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Abstract. Considered are optimal dynamic policies for multiplexing K + 1 heterogeneous traffic types
onto a single communication channel. The packet types arrive to the channel according to independent
Poisson processes. The service requirements are exponential with type dependent means. The optimiza-
tion criterion is to minimize a linear combination of the average delays for packet types 1 to K, while
simultaneously subjecting the average delay of type-0 packets to a hard constraint. The optimal multi-
plexing policy is shown to be a randomired modification of the “uc rule”. The optimiration problem is
thereby reduced to a problem of finding the optimal randomization factor; an algorithm, which can be
implemented in real time, is given to do this for two particular cases.

L INTRODUCTION

Consider the following multiplexing problem for an integrated communication network. Heterogeneous traffic types (e.g.,
interactive messages, file transfers, voice in packet form) arrive to a concentrator in the network, wait in a buffer and are
given access to an outbound link according to a multiplexing policy. The designer is to choose a multiplexing policy that
integrates the different data types equitably into the communication network. The data types may have different statistical
properties and may place different demands on the system design : for interactive messages it may be desirable to have a
constraint on the average time delay; for file transfers it is desirable to minimize the average time delay.

Motivated by the above application, we study in this paper optimal constrained multiplexing policies for a commu-
nication channel with packet types labeled k£ = 0,1,...,K. Specifically, the packet types arrive to an infinite capacity
buffer according to independent Poisson processes with rate A;. Service times are assumed to be mutually independent
and exponentially distributed with type dependent parameter ux, and independent from the arrival processes. The decision
points are the arrival and departure epochs; therefore packets in service may be preempted at the arrival instants.

The multiplexing policy u specifies which packet type will be selected for service at each decision epoch; it is permitted
to be randomized and to depend on the past and current line lengths [18]. For convenience, we will limit our attention to work
conserving policies, i.e., to policies which always offer service to some packet when the buffer is nonempty.

Let ¢; be a holding cost incurred for type-k packets, k = 1,2,...,K. Let X (t) be the number of type-k packets in
the system at time ¢ and define X (¢) := (X¢(2), X1(2),...,Xx(2)), for t > 0.
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A policy u is said to be feasble if it meets the hard constraint, i.e., if u satisfies
t
Va(u) := limsup t"lE.[/ Xo(8)ds| X(0)=n]< «, (1.1)
¢ o

for any initial state n € § := NX+1 where N denotes the set of all nonnegative integers. A policy is said to be optimal if
it minimizes, over the class of feasible policies, the long-run average cost

: K
Chn(u) := limsup t ™1 Ey| Z ex Xi(8)ds | X(0) = n]), (1.2)
¢ 0 k=1

for any initial state n € §. By Little's formula, the above optimization criterion is equivalent to minimizing a weighted sum
of the average delays for packet types 1 through K, while simultaneously subjecting the average delay for type-0 packets to
a hard constraint.

The optimigation results of this paper can be extended to “nonexponential” queueing systems with or without pre-
emption. Moreover, analogous results also hold for discounted and finite horizon criteria. However, these variations shall not
be discussed since they only complicate the presentation without enhancing insight into the aystem behavior.

Klimov [8] studied a related problem in which packets, after having completed service, could change class and be
routed back to the queue. The service requirements were general and only nonpreemptive policies were permitted. He
considered the unconstrained optimization criterion of minimizing the average cost per unit of time and established the
existence of an optimal nonrandomized static policy (see also [1], (2], [14]). However, for multiplexing integrated traffic
onto a single channel (e.g., voice-data integration), it is natural to introduce hard constraints for certain traffic types (e.g.,
voice traffic, see [0]). The hard constraint leads to results and analyses which differ significantly from those of Klimov. The
reader is also refered to [11] in which optimal constrained priority assignment was investigated for a discrete lime queueing
system.

In this paper we determine an optimal policy with a asimple structure. To describe this policy, relabel the packet types
1 through K so0 that

prey < pacg < -+ < pgcK,

and let go be the static policy that gives priority to packet types with the highest label, i.e., type-K packets receive the
highest priority and type-0 packets receive the lowest priority. In particular, customers from classes 1 to K are served
according to the so-called uc rule (e.g., see [1], [2], [7]). Consider also the policy g; that is identical to go except for giving
priority to type-0 packets over types 1 through k for k = 1,2,..., K. In particular, g) gives the highest priority to type-0
packets, and then gives priority to the other packet types according to the uc rule.

We show that if there is a policy that meets the constraint, then there is also an optimal policy that randomizes between
two static policies g;_.; and g;, for some fixed § = 0,1,..., K. The randomigzation mechanism involves repeated tosses of a
coin with a bias factor that depends neither on the current state nor the past line lengths. Note that the special structure
of the static policies g;_; and g; implies that the randomization is only necessary at the decision epochs for which there is
contention between packet types 0 and j; otherwise, one simply applies the uc rule.

One feature of this optimigation problem, which is not characteristic for many controlled queueing problems with
multidimensional state space [15], is that we are able to completely specify the optimal policy for two particular cases.
Indeed, once having established the aforementioned result, it only remains to determine the bias factor in order to completely
specify the optimal policy. This is done for two cases : when the constraint value « is tight (to be made more precise); when
K = 1. The optimal biaa factor can then be calculated in real time for the case of time varying arrival and service rates.

In SectionII, we collect some well known results from priority queues. The structure of the optimal policy is determined
in Section II1. In Section IV, the optimal bias factor is determined for the particular cases and numerical results are provided.

IL. STATIONARY MULTIPLEXING POLICY

The line length process X := {X(t), ¢ > 0} is a Markov process under any nonrandomized stationary policy. It is well
known [5] that if
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then X possesses a unique stationary distribution. However, under a randomized stationary policy, X is not a Markov
process, but instead a semi-Markov process. This is because the random mix of two exponential sojourn times with different
means is not exponential.

For a fixed initial state n € S and a given work conserving policy, consider the time it takes to empty the system of all-
packets. It is clear that the expectation of this quantity is independent of the particular work conserving policy employed. It
therefore follows that if p < 1, then the semi-Markov process X has a unique stationary distribution for all work conserving
stationary (possibly randomired) policies. We hereafter suppose that p < 1 and write V' (f) and C(f) for Va(f) and Cn(f)
respectively, for any work conserving stationary policy f.

Recall the definition of the static policy gx. With p; := i—k—, for k=0,1,...,K, we have the following well known
k
result [7, p.39)

K
Po Pi
Ao(— + —_
(#o Z B

Vig)=—22—+ - e (2.1)
1- 3 s (=) sa-po= D 2)
i=k+1 t=k+1 t=k+1

Define for k = 1,2,..., K, the randomized pc rule

Sr,q = [9k-1, 9k, 9]
which at each decision epoch, employs either the static policies gg_; or gi, with probability ¢ and 1 — ¢, respectively.

Observe that
V(fo)=Vige), V() =V{-1) (2.2)

We will need the following intuitively obvious result. A rigorous proof can be constructed following the proof of
Theorem 5.4.3. of [12].

Lemma 2.1. The average line length for type-0 packets V (fi,,) is a continuous function of q over the interval [0,1],
foreachk=1,2,..., K.

These facts shall enable ue to determine the structure of the optimal multiplexing policy in the following section.

III. THE STRUCTURE OF THE OPTIMAL POLICY

A constrained optimiration problem can be reduced to one without constraints through the introduction of Lagrange
multipliers. For each fixed multiplier w > 0, define the Lagrangian

¢ K
J¥(u) ;= limsup t'E, [/ (wXo(s) + Z exXk(s)ds) | X(0) = "] )
¢ 0 k=1

and consider the unconstrained problem of minimizing J¥ (u) over the class of all policies.

It is well known (see e.g., [7, pp.199-200]) that, over the class of stationary policies, the ue rule is optimal. In other
words if the multiplier w satisfies
BE—1Ck—1 <w< BECk

Ho o
then the policy gr—1 is unconstrained optimal over the class of stationary policies, for k = 1,2,..., K.

In particular, if
— Brck

Ko

w: R

then the policies gx—1, gx and the randomized uc rule [gr—1, gk, ¢ ] are all unconstrained optimal (over the class of stationary
policies). Moreover, since the conditions of [3] are satisfied under the ergodicity condition p < 1, it follows that these policies
are unconstrained optimal over the class of all policies.
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We are now in position to determine the structure of the optimal constrained policy. Recall that the means Vg, ) are
explicitely given by (2.1)

Theorem 3.1, If V(gx) > «, then there does not exist a feasible policy.

ItV (9x) < a < V(go), then for some g € [0,1] the randomiged pec rule f, := [g,-.. 1 94 q] is constrained optimal, where j
is given by
j=min{i:V(g;) < a}. (s.1)

If a > V(go), then the static policy go is constrained optimal.

Proof. The first and last assertions are obvious. Suppose V{gx) < a < V(go) so that

V(g;) S a < V(g;-1),

with j given by (3.1). From Lemma 2.1 and (2.2), it follows that there is a g € [0,1] such that
V(f) = (5.2)
Moreover, by the uc rule, the policy f, minimizes J,J(u) for all n € S, where

Hees
1:: —LL.
Ho

Thus, for all initial states n € § and any feasible policy u, we have

C(fe) +ya=J7(f,)
< Jl(y)
< Cp(u) + vVa(u). (3.8)

Equation (3.8) in turn implies
C(fg) = Cn(u) £ AVa(u) ~ @),

V¥n € S. Hence, C(fg) < Cn(u) for any feasible policy and any state n € S, i.e., the policy [, is constrained optimal. J

It is to be noted that the proof of the above theorem does not depend on the choice of the decision points. In
particular, if the randomication is performed at the beginning of every busy period, then Theorem 3.1 holds, and in that
case V(fq) = qV(gj-1) + (1 = q)V(g5), where j is given by (3.1) (see also [7, pp. 186-187]). The optimal value of g, cf.
(8.2), is then trivially determined. However, randomizing at the beginning of busy periods is not as natural as at the jump
points, and moreover, it leads to a larger variance for the response times of type-0 packets.

In order to completely determine the optimal policy in the case where the decision points are the jump points, it

remains to calculate the bias factor ¢ that satisfied (8.2). This is the theme of Section IV.

IV. THE OPTIMAL BIAS FACTOR

For the remainder of this paper, we will assume that one of the two following conditions holds :

1) o < V{gk-1) (tight constraint value),
ii) K=1.

In case i (and obviously in case ii) it follows that it is only necessary to study a system with packet types 0 and K.
Because the function ¢ —+ V() is clearly strictly increasing and continuous in [0, 1] by Lemma 2.1 (here fq := [go, 91, ¢] as
in Theorem 8.1), the equation V{f;) = a (cf. (3.2)) has a unique solution (the optimal bias factor) which can therefore be
easily obtained numerically once V(fy) is known for all g € {0,1]. For the remainder of this paper, we focus our attention
on the determination of V(f;) for fixed ¢ € (0,1). To this end we shall use the generating function method.
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For |z| £ 1, |[y| £ 1, we define the following two-dimensional generating function

Fo(z,y) :=lim Ey,[2X1®)yXo () | X (0) = n).

The above limit exists and is independent of the initial state n € § under the ergodicity condition p < 1 (see Section
II). From now on it will be assumed that p < 1. Therefore,

V() = %Fq(z. v) (41)

(29)=(1,1)

Consequently, it is seen from (4.1) that Fg(z,p) must be determined in the vicinity of the point (1,1). To do this, we
shall show that Fy(z, y) satisfies a functional equation which can be solved analytically. To this end (see Remark 4.1), let
Q:=(q(m, n)) (m,n)€S? be the transition matrix for the Markov chain imbedded at the jump points of X when the policy

Jq i applied for some fixed q € [0, 1]. Also let v:=(v(n)) nes be the unique probability measure that satisfies

v=vQ. (4.2)
A classical result from the theory of semi-Markov processes [4, p.342] gives, for alln € S,
. v{n}y(n)
P t) = 0)) = ——t—-t 3
lim Py, (X() = n ] X(0)) = 2212, (43)

where T := (4(n)), ¢ g is the conditional mean sojourn time for the semi-Markov process X, and v.T' is the inner product of v
and T,

Let us now introduce the transition matrix Q:=(g(m, n)) (m.n)es3 for the subordinated Markov chain (J?")ne s (see [4,
pp.259-260}, [12, p.50]) defined by
q(m, ”) = nm 1 (4-4)
1-— ——, otherwize,.
(m)

Let 11 := (w(n)) nes De the unique invariant measure satisfying the equations

n=MQ,

Mi=1 (4.5)

We then have the following :

Lemma 4.1.
Ii:n Py (X(t) =n|X(0)) = x(n), VnE 5.

Proof. Forn € S

z v(m)y(m)g(m,n) = v(n)y(n)(1 - ‘1_-(173) + Z v(m)g(m,n), from (4.4),
m m¥En
= o(n)x(n) - (o(n) = ) o(m)a(m,n)),
m¥n
= v(n)y(n), from (4.2). (Note that ¢(n,n) =0,Yn € 5.)

u(m)v(m)

T V¥m € S, from (4.5) and the uniqueness property. The proof is then concluded by
v.

Consequently x{m} =
considering (4.3). R
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The above result shows that Fy(z,y) is also the generating function of the Markov chain (J?,.)”e g+ Let us now consider
the matrix Q. With eg := (1,0) and ¢; := (0,1), a straightforward calculation gives for m = (m;,mo) € 5% cf.(4.4),

Am,m+e;) = A

~ 0, m; = 0;
g(m,m —e;) =4 Hi, ) m; >0,m;_; =0; )
i€+ (1-4)(1-¢)), m;>0mi_;>0; (i=0,1);
1~2A, mo=m; =0;
~ —J1-A—py, mg > 0,m; = 0;
q(m'm)— 1-2-— o, mgo = 0,m; > 0;

1-2—p€—po(1~£), mo>0,m >0,

where
gmg——2TB . (ge(o,1) (4.6)
A+qpo+(1-q)m
A= A1 + Xo. (By conventionm.; = m,;.)

It then turns out that the transition matrix 6 is exactly the same [up to an obvious change of notation) as the one of
the process studied by Fayolle and Iasnogorodski [6, case “pq=p; u3"]. (In [6] the authors consider two parallel queues; for
each queue the input process is Poisson and the service demands are exponentially distributed, with a rate which depends
on the state (empty or not) of the other queue.)

Consequently the results obtained in [6] apply and it is seen that, for p < 1, Fy(z,y) is the unique solution - analytic
in |2 < 1, jy| < 1, continuous in [z| < 1, |y £ 1 - of the following functional equation :

K(z,y)F(z,y) = R(=,9)[¢F(0,4) — (1 = £)F(2,0)] + S(=,v)(1 - p), (4.7)

for |z| £ 1, |y| £ 1, where

K(z,y) := A3(1 —z) + Ao(1 - v) + Ema (1~ %) + (1= €)po(1 - %):
R(z,9) := p1(1 - ;1;) - bo(1— %);

S(m9) = (L= (1= )+ ol - 7).

Differentiating twice (4.7) in the variable y and letting (z,y) = (1,1) yields, cf. (4.1),

8
Ao - Ilos;Fq(O,v) .
V(fy) = = for A 1-¢). 4.8
(fa) ml-O-% o # po(l— €) (4.8)
Starting now from the obvious relation
8 8
| 4 = —Fy(z, z — —Fy(z,y ,
(fq) 83 q( ) z=1 82 q( ! ) (z"):(l,l)

we readily obtain a relation similar to (4.8),

Ao+ (1 — uo)g’;Fq(o,u)[m + (& + po(1 - €) 5= Fy(2,0)

z=1

Vi) =

,  for Ao = so(l - €). 49
w€— orio=moli=g).  [(49)

(Note that the denominator in (4.9) cannot vanish under the condition p < 1.)
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In (6] Fayolle and Iasnogorodski explicitly obtained the functions F,(z,0) and F,4(0,y) respectively for |z| < (21

A

and ‘v' < -”1(_1_-:_62
Ao

corresponding formulas (6.3)-(6.5) in [6] are slightly incorrect.)

. These results are given in Appendix with the change of notation previously mentioned. (The

Consequently for Ag < po(1~€£) the first derivative of F,(0,y) at point y = 1 can be derived from (A.2) (see Appendix),
which gives V' (f;) by (4.8).

For Mg 2 po(1 — £¢) we need to analytically continue the expression involving F¢(0,y) given by (A.2) up to the unit

9
circle, in order to obtain E-F.,(O, v) . (Note that for Ag = po(1 — €) the constant E—Fq(z,o) also appearing in
v y=1 z z2=1

(4.9) can be directly computed from (A.1), since in that case we necessarily have A; < p; ¢ under the condition p < 1.)

This analytic continuation - which is not explicitly done in [6] - can be carried out as follows : using Theorem 3.1 and

relation (8.2) in [6, pp.332- 333], we obtain for 4 / E—(’L;—o:—e—) <yl £1,
1 _ S(k(v). ), _
Fy0,0) = 51~ OF(k),0) - 8- ) (410)

with

A+ €+ a(y) — V(A + g€+ a(p))? - €
221 ’

Mu—w+mu—au—§.

k(y) :=
a(y) :

i

It is shown in [6, Lemma 2.2] that |k(y}| < EA—IE

y.o(l - e) “0(1 - e)
. for ————-Xo —_——Xo

< |yl £ 1. Consequently for <l <y,

the function F,(k(y),0) in (4.10) can be computed with (A.1) (see Appendix). (The continuity of (4.10) and (A.2) (see
po(1 - ¢)
Ao

Appendix) on the circle |y| = can be proved using Plemelj-Sokhotski formulas, as done in [10, Lemma 5.1]. This

not done here for sake of clarity.)

The above results can be summariged as follows :
e for Ao < po(1 — £), V(f,) is obtained from (4.8), (A.2);

o for Ag > po(1 — £), V(f,) is obtained from (4.8) (or from (4.9) if Ao = po(1 — £)) and (4.10).

In Figure 1 we have plotted V' (f;) versus the bias factor g, for two families of model parameters. The shape of these
curves appears to be typical, since in each case the saddle point is exactly located at point ¢ such that Ag = (1 — £)uo,
which actually turns out to be a special point both from an analytical (see the present section) and queueing point of view.
Table 1 gives the value of the optimal bias factor - called gop: - for varying values of the constraint a.

Remark 4.1. The functional equation (4.7) can also be derived by considering the Markov process {(X(t),I(¢)), t > 0},

where I(t) indicates the customer type being served at time ¢, if any. However this method yields lengthy computations
~
which can be avoided in our case by noting the similarities of the transition matrix Q with the corresponding matrix in [6].
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V(fd)

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2 |

0.0

A: A =X0=045 p1=1 po=2 (p= 0.675)

O: A1 =2X=086 yp=1 po=2 (p=0.525)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

Figure 1
V(fy) versusgfor K =1

Case O: Ay =036 Ao = 0.85 p=1 o =2 (» = 0.525)
V¢ = 0.212 Vs, =0.765
p=02 (a=0.6546) =5  gopt = 0.847
p=04 (a=0.5440) = Qopt = 0.707
p=06 (a=0.4333) = Qopt = 0.555
p=08 {a=0.8227) = Gopt = 0.351

Case A: Ay =0.45 Ao =045 pr=1 po=2 (p = 0.875)
Vo = 0.290 Vy, = 1.826
p=02 (a=1.5182) == Qopt = 0.835
p=04 (a=1.2112) = Gopt ='0.709
p=06 (2=09048) =%  gop¢ = 0.588
p=08 (a=0.5973) e Qopt = 0.417

(a=(1-p)V(f1)+pV(fo), r€[0,1])

Table 1

Computation of the optimal bias factor gopt for
varying values of the constraint «
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APPENDIX

1~
Forp <1, IZ|< Mn |!J|< Mlqe(oll)i
A Ao

Fyz,0) = 2/ A1 € /” z sind n(6) 4o
; =
' x o &m+Aiz?2 - 22/ 1u)€ cosd

+1-p; (A1)

24/ Xono(1 - §) /" y sin 8 v(6) d8
Fq(0,y) = 1-p, A,
«09) x o (1—8uo+ Aoy? — 2y\/Iopo(l — €) cosd * g (4.2)
where
1 #o(l—¢€) .
-#1 |1- {1 - p)sind
v(8) := ( h(a)) Ao 2 ; (A.3)
3 [#o “L(;—o——e-)-cosﬂ—m(l—;(lT))] +%‘—:sin20
o S IEETO) VIVET + Vim0 + r(@ll(VAT - /i€ + r(6)] ”
= 21 ‘ '
r(8) := Xo + po(1 — &) — 24/ Xopo(1 — &) cosd. (A.5)

n(6) is obtained from (A.3), (A.4), (A.B) by interchanging indicies O and 1 and by replacing £ by 1 ~ £; ¢ is given in (4.6).
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