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Abstract: This paper presents experimental and numerical studies on the erosion of a horizontal 1

granular bed by a two-dimensional plane vertical impinging jet to predict the eroded craters’ size 2

scaling (depth and width). The simulations help understand the microscopic processes that govern 3

erosion in this complex flow. A modified jet-bed distance, accounting for the plane jet virtual origin, 4

is successfully used to obtain a unique relationship between the crater size and a local Shields 5

parameter. This work develops a two-phase flow numerical model to reproduce the experimental 6

results. Different options for sediment’s solid to liquid transition during erosion are proposed, tested, 7

and discussed. One model is based on unified equations of continuum mechanics, others on modified 8

closure equations for viscosity or momentum transfer. A good agreement between the numerical 9

solutions and the experimental measurements is obtained. 10

Keywords: jet erosion test; sediment transport; numerical modeling; two-phase flow model; experi- 11

ments; water injection dredging 12

1. Introduction 13

Vertical jet-induced scour erosion of soil has been studied for many industrial applica- 14

tions such as aerospace or hydraulic engineering [1–6]. As reported by Metzger et al. [1,2], 15

in aerospace engineering, soil erosion and crater formation could generate problems for 16

launching and landing spacecraft. In hydraulic engineering, we have several examples 17

such as the work of Rouse [3] for testing criteria on erosion, the study of Hanson and Cook 18

[4] assessing in situ the erodibility of soil material, and the research developed by Hanson 19

and Hunt [5] in the so-called Jet Erosion Test (JET). We also have the work of Perng and 20

Capart [6] for Water Injection Dredging (WID) and trenching in harbors by jet translation 21

and possible jet inclination. 22

Experimental investigations of the jet normal impingement on plane surfaces have 23

been conducted in various conditions. Although the jet nozzle section is circular in most 24

cases [4,7–13], it can also be rectangular [14–17]. The circular and rectangular cases are 25

called quasi-three-dimensional (3D) axisymmetric and two-dimensional (2D) plane jets, 26

respectively. The jet can be either gas [1,2] or liquid [4,6] within unsubmerged [1,2] or 27

submerged [8–17] conditions. Finally, the soil can be either cohesive [10] or non-cohesive 28

[12,14]. 29

Based on experiments of 3D axisymmetric jets impinging on a smooth non-erodible 30

wall, Rajaratnam and Beltaos [8] and Phares et al. [16] divide the flow into three zones: 31

• The free jet region. There is no influence on the boundary. It can be described by 32

self-similar solutions [18,19]. 33
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• The impinging region. It is characterized by a stagnation point on the jet axis at the wall 34

with a deflexion of flow streamlines [20]. 35

• The wall jet region. It is close to the wall but away from the impinging zone where the 36

flow is mainly parallel to the wall [21–23]. 37

Based on pressure and shear stress measurements on the bed, Rajaratnam and Beltaos [8] 38

reported that the most extreme hydrodynamic action is located in the impinging region 39

with maximum pressure at the stagnation point and maximum shear stress just away from 40

it. 41

On erodible beds, two main crater shapes have been identified [1,2,7–9]. The first one 42

consists of wide and shallow craters for high impingement heights L (distance from the jet 43

nozzle to the initial flatbed). Here, the flow streamlines weakly deflect in the impinging 44

region, and a smooth crater shape remains stable after the jet flow stop. For the second 45

shape, narrower and deeper craters are obtained for small L and large flow rates. Here, 46

the flow streamlines strongly deflect, and the crater shape changes after the jet stop with 47

granular avalanches lowering the steep slopes. 48

(a)
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D

D

(b)

Figure 1. Geometrical parameters of the eroded sediment bed for a flow (a) weakly and (b) strongly
deflected. Here, H and D are the crater depth and width, respectively, and L is the distance above the
granular bed .

Aderibigbe and Rajaratnam [9] state that these two crater regimes depend on the value 49

of an adimensional erosion parameter. This parameter is defined for quasi-3D axisymmetric 50

jets as 51

E = UJ
b
L

(
1

(s − 1)gd

)1/2
, (1)

where UJ is the mean velocity at the nozzle outlet, b is the nozzle diameter, L is the 52

impingement height, d is the sediment grain size, and s = ρp/ρ f is the particle/fluid 53

density ratio. This parameter is sometimes called a densimetric Froude number [15] and 54

roughly corresponds to the Rouse number [3]. 55

For the 3D axisymmetric experimental data [9], the erosion parameter E ranged up to 56

5. This parameter has been used by Sutherland and Dalziel [13] to investigate the crater 57

formation dynamics in granular beds by a 3D water jet. In the 2D turbulent plane jet case, 58

the erosion threshold is well governed by E, as shown in [15]. Recently, Badr et al. [17] 59

proposed that the modified Shields can control the erosion threshold for both turbulent 60

and laminar regimes. However, we should consider the correct decay law of self-similar 61

regimes and the precise position of the corresponding virtual origin. Moreover, in the 2D 62

plane jet test case of Badr et al. [17], the critical value of the local Shields number for erosion 63

is a constant Shc ≈ 1 independently of the jet flow regime and the grain diameter of the 64

bed. 65

On the other hand, several numerical studies have been proposed to study the crater 66

formation by an incident jet. We can clearly identify two types of numerical modeling 67
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frameworks. In the first type, numerical models apply Computational Fluid Dynamics 68

(CFD) software for computing the fluid motion only above the bed [1,24–26]. The second 69

modeling framework is based on two-phase approaches, in which the motion equations 70

solve both solid and fluid phases [27–34]. 71

The common point of models based on CFD software is that the sediment bed is 72

considered as impermeable wall (no-slip conditions). But their modeling approaches 73

mainly differ in treating the two-phase interaction between the fluid and the sediment bed. 74

For example, Metzger et al. [1] use CFD++ software to study the steady-state flow above 75

different stationary boundary conditions (or crater geometries) but calculate the porous 76

flow inside the sediment bed by Darcy’s law and pressure values. Weidner et al. [24] and 77

Mercier et al. [25] use FLUENT to dynamically adapt the computational grid into the bed’s 78

evolving geometry; however, they do not consider the sediment below the bed interface. 79

For the two-phase formulation, the Eulerian approach usually models the fluid phase; 80

but, Eulerian or Lagrangian techniques can be used for the solid phase. A Lagrangian model 81

for the solid phase enables a microscopic description of the particle motion. The flowing 82

(eroded) and jammed (non-eroded) regions in the sediment bed are directly simulated 83

grain by grain. However, this framework suffers from high computational costs due to the 84

number of solid particles. For examples of this formulation, we refer the work of Kuang et 85

al. [27], and more recently the studies of Benseghier et al. [28,29]. 86

On the other hand, in the Eulerian-Eulerian framework, clear fluid and solid parti- 87

cles are treated as two interpenetrating fluids. The fluid-particles and particle-particle 88

interactions are described at the scale of the continuum media [31–34]. However, if only 89

a liquid-like behavior of solid particles is modeled to handle the motion of the granular 90

phase for the jet problem, the sediment motion becomes unrealistic, particularly in the 91

jammed region [31,32]. 92

Therefore, solid-like and liquid-like behaviors of sediment are essential and need to 93

be considered for more accurate models. In recent years, few efforts has been performed 94

to include this property in the Eulerian approach; for example, Yuan et al. [32] apply an 95

incipient motion theory in their numerical simulations, Uh Zapata et al.[33] proposed a 96

modified inter-phase momentum transfer formulation, and Wang et al. [34] use a model 97

for the solid-fluid mixture combined with a viscoplastic description of soil. Consequently, 98

this paper proposes a unified formulation for continuum mechanics to simulate vertical-jet 99

induced erosion with a unique local parameter governing the solid/liquid transition for 100

the sediment. This model is based on a technique initially developed by Greenshields and 101

Weller [35] to handle fluid-structure interactions of flexible and impermeable tubes under 102

fluid flows. 103

This paper’s originality relies on the experimental results and new numerical model 104

for submerged vertical plane jet-induced craters on horizontal non-cohesive sediment. The 105

remaining document organization is as follows. Section 2 presents the experimental setup to 106

generate craters, measuring their sizes for different impingement distances and jet velocities. 107

The presentation of the two-phase model, using the two-phase Euler-Euler approach, is 108

proposed in Section 3. We give a complete description of the model improvements, which 109

produce both solid-like and liquid-like behaviors of the sediment. Next, Section 4 shows 110

that the correct local Shields number choice for this governing parameter leads to very close 111

agreement with the experimental results. Finally, we present the discussion, conclusions, 112

and future work. 113

2. Laboratory Experiments 114

In this section, the experimental results for the crater depth and width are analyzed 115

following Badr et al. [17] in terms of the self-similar jet model. We pay particular attention 116

to the corresponding virtual origin. Simple scaling for the crater sizes is found in terms of a 117

local erosion parameter. 118
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2.1. Experimental Setup 119

The experimental set-up consists of a vertical plane water jet impinging a horizontal 120

granular bed immersed in water, as sketched in Figure 2. The grains are monodisperse glass 121

beads with diameter d = 350 µm with the density ρp = 2.5 × 103 kg/m3. The granular bed 122

is 10 cm in height (about 300-grain diameters) with a solid volume fraction of about 0.6. It 123

lies on the bottom of a 3D rectangular container of dimensions 50 × 20 × 3.2 cm3 filled with 124

water (density ρ f = 103 kg/m3 and kinematic viscosity ν f = 10−6 m2/s), see Figure 2(a). 125

The container walls are in PolyMethyl MethAcrylate (PMMA), allowing visualization. 126

A vertical plane water jet is generated at the exit of an injector of an inner rectangular 127

cross-section of dimensions b × wJ = 0.4× 2.6 cm2. The outside cross-section of the injector 128

is 1 × 3.2 cm2 to fit within the container gap. The injector is at a distance L above the 129

granular bed, see Figure 2(b). 130

The mean velocity of the jet is given by UJ = Q/(bwJ). A gear pump controls the 131

steady water flow Q with very low negligible fluctuations in a closed circuit. Here, water 132

is sucked through the bed from the porous bottom of the container and re-injected by the 133

pump through the injector. 134
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Figure 2. Sketch of the device to study the erosion of a granular bed by a water jet: (a) hydraulic
circuit to prepare the initial bed by fluidization, and (b) water jet injector dimensions.

In this paper, the jet Reynolds number is defined as 135

Re =
UJb
ν f

. (2)

The injector is long enough (20 cm) to ensure a laminar regime inside the injector. It also 136

has a parabolic Poiseuille velocity profile across the thickness b at the nozzle in the range of 137

jet Reynolds numbers Re < 2 × 103. 138

2.2. Measure of the Crater Dimensions 139

The erosion process is observed until the resulting crater reaches a quasi-stationary 140

state in a few seconds. The size of the jet-induced scour hole is characterized by the two 141

measured parameters: crater depth and width. The depth, H, is defined as the distance 142

from the bottom of the crater to the initial bed surface. The width, D, is also determined 143

at the level of the initial bed surface and not at the level of the crater crests, as shown in 144

Figure 1. 145
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The measurements are extracted from the images taken by a camera placed in front of 146

the container with backlighting. When the crater stops evolving, we measure the results 147

from the difference between the quasi-stationary image and the initial flatbed image. This 148

procedure allows an easy and accurate determination of H and D. It is important to remark 149

that the measured crater has dynamical sizes, which results from the dynamical crater 150

equilibrium sustained by the steady jet flow. In that case, the dynamic angle may be larger 151

than the avalanche angle. 152

2.3. Experimental Results 153

The crater size measurements are shown in Table 1 and Figure 3. We use six different 154

jet velocities in the range of 0.16 < UJ < 0.47 m/s (630 < Re < 1900) and different jet-bed 155

distances (2 ≤ L/b ≤ 40). Figure 3 shows the crater depth H and width D normalized by 156

the jet thickness b. 157

Table 1. Experimental results using different experimental parameters of UJ , L and jet thickness
b = 0.004 m.

Mean
velocity

Reynolds
number

Impingement
distance

Crater
width

Crater
depth

Mean
velocity

Reynolds
number

Impingement
distance

Crater
width

Crater
depth

UJ (m/s) Re L (m) D (m) H (m) UJ (m/s) Re L (m) D (m) H (m)

0.4712 1885 0.1454 0.0152 0.0914 0.3140 1256 0.1117 0.0078 0.0446
0.4712 1885 0.1305 0.0209 0.0953 0.3140 1256 0.1039 0.0086 0.0429
0.4712 1885 0.0848 0.0223 0.0672 0.3140 1256 0.0885 0.0114 0.0407
0.4712 1885 0.0596 0.0254 0.0570 0.3140 1256 0.0753 0.0130 0.0433
0.4712 1885 0.0360 0.0252 0.0340 0.3140 1256 0.0626 0.0172 0.0408
0.4712 1885 0.1086 0.0253 0.0906 0.3140 1256 0.0514 0.0159 0.0457
0.4314 1726 0.1590 0.0055 0.0871 0.3140 1256 0.0419 0.0214 0.0509
0.4314 1726 0.1259 0.0129 0.0864 0.2356 942 0.0681 0.0021 0.0254
0.4314 1726 0.0796 0.0209 0.0699 0.2356 942 0.0644 0.0051 0.0281
0.4314 1726 0.0630 0.0204 0.0475 0.2356 942 0.0521 0.0088 0.0275
0.4314 1726 0.0429 0.0252 0.0502 0.2356 942 0.0397 0.0119 0.0243
0.3926 1570 0.1063 0.0146 0.0780 0.2356 942 0.0326 0.0110 0.0198
0.3926 1570 0.1018 0.0231 0.0711 0.2356 942 0.0207 0.0123 0.0120
0.3926 1570 0.0766 0.0218 0.0615 0.2356 942 0.0098 0.0205 0.0190
0.3926 1570 0.0561 0.0216 0.0499 0.1570 628 0.0534 0.0042 0.0184
0.3926 1570 0.0341 0.0228 0.0324 0.1570 628 0.0412 0.0061 0.0167
0.3926 1570 0.0200 0.0248 0.0359 0.1570 628 0.0291 0.0072 0.0160

Figure 3(a) shows that for a given mean jet velocity UJ , the crater depth H is higher 158

at lower L values. Furthermore, H decreases towards zero as L increases. Above a critical 159

distance, Lc, there is no erosion and thus no crater formation is seen anymore. Note that the 160

critical distance Lc also increases with UJ . For a given value of L (see for instance L/b = 10), 161

H increases with the jet velocity UJ . At low enough UJ , here UJ < 0.1 m/s, no erosion 162

can be seen whatever the value of the jet-bed distance. On the other hand, Figure 3(a) 163

shows that the crater width D increases with L and UJ for a non-zero value, D0, close to 164

the erosion threshold. 165
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Figure 3. Experimental results of the crater (a) depth and (b) width normalized by the jet width b as
function of the normalized jet-bed distance L/b for different jet Reynolds numbers.

Previous behavior can be understood when considering the jet spatial evolution 166

downstream of the injector nozzle. As the jet Reynolds number is larger than 200, the jet 167

regime is turbulent with a local velocity u0 at the jet axis. This velocity decreases according 168

to the distance L with a law that can be approximated by the following self-similar model 169

for free jets [36]: 170

u0

UJ
=

1
K
√

L/b − λ/b
, (3)

where K ≈ 1/2 is the decay rate and λ is the distance of the virtual origin of the jet from the 171

nozzle exit. Here λ > 0 for a virtual origin downstream of the jet nozzle. In the proposed 172

experimental conditions, λ is equal to 10b. From jet momentum conservation, the jet width 173

δ increases in the meantime with L by the following law: 174

δ

b
= K2(L/b − λ/b), (4)

where K2 ≈ 1/4 corresponds to the jet opening angle θ = tan−1(K2) ≈ 15o. We remark 175

that the jet velocity spatial profile (3)-(4) is only valid downstream the potential core. By 176

contrast, in the injector, the jet velocity u0 remains constant and equal to u0 = (3/2)UJ for 177

a laminar parabolic Poiseuille profile. 178

In such a self-similar model, the reduced jet-bed distance, L − λ, appears as the 179

pertinent length scale that may govern the crater size. Thus, taking into account the virtual 180

origin of the jet, a relevant dimensionless parameter for the jet erosion strength is the 181

local erosion parameter E or Rouse number. In the present inertial regime of high particle 182

Reynolds number, this parameter is given by 183

E = UJ

(
b

L − λ

)1/2( 1
(s − 1)gd

)1/2
, (5)

which corresponds to the ratio of the local jet velocity to the grain settling velocity. Equation 184

(5) is similar to expression (1) proposed in [9]. However, besides considering the effective 185

jet-sediment distance, the model differs in the exponent -1/2 (instead of -1) for the L scaling. 186

This exponent is coming from the self-similar free jet models for a 2D plane (instead of 3D 187

axisymmetric) flow geometry. 188

Figure 4 shows the crater size data normalized by the reduced distance L − λ as a 189

function of the dimensionless erosion parameter E given by equation (5). We compute E 190

using s − 1 = 1.5, g = 9.8 m/s2 and d = 350 µm. Note that the different curves collapse 191
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into a master curve of simple trend. The dimensionless crater depth H/(L − λ) increases 192

linearly with E above a critical value Ec corresponding to erosion threshold, as follows 193

H/(L − λ) = mH(E − Ec), (6)

where mH = 0.7± 0.05 and Ec = 1± 0.1. Similarly, the dimensionless crater size D/(L − λ) 194

increases linearly with E above the critical value Ec; however, it has a non-zero value D0 at 195

threshold. Thus we get 196

D/(L − λ) = mD(E − Ec) + D∗
0 , (7)

where mD = 1.4 ± 0.1 and D∗
0 = D0/(L − λ) = 0.55 ± 0.05. 197

Figure 4. Experimental results of the crater (a) depth and (b) width normalized by the reduced jet-bed
distance L − λ as a function of E for different jet Reynolds numbers. The solid line corresponds to the
linear fit model through the data.

The critical value Ec ≈ 1 found here for the erosion threshold at vanishing crater depth 198

agrees very well with the critical value one reported by Badr et al. [17] with just a visual 199

criterion of the few first moving grains in a similar setup. It is worth noting that taking into 200

account the distance λ of the virtual origin of the jet from the nozzle exit is crucial to obtain 201

a good rescaling of the data and such simple scaling laws. Indeed, the critical value Ec ≈ 1 202

at the threshold is very satisfying, meaning that E is a pertinent parameter for describing 203

vertical jet-induced erosion. 204

Finally, considering the evolution of crater sizes H and D with the jet flow action, 205

the shape of the crater evolves with a typical slope H/(D/2) that tends toward the value 206

2mH/mD ≈ 1 at large erosive strength E (E ≫ 1). This value corresponds to a global slope 207

angle of about 45o, thus much larger than the usual critical avalanche angle 25o without any 208

jet flow [37]. This shows that at large E, the crater slope is enhanced by an upward-back 209

flow of the jet, as happens in homogeneous parallel shear flow [38]. 210

3. Mathematical Model 211

The present two-phase flow model comes from a strict application of the mathematical 212

formulation of Drew and Lahey [39] using an Eulerian-Eulerian description for the fluid- 213

particle system. In this section, the governing equations for the two phases corresponding 214

to clear fluid (water) and disperse medium (sediment particles in a fluid) are briefly recalled 215

with special closure laws. 216

The present two-phase flow model is initially based on the two-fluid model presented 217

in Barbry et al. [40] and Nguyen et al. [41,42]. This model only assumes a liquid-like 218

behavior for the disperse phase (solid grains). We refer to this formulation as the standard 219

or classical model. However, it cannot account for a possible solid-like behavior of the 220

granular bed. In the present study on scouring erosion, we propose an improved model 221

considering mobile and immobile parts of the granular media by a simple switch from fluid 222

mechanics to soil mechanics equations. The benefit of this new treatment for the sediment 223
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particles is illustrated and justified in the numerical results when the method is compared 224

with the initial two-fluid model. 225

3.1. Governing Equations 226

Before specifying the novel feature introduced to the model in the present paper, let us 227

first recall the initial two-fluid model. For a constant width-integrated 2D x/z two-phase 228

flow model, the governing equations in an Eulerian formulation for the k-phase read: 229

∂(αkρk)

∂t
+∇ · (αkρkuk) = 0, (8)

∂(αkρkuk)

∂t
+∇ · (αkρkukuk) = ∇ · (αk ¯̄σk) + αkρkg +Mk, (9)

where k = f stands for the clear fluid (water) and k = s for the solid particles, respectively. 230

The volume fraction is represented by values αk with α f + αs = 1. Here, ρk is the density, 231

uk = (uk, wk) is the velocity vector, and g stands for gravity. The symbol Mk refers to the 232

inter-phase momentum transfer, and ¯̄σk is the total stress tensor of phase k. In this paper, 233

the double bar over a symbol means a tensor of order two. 234

The total stress tensor of phase k is given by 235

¯̄σk =
(
−pk

¯̄I + ¯̄τk + ¯̄τRe
k

)
. (10)

where ¯̄I is the identity tensor. Equation (10) is the sum of three contributions: the pressure 236

(pk) of phase k, the deviatoric viscous ( ¯̄τk), and Reynolds stresses ( ¯̄τRe
k ). Following Lundgren 237

[43] for the slow motion of two-fluids, the non-turbulent stresses are expressed by: 238

α f ¯̄σf = −α f p f
¯̄I + 2µ f

(
αs

¯̄Ds + α f
¯̄D f

)
, (11)

αs ¯̄σs = −αs ps
¯̄I + 2µ f αsβ

(
αs

¯̄Ds + α f
¯̄D f

)
, (12)

where ¯̄Dk =
1
2
(
∇uk +∇uT

k
)

is the shear rate tensor of phase k. In equations (11) and (12), 239

the parameter µ f is the dynamic viscosity of the clear fluid (water) and β is an increasing 240

function of the solid volume fraction of grains, for which we use the expression of Graham 241

[44]. We refer to Nguyen et al. [41,42] for more details. 242

To compute the Reynolds stresses ¯̄τRe
k for the two-phase model, the standard k f − ϵ f 243

model is used for the fluid phase. For the turbulent model of the solid phase, we use the 244

closure equations ks − k f s (turbulent kinetic energy of particulate phase, ks, with covariance 245

of fluid and solid velocity fluctuations, k f p). This model is considered a two-way coupling 246

because it can evaluate the effects of solid particles on fluid turbulence and vice-versa 247

[41,45]. 248

The momentum exchange between phases, Mk, is decomposed into jump conditions 249

(pki and ¯̄τki) and different forces (M∗
k ) acting on phase k, as follows 250

M f =
[

p f i
¯̄I − ¯̄τf i

]
∇α f +M∗

f , (13)

Ms =
[

psi
¯̄I − ¯̄τsi

]
∇αs +M∗

s . (14)

Here, the subscript i specifies the solid/fluid interface. As the interfacial tension is zero, 251

there is no discontinuity of the pressure (psi = p f i = p f − ρ f ||u f − us||2/4, where ∥ · ∥ 252

means Euclidean norm) and the shear stress ( ¯̄τsi = ¯̄τf i = β ¯̄τf ) across the fluid/sediment 253

interface (Drew and Lahey [39]). 254

In equations (13) and (14), the momentum exchanged between phases (M∗
f = −M∗

s ) 255

is the sum of the drag and lift forces exerted on the solid particles, the added mass effect, 256
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the Faxén correction and the Basset historical term. In the present formulation, we only 257

retain the drag force as it is dominant, as follows 258

M∗
s = FDur, FD = αsρs/τf s, (15)

where ur = u f − us − ud is the relative velocity of fluid-particles. Here ud is the drift 259

velocity which represents the correlation between the fluctuating velocity of the fluid and 260

the instantaneous spatial distribution of particles. The drag force is also expressed as a 261

function of the solid concentration (αs) and the particle relaxation time τf s given by 262

τf s = 4dρs/
(

3ρ f CD||ur||
)

, CD =
24

Rep
f (Rep). (16)

For turbulent two-phase flows, the drift velocity and particle relaxation time are very 263

important, as discussed in Nguyen et al. [41]. For the present study, the drag coefficient 264

(CD) is computed from the formula of Haider and Levenspiel [46], where Rep is the particle 265

Reynolds number. 266

3.2. A Unified Momentum Equation for the Solid Phase 267

The set of equations (8)-(16) roughly describes the fluid-sediment system as a two- 268

fluid system. In particular, equations (11) and (12) for the viscous stress correspond to a 269

rheological law for complex fluids. Such a model is only valid below the packing fraction 270

when the granular material has a liquid-like suspension behavior. However, we expect a 271

solid-like behavior for the particulate phase close to the packing fraction at the bed surface 272

or deeper in bulk. 273

The numerical solution given by equations (8)-(16) are unphysical and erroneous in 274

high solid fraction regions: the sediment’s liquid-like behavior is clearly visualized by wavy 275

iso-contour lines in the sediment bed, see Section 4.1. We remark that similar results are 276

obtained using the Eulerian model proposed by Qian et al. [31] and Yuan et al. [32] for this 277

problem. To overcome this issue, this paper adapts a unified formulation, mainly inspired 278

by Greenshields and Weller [35], to describe both the liquid-like and solid-like behavior of 279

the sediment phase. 280

3.2.1. Solid-like model 281

For the solid-like model, we assume a Hookean material that undergoes small defor- 282

mations. In this case, a linear elastic, isotropic model is used. Thus, the strain tensor (¯̄εs) 283

corresponds to the time integration of the strain rate tensor ( ¯̄Ds) as follows: 284

σs = −ps
¯̄I + dev( ¯̄σs) = −ps

¯̄I +
∫ tn

t0

dev( ˙̄̄σs)dt + dev( ¯̄σ0), (17)

where the deviatoric component of ¯̄σ is defined as dev( ¯̄σ) ≡ ¯̄σ − 1
3 tr( ¯̄σ) ¯̄I, and dev( ¯̄σ0) 285

is the deviatoric solid stress at the initial time. Equation (17) can be approximated by a 286

quadrature formula for the integral, as follows 287

∫ tn

t0

dev(σs)dt = ωndev(σ̇s)n +
n−1

∑
i=1

ωidev(σ̇s)i, (18)

where ωi represents the quadrature weighting functions. Here, (·)n indicates the current 288

time (tn). Note that the sum is taken over previous stages ti (i = 1, . . . , n − 1). 289

Next, we can substitute (18) into (17). Now, using the relationship between εs and Ds, 290

we get 291

¯̄σs = −ps
¯̄I + 2Gωndev( ¯̄Ds) + Σ, (19)
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where the shear modulus is given in terms of the elastic Young modulus (E) and the 292

Poisson’s ratio (ν) by G = E/2(1 + ν). In equation (19), Σ is given by 293

Σ =
n−1

∑
i=1

ωidev( ˙̄̄σs)i + dev( ¯̄σ0), (20)

representing the accumulation of elastic stress from the beginning of the loading. Thus, the 294

solid-like behavior of the granular phase can be model as 295

αs ¯̄σs = −αs ps
¯̄I + αs2Gωndev( ¯̄Ds) + αsΣ. (21)

Finally, we obtain a unified momentum equation for the sediment incorporating (22) 296

into the two-phase flow model (8)-(15). Thus, to unify liquid-like model (12) and solid-like 297

model (21), we introduce a smooth transition function (F), as follows 298

αs ¯̄σs = (1 − F)
[
− αs ps

¯̄I + αsβµ
(

αs
¯̄Ds + α f

¯̄D f

)]
(22)

+F
[
− αs ps

¯̄I + αs2Gωndev( ¯̄Ds) + αsΣ
]
,

where 0 ≤ F ≤ 1. We remark that if F = 1 then equation (22) reduces to the solid-like 299

model (21). If F = 0 then a liquid-like motion is obtained by equation (12). In other terms, 300

the improvement proposed in this paper has non-intrusive character since the original 301

two-fluid model is recovered. For the fluid phase, equations remain unchanged. 302

3.3. Solid-Liquid Transition of the Granular Phase 303

In the original development of Greenshields and Weller [35], F is a step function that 304

takes either the value 0 or 1 according to the fluid or solid regions, respectively, since there 305

is no interpenetration between them. In our modeling, F varies continuously from 1 to 0 306

using a smooth solid-liquid transition for the sediment. 307

From a physical viewpoint, function F encodes the erosion or fluidization criterion 308

because it determines at any point of the computational domain if the disperse phase 309

is flowing (eroded/fluidized bed for F = 0) or not (static bed for F = 1). Therefore, 310

this function’s formulation is as complex as the physics of the erosion threshold. From a 311

numerical point of view, function F should be monotone and sufficiently smooth with a 312

continuous first derivative to avoid any numerical instability. 313

This paper considers for F a S-shape function with the following analytical expression 314

F =
1
2
(1 − erf(ξ)), (23)

where erf is the Gaussian error function. We remark that equation (23) has a unique 315

parameter ξ governing the liquid-solid transition. In the numerical simulations, we select 316

ξ = Sh − Shc, Sh =
u2

f + w2
f

(s − 1)gd
. (24)

corresponding to the deviation of the local Shields number Sh from its critical value for 317

erosion Shc. This choice is consistent with the erosion criteria of Badr et al. [17] for the 318

plane jet impinging into granular beds. This selection also agrees with the dimensionless 319

crater depth and width formulas given in the experimental results, as presented in the 320

following section. 321

3.4. Numerical Technique 322

To solve the system of equations (8)-(17), we use the techniques initially developed 323

by Guillou et al. [47] and later improved by Uh Zapata et al. [48]. The σ-transformation is 324

applied to the vertical coordinates to fit the computing mesh to the free surface evolution. 325
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A finite volume formulation approximates spatial derivatives. A projection technique 326

[49] is applied to calculate the pressure and velocity for each phase. We use a staggered 327

grid to avoid the spurious oscillations induced by the projection technique [50]. Advection 328

terms in Equation (9) are handled by a Total Variation Diminishing (TVD) scheme. The 329

time scheme is implicit in both vertical and horizontal directions. 330

A Successive Order Relaxation (SOR) iterative solver is used for the resulting linear 331

equation system. Furthermore, the code has been fully parallelized through Message 332

Passing Interface (MPI) and Graphics Processing Unit (GPU), which significantly optimize 333

the performance of the two-phase flow program. 334

4. Numerical Results 335

In this section, the numerical results are obtained using a 2D rectangular domain with 336

0.25 m of height and 0.2 m of width. We impose a Poiseuille profile of velocity at the nozzle 337

outlet of thickness b, which is fixed at a distance L from the bed. 338

In the simulations, we consider a rectangular mesh grid. The highest resolution is 339

given by a uniform mesh of 401 points along the horizontal and 501 points in the vertical 340

direction. Thus, the spatial steps are given by ∆x = ∆z = 0.5 mm. This choice corresponds 341

to a fine grid resolution close to one-grain diameter. Thus, it would not be pertinent to 342

consider finer meshes. For this fine space resolution, small time steps are reduced to 343

∆t = 2 × 10−6 sec to have stable simulations. In agreement with the experiments, each run 344

lasts a few seconds of simulated time. 345

4.1. Original and Unified Model 346

To illustrate the benefit of the proposed treatment for the solid-liquid transition, 347

Figure 5 presents the numerical results using the original two-phase flow model (transition 348

function F = 0). For these simulations, we use a coarse grid (∆x = 1 mm, ∆z = 2 mm), and 349

parameters b = 4 mm, UJ = 0.4 m/s, and L = 2 cm). The initial flatbed interface is located 350

at z = −0.15 m. Although we have a crater at the early stages, the bed shows unrealistic 351

wavy modulation of the bed. 352
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Figure 5. Numerical simulations at different stages for the standard two-phase flow model: the solid
concentration with fluid field (top), and velocity magnitude of the fluid (bottom).
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On the other hand, Figure 6 shows the numerical results using the proposed unified 353

two-phase Euler-Euler model. For these simulations, we use the same parameters as the 354

standard model. Note that the qualitative behavior is now close to the experimental obser- 355

vations: the bed does not present a wavy behavior but a localized crater. Furthermore, zero 356

particle velocity is predicted within the sediment bed. In other words, our numerical treat- 357

ment for the solid-liquid transition in the model mainly corrects the identified numerical 358

inaccuracies associated with the original two-fluid formulation. 359
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Figure 6. Solid concentration (top) and fluid velocity magnitude (bottom) for the proposed two-phase
flow model using a solid-liquid transition model of the sediment phase at different stages.

As previously pointed out, the profile function plays an essential role in modeling 360

correctly the solid phase. Figure 7 shows the profiles for F given by equation (23) and 361

the numerical results of previous simulations. Note how this function correctly varies 362

continuously from 1 to 0 dividing the computational domain into liquid-like and solid-like 363

regions. We remark the correlation between the scour dimensions and the values of F. 364
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Figure 7. Numerical results of the liquid-solid transition function F at different stages. The fluid
velocity field is also plotted as a reference.
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Although previous results shows the correct implementation of the model, the mesh 365

resolution does not allow to fully observe the complex structure of the water jet and crater 366

formation. Figures 8 and 9 present the velocity field and solid volume fraction results at 367

t = 1.5 seconds using b = 8 mm, UJ = 0.323 m/s, and L = 4.6 cm. In these simulations, we 368

use a fine (∆x = ∆z = 0.5 mm), a medium (∆x = ∆z = 1 mm), and a coarse (∆x = ∆z = 2 369

mm) grid resolutions. As illustrated in Figure 8, the plane jet flow shows a complex 370

structure with some fluctuation and vortices along the jet. However, the jet flow structure is 371

out of the scope of the present paper, so we only focus on the cratering. Note that the region 372

of solid-like behavior of the sediment is characterized by low fluid velocity, in contrast to 373

the high velocity just above this region. 374
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Figure 8. Numerical results of the fluid velocity (a) field, and (b) magnitude with streamlines at
t = 1.5 s using b = 8 mm, UJ = 0.323 m/s, and L = 4.6 cm for different grid resolutions.
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Figure 9. Solid volume fraction at t = 1.5 s using b = 8 mm, UJ = 0.323 m/s, and L = 4.6 cm for
different grid resolutions.
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The abrupt variation in the velocity magnitude indicates that a continuous interface 375

line can model the solid-liquid transition zone. This interface cane be verified in Figures 9 376

showing 100 contour lines of the solid volume fraction distributed uniformly in the interval 377

[0, 0.55]. Note that the transition zone between the sediment bed and the liquid is less 378

diffusive as the mesh resolution increases, as expected. This interface is used to measure 379

the crater size (H, D). 380

4.2. Crater Size Predictions 381

As discussed in Section 3.3, we use the local parameter ξ = Sh − Shc for governing the 382

sediment solid-liquid transition, where Sh is the local Shields number Sh and Shc stands 383

for its critical value. Notice that this formulation considers the total fluid velocity instead 384

of only its tangential component. Indeed, we systematically obtain a zero value of the 385

local Shields parameter at the stagnation point in front of the jet by considering only the 386

horizontal component of the fluid velocity. As a result, the scour hole geometry would 387

present a non-eroded zone at the jet axis with a whiskers-like shape. 388

Numerical results have shown to have an excellent agreement with experimental data 389

using Shc = 0.9. This value also agrees with the critical Shields number near one reported 390

by Badr et al. [17]. Figure 10 presents the fluid velocity field for b = 4 mm with different 391

values of the impingement distance (L) and mean jet velocity (UJ) using the same Shc = 0.9. 392

Results demonstrate that the crater is wider and shallower as L increases, as expected. We 393

also notice that the velocity field for the fluid phase presents more oscillations for higher jet 394

velocities. Experiments also show these jet oscillations. Moreover, the proposed two-phase 395

model generates both strongly and weakly deflected cases with recirculation zones inside 396

or outside the crater, respectively (see Figures 10(c) and (d)). 397
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Figure 10. Velocity field and crater shapes for different jet configurations using b = 4 mm and fine
mesh (∆x = ∆z = 0.5 mm).

To verify the assumptions made for the velocity based on the Shield parameter and 398

its critical value, we test a series of three numerical simulations for different jet widths b 399
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equal to 4 mm, 6 mm, and 8 mm (Table 2). The critical value Shc = 0.9 is kept constant for 400

all numerical simulations. Numerical results confirm that D is larger and H is smaller as L 401

increases. We note that the crater dimensions also increases as the mean jet velocity UJ is 402

larger, as expected. 403

Table 2. Numerical results of the crater dimensions using different parameters (UJ , L, b) and λ = 8.75.

Mean
velocity

Impingement
distance Jet width Jet-bed

distance
Reynolds
number

Erosion
parameter Crater width Crater depth

UJ (m/s) L (mm) b (mm) L/b Re E D (mm) H (mm)

0.18 40 4 10 720 2.24 12 3
0.18 50 4 12.5 720 1.29 15 5
0.28 50 4 12.5 1120 2.01 32 10
0.28 60 4 15 1120 1.56 35 6
0.30 40 4 10 1200 3.74 23 10
0.30 60 4 15 1200 1.67 40 10
0.37 46 4 11.5 1480 3.11 40 15
0.37 80 4 20 1480 1.54 50 10
0.28 70 6 11.66 1680 2.28 38 15
0.28 80 6 13.33 1680 1.82 42 13
0.18 80 8 10 1440 2.24 25 10
0.18 90 8 11.25 1440 1.58 30 10

Finally, Figure 11 compares the numerical and experimental results of the crater di- 404

mensions D and H. The experimental data is the same as the one presented in Figure 4. The 405

straight lines correspond to the linear models from experimental data given by equations 406

(6) and (7). The numerical results are taking according to the information given in Table 2. 407

The comparison shows a very good agreement for all values. These findings show the 408

capacity of the proposed two-phase model to reproduce complex flows with sediment. 409

Figure 11. Comparison between experiments and numerical results for (a) the crater depth and (b)
width normalized by the reduced jet-bed distance (L − λ). Solid lines correspond to linear models.

5. Discussion and Conclusions 410

In this paper, we study experimentally and numerically the crater sizes generated on 411

horizontal non-cohesive sediment by a submerged vertical 2D plane jet. We have shown 412

that the crater depth and width, measured under various impinging distances and jet 413

velocities conditions, are governed by the effective impinging distance L − λ. This distance 414

is corrected from the virtual jet origin and by a dimensionless erosion parameter E. The 415

proposed erosion parameter, inspired by the one proposed by Aderibigbe and Rajaratnam 416

[9], also accounts for the virtual origin of the jet, as proposed by Sutherland and Dalziel 417

[13] and Badr et al. [17]. The dimensionless crater sizes evolve approximately linearly with 418
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respect to E above the critical value for the erosion threshold (Ec ≈ 1). By contrast to the 419

crater depth, the crater width is non-zero at the threshold, as already found in [13]. 420

A two-phase numerical model has been used successfully to simulate the crater 421

formation. We suppress numerical inaccuracies from a standard two-fluid model by 422

considering a new formulation for the sediment. It consists of a unified equation for the 423

solid phase, which employs a smooth function governing the transition between the liquid- 424

like and solid-like regimes. This function is based on the deviation of a local Shields number 425

from a critical value Shc ≈ 1. Numerical results agree accurately to the experimental data 426

for all the proposed tests. Further studies are focused on testing the proposed approach 427

with different configurations. For instance, we are interested in scour holes generated by 428

inclined or even horizontal jet flows. 429
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