation of a type I hypervisor.

Ram et al. [7] modified the grant table mechanism in order to
reuse a shared buffer between IOs. They do not use multiple threads,
batching or kernel bypass like FastXenBlk. Their solution also re-
quires heavy modification of the VM’s kernel, which makes it hard
to deploy in production. We are currently investigating a similar
solution to reuse shared buffers, but without requiring heavy modi-
fications to the VM’s kernel.

6 CONCLUSION AND FUTUREWORK
This paper presents FastXenBlk, a new disk IO driver for Xen. FastX-
enBlk uses a combination of parallelism, batching and kernel by-
pass to significantly increases performance as compared to tapdisk.
FastXenBlk, however, remains slower than virtio because of the
cost of isolating dom0 in Xen.
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