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Considered are optimal dynamic policies for multiplexing K + 1 heterogeneous trafllc types onto a single communication channel. The packet types arrive to the channel according to independent Poiaaon processes. The service requirements are exponential with type dependent means. The optimication criterion ie to minimice a linear combination of the average delays for packet types 1 to K, while simultaneously subjecting the average delay of type-0 packets to a hard constraint. The optimal multiplexing policy ia shown to be a randomiced modification of the "/JC rule". The optimization problem ie thereby reduced to a problem of finding the optimal randomization factor; an algorithm, which can be implemented in real time, ia given to do this for two particular cases.

I. INTRODUCTION

Consider the following multiplexing problem for an integrated communication network. Heterogeneous traffic types (e.g., interactive messages, flle transfers, voice in packet form) arrive to a concentrator in the network, wait in a buffer and are given access to an outbound link according to a multiplexing policy. The designer ia to choose a multiplexing policy that integrates the different data types equitably into the communication network. The data types may have different statistical properties and may place different demands on the system design : for interactive messages it may be desirable to have a constraint on the average time delay; for Ale transfers it is desirable to minimize the average time delay. Motivated by the above application, we study in this paper optimal constrained multiplexing policies for a communication channel with packet types labeled h = 0 , , . . . , K. Specifically, the packet types arrive to an infinite capacity 1 buffer according to independent Poisson processes with rate Ak. Service times are assumed to be mutually independent and exponentially distributed with type dependent parameter pk, and independent from the arrival processes. The de&ion poin#a are the arriwd and departun epochs; therefore packets in service may be preempted at the arrival instants.

The multiplexing policy u specifies which packet type will be selected for service at each decision epoch; it L permitted to be nand4mired and to depend on the pert and CUM line lengths [START_REF] Ross | Applied ProbabJit~ Models with Optimization Applicationa[END_REF]. For convenience, we will limit our attention to work comeruing policies, i.e., to policies which always offer service to some packet when the buffer ie nonempty, Let ck be a holding cost incurred for type-k packets, k = 1,2,. . . , K. Let Xk(t) be the number of type-k packets in the system at time t and define X(t) := (Xo(t),Xl(t), . . . ,XK(~)), for t 1 0.
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A policy u is said to be fetadle if it meetr the hard coa&&f, i.e., if u satisfiee / t vn (4 := lim sup t"Ea( Xo(d)db IX(O) = n] < a, (1.1) t 0 for any initial state n E S := NK+', where N denote8 the set of all nonnegative integers. A policy is eaid to be optimal if it minimice& over the class of feasible policies, the long-run average cost CA4 := lim sup t-'E,,[ CkXk(#8 IX(O) = n], t (1.2)

for any initial state n E S. By Little's formula, the above optimitation criterion is equivalent to minimizing a weighted Bum of the average delays for packet types 1 through K, while simultaneously eubjecting the average delay for type-0 packets to a hard constraint.

The optimisation results of this paper can be extended to 'nonexponential" queueing system8 with or without preemption. Moreover, analogous results ah30 hold for &counted and finite horiunr criteria. However, these variations shall not be di.acussed since they only complicate the presentation without enhancing ineight into the ayetem behavior.

Klimov [START_REF] Klimov | Time-Sharing Service System I[END_REF] rtudied a related problem in which packets, after having completed service, could change class and be routed back to the queue. The service requirements were general and only nonpreemptive policies were permitted. He considered the unconstrained optimiaation criterion of minimicing the average coet per unit of time and established the existence of an optimal nonrandomized static policy (see also [l], [2], (141). H owever, for multiplexing integrated traffic onto a ringle channel (e.g., voice-dataintegration), it is natural to introduce hard constraints for certain trafiic type8 (e.g., voice traffic, see [Q]). The hard constraint leada to results and analyses which differ significantly from those of Klimov. The reader 18 8180 refered to (111 in which optimal constrained priority assignment wae investigated for a da&& time queueing By&em.

In this paper we determine an optimal policy with a aimple structure. To describe this policy, relabel the packet types 1 through K 10 that Pica 4 cC2C2 s *-* 5 PKCKI and let 50 be the static policy that gives priority to packet types with the highest label, i.e., type-K packet8 receive the highest priority and type-0 packet8 receive the lowest priority. In particular, customers from classes 1 to K are served according to the lo-called PC rule (e.g., see [I], (21, [START_REF] Gelenbe | Analpk and Syrlhesis of Computer Systems[END_REF]). C oneider also the policy gk that is identical to go except for giving priority to type-0 packet8 over types 1 through k for k = 1,2,. . . , K. In particular, gK give8 the highest priority to type-0 packets, and then gives priority to the other packet types according to the PC rutc.

We rhow that if there is a policy that meets the constraint, then there is also an opfimd policv that randomizes between twci rtatic policies ~-1 and gi, for some fIxed j = 0, 1, . . . , K. The randomization mechanism involves repeated tosaee of a coin with a bias factor that depend8 ae&r on the current state MT the past line lengths. Note that the special structure of the rtatic policiee gj-1 and gj implies that the randomication is only necessary at the decieion epoch8 for which there is contention between packet type8 0 and j; otherwile, one simply applies the PC rule.

One feature of thi8 optimization problem, which ie not characteristic for many controlled queueing problem8 with multidimen8ional state space 1151, ir that we are able to completely rpecify the optimal policy for two particular casea. Indeed, once having established the aforementioned result, it only remains to determine the bias factor in order to completely epecify the optimal policy. Thie ir done for two caees : when the constraint value o is tight (to be made more precise); when K = 1. The optimal bias factor can then be calculated in real time for the case of time varying arrival and service rates.

In Section II, we collect Borne well known results from priority queues. The structure of the optimal policy is determined in Section III. In Section IV, the optimal bias factor is determined for the particular cases and numerical results are provided.

II. STATIONARY MULTIPLEXING POLICY

The line length proaew X := {X(t), t 2 0 ) is a Mere proceae under any nonrandomiced stationary policy. It is well known (61 that if

K x P .-.-c -k Cl,
k=O Pi then X possesses a unique stationary distribution.

However, under a randomiced stationary policy, X is not a Markov process, but instead a rcmGA.farkov process. This ia because the random mix of two exponential sojourn timer with different means is not exponential.

For a fixed initial rtate n E S and a given work co~eruin# policy, consider the time it takes to empty the syyrtem of allpackets. It is clear that the expectation of this quantity is independent of the particular work conserving policy employed. It therefore follows that if p < 1, then the semi-Markov process X haa a unique stationary distribution for all work conserving stationary (porsibly randomited) policies. We hereafter suppose that p < 1 and write V(f) and C(f) for V,,(f) and C,,(j) rerpectively, for any work conserving stationary policy f. which at each decision epoch, employs either the static policies #k-l or gk, with probability q and 1 -q, respectively. Observe that

v(fO) = %kh v(h) = V(#k-1). P-2)
We will need the following intuitively obvious result. A rigorous proof can be constructed following the proof of Theorem 5.4.3. of [START_REF] Ross | Constrained Markov Decision Processes with Queueing Applicatioru[END_REF].

Lemma 2.1. The average line length for type-0 packets V(&,) is a continuous function of q over the interval [OJ), foreachk= 1,2,...,K.

These facts shall enable us to determine the structure of the optimal multiplexing policy in the following section.

III. THE STRUCTURE OF THE OPTIMAL POLICY

A constrained optimization problem can be reduced to one without constraints through the introduction of Lagrange multipliers. For each Axed multiplier w 2 0, define the Lagrangian ] are all unconstrained optimal (over the class of stationary policies). Moreover, since the conditionsof [S] are satisfied under the ergodicity condition p < 1, it follows that these policies are unconstrained optimal over the class of dl policies.

We are now in porition to determine the structure of the optimal con&rained policy. Recall that the means V(gk) are explicitely given by (2.1) Theorem 3.1. If V(gK) > a, then there doe6 not exi'st a feasible policy.

If V(gx) s a < V(ge), then for dome q TV 10, l] the randombed PC *ule frr := [ giel, gi, q] is constrained optimal, where j is given by j = mln{i : V(gi) < a}. @l)

If Q 1 V(ge), then the static policy go is constrained optimal.

Proof. The Amt and la& aasertionr are obvious. Suppose V(gK) 5 a 5 V(go) 80 that with j given by (3.1). From Lemma 2.1 and (2.2), it follows that there is a q E [O,l] ruch that wq,) = =.
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Moreover, by the PC rule, the policy f. minimiser Jz(u) for all n E S, where 7 := !w PO'

Thus, for all initial &&es n E S and any feasible policy u, we have It ir to be noted that the proof of the above theorem does not depend on the choice of the decision pointr. In particular, if the randomization is performed at the beginning of every busy period, then Theorem 3.1 holdr, and in that cane V(fo) = qV(g+1) + (1 -q)V(gi), where j ir given by (3.1) ( see also (7, pp. 1851871). The optimal value of q, cf.

(X2), is then trivially determined. However, random%ng at the beginning of bury periods is not M natural M at the jump pointn, and moreover, it leads to a larger variance for the response timer of type-0 packets.

In order to completely determine the optimal policy in the case where the drcision points are the jump points, it remains to calculate the bias factor q that satisfled (5.2). Thir ia the theme of Section IV.

IV. THE OPTIMAL BIAS FACTOR

For the remainder of this paper, we will assume that one of the two following conditions holds : i) a ,< V(gK-1) (tight constraint value),

ii) K = 1.

In case i (and obviously in case ii) it follows that it in only necessary to study a system with packet types 0 and K. Becaure the function qand aontinuow in [01 l] by Lemma 2.1 here fq := [go, g1, q] en in Theorem 3.1), the equation = Q (cf. (3.2)) has a unique rolution (the optimal bias factor which can therefore be \ eaoily obtained numerically is known for all q E [O, 11. For the remainder of this paper, we focus our attention on the determination of V(fe) for fixed Q E (0,l). To this end we rhall use the generating function method.

The above result shows that Fq(2, v) is also the generating function of the M&oo chain (%,)nes. Let UI now consider the matrix a. With CO := (1,0) and cl := (0,l) , a straightforward calculation gives for m = (ml,, me) E Sa ,cf. (By convention m-1 = ml.)

It then tumr out that the transition matrix 6 is exactly the @ame (up to an obvious change of notation) a8 the one of the procees studied by Fayolle and Iamogorodski [6, cane *pq=plcs"].

(In [START_REF] Fayolle | Two Coupled Processors : the Reduction to a Riemann-Hilbert Problem. 2[END_REF] the authors consider two parallel queues; for each queue the input proceaa is Poisson and the service demands are exponentially distributed, with a rate which depends on the state (empty or not) of the other queue.)

Consequently the results obtained in in 121 < 1, 1~1 < I, continuous in Iz( < 1, 61 apply and it is oeen that, for p < 1, Fq(2, v) is the u&pc rolution -analytic 1~ 5 1 -of the folIowing functional equation : (Note that the denominator in (4.9) cannot vanish under the condition p < 1.)

Ak

  Recall the definition of the static policy #k, With pk := -, for k: = 0, 1, . . . , K, we have the following well known result [7, p.39] k = 1,2,. . . , I(, the m&on&d PC rule fk,p := [#k--l, Sks, S?]

  unconutmG& problem of minimizing J:(u) over the class of all policies.It is well known (see e.g.,[START_REF] Gelenbe | Analpk and Syrlhesis of Computer Systems[END_REF]) that, over the class of stationary policies, the PC rule is optimal. In other words if the multiplier w satisfies b'k-lck--1 < w I w, cl0 PO then the policy #k-l is unconstrained optimal over the class of stationary policies, for k = 1,2,. . . , K.In particular, if Pkck w:= -, cl0 then the policies #& 1, #k and the randomieed &c de [#k-l, #k, q

3 )

 3 in turn implies WI?) -G(4 I 'I(Vn(4 -a), Vn E S. Hence, C(f*) 5 On(u) f or any feasible policy and any rtate n E S, i.e., the policy jq is tined optimal. 1

  u) := h(l -4 + X0(1 -u) + &(l-;, + (I-E)Po(l-5); Rb, u) := P1(1-2 -cco(l-; ( 4 l)w S(%U) := (l-E)r1(1-;, + EE(o(l-i). Differentiating twice (4.7) in the variable y and letting (2, u) = (1,1) yields, cf. (4.1), w-d = a0 -cogw~u)~ y=l cco(l-t)--o ' for X0 # cco(l -0.

(4. 8 )

 8 Starting now from the obvious relation we readily obtain a relation similar to (4.8), Vu?) = x0 + (Pl -ro)~q(o,u)( y=l + (hE+ PoO-E)$+q(2J9(,=l r1E -x1 I for A0 = clo(l -Cl* (4.9)

For 121 5 1, 1~1 < 1, we define the following two-dimensional generating function t

The above limit exists and is independent of the initial state n E S under the ergodicity condition p < 1 (see Section II). From now on it will be assumed that p < 1. Therefore, (4.1) Consequently, it is seen from (4.1) that F9(t, u) must be determined in the vicinity of the point (1,l). To do this, we shall show that F,,(z, v) satisfier a functional equation which can be solved analytically. To this end (see Remark. We then have the following :

2). (Note that q(n, n) = 0,Vn E S.) as done in (10, Lemma 5.11. This not done here for sake of clarity.)

The above results can be summarieed as follows :

is obtained from (4.8), (A.2); l for A0 1 po(l -0, V(fq) is obtained from (4.8) (or from (4.9) if &J = po(l -t)) and (4.10).

In Figure 1 we have plotted V(fq) versus the bias factor q, for two families of model parameters. The shape of these curves appears to be typical, since in each case the saddle point is exactly located at point q such that Ao = (1 -e)ro, which actually turns out to be a special point both from an analytical (see the present section) and queueing point of view. Table 1 gives the value of the optimal bias factor -called gopt -for varying values of the constraint CL Remark 4.1. The functional equation (4.7) can also be derived by considering the Markov process {(X(t),I(t)), t 2 0), where I(t) indicates the customer type being served at time t, if any. However this method yields lengthy computations which can be avoided in our case by noting the similarities of the transition matrix 6 with the corresponding matrix in IS]. Computation of the optimal bias factor gopt for varying values of the constraint u