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Every theory is eventually of presheaf type

Christian Esṕındola, Kristóf Kanalas

Abstract

We give a detailed and self-contained introduction to the theory of
λ-toposes and prove the following: 1) A λ-separable λ-topos (one whose
defining site has a certain smallness property) has enough λ-points. 2)
Given a κ-site, its classifying λ-topos is of presheaf type (assuming κ ◁
λ = λ<λ).

1 Introduction

The main ideas of this paper have their origin in [Esp19b], [Esp20] and [Esp19a,
Section 3.2 and Section 4]. In these notes our intention was to find a detailed
and syntax-free, purely categorical presentation.

To do so, we first discuss the fundamental notion of compatibility between
extremal epimorphic families and < κ-limits. In [Mak90] a κ-regular category
is defined as one having < κ-limits and effective epi-mono factorizations, such
that the transfinite cocomposition of a continuous < κ-sequence of effective
epis is effective epi. The natural counterpart of this for coherent categories is
formulated in terms of covering cotrees: if one builds a cotree on an object,
which is locally extremal epimorphic and every branch is continuous, < κ, then
the cotree is globally extremal epimorphic, i.e. the transfinite cocomposition of
the branches form an extremal epic family on the root. In the next section we
study this notion in detail and prove a completeness theorem.

Then we define a κ-topos as a Grothendieck-topos whose extremal epic fam-
ilies are compatible with < κ-limits in the above sense. We lift the classical
results concerning classifying toposes to κ-toposes. Finally we reformulate the
completeness theorem in terms of κ-toposes whose defining site is small in an
appropriate sense, generalizing [MR77, Theorem 6.2.4] (Theorem 5.4), and de-
rive the main result of this paper; that the classifying λ-topos of a κ-site is of
presheaf type, assuming κ ◁ λ = λ<λ (Theorem 5.5).

The second-named author acknowledges the support of the Grant Agency of the Czech
Republic under the grant 22-02964S. This research was carried out during a visit to University
of la Réunion, partially funded by France.
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2 A completeness theorem

This section motivates the definition of a κ-Grothendieck-topology, i.e. the cor-
rect notion of compatibility between covers and < κ-limits. Its content is a
completeness theorem: if a κ-lex category C has ≤ κ-big Hom-sets then given a
≤ κ-big collection E of extremal epimorphic families interacting well with < κ-
limits, there is a jointly conservative set of C → Set κ-lex E-preserving functors.
As an application we give a Rasiowa-Sikorski-like result for sufficiently distribu-
tive lattices.

(In Section 5 we will present a more general version of the completeness
theorem, based on the same idea.)

Definition 2.1. κ = cf(κ) ≥ ℵ0. C is κ-lex (i.e. it is a category with < κ-
limits). A class E of extremal epimorphic families is said to be compatible with
< κ-limits if

1. Each member of E is pullback-stable (i.e. its pullback along any map
is extremal epimorphic). Epb denotes the class of extremal epimorphic
families obtained this way.

2. Given a rooted cotree (as a diagram in C), such that on any vertex its
predecessors form a member of Epb, every branch has length < κ and
every branch is continuous (objects sitting at limit points are limits in C);
it follows that the transfinite cocomposition of the branches is extremal
epimorphic.

Definition 2.2. We shall name a few kind of diagrams: by cotree we will mean
the opposite of a rooted tree as a diagram in C. By continuous (Epb, κ)-cotree
we mean that on any vertex its predecessors form a member of Epb, every
branch has length < κ and every branch is continuous. By a continuous cofinal
(Epb, κ+)-cotree we mean that the cotree has height κ and each branch has size
κ (hence order type κop). When E consists of all extremal epimorphic families
with < λ-many legs, we may write locally covering continuous (λ, κ)-cotree
instead of continuous (E, κ)-cotree.

Definition 2.3. A category C is of local size < κ if each Hom-set is of cardinality
< κ.
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Theorem 2.4. C is κ-lex of local size ≤ κ, and it has a strict initial ob-
ject ∅. Let E be a set of extremal epimorphic families, such that |E| ≤ κ
and E is compatible with < κ-limits. Then given any object u0 ∈ C there is
a continuous cofinal (Epb, κ+)-cotree with root u0 such that given any branch

u0

p0,i1←−− u0,i1

p0,i1,i2←−−−− u0,i1,i2 ← . . . the colimit of the representable functors

C(u0,−)
p∗
=⇒ C(u0,i1 ,−)

p∗
=⇒ . . . is either the terminal copresheaf (iff the branch

gets eventually ∅) or it preserves the extremal epimorphic families in E. When
u0 ̸= ∅ at least one branch yields a non-terminal copresheaf.

Proof. Let u0
p0←− u1 ← . . . be an (at this point not necessarily continuous) κ-

chain in C. First we would like to understand what does it mean for the colimit

of C(u0,−)
p∗0=⇒ C(u1,−) ⇒ . . . to preserve a given extremal epimorphic family

(xj → y)j<γ (with γ ≥ 1). This is easy: it is mapped to a jointly surjective
family iff for any map uα → y there’s uβ → uα in the sequence such that for
some j < γ the dashed arrow

uβ uα y

x0 xj
... ...

exists.
We shall also understand the γ = 0 case. The empty collection of arrows is

extremal epi on y iff y has no proper subobjects. As the initial object is strict,
every map out of it is mono, hence this is the same as y ∼= ∅. The colimit
of the representables does not preserve the initial object iff one of the uα’s is
initial, in which case all the following uβ’s are initial and hence the colimit is
the terminal copresheaf which is allowed. So we assume that the prescribed
families are non-empty.

One such issue can certainly be solved at any stage of the construction: if we
have started to construct the chain (and we are in a successor step) u0 ← . . . uβ,
then given α ≤ β and a map uα → y ← xj just take the pullback

uβ+1 xj

uβ uα y

pb

(for any j: hence we have γ-many options to continue the chain, these possibil-
ities will form the cotree that we promised).

As our Hom-sets have size ≤ κ and we have κ-many prescribed families,
there are κ-many tasks concerning a given u ∈ C. But solving one such issue
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will yield a new uα and hence κ-many new tasks. Luckily we have κ-many steps
to arrange everything and this can be done:

For any u ∈ C let Tu be the set (or list) of diagrams u → y ← x0, x1, . . .
(where (y ← xj)j is any member of E), well-ordered in order type κ (technical-
ity: assume 1 → 1 is among the given families, so Tu is non-empty. Allowing
repetitions we can assume that Tu has size κ). We have the canonical well-
ordering f : κ× κ→ κ with the property f(α, β) ≥ β. We use it as follows:

Let’s fix a table of size κ × κ (the second coordinate labels the columns)
whose entries are empty at the moment. As the root of the cotree is u0 we list
Tu0 in the zeroth column: these tasks will have to be solved. Now, at step 1 we
solve f−1(0), whose second coordinate is ≤ 0, so it is one of the already listed
tasks. We do it by forming the pullback of the covering family; this yields the
first level of the cotree

u00

u0 u0λ

...

...

To construct the continuation from u0λ fill in Tu0,λ
in the first column and solve

f−1(1), whose second coordinate is ≤ 1 hence we know which task it is.
The transfinite recursion is then the obvious thing: to define the α-level of

the cotree at limit α just take the transfinite cocomposition of the branches.
Now do it for α+1: to continue from a given vertex u... pick the corresponding
table whose columns before α are filled in (with the tasks corresponding to the
elements which are above u...). Now fill Tu... into the αth column and solve task
number f−1(α).

This defines a continuous cofinal (Epb, κ+)-cotree. When we go along a
branch we see that every task is solved, so the colimit preserves all the given
extremal epimorphic families, except the empty union which we cancelled from
the list. So every branch yields either the terminal copresheaf or an E-preserving
one.

It remains to prove that when u0 ̸= ∅ at least one branch yields a non-
terminal copresheaf, i.e. that it cannot happen that every branch is becoming
constant ∅ at some point. But this is clear, otherwise (by cutting down each
branch at that point) we would get a continuous (Epb, κ)-cotree which is not
covering the root.

From this we derive the completeness theorem:
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Theorem 2.5. Let C be κ-lex of local size ≤ κ with a strict initial object, and
let E be a set of extremal epimorphic families, such that it is compatible with
< κ-limits and |E| ≤ κ. Then given x ∈ C and u, v subobjects of x, if for every
M : C → Set κ-lex E-preserving functor we have Mu ⊆Mv then u ⊆ v.

Proof. Take the above cotree with root u = u0. If a branch h yields a κ-lex

E-preserving functor Mh = colim(C(u,−)
p∗0=⇒ C(u0,h(1),−) ⇒ . . . ) then by

assumption Mhu ⊆ Mhv, in particular 1u ∈ Mh(u) ⊆ Mh(x) lies in Mh(v),
meaning that for some uλ in the branch we have a lift

x v

u uλ

When the branch becomes eventually ∅ we also have this lifting. Cutting down
each branch at such a point and using that the resulting (Epb, κ)-cotree is cov-
ering the root we have an extremal epimorphic family with liftings

x v

u u0

uλ

...

...

Hence each uλ → u factors through v ∩ u and therefore v ∩ u = u so u ⊆ v.

Definition 2.6. λ = cf(λ) ≥ κ = cf(κ) ≥ ℵ0. A category C is (λ, κ)-coherent
if

i) it has < κ-limits,

ii) it has pullback-stable effective epi - mono factorization,

iii) it has pullback-stable < λ-unions,

iv) and < λ extremal epimorphic families are compatible with < κ-limits
(pullback-stability follows from ii) and iii), so the additional requirement
is the second clause of Definition 2.1: that locally covering continuous
(λ, κ)-cotrees are globally covering).

A functor is (λ, κ)-coherent if it preserves < κ-limits, effective epimorphisms
and < λ-unions.
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Remark 2.7. When λ > κ or λ = κ and κ has the tree property, then in iv)
we have < λ-many branches so the union of the images automatically exists.
Indeed, using the regularity of λ we see that for each α < λ the α-level of the
tree is of size < λ. This solves the κ < λ case. When λ = κ and κ has the
tree property, by definition the tree has height < κ otherwise we had a κ-long
branch.

Remark 2.8. When κ = ℵ0 iv) is redundant, i.e. (ℵ0,ℵ0)-coherent is just
coherent, (λ,ℵ0)-coherent is λ-geometric. Indeed, given a cotree as in iv) with
root u0 and an arbitrary proper subobject v ⫋ u0 one of the predecessors u1 of
the root does not factor through v. Hence one of the predecessors of u1 does
not factor through v. Since we cannot define an infinite branch we get stuck
at a finite stage, meaning that the cocomposition of a branch does not factor
through v.

Example 2.9. Set is (λ, κ)-coherent for any λ, κ. Given a set X and a locally
covering continuous cotree on it, we shall see that the transfinite cocomposition
of the branches cover X. But any element x0 ∈ X has a preimage in one of
the predecessors X1. Once we define a compatible family of preimages up to
height α, a limit ordinal, this sequence represents an element in the limit, so
we’ve managed to find a preimage xα = (xi)i<α ∈ Xα = limi<αXi. This defines
a branch whose cocomposition hits x0.

As in presheaf categories limits and colimits are pointwise, also SetA is
(λ, κ)-coherent for any λ, κ.

Definition 2.10. A λ-complete Boolean-algebra is (2, λ)-distributive if for any
collection of elements (bi,0)i∈I , (bi,1)i∈I with |I| < λ, we have

⋂
i(bi,0 ∪ bi,1) =⋃

h:I→2

⋂
i bi,h(i). In particular the union exists, though we do not require the

existence of such big unions in general.

Example 2.11. Every λ-complete (2, λ)-distributive Boolean-algebra is (λ, κ)-
coherent if κ < λ or κ = λ with the tree property. Given a continuous, locally
covering (λ, κ)-cotree of elements

1

b0 . . . bα . . .

b0,0 . . . bα,0 . . .

we shall see that intersections along the branches cover the root (which can be
assumed to be 1, otherwise just put its complement next to it and put 1 to
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the −1th level). This means that for any 0 ̸= u ⊆ 1 there’s a branch whose
intersection has non-empty intersection with u.

Since κ < λ or κ = λ with the tree property, there are < λ-many elements
in the tree. Let A be the set of these elements. By (2, λ)-distributivity 1 =⋂

b∈A(b ∪ ¬b) =
⋃

ε:A→{+,−}
⋂

b∈A bε(b). As u ̸= 0 it has non-empty intersection

with a summand (otherwise ¬u would be a smaller upper bound). Let u′ be
this intersection. Then it is atomic in the sense that for any b ∈ A either u′ ⊆ b
or u′ ⊆ ¬b.

A member of the union is coming from decorating the tree with signs and
then taking intersections of the elements or their complements (depending on
the sign). If we want to get non-empty intersection (with u, equivalently with
u′) we must attach + to 1, given any element with decoration + one of the
predecessors is decorated with + and given any chain of +-coloured elements
the intersection must be +-coloured as well. So u has non-empty intersection
with the intersection of a decorated tree that has a positive branch.

Corollary 2.12 (of Theorem 2.5). Let L be a distributive lattice which is a
(λ, κ)-coherent category and let (Ai)i<κ be a collection of subsets each of size
< λ. Then there’s an injective homomorphism of posets L ↪→ P(X) to a power
set Boolean-algebra, which preserves all < κ-meets and which preserves

⋃
Ai

for each i.

Proof. If a ̸= b then either a∩b ⫋ b or a∩b ⫋ a, hence they can be separated by
an L → Set functor which preserves all < κ-meets, monos, the terminal object,
as well as the prescribed unions. In particular it lands in 2 ↪→ Set. Putting
these together yields the required homomorphism L → 2X .

3 Classifying toposes

Definition 3.1. A category E is a κ-topos if it is a Grothendieck-topos which
is (∞, κ)-coherent. A geometric morphism F∗ : E1 → E2 is a map of κ-toposes
if F ∗ preserves < κ-limits.

Remark 3.2. By the adjoint functor theorem a map of κ-toposes E1 → E2 is the
same as an E2 → E1 functor preserving < κ-limits and all colimits. We write
Fun∗(E2, E1) for the category of κ-lex cocontinuous functors and all natural
transformations. (It is locally small.)

Example 3.3. By Example 2.9 every presheaf topos is a κ-topos for any κ.

Example 3.4. It is not true that every κ-lex localization of a presheaf topos
is a κ-topos. Consider the site ([0, 1], τsup) where [0, 1] is seen as a poset with
the usual ordering and (ri ≤ x)i∈I is a cover if supi ri = x. [0, 1] has all limits
(meets) given by infimum, and τsup is a Grothendieck-topology.

7



We claim that the sheafification map a : Set[0,1]
op → Sh([0, 1], τsup) preserves

all limits. This follows as on any object r ∈ [0, 1] there are only two covering
sieves: [0, r) and [0, r], hence the +-construction is given by a limit formula (see
[MM92, p.134]).

However, Sh([0, 1], τsup) is not an ℵ1-topos. We build a locally covering con-
tinuous tree (inside [0, 1]) on 1 as follows: the root is 1, given an object r in the
tree, if r = 0 then it has no predecessors, if r > 0 then its predecessors are given
by an ω-sequence converging to r, formed by elements that are < r. At limit
stages we take infimums. This defines a locally covering (the predecessors of any
object form a τsup-cover), continuous cotree such that every branch is countable
(there is no uncountable strictly decreasing sequence in [0, 1]), and every branch

terminates in 0. By the previous paragraph [0, 1]
y−→ Set[0,1]

op a−→ Sh([0, 1], τsup)
takes infimums to limits (y preserves all limits), it maps τsup-covers to extremal
epimorphic families, and in particular takes 0 to the initial and 1 to the terminal
object. So if Sh([0, 1], τsup) is an ℵ1-topos, then the branches of the ay-image
of our tree form an extremal epimorphic family, therefore ∅ = ∗. This is not
the case as τsup-covers are effective epimorphic, hence ay is conservative (the
representables are sheaves).

Definition 3.5. We fix the notation: Let C be a small κ-lex category and E
be a set of arbitrary families in C (a family is a set of arrows with common
codomain). By Epb we denote the closure of E under pullbacks; those families
which can be obtained as a pullback of an E-family. Etreeκ is the closure of
E under the κ-tree operation: the set of those families which are obtained as
transfinite cocompositions of continuous (E, κ)-cotrees (the predecessors on any
node form an E-family, every branch is continuous, < κ). We write ⟨E⟩κ for
(Epb)treeκ .

A (small) κ-site is a pair (C, E) where C is κ-lex (small) and E is an arbitrary
collection of families containing id : 1→ 1. F : (C, E)→ (D, E ′) is a morphism
of κ-sites if F is a κ-lex C → D functor which takes E-families (and hence
⟨E⟩κ-families) to ⟨E ′⟩κ-families.

Proposition 3.6. Let (C, E) be a small κ-site. Then:

1. ⟨E⟩κ is closed under pullbacks and the κ-tree operation.

2. ⟨E⟩κ is a Grothendieck-topology.

3. Sh(C, ⟨E⟩κ) is a κ-topos.

4. The full inclusion Sh(C, ⟨E⟩κ) ↪→ SetC
op

is a map of κ-toposes, i.e. the
sheafification functor a is κ-lex.

8



5. Sheafification of the Yoneda-embedding ay : C y−→ SetC
op a−→ Sh(C, τ) is

κ-lex, E-preserving (maps E-families to extremal epimorphic ones).

Proof. 1. The pullback of a continuous (Epb, κ)-cotree is again a continuous
(Epb, κ)-cotree, as the pullback of a pulled back E-family is the pullback
of the original E-family along the composite and the pullback of a trans-
finite cocomposition is the same as the transfinite cocomposition of the
pullbacks. Closed under the tree operation: the cotree we build can be
seen as pasting some (Epb, κ)-cotrees together, which will be a continuous
(Epb, κ)-cotree by the regularity of κ, and as the (transfinite) cocomposi-
tion of the transfinite cocompositions is a transfinite cocomposition.

2. It contains the isomorphisms as those are pullbacks of id : 1→ 1. The rest
of the requirements (being closed under pullbacks and being closed under
the tree operation when one is building cotrees of height 2) is implied by
Claim 1.

3. In any Grothendieck-topos a family (F ⇐ Fi)i∈I is extremal epimorphic
iff the following is satisfied: for any x ∈ C and s ∈ F (x) there’s a cover
(x← xj)j∈J such that each s|xj

is the image of some s′ ∈ Fi(j)(xj).

Now take a locally covering continuous (∞, κ)-cotree (i.e. every node is
covered by an arbitrarily large extremal epimorphic family, each branch
is < κ and continuous), let F0 be the root and take an x0 ∈ C and
s0 ∈ F0(x0). x0 has a cover (x0 ← x0,j1)j1 , such that the restrictions
of s0 are coming from some Fi’s (there can be many, so fix suitable
i(0, j1)’s and preimages s0,j1 ∈ Fi(0,j1)(x0,j1)). Now each x0,j1 has a cover
(x0,j1 ← x0,j1,j2)j2 such that the restrictions of s0,j1 ’s are coming from some
predecessors of Fi(0,j1). So we started to build a locally covering contin-
uous ((Epb)tree, κ)-cotree on x0, together with a morphism i of cotrees,
from the cotree on x0 to the one on F0 (meaning: i(0, j1, . . . ) is an initial
segment of i(0, j1, . . . , jk)). It has the property that s0|xj⃗

has a preimage

in Fi(⃗j).

Once we are at a limit stage, for any branch x0 ← x0,j1 ← x0,j1,j2 ←
. . . its limit x0,j1,... has the property that s0|x0,j1,...

has a preimage in

Fi(0,j1,... )(x0,j1,...), namely the compatible family [s0|x0,j1,...
, s0,j1|x0,j1,...

, . . . ]

(which is in the limit of F0 ⇐ Fi(0,j1) ⇐ . . . because limits of sheaves are
pointwise).

So we managed to define a locally covering continuous ((Epb)tree, κ)-cotree
(every branch has length < κ because the same holds in the cotree of
sheaves and i is a map of cotrees), and the restriction of s0 to the trans-
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finite cocomposition of a branch xj⃗ has a preimage in the transfinite co-
composition of Fi(⃗j). This family on x0 is a cover by Claim 1.

4. The poset of coveres on an object x ∈ C (ordered by refinement) is κ-
filtered (one can build a tree whose first level consists of the 0th family
and whose α + 1th level is formed by pulling back the αth family to the
leafs). Hence the +-construction is κ-lex.

5. The composite is κ-lex by Claim 4. To check that the E-family (z ← zi)i
is preserved we have to see that for any x and map s : x → z there’s a
cover on x s.t. the precompositions xj → x→ z factor through some zi(j).
Simply take the pullback of (z ← zi)i along s.

Corollary 3.7. Let (C, E) and (D, E ′) be small κ-sites and F : (C, E)→ (D, E ′)
be a morphism of κ-sites. Then there is an induced morphism of κ-toposes
F∗ : Sh(D, ⟨E ′⟩κ) → Sh(C, ⟨E⟩κ) where F∗ is − ◦ F op and F ∗ is Sh(C) ↪→
SetC

op LanFop−−−−→ SetD
op a−→ Sh(D).

Proof. The geometric morphism exists by [Joh02, Corollary C2.3.4], LanF op is
κ-lex by [Joh02, Example A4.1.10] and a is κ-lex by Claim 4.

Definition 3.8. Given a small κ-site (C, E), we write Mod(C) = Mod(C, E, κ)
for the category of κ-lex E-preserving C → Set functors and natural trans-
formations. Mod(C)<µ denotes the full subcategory of models with pointwise
cardinality < µ. Similarly, for a κ-topos E we write ModE(C) = ModE(C, E, κ)
for the category of C → E κ-lex E-preserving functors.

Theorem 3.9. Let (C, E) be a small κ-site, E be a κ-topos and M : C → E be
a κ-lex E-preserving functor. Then

1. In the left Kan-extension

C E

Sh(C, ⟨E⟩κ)

M

ay
LanayM

η

η is an isomorphism, and LanayM is κ-lex cocontinuous.

2. Lanay : ModE(C, E, κ)→ Fun∗(Sh(C, ⟨E⟩κ), E) is an equivalence of cate-
gories, whose quasi-inverse is precomposing with ay.

10



Proof. The above triangle can be written as

C E

SetC
op

SetC
op

Sh(C, ⟨E⟩κ)

M

y LanyM

a
i

η1

η2

(To check the universal property: given F : Sh(C) → E and a natural
transformation γ : M ⇒ Fay, there’s an induced natural transformation γ̃ :
LanyM ⇒ Fa fitting in the picture:

C E

γ =

SetC
op

SetC
op

Sh(C, ⟨E⟩κ)

id =

Sh(C, ⟨E⟩κ)

M

y

a i

a

F
LanyM

η2

η1

γ̃

ε2∼=

hence the pasting of γ̃ and ε2 yields the unique splitting of γ we were looking
for.)

As both i and LanyM are κ-lex it follows that LanayM is κ-lex.
LanyM has a right adjoint E(M(−), •) which factors through i iff M is

E-preserving (easy). In this case it is also a right adjoint for LanyM ◦ i:
E(LanyM(iF ), X) ∼= SetC

op

(iF, iE(M(−), X)) ∼= Sh(C)(F, E(M(−), X)). We
proved that LanayM is κ-lex cocontinuous hence we have the restricted adjunc-
tion

ModE(C, E, κ) Fun∗(Sh(C), E)
Lanay

(ay)∗

⊣
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We want to prove (ay)∗ to be an equivalence. Then it follows that the
adjunction is an adjoint equivalence (whose unit is η in Claim 1.) and the proof
will be complete.

In the composite

Fun∗(Sh(C), E) Fun∗(SetC
op

, E) Lexκ(C, E)
y∗a∗

y∗ is an equivalence. a∗ is fully faithful: given α : Fa⇒ Ga its unique preimage

is F
F◦ε−1

====⇒ Fai
α◦i
==⇒ Gai

G◦ε
==⇒ G.

A κ-lex cocontinuous functor N∗ : SetC
op → E is in the essential image of

a∗ iff its right adjoint N∗ factors through i. ⇒ is clear (adjoints compose). To

see ⇐ assume N∗ = i ◦ Ñ∗. As i preserves and reflects all limits it follows that
Ñ∗ is continuous, hence it has a left adjoint Ñ∗. By the uniqueness of adjoints
Ñ∗ ◦ a ∼= N∗. Hence Ñ∗ preserves all < κ-limits which are in the image of a,
that is, all < κ-limits as ai ∼= 1Sh(C).

But for a κ-lex functor M : C → Set, the left Kan-extension LanyM =
(y∗)−1(M) satisfies this property iff M was E-preserving, as we claimed before.

4 Eventually: enough points ⇒ presheaf type

This section proves the first half of the main theorem of these notes: that the
classifying λ-topos of a κ-site is of presheaf type. Here we will prove it under the
assumption that the classifying λ-topos has enough λ-points. Then in section
5. we shall see that this is automatic when λ<λ = λ.

Lemma 4.1. We have the following assumptions:

1. λ = cf(λ) ≥ κ = cf(κ) ≥ ℵ0.

2. (C, E) is a small κ-site, (C̃, Ẽ) is a small λ-site, φ : (C, E)→ (C̃, ⟨Ẽ⟩λ) is
a morphism of κ-sites.

3. |C| < λ.

4. For any λ-topos E, the map φ∗ : ModE(C̃, Ẽ, λ) → ModE(C, E, κ) is an
equivalence of categories.

5. There are (Ñi : C̃ → Set)i λ-lex Ẽ-preserving functors with Ñiφ having

pointwise size < λ, such that ⟨LanayÑi⟩i : Sh(C̃, ⟨Ẽ⟩λ)→ SetI is conser-
vative.

12



Then there’s an equivalence making

C SetMod(C)<λ

C̃

Sh(C̃, ⟨Ẽ⟩λ)

φ

ay

ev

≃

∼=

commutative.

Proof. We define a functor ∆ : Mod(C)op<λ → C̃ by

M
α−→ N 7→ lim(x,p)∈

∫
M φx lim(x,q)∈

∫
N φx

⟨π(x,αx(p))⟩

which makes sense as by the regularity of λ: |
∫
M | < λ. We have a natural

transformation:

C SetMod(C)<λ

C̃

Sh(C̃, ⟨Ẽ⟩λ) Mod(C)op<λ

φ

ay

ev

Lany(ay∆) y

ay∆

η

∼=

whose v-component is defined by

aC̃(−, φv)

Lany(ay∆)(evv)

lim(x,p)∈
∫
M aC̃(−, φx)︸ ︷︷ ︸

(M, p0∈Mv)

lim(x,q)∈
∫
N aC̃(−, φx)︸ ︷︷ ︸

(N, q0∈Nv)

α

⟨π(x,αx(p))⟩

π(v,p0)
π(v,q0)

ηv

13



(i.e. to compute Lany(ay∆)(evv) we have to write evv as the colimit of repre-
sentables along its category of elements, then apply ay∆ to this diagram, finally
compute its colimit. We have a cocone over this diagram with top ayφ(v), and
ηv is the induced map).

To check the commutativity of the naturality squares (say at f : v → w),
one has to precompose with a leg of the colimit, then it has the form:

aC̃(−, φv) aC̃(−, φw)

Lany(ay∆)(evv) Lany(ay∆)(evw)

lim(x,p)∈
∫
M aC̃(−, φx)︸ ︷︷ ︸

(M, p0∈Mv)

lim(x,p)∈
∫
M aC̃(−, φx)︸ ︷︷ ︸

(M, Mf(p0)∈Mw)

ηv ηw

a(φf∗)

π(v,p0)
π(w,Mf(p0))

which can be drawn as

lim(x,p)∈
∫
M aC̃(−, φx)

aC̃(−, φv)p0 aC̃(−, φw)Mf(p0)

π(v,p0)

a(φf∗)

π(w,Mf(p0))

Our goal is to prove that η is an isomorphism and Lany(ay∆) is an equiva-
lence. We start with the following observation (saying that if M is a sufficiently

small model, so that its diagram ∆M is a single formula in C̃, then its evalua-
tion at a model Ñ(∆M) consists of those tuples which enumerate an M → Ñφ
homomorphism):

There is a natural isomorphism

Mod(C)op<λ C̃

SetMod(C)<λ SetMod(C̃)−◦φ<λ

∆

y

(φ∗)∗

evδ

14



given by

ev∆M lim(x,p)∈
∫
M evφx lim∫

M Nat(C(−, x),− ◦ φ)

ev∆N lim(x,q)∈
∫
N evφx lim∫

N Nat(C(−, x),− ◦ φ)

Nat(colim∫
MC(−, x),− ◦ φ) Nat(M,− ◦ φ)

Nat(colim∫
NC(−, x),− ◦ φ) Nat(N,− ◦ φ)

ev∆α

∼=

⟨π(x,αxp)⟩

∼=

∼=

∼=

⟨π(x,αxp)⟩

(i(x,αxp))
∗

∼=

α∗

∼=

∼=

∼=

∼=

∼=

Now we will prove that η is an isomorphism. For this it suffices to prove
that

φv

lim(x,p)∈
∫
M φx︸ ︷︷ ︸

(M, p0∈Mv)

lim(x,q)∈
∫
N φx︸ ︷︷ ︸

(N, q0∈Nv)

α

⟨π(x,αx(p))⟩

π(v,p0)
π(v,q0)

is mapped to a colimit by ay. By Theorem 3.9 and by Assumption 5. it is
enough that it is mapped to a colimit by any Ñ : C̃ → Set λ-lex Ẽ-preserving
functor with |Ñφ| < λ (as in this case the colim→ ayφ(v) map is taken to an

iso by each (cocontinuous) LanayÑ , and those are jointly conservative).
But using the isomorphism δ constructed above we have

Ñφv Nat(C(−, v), Ñφ)

=

Ñ(∆M) = lim(x,p)∈
∫
M Ñφx︸ ︷︷ ︸

(M, p0∈Mv)

Nat(M, Ñφ)︸ ︷︷ ︸
(M,p0∈Mv)

π(v,p0)

∼=
(δM )

Ñ

i∗
(v,p0)

∼=

and the composite Nat(M, Ñφ) → Ñφv takes β to βv(p0). So this is the

canonical colimit evv ∼= colim(M,p0)∈
∫
evvMod(C)<λ(M,−), evaluated at Ñφ.
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It remains to check that Lany(ay∆) is an equivalence. Its proposed quasi-
inverse is ((φ∗)∗)−1 ◦ Lanayev, fitting in the diagram

SetMod(C)<λ SetMod(C̃)−◦φ<λ

Mod(C)op<λ C̃ Sh(C̃, ⟨Ẽ⟩λ)∆

y

(φ∗)∗

evδ

ay

Lanayev

γ−1

Since both Lany(ay∆) and ((φ∗)∗)−1 ◦ Lanayev are cocontinuous, this iso
extends to an isomorphism between identity on SetMod(C)<λ and ((φ∗)∗)−1 ◦
Lanayev ◦ Lany(ay∆).

To check the other composite, observe the diagram

C

C̃ C̃

∼=

Sh(C̃, ⟨Ẽ⟩λ) SetMod(C̃)−◦φ<λ SetMod(C)<λ Sh(C̃, ⟨Ẽ⟩λ)

φ

ay

ev

Lany(ay∆)

η

((φ∗)∗)−1

φ

ev
ay

Lanayev

γ−1

Assume that Lany(ay∆) preserves < λ-limits. Then both ay and Lany(ay∆) ◦
((φ∗)∗)−1 ◦ Lanayev ◦ ay are C̃ → Sh(C̃, ⟨Ẽ⟩λ) λ-lex Ẽ-preserving functors, and
there’s an iso between their φ-restrictions. By Assumption 4. φ∗ is fully faith-
ful, so there’s an iso between the C̃ → Sh(C̃, ⟨Ẽ⟩λ) functors. So identity on

Sh(C̃, ⟨Ẽ⟩λ) and Lany(ay∆) ◦ ((φ∗)∗)−1 ◦ Lanayev are two λ-topos maps whose
ay-restrictions are isomorphic. Then Theorem 3.9 Claim 2. completes the proof.

It remains to check that Lany(ay∆) preserves < λ-limits. For any Ñ : C̃ →
Set λ-lex Ẽ-preserving with |Ñφ| < λ we have

SetMod(C)<λ

Mod(C)op<λ Sh(C̃, ⟨Ẽ⟩λ) Set

y

ay∆

Lany(ay∆)

Ñ∗

Mod(C)<λ(−,Ñφ)

∼=

∼=

(Ñ∗ = LanayÑ is the inverse image of the induced geometric morphism). As left

adjoints preserve left Kan-extensions, Ñ∗ ◦Lany(ay∆) is the left Kan-extension
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of a representable, hence representable, in particular λ-lex. So the composite

SetMod(C)<λ
Lany(ay∆)−−−−−−→ Sh(C̃, ⟨Ẽ⟩λ)

Ñi
∗

−−→ SetI is λ-lex, the second map is λ-
lex, conservative, therefore the first map is λ-lex (the second map inverts the
connecting homomorphism going from the image of the limit to the limit of the
images).

Now we would like to identify C̃ from the previous lemma. Assume that we
can find φ : C → C̃ which is the free completion of C under < λ-limits, in the
sense that φ∗ : Lexλ(C̃, E) → Lexκ(C, E) is an equivalence for any λ-lex (or
at least for complete) E . Then it restricts to an equivalence between the full
subcategories of φ[E]-preserving and E-preserving functors.

We have a good candidate: assume it exists, then apply the previous lemma
with trivial E (only the identities are contained). We get an equivalence:

SetC̃
op ≃ SetLexκ(C,Set)<λ . So our guess is that y : C → (Lexκ(C,Set)<λ)

op

will do the job.
The following is [AR94, Proposition 1.45 (ii)]:

Proposition 4.2. C is κ-lex, small. Take y : C ↪→ Lexκ(C,Set)op. Then y
is κ-lex and y∗ : LEX∞(Lexκ(C,Set)op, E) → Lexκ(C, E) is an equivalence for
any complete category E.

Proof. y preserves < κ-limits: we need that C(lim xi,−)
π∗
j←− C(xj,−) is a

colimit diagram in Lexκ(C,Set). A cocone with top M is a compatible family
of elements (ai ∈Mxi)i in the M -image of the base diagram. This corresponds
to a unique element (ai)i in M(lim xi) as M preserves < κ-limits, which yields

the unique induced arrow C(lim xi,−)
17→(ai)i
=====⇒M .

We claim that for an M : C → E κ-lex functor (for complete E), the right
Kan-extension

C E

Lexκ(C,Set)op

y

M

RanyM

ε
∼=

is continuous. This follows as E ∋ x 7→ E(x,M(−)) ∈ Lexκ(C,Set)op is a left
adjoint to it.

So y∗ is essentially surjective. It is also fully faithful: given continuous
functors M̃, Ñ : Lexκ(C,Set)op → E , they are the right Kan-extensions of M̃y,

resp. Ñy (with identity as ε), hence any natural transformation α : M̃y ⇒ Ñy

induces a unique α̃ : M̃ → Ñ for which α̃ ◦ y = α.
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Definition 4.3. κ = cf(κ) is sharply smaller than λ = cf(λ) (written as κ ◁ λ)
if for any set X with |X| < λ, the poset Pκ(X) of < κ subsets contains a cofinal
set of size < λ.

Proposition 4.4. C is κ-lex, small, κ = cf(κ) ◁ λ = cf(λ). Write C
φ
↪−→ C̃

j
↪−→

Lexκ(C,Set)op for the factorization of y through the full subcategory spanned

by κ-cofiltered < λ limits of representables. Then C̃ is λ-lex, φ is κ-lex and
φ∗ : Lexλ(C̃, E)→ Lexκ(C, E) is an equivalence for any complete category E.

Proof. We claim that C̃ is the full subcategory spanned by < λ limits of rep-
resentables. Indeed, take a < λ diagram I → Lexκ(C,Set). Its colimit is the
κ-directed colimit indexed by Pκ(Arr(I)), of the colimits of < κ subdiagrams
and the induced maps between them. These < κ-colimits are representable (see
the first paragraph of the previous proof) and by assumption the diagram has

a cofinal subdiagram of size < λ. It follows that C̃ is λ-lex and φ is κ-lex.
φ∗ is essentially surjective: given M : C → E κ-lex RanyM ◦ j gives a

preimage. It is faithful: any natural transformation between M̃, Ñ : C̃ → E
λ-lex maps is uniquely determined by its φ-restriction; the components at the
< λ-limits are the induced morphisms.

φ∗ is full: to simplify notation note that since y is injective on objects, ε in
the right Kan-extension can be assumed to be an identity. Take M̃, Ñ : C̃ → E
λ-lex and a natural transformation α : M̃φ ⇒ Ñφ. Then Rany(M̃φ) ◦ j is

a map whose φ-restriction equals M̃φ and similarly for Ñ , moreover α has a
preimage between these functors. So it suffices to prove that if M̃1 and M̃2 are
C̃ → E λ-lex functors such that M̃1φ = M̃2φ then there’s a natural isomorphism
γ : M̃1 ⇒ M̃2 such that γ|C is identity. But given an arrow f : x → y in C̃op
its domain and codomain are both κ-filtered colimits of representables, which
is also a colimit in SetC where representables are tiny, so the restrictions of our
arrow factor through some leg of the colimit with top y. It follows that once M̃1

decides to which limit object x and y would be sent, the image of f is uniquely
determined. The comparison maps between the limits chosen by M1 and those
chosen by M2 give the required isomorphism.

Now we prove that ”if a theory eventually has enough models then it is
eventually of presheaf type”:

Theorem 4.5. We have the following assumptions:

• ℵ0 ≤ κ = cf(κ) ◁ λ = cf(λ)

• (C, E) is a κ-site, |C|, |E| < λ.

Write C
φ
↪−→ C̃ for C

y
↪−→ (Lexκ(C,Set)<λ)

op. Then:
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• The map φ∗ : ModE(C̃, φ[E], λ) → ModE(C, E, κ) is an equivalence for
any λ-topos E.

• TFAE:

1. Sh(C̃, ⟨φ[E]⟩λ) has enough λ-points.

2. In the diagram

C SetMod(C)<λ

C̃

Sh(C̃, ⟨φ[E]⟩λ)

φ

ay

ev

LanayRanφ(ev)

Ranφ(ev)
∼=

∼=

LanayRanφ(ev) is an equivalence.

Proof. The first claim follows from Proposition 4.4. All we need is that κ-
filtered < λ colimits of representables in Lexκ(C,Set) (equivalently in SetC)
are precisely those functors which have pointwise cardinality < λ. ” ⊆ ” follows
as C(x,−) has pointwise size < λ and a < λ colimit of pointwise < λ functors
is a quotient of the pointwise disjoint union whose cardinality is < λ as λ was
regular. ” ⊇ ” follows as (again by regularity) if M is pointwise < λ then

|
∫
M | < λ. The equivalence φ∗ : Lexλ(C̃, E) → Lexκ(C, E) restricts to an

equivalence between φ[E]-, resp. E-preserving functors.
(Note also that φ is a morphism of κ-sites, as since φ is κ-lex the ⟨E⟩κ-

families are taken to ⟨φ[E]⟩κ ⊆ ⟨φ[E]⟩λ-families.)
In the second claim the implication 2⇒ 1 is easy: Nat(Mod(C)<λ(M,−), •)

for M ∈ Mod(C)<λ is a jointly conservative set of λ-points. To prove the

converse we have to check that φ : (C, E)→ (C̃, φ[E]) satisfies Assumption 5. in

Lemma 4.1. That is, Sh(C̃, ⟨φ[E]⟩λ) has enough λ-points whose restriction to C
is pointwise < λ. (This is enough, as if there is an equivalence SetMod(C)<λ →
Sh(C̃) making the triangle commute up to isomorphism, then the same holds
for its quasi-inverse, in which case it must be LanayRanφ(ev).)

Assume that every C → Set κ-lex E-preserving functor is the λ-filtered
colimit of pointwise < λ such maps. Now pick an arrow f : x → y in Sh(C̃)
which is not an isomorphism and choose Ñ∗ : Sh(C̃)→ Set which keeps it non-

iso. By the assumption we can write Ñ∗ ◦ay ◦φ as the λ-filtered colimit of Mi’s,
each being pointwise < λ. Since φ∗ was an equivalence (whose quasi-inverse

19



hence preserves this colimit), we can write Ñ∗ ◦ ay as the λ-filtered colimit of

M̃i’s with M̃i ◦ φ ∼= Mi. This colimit is pointwise as Mod(C̃, φ[E], λ) is closed

under λ-filtered colimits in SetC̃. Now the quasi-inverse of (ay)∗ maps this to a

λ-filtered colimit of M̃i

∗
’s with top Ñ∗ such that M̃i

∗
◦ay◦φ ∼= Mi. This colimit is

also pointwise: in fact, the pointwise colimit N̂∗ is λ-lex cocontinuous, so there’s
an induced map Ñ∗ ⇒ N̂∗, inverted by the equivalence (ay)∗. It follows that

M̃i

∗
(f) is non-iso for some i.
It remains to check that in Mod(C, E, κ) every object is a λ-filtered colimit

of pointwise < λ models. So start with a model M : C → Set. In SetC it is the
λ-filtered union of its pointwise < λ subfunctors, as the subfunctor generated
by a collection of subsets A(x) ⊆ M(x) is the closure under M(f)-images for
f ∈ C but |C| < λ. A filtered union is a filtered colimit, because this holds in
Set and in presheaf categories colimits are pointwise. So it suffices to prove that
every pointwise < λ subfunctor of M is contained in a pointwise < λ subfunctor
which is κ-lex E-preserving.

We will prove the following: i) every < λ subfunctor is contained in a < λ
subfunctor which is lex and E-preserving, ii) it is contained in a < λ subfunctor
which preserves < κ products. This is sufficient as we can build a κ-chain out of
A, in odd steps applying i), in even steps applying ii), in limit steps taking the
colimit, then the union of this chain is < λ, E-preserving, and preserves both
finite limits and < κ-products, hence κ-lex.

i) This is easy: one has to build an ω-chain out of A, in each step applying
the following three closure operators:

- close under M(f)-images for f ∈ C,

- for each family (ui → x)i in E, and each a ∈ An(x) choose one arbitrary
preimage in one M(uj) and add it to An(uj),

- for each finite diagram I → C and each compatible family formed by
elements in An ((< λ)<ω = (< λ)) add the corresponding element to
An(limI).

Each of these add < λ elements so Aω satisfies our requirements.
ii) By [AR94, Remark 1.21] we can write M as a κ-directed (as opposed to

just κ-filtered) colimit of representables (indexed by P ). By [AR94, Theorem
2.11] κ ◁ λ implies that the κ-directed < λ subsets of P form a λ-directed
poset Q. Hence we can write M as a λ-directed colimit of pointwise < λ and
κ-lex functors (indexed by Q), as representables are pointwise < λ and therefore
their < λ colimits are < λ. We can take the pointwise image-factorization of
each Mq ⇒M hence M is the λ-directed union of these images which are easily
proved to preserve < κ products.
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In the next section we will prove that when λ<λ = λ, the equivalent proper-
ties 1)⇔ 2) hold.

5 A λ-separable λ-topos has enough λ-points

Lemma 5.1. Let (C, E) be a λ-site with |E| ≤ λ, C being of local size ≤ λ,
λ = cf(λ), and take a family (fi : ui → x0)i. If for every λ-lex E-preserving
M : C → Set functor the M-image of the family is jointly surjective then the
ay-image is extremal epimorphic.

Proof. We repeat the proof of the completeness theorem from the first section.
Write E− for the subset of E consisting of non-empty covers (containing at
least 1→ 1). By Txi

we denote a list containing all diagrams consisting of some
E−-family and a map from xi to the common codomain. As there are ≥ 1, ≤ λ
such diagrams we can assume that the list has size λ.

Now start filling a λ× λ-big table with the tasks we have to solve. We shall
use the canonical well-ordering h : λ × λ → λ with the property h(α, β) ≥ β.
In the 0th column fill in Tx0 . Then solve task number h−1(0), whose second
coordinate is ≤ 0 so it is defined. By solving we mean: take the pullback of the
given family along the given arrow. So now we see an (E−)pb-covering family
on x0.

Inductively we build a tree of height λ, where all branches are cofinal. In a
successor step (α+1), where the αth object of the branch is x0,i1,... take the table
whose columns are filled in with tasks concerning the preceding objects of the
branch, fill Tx0,i1,...

to the αth-column, and solve task number h−1(α), which is
defined. Solving means: this is a diagram formed by an arrow from a preceding
object x′ above x0,i1,... to the codomain of some E−-family, precompose with the
x0,i1,... → x′ arrow of the branch, then take the pullback of the family along this
composite. In limit steps take the limits (cocompositions) of the branches.

As we deleted the empty covers from E, no branch dies out and we get a
locally (E−)pb-covering continuous cotree of height λ, and when we take the
colimit of the representables C(x0,−) → C(x0,i1 ,−) → . . . along a (cofinal)
branch we get a C → Set λ-lex functor which maps each E−-family to a jointly
surjective one.

If a branch is not preserving an empty cover {z ∅}, it means that from
some element xi of the branch there exists a morphism xi → z. If the branch is
E-preserving then by assumption the colimit takes (fi : ui → x0)i to a jointly
surjective family, in particular [1x0 ] is hit, meaning that for some xi in the
branch the map xi → x factors through some fi. Cut down each branch at such
a point, then we see an ⟨E−⟩λ-family on x0, such that each leg either factors
through some fi or the domain admits a map to some object over which ∅ is
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a cover. ay turns these objects initial, so now each leg factors through some
ay(fi), the inductively built family is mapped to an (extremal) epimorphic one,
consequently (ay(fi) : ay(ui)→ ay(x0))i is epimorphic.

By [MR77, Lemma 6.1.4.] this is sufficient. For the reader’s convenience we
repeat the proof.

Lemma 5.2. Let Sh(C, ⟨E⟩ω) be any Grothendieck-topos. Take a natural trans-
formation between sheafified representables α : aC(−, x) ⇒ aC(−, x′). Then

there is a cover (fi : ui → x)i such that each composite aC(−, ui)
a((fi)∗)
=====⇒

aC(−, x) α
=⇒ aC(−, x′) is a sheafified post-composition a((gi)∗) for some gi :

ui → x′.

Proof. A consequence of the +-construction is that given an arbitrary presheaf
F : Cop → Set and a natural transformation β : C(−, x)⇒ F+, there is a cover

(fi : ui → x)i such that each C(−, ui)
(fi)∗
===⇒ C(−, x) β

=⇒ F+ factors through the

canonical map F ⇒ F+. If we start with F++ = aF instead of F+, the same
remains true as covering trees of height 2 compose to a cover.

Apply this for the composite C(−, x) ⇒ aC(−, x) α
=⇒ aC(−, x′). We get a

cover (fi : ui → x)i such that for each i there’s a commutative diagram

C(−, ui) C(−, x) aC(−, x) aC(−, x′)

C(−, x′)

(fi)∗ α

(gi)∗

whose image under sheafification is exactly what we were looking for.

Corollary 5.3. Let Sh(C, ⟨E⟩ω) be any Grothendieck-topos and take a mono-
morphism ι : F ⇒ aC(−, x). Then there is a cover of F with sheafified repre-

sentables aC(−, ui)
βi
=⇒ F such that each ι ◦ βi is a sheafified post-composition.

Proof. Take any cover of F with sheafified representables aC(−, vi) ⇒ F then
apply the previous lemma for the composites aC(−, vi)⇒ aC(−, x).

Theorem 5.4. Let (C, E) be a λ-site with |E| ≤ λ, C being of local size ≤ λ,
λ = cf(λ). Then Sh(C, ⟨E⟩λ) has enough λ-points.

Proof. We have to prove that for an arbitrary proper mono ι : F ⇒ G there
is some M∗ : Sh(C, ⟨E⟩λ) → Set λ-lex cocontinuous functor which keeps it
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proper. It suffices to prove this for G = aC(−, x), as we can find a cover
(aC(−, xj)⇒ G)j, then form the pullback:

G
⊔

j aC(−, xj)

pb

F
⊔

j Fj

ι
⊔

j ιj

finally note that ι is proper iff at least one ιj is proper.
By the previous corollary we have

aC(−, ui)

. . . F aC(−, x)ι

βi

a((gi)∗)

and since ι is proper (ay(gi))i cannot be effective epimorphic. Therefore by
Lemma 5.1 there is some M : C → Set λ-lex E-preserving for which (M(gi))i
is not jointly surjective. By Theorem 3.9 its left Kan-extension M∗ = LanayM
is λ-lex cocontinuous and M∗ ◦ ay ∼= M . But since M∗(βi)’s form a jointly
surjective family and M∗(ay(gi))’s do not, it follows that M∗(ι) is proper.

Theorem 5.5. We have the following assumptions:

• ℵ0 ≤ κ = cf(κ) ◁ λ = cf(λ), 2<λ = λ

• (C, E) is a κ-site, |C|, |E| < λ

Then using the notation of Theorem 4.5, in the diagram

C SetMod(C)<λ

C̃

Sh(C̃, ⟨φ[E]⟩λ)

φ

ay

ev

LanayRanφ(ev)

Ranφ(ev)
∼=

∼=

LanayRanφ(ev) is an equivalence.
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Proof. All we have to check is that Lexκ(C,Set)<λ has local size ≤ λ. But there
are at most as many F ⇒ G natural transformations as

⊔
x∈C F (x)→

⊔
x∈C G(x)

maps, and since λ is regular this is (µ2)
µ1 for some µ1, µ2 < λ. This is ≤ λ by

the assumption µ < λ⇒ 2µ ≤ λ.

Remark 5.6. To ensure that C̃ has local size ≤ λ we assumed 2<λ = λ. To get
that C̃ has size ≤ λ we would need λ<λ = λ. However, these two assumptions
are equivalent for a regular cardinal λ, see [Jec02, Exercise 5.21].

As a corollary we get:

Theorem 5.7. Assume

• ℵ0 ≤ κ = cf(κ) ◁ λ = λ<λ

• (C, E) is a κ-site, |C|, |E| < λ

Then in SetMod(C)<λ the closure of {evx : x ∈ C} under κ-cofiltered limits of
size < λ form a generating set.

Another consequence is:

Theorem 5.8. Assume:

• ℵ0 ≤ κ = cf(κ) ◁ λ = λ<λ

• (C, E) is a κ-site, |C|, |E| < λ

Take a full subcategory A of Lexκ(C,Set)<λ containing Mod(C)<λ and write

I : Mod(C)<λ
J1
↪−→ A J2

↪−→ Lexκ(C,Set)<λ for the full embeddings. Let E be a λ-

topos and SetA
M−→ E be a λ-lex cocontinuous functor such that for any (ui → x)i

family in E, the family M((evui
|A → evx|A)i) is extremal epimorphic. Then a

λ-lex cocontinuous extension

SetA SetMod(C)<λ

E

M

J∗
1

M̃

∼=

exists.
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Proof. Unwinding everything that we’ve been hiding yields

C SetMod(C)<λ

(Lexκ(C,Set)<λ)
op

SetA

SetLexκ(C,Set)<λ

Sh((Lexκ(C,Set)<λ)
op, ⟨y[E]⟩λ) E

y

ev

LanayRany(ev)

Rany(ev)

y

a

J∗
2

J∗
1

ev

M

M̂

First note that all black triangles commute. In fact, I∗ ◦ y is a λ-lex functor
whose y-restriction is isomorphic to ev, therefore I∗ ◦ y ∼= Rany(ev). Also
(LanayRany(ev) ◦ a) ◦ y is isomorphic to Rany(ev), and since both I∗ and
LanayRany(ev) ◦ a are cocontinuous this extends to an isomorphism between
LanayRany(ev) ◦ a and I∗.

By assumption M ◦ J∗
2 ◦ y is λ-lex y[E]-preserving, hence there is a λ-lex

cocontinuous M̂ with M̂◦a◦y ∼= M◦J∗
2 ◦y. As M̂◦a andM◦J∗

2 are cocontinuous

it follows that M̂ ◦ a ∼= M ◦ J∗
2 .

So now we have a commutative diagram

SetLexκ(C,Set)<λ SetA SetMod(C)<λ

Sh((Lexκ(C,Set)<λ)
op, ⟨y[E]⟩λ)

E

(LanayRany(ev))−1

a

J∗
2 J∗

1

M

M̂

and if we write M̃ = M̂ ◦ (LanayRany(ev))
−1 we have M̃ ◦ J∗

1 ◦ J∗
2
∼= M ◦ J∗

2

and therefore M̃ ◦ J∗
1
∼= M since J∗

2 ◦ LanJ2
∼= 1SetA .

25



References
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[Esp19a] Christian Esṕındola. A proof of Shelah’s eventual categoricity conjec-
ture and an extension to accessible categories with directed colimits.
2019.
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