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TOPOLOGICAL COMPLEXITY OF SPIKED RANDOM POLYNOMIALS AND
FINITE-RANK SPHERICAL INTEGRALS

VANESSA PICCOLO

ENS Lyon, 46 allée d’Italie, 69007 Lyon, France

Abstract. We study the annealed complexity of a random Gaussian homogeneous polynomial on
the N -dimensional unit sphere in the presence of deterministic polynomials that depend on fixed unit
vectors and external parameters. In particular, we establish variational formulas for the exponential
asymptotics of the average number of total critical points and of local maxima. This is obtained
through the Kac-Rice formula and the determinant asymptotics of a finite-rank perturbation of a
Gaussian Wigner matrix. More precisely, the determinant analysis is based on recent advances on
finite-rank spherical integrals by Guionnet-Husson [24] to study the large deviations of multi-rank
spiked Gaussian Wigner matrices. The analysis of the variational problem identifies a topological
phase transition. There is an exact threshold for the external parameters such that, once exceeded, the
complexity function vanishes into new regions in which the critical points are close to the given vectors.
Interestingly, these regions also include those where critical points are close to multiple vectors.

1. Introduction

In this paper, we study the complexity of finite-rank spiked random polynomials on theN -dimensional
unit sphere SN−1. Specifically, we consider a random smooth function fN : SN−1 → R of the form
fN (σ) = m(σ) + HN (σ), where the mean function m is a sum of deterministic polynomials of finite
degree and HN is an isotropic Gaussian random field on SN−1. Our goal is to analyze the exponential
asymptotic behavior of the average number of total critical points and of local maxima of the random
function fN .

1.1. Model and results

We assume that the Hamiltonian HN is an homogeneous polynomial of degree p ≥ 3, which we param-
etrize here as

HN (σ) =
∑

1≤i1,...,ip≤N
Wi1,...,ipσi1 · · ·σip , (1.1)

where σ = (σ1, . . . , σN ) ∈ SN−1 and W = (Wi1,...,ip)1≤i1,...,ip≤N ∈ (RN )⊗p is a Gaussian symmetric
tensor with independent entries up to symmetry. In particular, the couplings Wi1,...,ip are given by

Wi1,...,ip
d= 1√

2N
1
p!
∑
π∈Sp

Gπi1,...,ip ,

where G ∈ (RN )⊗p is an order-p tensor with i.i.d. standard Gaussian random variables Gi1,...,ip and for
a permutation π ∈ Sp over p elements, we let Gπi1,...,ip denote Gπi1,...,ip = Gπ(i1),...,π(ip). Hence, HN is a
centered Gaussian process on SN−1 whose covariance function is given by

E [HN (σ)HN (σ′)] = 〈σ,σ
′〉p

2N .
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The Hamiltonian HN is referred to in physics as the spherical pure p-spin model. Given r deterministic
vectors u∗1, . . . ,u∗r ∈ SN−1, where r ≥ 1 is a finite integer number, we then define the random function
fN : SN−1 → R by

fN (σ) =
r∑
i=1

λi〈u∗i ,σ〉ki +
∑

1≤i1,...,ip≤N
Wi1,...,ipσi1 · · ·σip . (1.2)

Here, k1, . . . , kr ≥ 3 and λ1 ≥ · · · ≥ λr ≥ 0.
Our goal is to characterize the annealed complexity of the high-dimensional random function fN .

More precisely, if for any open set B ⊂ R we let CrttotN (B) denote the number of total critical points
of fN at which fN ∈ B and Crtmax

N (B) the number of such local maxima, we wish to understand the
large-N asymptotics of the expected number of total critical points and of local maxima of fN , i.e.,

lim
N→∞

1
N

log E
[
CrttotN (B)

]
and lim

N→∞

1
N

log E [Crtmax
N (B)] .

Early research into the complexity of random polynomials of the form (1.2) was conducted in physics
by Crisanti-Sommers [18] for λ1 = . . . = λr = 0, that is, in the case of spherical pure spin glasses.
A mathematically rigorous computation of the annealed complexity of the same pure noise model was
provided by Auffinger-Ben Arous-C̆erný [6]. Further work [22] by Fyodorov analyzed the complexity of
the spherical pure spin glass model in a random magnetic field whose Hamiltonian corresponds to (1.2)
with r = k = 1. When r = 1 and k = p the random function fN corresponds to the spiked tensor
model, introduced in [34] in the context of high-dimensional statistical inference and whose complexity
was studied by Ben Arous-Mei-Montanari-Nica [15]. More generally, when r = 1, the model (1.2) is
known as the “(p, k) spiked tensor model” [5].

Our main result is the following. We show that there exists an upper semi-continuous function Σtot,
called the total complexity function, such that

− inf
x∈B◦

−Σtot(x) ≤ lim inf
N→∞

1
N

log E
[
CrttotN (B)

]
≤ lim sup

N→∞

1
N

log E
[
CrttotN (B)

]
≤ − inf

x∈B
−Σtot(x). (1.3)

That is, we establish a weak large deviation principle (LDP) in the speed N and with good rate function
−Σtot. We obtain a similar result for local maxima. The strategy of proof relies first on the Kac-Rice
formula that reduces the complexity of the landscape to the study of the determinant of a multi-rank
spiked Gaussian Wigner matrix and then on the determinant asymptotics of such large random matrix.
The determinant analysis in the case of a finite-rank perturbation requires technical challenges. To
this end, recent advances on finite-dimensional spherical integrals obtained by Guionnet-Husson [24]
are needed to tackle the large deviations of Gaussian Wigner matrices in the presence of a finite-rank
perturbation. As a consequence of this variational problem, we identify the regions where the complexity
function Σtot vanishes and where the number of critical point is therefore sub-exponential. Moreover,
we show that, as the parameters cross an exact threshold, there are new regions of zero complexity
in which the critical points are very close to the given vectors u∗1, . . . ,u∗r . Interestingly, these regions
include both those where the critical points are close to a single spike and those where the critical points
are close to more than one spike. We refer the reader to the next subsections for more details on the
strategy of proof and the related literature.

1.2. Motivation

The topological complexity of isotropic Gaussian random polynomials was initiated by Auffinger-Ben
Arous-C̆erný [6] and by Auffinger-Ben Arous [4] on spherical spin glass models. This was followed
by further work on the complexity of spiked random polynomials, in which a deterministic term that
depends on a fixed vector is added to the Hamiltonian of spherical spin glasses. When the added term
is linear, the deterministic part represents the external magnetic field aligned with the given direction
and the complexity of this model was studied in [22, 9]. When the deterministic term is a polynomial of
degree p, then it is the spiked tensor model that emerges from a statistical estimation problem [34] and
whose complexity was analyzed in [15, 35]. In this paper, we focus on the spherical pure p-spin model in
the presence of a deterministic term which favors all vectors that are close to u∗1, . . . ,u∗r ∈ SN−1. The
choice of our model is therefore natural within this framework. Although the function fN generalizes the
spiked tensor model [15] for r = 1 and k = p, our model is not directly related to an inference problem.
However, we believe that studying the complexity of fN is relevant to understanding estimation problems
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that arise naturally in high-dimensional statistics, such as the multi-rank spiked tensor model that we
present below. We consider the following inference task: we wish to recover the unknown signal vectors
u∗1, . . . ,u

∗
r ∈ SN−1 from a noisy observation of a tensor Y ∈ (RN )⊗p of the form

Y =
r∑
i=1

λi(u∗i )⊗p +W . (1.4)

Here, W ∈ (RN )⊗p is an order-p Gaussian symmetric tensor and the parameters λ1, . . . , λr ≥ 0 are
the signal-to-noise ratios. A natural estimator for the spikes u∗1, . . . ,u∗r is given by the maximum
likelihood estimator (MLE). In the special case r = 1, the MLE corresponds to the argmax of the
random function fN with k = p [34, 15]. Otherwise, the MLE is given by the argmax of the random
function FN :

(
SN−1)r → R defined by

FN (σ1, . . . ,σr) =
r∑
i=1

λifN (σi)−
∑

1≤i<j≤r
λiλj〈σi,σj〉p,

where fN corresponds to (1.2) with ki = p for all 1 ≤ i ≤ r. Understanding the complexity of such
landscapes requires additional efforts, especially with regard to the number of local maxima. Indeed,
via the Kac-Rice formula, the problem reduces to the study of the large-N limit of the determinant
of a full-rank deformation of a large block matrix with dependent Gaussian blocks. This determinant
analysis involves challenging techniques, such as the asymptotics of spherical integrals, to derive large
deviations principles for the largest eigenvalue of such large random matrix. The study of the complexity
of the multi-rank spiked tensor model therefore requires further effort and will be the subject of future
work.

1.3. Related work

As mentioned above, early work on the complexity of high-dimensional landscapes was carried out in
statistics and physics in the context of mean-field glasses and spin glasses [16, 30, 18, 17]. In the
mathematical literature, the breakthrough paper was proposed by Fyodorov [21] on the model known
as the “zero-dimensional elastic manifold”. Since then, the landscape properties have been studied for
many different models. Of interest here, for instance, are the works on spherical spin glasses [6, 4, 39,
40] and in the presence of a deterministic term, e.g. [22, 15, 35, 37, 38, 9, 5]. The classical approach for
counting the total number of such points is the Kac-Rice formula, which relates the average number of
critical points to conditional averages of random matrix determinants. In most of the models studied
so far, the random matrices appearing in the Kac-Rice formula are related to the Gaussian Orthogonal
Ensemble (GOE). Recently, [11, 12] studied landscapes models with few distributional symmetries whose
conditioned Hessian is a large random matrix with a non-invariant distribution.

In addition to the topological complexity question, models that depend on external parameters also
provide a characterization of the landscape by identifying a topology trivialization transition when tuning
the parameters. Specifically, there is an exact threshold between regimes where the complexity is positive
and regimes where the complexity vanishes. Understanding these phase transitions can be useful in
predicting the dynamics of optimization on the landscape. When complexity is non-positive and the
number of critical points is thus sub-exponential, optimization should be easier, while conversely, when
complexity is positive, optimization should be more difficult, since the number of critical points is
exponentially large and algorithms can get trapped in a large number of critical points.

Optimization in high-dimensional landscapes is actually computationally hard. For the special case
p = 2, the model (1.2) reduces to the spiked matrix model introduced in [28]. This model exhibits a phase
transition, known as the BBP transition [8], where there exists an order 1 critical threshold λc such that
below λc, it is information-theoretical impossible to detect the signal vectors, and above λc, it is possible
to detect the spikes by Principal Component analysis. The same phenomenon has been observed for
the spiked tensor model. In particular, in the high-dimensional asymptotic regime, there is an order 1
critical threshold λc (depending on the order p), below which it is information-theoretical impossible
to detect the spikes, and above, the MLE is known to be a good, consistent estimator. Computing the
MLE is however NP-hard and finding a good algorithm to compute it quickly still remains a challenge
(this phenomenon is known as a computational-to-statistical gap). For the rank-one case, it was shown
heuristically in [34] that for the tensor power iteration method, it is possible to recover the spike provided
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λ & N
p−2

2 . This conjecture was rigorously proved in [26]. The same threshold was obtained for Langevin
dynamics and gradient descent in [13]. Moreover, [14] investigated the tensor unfolding algorithm and
proved that it is possible to recover successively the spike provided λ & N

p−2
4 , as conjectured in [34].

The sharp threshold λ & N
p−2

4 was also achieved using Sum-of-Squares algorithms in [25].
We wish to emphasize that we address here the question of the average number of critical points, which

in general may not be close to its typical value. A more representative quantity of the typical number of
critical points is given by the quenched complexity, which corresponds to the large-N asymptotics of the
average of the logarithm of the number of critical points. In most of the models, the random variable
CrttotN does not concentrate about its expectation, and quenched and annealed complexity differ from
each other even at leading order, as in the case of the spiked tensor model [35]. The computation of the
quenched complexity is a challenging problem and is usually based on a non-rigorous but exact approach
involving the Kac-Rice formula and the replica theory from statistical physics (see e.g. [35, 32]). In the
case of spherical pure spin glasses, it has been proved by means of a second moment analysis that the
number of local minima and of critical points concentrates around its expectation [39, 40].

For a more complete review on the characterization of high-dimensional random landscapes we direct
the reader to [36] and the references therein.

1.4. Outline of the proof

In the first part of the paper, we derive the variational formula (1.3) using the strategy developed
by Auffinger-Ben Arous-C̆erný [6] and Auffinger-Ben Arous [4] for the Hamiltonian of spherical spin
glasses and by Ben Arous-Mei-Montanari-Nica [15] for the spiked tensor model. In particular, the
common approach for computing E

[
CrttotN (B)

]
is the Kac-Rice formula which, in our case, reads

E
[
CrttotN (B)

]
=
∫
SN−1

E
[
|det(Hess fN (σ))| · 1{fN (σ)∈B}

∣∣∣grad fN (σ) = 0
]
ϕgrad fN (0)dσ.

Here, grad fN and Hess fN denote the spherical gradient and Hessian of fN and ϕgrad fN (0) is the
density of grad fN at 0. Given the conditioned Hessian HN that appears in the Kac-Rice formula,
the next step is to study the exponential asymptotics of the determinant of this random matrix, i.e.,
limN→∞

1
N log E [det(HN )]. The difficulty in computing the annealed complexity therefore lies in the

determinant asymptotics. In our case, the random matrixHN is a deformation of rank r of a GOE matrix
shifted by a term proportional to the identity, that is, HN is distributed as GOE(N)+

∑r
i=1 γieie

>
i −tIN .

If ρsc denotes the semicircle density on [−2, 2], for every compact T ⊂ R we then show that

lim
N→∞

sup
t∈T

∣∣∣∣ 1
N

log E [|det(HN )|]−
∫
R

log |λ− t|ρsc(λ)dλ
∣∣∣∣ = 0,

which may be intuitive since the spectrum of a spiked Wigner matrix concentrates about the semicircle
law. The proof relies on Theorem 1.2 of Ben Arous-Bourgade-McKenna [11]. We also wish to compute
the annealed complexity of local maxima, for which the analogue is to study the large-N limit of
1
N log E

[
det(HN )1{HN�0}

]
. Here, the main challenge is to understand the asymptotic behavior of

1
N

log P
(
λmax

(
GOE(N) +

r∑
i=1

γieie
>
i

)
≤ t

)
.

More precisely, we need the large deviations for the extreme eigenvalues of multi-rank spiked GOE
matrices. The LDP for the largest eigenvalue when the deterministic perturbation is a rank-one matrix
was provided by Maïda [31] and later applied in [15] to derive the complexity of local maxima for the
spiked tensor model. When the perturbation is of finite rank, the difficulty lies in the asymptotics of
finite-rank spherical integrals, also known as Harish-Chandra/Itzykson/Zuber integrals, defined by

Ee

[
e
N
2

∑k

i=1
θi〈e,XNe〉

]
,

where XN is an N × N symmetric matrix, θ1 ≥ · · · ≥ θk ≥ 0, and the integration Ee is over vectors
e uniform on the unit sphere SN−1. Recently, Guionnet-Husson [24] showed that finite-rank spherical
integrals are asymptotically equivalent to the product of rank-one spherical integrals. This then allowed
to establish a LDP for the joint law of the k largest eigenvalues of Gaussian Wigner matrices in the
presence of multiple spikes (see Proposition 2.7 of [24]). We then combine this LDP result with classical
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techniques to obtain the LDP for the largest eigenvalue, thus generalizing the result of [31]. We specify
that the result we present is actually more detailed and delicate to obtain since we express the random
variables CrttotN and Crtmax

N also as a function of the scalar product with u∗1, . . . ,u∗r .
In the second part of the paper, we analyze the variational problem (1.3) and identify the regions where

the complexity function vanishes and where the number of critical points is therefore sub-exponential.
In particular, we identify a topological phase transition. We find an exact threshold for the parameters
λ1, . . . , λr such that, crossing it, there are new regions of zero complexity where critical points are close
to the given vectors. Interestingly, we find regions where critical points are close to more than one
given vector. This generalizes the global picture observed in [15] in the presence of a single spike, by
adding new regions of vanishing complexity where critical points are close to multiple spikes. Numerical
evidence in the case r = 2 suggests that local maxima with a large scalar product with the given vectors
are located in those regions where critical points are close to a single spike.

1.5. Overview

An outline of the paper is given as follows. In Section 2 we state our main results on the landscape
complexity of the random function fN . In Section 3 we present our intermediate results, namely we
compute the random matrix arising from the Kac-Rice formula and we derive the large deviation prin-
ciple for the largest eigenvalue of a finite-rank spiked GOE matrix. The proofs of the main theorems
are then provided in Section 4. Finally, in Section 5 we analyze the variational problem for the total
complexity function and identify a topological phase transition.

Acknowledgements. I am grateful to my advisors Alice Guionnet and Gérard Ben Arous for
proposing this subject, for invaluable discussions, and for many insightful inputs throughout this project.
I also wish to thank Ben McKenna for early discussions on the project and Justin Ko and Slim Kammoun
for their helpful comments. This work is supported by the ERC Advanced Grant LDRAM No. 884584.
I also thank Gérard Ben Arous for welcoming me at the Courant Institute of Mathematical Sciences
(NYU) during October 2022.

2. Main results

Our main results are exponential asymptotics of the average number of critical points and local
maxima of the function fN introduced in (1.2). We first introduce the main object of our work. In the
following, we let ∇SN−1 fN (σ) and ∇2

SN−1 fN (σ) denote the Riemannian gradient and Hessian at σ with
respect to the standard metric on SN−1. Moreover, for a set S ⊂ R, we let S and S◦ denote its closure
and interior, respectively.

Definition 2.1. Given Borel sets M1, . . . ,Mr ⊂ [−1, 1] and B ⊂ R, we define the (random) total
number CrttotN ((Mi)1≤i≤r, B) of critical points of the function fN that have overlap with u∗i in Mi, for
all 1 ≤ i ≤ r, and whose critical values are in B by

CrttotN ((Mi)1≤i≤r, B) :=
∑

σ∈SN−1 :
∇SN−1 fN (σ)=0

1{〈σ,u∗
i
〉∈Mi, 1≤i≤r} · 1{fN (σ)∈B}, (2.1)

and the corresponding number of critical points of index ` ∈ {0, . . . , N − 1} by

Crt`N ((Mi)1≤i≤r, B) :=
∑

σ∈SN−1 :
∇SN−1 fN (σ)=0

1{〈σ,u∗
i
〉∈Mi, 1≤i≤r} · 1{fN (σ)∈B} · 1{i(∇2

SN−1fN (σ))=`}. (2.2)

Here, the index i(·) is the number of negative eigenvalues of ∇2
SN−1 fN (σ). When ` = N−1, the random

variable Crtmax
N ((Mi)1≤i≤r, B) denotes the number of local maxima that have overlap with u∗i in Mi

and whose function values are in B. Similarly, when ` = 0, the random variable Crtmin
N ((Mi)1≤i≤r, B)

gives the number of local minima.

We next provide variational formulas for the large-N asymptotics of the logarithm of the expectation
E
[
CrttotN ((Mi)1≤i≤r, B)

]
(resp. E [Crtmax

N ((Mi)1≤i≤r, B)]) divided by N .
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2.1. Annealed complexity of total critical points

Here we state our first annealed result on the total number of critical points. We first introduce the
total complexity function.

Definition 2.2. For Borel sets M1, . . . ,Mr ⊂ [−1, 1], we let M = M1 × · · · ×Mr denote the Cartesian
product and DΣ denote

DΣ =
{
m = (m1, . . . ,mr) ∈M :

r∑
i=1

m2
i ∈ (0, 1)

}
⊆M.

For (m, x) ∈ DΣ × R, we define

Σ(m, x) = 1
2(log(p− 1) + 1) + 1

2 log
(

1−
r∑
i=1

m2
i

)
− 1
p

r∑
i=1

λ2
i k

2
im

2ki−2
i (1−m2

i )

+ 2
p

∑
1≤i<j≤r

λiλjkikjm
ki
i m

kj
j −

(
x− 1

p

r∑
i=1

λikim
ki
i

)2

+ Φ∗
(√

2p
p− 1x

)
,

where Φ∗ denotes the log-potential of the semicircle distribution which is given by

Φ∗(x) =
∫
R

log |λ− x|ρsc(dλ) =
{
x2

4 −
1
2 if |x| ≤ 2

x2

4 −
1
2 −

(
|x|
4
√
x2 − 4− log

(
|x|+
√
x2−4

2

))
if |x| > 2

. (2.3)

We then define the total complexity function Σtot : [−1, 1]r × R→ (R ∪ {−∞,+∞}) by setting

Σtot(m, x) =
{

Σ(m, y(m, x)) if m ∈ DΣ

−∞ if m ∈ Dc
Σ
,

where

y(m, x) = x−
r∑
i=1

λi(1− ki/p)mki
i . (2.4)

The main result on the annealed complexity of total critical points is the following.

Theorem 2.3. For any Borel sets M1, . . . ,Mr ⊂ [−1, 1] and B ⊂ R, we have that

lim sup
N→∞

1
N

log E
[
CrttotN ((Mi)1≤i≤r, B)

]
≤ sup

(m,x)∈M×B
Σtot(m, x), (2.5)

lim inf
N→∞

1
N

log E
[
CrttotN ((Mi)1≤i≤r, B)

]
≥ sup

(m,x)∈M◦×B◦
Σtot(m, x). (2.6)

This gives a weak LDP in the speed N and with good rate function −Σtot.

As mentioned in the introduction, when r = 1, the objective function fN reduces to

fN (σ) = λ〈u∗,σ〉k +
∑

1≤i1,...,ip≤N
Wi1,...,ipσi1 · · ·σip .

This model is known as the (p, k) spiked tensor model and was introduced in [5] to study the sharp
asymptotics for the average number of local maxima. When k = p, the argmax of fN corresponds
the MLE for the signal vector u∗ and the complexity of this model was studied in [15]. In particular,
Theorem 2.3 reduces to Theorem 1 of [15] in the special case r = 1 and k = p.

2.2. Annealed complexity of local maxima

Next we present our second annealed result. We first introduce some important definitions, which will
describe the asymptotic complexity of local maxima.

Definition 2.4. For a sequence γ = (γ1, . . . , γr) ∈ Rr arranged in descending order, γ1 ≥ · · · ≥ γr, and
t ∈ R, we let L(γ, t) denote the function given by

L(γ, t) =
r∑
`=1

Iγ` (t)1{`=min{i : γi≥1}}, (2.7)
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where Iγ` : R→ (R ∪ {−∞,+∞}) is given by

Iγ` (t) =



∑j
i=1 Iγi(t) if γj+1 + 1

γj+1
≤ t < γj + 1

γj
for all j ∈ {1, . . . , `− 1}∑`

i=1 Iγi(t) if 2 ≤ t < γ` + 1
γ`

+∞ if t < 2
0 otherwise

, (2.8)

and for any γ ≥ 1 the function Iγ : [2,∞)→ R is given by

Iγ(x) = 1
4

∫ x

γ+ 1
γ

√
y2 − 4 dy − 1

2γ
(
x−

(
γ + 1

γ

))
+ 1

8

(
x2 −

(
γ + 1

γ

)2
)
. (2.9)

Definition 2.5. We let PN−1 = PN−1(m) denote the (N − 1)-dimensional square matrix given by

PN−1(m) =
r∑
i=1

θi(mi)vi(m)vi(m)>,

where for all 1 ≤ i ≤ r, the function θi : [−1, 1]→ R is given by

θi(mi) =

√
2

p(p− 1)ki(ki − 1)λimki−2
i (1−m2

i ), (2.10)

and vi(m) ∈ SN−2 satisfy

〈vi(m),vj(m)〉 =

1 if i = j

− mimj√
1−m2

i

√
1−m2

j

if i 6= j
. (2.11)

According to [29, Section 2.5.7], there exist r continuous functions γ1(m) ≥ · · · ≥ γr(m) which constitute
a parametrization of the ordered eigenvalues of the matrix-valued function PN−1(m).

We now define the complexity function specifically of local maxima.

Definition 2.6. We define the function Σmax : [−1, 1]r × R→ (R ∪ {−∞,+∞}) by

Σmax(m, x) = Σtot(m, x)− L (γ(m), t(m, x)) ,
where the functions Σtot and L are given by Definition 2.2 and Definition 2.4, respectively, γ(m) =
(γ1(m), . . . , γr(m)) with γ1(m) ≥ · · · ≥ γr(m) as in Definition 2.5, and t(m, x) is defined by

t(m, x) =
√

2p
p− 1y(m, x) =

√
2p
p− 1

(
x−

r∑
i=1

λi

(
1− ki

p

)
mki
i

)
. (2.12)

The main result on the annealed complexity of local maxima is the following.

Theorem 2.7. For any Borel sets M1, . . . ,Mr ⊂ [−1, 1] and B ⊂ R, we have that

lim sup
N→∞

1
N

log E [Crtmax
N ((Mi)1≤i≤r, B)] ≤ sup

(m,x)∈M×B
Σmax(m, x), (2.13)

lim inf
N→∞

1
N

log E [Crtmax
N ((Mi)1≤i≤r, B)] ≥ sup

(m,x)∈M◦×B◦
Σmax(m, x). (2.14)

This gives a weak LDP in the speed N and with good rate function −Σmax.

2.3. analyzing the variational formulas

In this subsection, we study the variational problems of Theorem 2.3 and Theorem 2.7. In particular, we
analyze the complexity functions Σtot(m) = maxx Σtot(m, x) and Σmax(m) = maxx Σmax(m, x) which
give the exponential growth rate of the number of critical points (resp. of local maxima) with scalar
product 〈σ,u∗i 〉 = mi ∈ [0, 1] for every 1 ≤ i ≤ r. For simplicity, we consider the case where ki = k for
all 1 ≤ i ≤ r.

First we analyze the variational formula for total complexity. In Section 5 we provide a character-
ization of Σtot(m) by identifying the regimes in which the complexity function is positive, zero, and
negative. Moreover, we show that the landscape fN undergoes a topological phase transition when
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tuning the parameters λ1, . . . , λr, as stated below in Theorem 2.8. In particular, for small values of
λ1, . . . , λr, the complexity Σtot(m) is positive in a rather large region around zero and negative outside
(see Figure 1a), whereas when λ1, . . . , λr are sufficiently large, then the complexity remains positive in a
small region around zero and becomes non-positive for larger values, but then increases and eventually
vanishes (see Figure 1b).

(a) λ1 = 0.5 and λ2 = 0.2. (b) λ1 = 2 and λ2 = 1.5.

Figure 1. 3D plots of Σtot(m) when r = 2 and k = p = 3 for different values of λ1
and λ2. The regions where Σtot(m) vanishes are in red. For sufficiently large values of
m1 and m2, complexity is negative on the left, while on the right, complexity vanishes
for (m1,m2) ≈ (1, 0), (m1,m2) ≈ (0, 1), and for large values of both m1,m2 such that
m2 ≥ m1 > 0.

The next result identifies the topological phase transition for large values of m1, . . . ,mr.

Theorem 2.8. We assume that ki = k for all 1 ≤ i ≤ r and that m = (m1, . . . ,mr) ∈ DΣ with
DΣ ⊂ [0, 1]r. We introduce the parameters τ(m), η(m) and the critical values τc, ηc by

τ(m) := k

p

r∑
i=1

λim
k
i and τc := p− 2√

2p(p− 1)
,

and

η(m) :=
r∑
i=1

λ
− 2
k−2

i 1{mi 6=0} and ηc := (k − 2)
(

2k2

p(k − 1)(k−1)

) 1
k−2

,

respectively. Then, for τ(m) ≥ τc, the complexity function Σtot(m) admits a continuous phase transition
in η(m):

(i) if η(m) > ηc, then Σtot(m) < 0,
(ii) if η(m) ≤ ηc, then Σtot(m) ≤ 0 and vanishes whenever m satisfies

λim
k−2
i = λjm

k−2
j for all 1 ≤ i, j ≤ r such that mi,mj 6= 0, (2.15)

and
k

p

r∑
i=1

λim
k
i = 1√

2p

∑r
i=1m

2
i√

1−
∑r
i=1m

2
i

. (2.16)
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(a) λ1 = 0.5 and λ2 = 0.2. (b) λ1 = 0.9 and λ2 = 0.5.

(c) λ1 = 1.2 and λ2 = 0.9. (d) λ1 = 2 and λ2 = 1.5.

Figure 2. Contour plots of Σtot(m) when r = 2 and k = p = 3 for different values of
λ1 and λ2. The regions where Σtot(m) vanishes are in red.

The proof of Theorem 2.8 is given in Section 5. Theorem 2.8 reduces to Proposition 2 of [15] in the
case of the spiked tensor model. In particular, when r = 1 and k = p, there is a critical value λc,

λc =

√
1
2p

(p− 1)(p−1)

(p− 2)(p−2) ,

such that when λ < λc, most critical values are uninformative since they have a small scalar product
with the true signal u∗, while when λ > λc, it is possible to identify good critical points that are close
to the given vector. According to Theorem 2.8, we find a similar qualitative picture when r ≥ 2 that
we describe in the following for r = 2 (this can be generalized for r ≥ 3).

(1) When λc > λ1 ≥ λ2, there is a band with a sub-exponential number of critical points which
have small values of m1,m2, as shown in Figures 1a and 2a.

(2) When λ1 > λc > λ2, there is a new region where complexity vanishes, characterized by m2 ≈ 0
and m1 large (see Figure 2b). The critical points of this new region have large scalar product
with the vector u∗1.

(3) When λ1 ≥ λ2 > λc and λ
−2/(k−2)
1 +λ−2/(k−2)

2 > ηc, we identify a new region of zero complexity,
characterized by m1 ≈ 0 and m2 large (see Figure 2c). In this regime, we find critical points
that are close either to u∗1 or to u∗2.
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(4) When λ1 ≥ λ2 > λc and λ
−2/(k−2)
1 + λ

−2/(k−2)
2 ≤ ηc, as illustrated in Figures 1b and 2d, we

find an additional region where complexity vanishes. Here, the critical points are close to both
vectors u∗1 and u∗2.

Our main finding concerns regions of zero complexity in which critical points have a large scalar product
with multiple spikes, as described by (4), and generalizes the phenomenon observed in [15] in the
case of a single spike. These new regions are characterized by large values of m1, . . . ,mr such that
mr ≥ · · · ≥ m2 ≥ m1. Indeed, by Theorem 2.8, for m1, . . . ,mr 6= 0 we have that Σtot(m) = 0 whenever
λ1m

p−2
1 = λ2m

p−2
2 = . . . = λrm

p−2
r , and since by assumption λ1 ≥ λ2 ≥ · · · ≥ λr, it then follows that

0 < m1 ≤ m2 ≤ · · · ≤ mr.

(a) λ1 = 0.5 and λ2 = 0.2. (b) λ1 = 0.9 and λ2 = 0.5.

(c) λ1 = 1.2 and λ2 = 0.9. (d) λ1 = 2 and λ2 = 1.5.

Figure 3. Contour plots of Σtot(m) when r = 2 and k = p = 3 for different values of
λ1 and λ2. The regions where Σtot(m) vanishes are in red.

Next we focus on the variational problem of Theorem 2.7 and we consider the complexity function
Σmax(m) with m ∈ DΣ ⊂ [0, 1]r. We numerically characterize Σmax(m) for r = 2 and we find a
qualitative picture similar to that of critical points. In this case, the non-zero eigenvalues γ1(m) and
γ2(m) of PN−1(m) are given by

γ1,2(m) = 1
2

(
θ1(m1) + θ2(m2)±

√
(θ1(m1)− θ2(m2))2 + 4θ1(m1)θ2(m2)〈v1(m), v2(m)〉2

)
,

where θ1(m1) and θ2(m2) are defined by (2.10) and 〈v1(m), v2(m)〉 by (2.11). Since we consider here
DΣ ⊂ [0, 1]r, we have that PN−1 = V DθV

> is a positive semi-definite matrix so that γ1(m) ≥ γ2(m) ≥ 0
for any values of m ∈ DΣ. As illustrated in Figure 3, when λ1 > λc > λ2, we find a new region where
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complexity vanishes, characterized by m2 ≈ 0 and m1 very large. The local maxima of this region are
therefore close to u∗1. Similarly, as λ2 crosses the critical threshold λc, then complexity also vanishes
for m1 ≈ 0 and m2 very large. These local maxima are close to u∗2. Unlike in the case of total critical
points, it is worth noting that the region of zero complexity characterized by critical points that are
close with both spikes u∗1 and u∗2 is not observed in the case of local maxima. This suggests that critical
points which are close to more than one given vector are probably saddle points.

3. Background

In this section, we state all the preliminary results that will be used throughout the paper. In
particular, in Subsection 3.1 we characterize the complexity of the landscape for all integers N via the
Kac-Rice formula and in Subsection 3.2 we provide the large deviations for the largest eigenvalue of
a finite-rank spiked GOE matrix. We recall that an N × N matrix WN in the Gaussian Orthogonal
Ensemble (GOE), WN ∼ GOE(N), is a real symmetric matrix, whose entries are independent up to
symmetry, with Gaussian distribution of mean zero and variance E

[
(WN )2

ij

]
= 1+δij

2N .

3.1. Kac-Rice formula and landscape complexity

The Kac-Rice formula is the classical technique to compute the average number of critical points of
a real-valued Gaussian random function on RN . In particular, we apply here Theorem 12.1.1 and
Corollary 12.1.2 of [1] to the random function fN introduced in (1.2). We refer the reader to [1, 7] for
a broader introduction on the Kac-Rice method.

Lemma 3.1 (Kac-Rice formula [1]). For every Borel sets M1, . . . ,Mr ⊂ [−1, 1], B ⊂ R and for all N ,
it holds that

E
[
CrttotN ((Mi)ri=1, B)

]
=
∫
{σ : 〈σ,u∗

i
〉∈Mi, ∀ 1≤i≤r}

dσ ϕ∇SN−1fN (σ)(0)

×E
[∣∣det

(
∇2

SN−1fN (σ)
)∣∣ · 1{fN (σ)∈B}|∇SN−1fN (σ) = 0

]
,

(3.1)

and for every 0 ≤ ` ≤ N − 1,

E
[
Crt`N ((Mi)ri=1, B)

]
=
∫
{σ : 〈σ,u∗

i
〉∈Mi, ∀ 1≤i≤r}

dσ ϕ∇SN−1fN (σ)(0)

×E
[∣∣det

(
∇2

SN−1fN (σ)
)∣∣ · 1{

i(∇2
SN−1fN (σ))=`, fN (σ)∈B

}|∇SN−1fN (σ) = 0
]
,

(3.2)

where dσ denotes the usual surface measure on SN−1, and ϕ∇SN−1fN (σ)(0) denotes the density of
∇SN−1fN (σ) evaluated at 0.

Given Borel sets M1, . . . ,Mr ⊂ [−1, 1], we let M = M1 × · · · ×Mr. In the following, to simplify
notation, we write CrttotN (M,B) and Crt`N (M,B) for the random variables given by (2.1) and (2.2),
respectively. We recall the definition of the set DΣ =

{
m = (m1, . . . ,mr) ∈M :

∑r
i=1m

2
i < 1

}
⊂

[−1, 1]r. We next introduce the function S(m, x), which is −∞ in Dc
Σ × R, and in DΣ × R is given by

S(m, x) = 1
2(log(p− 1) + 1) + 1

2 log
(

1−
r∑
i=1

m2
i

)
− 1
p

r∑
i=1

λ2
i k

2
im

2ki−2
i (1−m2

i )

+ 2
p

∑
1≤i<j≤r

λiλjkikjm
ki
i m

kj
j −

(
x−

r∑
i=1

λim
ki
i

)2

.

(3.3)

The following result provides the characterization of the landscape complexity for all integers N .

Proposition 3.2 (Landscape complexity). For every Borel sets M1, . . . ,Mr ⊂ [−1, 1], B ⊂ R and for
all N , it holds that

E
[
CrttotN (M,B)

]
= CN

∫
B

dx
∫
M1

dm1 · · ·
∫
Mr

dmr

(
1−

r∑
i=1

m2
i

)− r+2
2

exp{NS(m, x)}E [|detHN−1(m, x)|] ,
(3.4)
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and for every 0 ≤ ` ≤ N − 1,

E
[
Crt`N (M,B)

]
= CN

∫
B

dx
∫
M1

dm1 · · ·
∫
Mr

dmr

(
1−

r∑
i=1

m2
i

)− r+2
2

exp{NS(m, x)}

×E
[
|detHN−1(m, x)| · 1{i(HN−1(m,x))=`}

]
.

(3.5)

Here, HN−1(m, x) is an (N − 1)-dimensional square random matrix distributed as

HN−1(m, x) d= WN−1 +
√

N

N − 1PN−1(m)−
√

N

N − 1 t(m, x)IN−1, (3.6)

where WN−1 ∼ GOE(N − 1), PN−1(m) is given by Definition 2.5 and the function t(m, x) by (2.12).
Moreover, the constant CN = C(N, r, p) is exponentially trivial, meaning that limN→∞

1
N logCN = 0.

We prove Proposition 3.2 using the Kac-Rice formula (see Lemma 3.1) and the following result which
provides the joint law of the Gaussian random variables (fN (σ),∇SN−1fN (σ),∇2

SN−1fN (σ)).

Lemma 3.3. For every Borel sets M1, . . . ,Mr ⊂ [−1, 1], B ⊂ R and for all N , it holds that

E
[
CrttotN (M,B)

]
= ωN−r

∫
M1

dm1 · · ·
∫
Mr

dmr ϕ∇SN−1fN (σ)(0)
(

1−
r∑
i=1

m2
i

)N−r−2
2

×E
[
|det∇2

SN−1fN (σ)| · 1{fN (σ)∈B}
]
,

(3.7)

and for every 0 ≤ ` ≤ N − 1,

E
[
Crt`N (M,B)

]
= ωN−r

∫
M1

dm1 · · ·
∫
Mr

dmr ϕ∇SN−1fN (σ)(0)
(

1−
r∑
i=1

m2
i

)N−r−2
2

×E
[
|det∇2

SN−1fN (σ)| · 1{
i(∇2

SN−1fN (σ))=`
} · 1{fN (σ)∈B}

]
,

(3.8)

where ωN = 2πN/2

Γ(N/2) is the volume of the (N −1)-dimensional unit sphere. Further, the joint distribution
of fN (σ) ∈ R, ∇SN−1fN (σ) ∈ RN−1 and ∇2

SN−1fN (σ) ∈ R(N−1)×(N−1) is given by

fN (σ) d=
r∑
i=1

λim
ki
i + 1√

2N
Z,

∇SN−1fN (σ) d=
r∑
i=1

λikim
ki−1
i

√
1−m2

ivi(m) +
√

p

2N gN−1,

∇2
SN−1fN (σ) d=

r∑
i=1

λiki(ki − 1)mki−2
i (1−m2

i )vi(m)vi(m)> +
√
p(p− 1)(N − 1)

2N WN−1

−

(
r∑
i=1

λikim
ki
i + p√

2N
Z

)
IN−1,

(3.9)

where Z ∼ N (0, 1), gN−1 ∼ N (0, IN−1), WN−1 ∼ GOE(N−1) are independent, and for each 1 ≤ i ≤ r,
the vector-valued function vi(m) ∈ SN−2 is defined by (2.11). Here, we identified the tangent space
TσSN−1 with RN−1.

Having Lemma 3.3 at hand, we turn to the proof of Proposition 3.2.

Proof of Proposition 3.2. According to (3.9), we have that fN is distributed as a Gaussian random
variable with mean

∑r
i=1 λim

ki
i and variance 1

2N , hence the density function pfN is given by

pfN (x) =
√
N

π
exp

−N
(
x−

r∑
i=1

λim
ki
i

)2
 . (3.10)
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Therefore, the inner expectation in (3.8) can be expanded as

E
[
|det∇2

SN−1fN (σ)| · 1{
i(∇2

SN−1fN (σ))=`
} · 1{fN (σ)∈B}

]
=
(
p(p− 1)(N − 1)

2N

)N−1
2
∫
B

E
[
|detHN−1(m, x)| · 1{i(HN−1(m,x))=`}

]
pfN (x)dx,

(3.11)

where the matrix HN−1(m, x) is distributed as in (3.6). Further, the random vector ∇SN−1fN (σ) is
Gaussian with mean

∑r
i=1 λikim

ki−1
i

√
1−m2

ivi(m) and covariance matrix p
2N IN−1, thus its density

function at 0 is given by

ϕ∇SN−1fN (σ)(0) =
(
N

πp

)N−1
2

exp

−Np
r∑
i=1

λ2
i k

2
im

2ki−2
i (1−m2

i ) + 2N
p

∑
1≤i<j≤r

λiλjkikjm
ki
i m

kj
j

 .

(3.12)
Plugging (3.10)-(3.12) into (3.8), we obtain that

E
[
Crt`N (M,B)

]
=
(
p(p− 1)(N − 1)

2N

)N−1
2

ωN−r

∫
M1

dm1 . . .

∫
Mr

dmr ϕ∇SN−1fN (σ)(0)
(

1−
r∑
i=1

m2
i

)N−r−2
2

×
∫
B

dxE
[
|detHN−1(m,x)| · 1{i(HN−1(m,x))=`}

]
pfN (x)

= CN

∫
B

dx
∫
M1

dm1 · · ·
∫
Mr

dmr

(
1−

r∑
i=1

m2
i

)− r+2
2

×E
[
|detHN−1(m, x)| · 1{i(HN−1(m,x))=`}

]
exp{NS(m, x)},

where CN = C(N, r, p) is given by

C(N, r, p) = 2
(
N − 1

2e

)N−1
2

Γ
(
N − r

2

)−1
π−

r−1
2

(
N

(p− 1)eπ

)1/2
.

This proves (3.5). Identity (3.4) follows in the same way. It is straightforward to show that CN is
exponentially trivial by expanding the function Γ using the Stirling’s formula. �

It remains to derive the random matrices appearing in the Kac-Rice formula by proving Lemma 3.3.

Proof of Lemma 3.3. We recall the definition of fN given by (1.2), i.e.,

fN (σ) =
r∑
i=1

λi〈u∗i ,σ〉ki +HN (σ),

where HN (σ) denotes the Hamiltonian (1.1), i.e.,

HN (σ) = 1√
2N

1
p!

∑
1≤i1,...,ip≤N

∑
π∈Sp

Gπi1,...,ipσi1 · · ·σip .

We denote by ∇ and ∇2 the Euclidean gradient and Hessian, respectively. We then have that

∇fN (σ) =
r∑
i=1

λiki〈u∗i ,σ〉ki−1u∗i +∇HN (σ),

∇2fN (σ) =
r∑
i=1

λiki(ki − 1)〈u∗i ,σ〉ki−2u∗i (u∗i )
> +∇2HN (σ),
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where for any k, ` ∈ {1, . . . , N},

(∇HN (σ))k = p√
2N

1
p!

∑
i1,...,ip−1

∑
π∈Sp

Gπk,i1,...,ip−1
σi1 · · ·σip−1 ,

(∇2HN (σ))k` = p(p− 1)√
2N

1
p!

∑
i1,...,ip−2

∑
π∈Sp

Gπk,`,i1,...,ip−2
σi1 · · ·σip−2 .

The Riemannian gradient and Hessian of fN are then given by

∇SN−1fN (σ) = P⊥σ∇fN (σ),

and
∇2

SN−1fN (σ) = P⊥σ∇2fN (σ)P⊥σ − 〈σ,∇fN (σ)〉P⊥σ ,

respectively, where P⊥σ = I − σσ> denotes the orthogonal projection from RN onto the tangent space
TσSN−1. Applying these formulas yields

∇SN−1fN (σ) =
r∑
i=i

λiki〈u∗i ,σ〉ki−1
(
P⊥σu

∗
i

)
+ P⊥σ∇HN (σ),

∇2
SN−1fN (σ) =

r∑
i=1

λiki(ki − 1)〈u∗i ,σ〉ki−2
(
P⊥σu

∗
i

)(
P⊥σu

∗
i

)>
+ P⊥σ∇2HN (σ)P⊥σ

−

(
r∑
i=1

λiki〈u∗i ,σ〉ki + 〈σ,∇HN (σ)〉
)
P⊥σ .

Since the joint distribution of (fN (σ),∇SN−1fN (σ),∇2
SN−1fN (σ)) is invariant with respect to σ, we

may assume without loss of generality that σ = eN = (δi,N )Ni=1. We then define the vector u∗i by

u∗i = miσ +
√

1−m2
i ṽi(m)

such that ṽ1(m), . . . , ṽr(m) ∈ SN−1, 〈σ,u∗i 〉 = mi and 〈u∗i ,u∗j 〉 = δij . In particular, we have that the
N -entry of each vector ṽi(m) is equal to zero and

〈ṽi(m), ṽj(m)〉 =

1 if i = j

− mimj√
1−m2

i

√
1−m2

j

if i 6= j
.

Identifying TσSN−1 with RN−1, we then obtain that

fN (σ) d=
r∑
i=1

λim
ki
i + 1√

2N
Z,

∇SN−1fN (σ) d=
r∑
i=1

λikim
ki−1
i

√
1−m2

ivi(m) +
√

p

2N gN−1,

and

∇2
SN−1fN (σ) d=

r∑
i=1

λiki(ki − 1)mki−2
i (1−m2

i )vi(m)vi(m)> +
√
p(p− 1)(N − 1)

2N WN−1

−

(
r∑
i=1

λikim
ki
i + p√

2N
Z

)
IN−1,

where Z ∼ N (0, 1), gN−1 ∼ N (0, IN−1) and WN−1 ∼ GOE(N − 1) are independent and the vector-
valued function vi(m) ∈ SN−2 corresponds to ṽi(m) without the N -th entry.

According to Lemma 3.1, the integrand in (3.1) and (3.2) depends on σ only through the overlap
ρ(σ) = (〈σ,u∗1〉, . . . , 〈σ,u∗r〉). We can then use the co-area formula with the function ρ(σ) to express
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the integral as an r-dimensional integral over the parameters m1, . . . ,mr, where mi ∈Mi. The volume
of the inverse-image ρ−1(m1, . . . ,mr) is given by

ωN−r

(
1−

r∑
i=1

m2
i

)N−r−1
2

,

and the inverse of the Jacobian is given by
(
1−

∑r
i=1m

2
i

)− 1
2 . For every 0 ≤ ` ≤ N − 1, it then follows

from (3.2) that

E
[
Crt`N (M,B)

]
= ωN−r

∫
M1

dm1 · · ·
∫
Mr

dmr ϕ∇SN−1fN (σ)(0) ·
(

1−
r∑
i=1

m2
i

)N−r−2
2

×E
[
|det∇2

SN−1fN (σ)| · 1{
i(∇2

SN−1fN (σ))=`
} · 1{fN (σ)∈B}

]
.

(3.13)

This proves (3.8). Summing (3.13) over ` ∈ {0, . . . , N − 1} yields (3.7). �

3.2. Large deviations of spiked GOE matrices

This section is devoted to the large deviations of the largest eigenvalue of a finite-rank spiked GOE
matrix. For a positive integer k, let γ1 ≥ · · · ≥ γk ≥ 0 > γk+1 ≥ · · · ≥ γr. We then define the rank-r
spiked GOE matrix XN by

XN = WN +
r∑
i=1

γieie
>
i , (3.14)

where WN ∼ GOE(N) and (e1, . . . , er) is a family of orthonormal eigenvectors following the uniform
law on the unit sphere. Let λ1 ≥ · · · ≥ λN denote the N eigenvalues of XN . The following lemma
specifies the joint distribution of the eigenvalues of the spiked matrix model (3.14) (see for instance [31,
24]).

Lemma 3.4. The joint density of the eigenvalues of XN is given by

PγN (dx1, . . . ,dxN ) = 1
ZγN

∏
i<j

|xi − xj | · IN (γ,x) · e−
N
4

∑N

i=1
x2
i dx1 · · · dxN , (3.15)

where γ = (γ1, . . . , γr), x = (x1, . . . , xN ), and IN (γ,x) denotes the finite-rank spherical integral given
by

IN (γ,x) = Ee

[
e
N
2

∑r

i=1
γi〈ei,D(x)ei〉

]
=
∫

exp
{
N

2 Tr
(
UD(x)U>

r∑
i=1

γieie
>
i

)}
dU, (3.16)

where U follows the Haar probability measure on the orthogonal group of size N and D(x) denotes the
diagonal matrix with entries given by x = (x1, . . . , xN ).

We mention that the spherical integral (3.16) is a special case of the Harish-Chandra/Itzykson/Zuber
integral. The large deviation principle for the largest eigenvalue of a rank-one deformation of a Gaussian
Wigner matrix was established by Maïda [31]. Then, Guionnet-Husson [24, Proposition 2.7] established
the LDP for the joint law of the k largest eigenvalues and the ` smallest eigenvalues when the GOE matrix
is perturbed by a finite rank matrix with k non-negative eigenvalues and ` non-positive eigenvalues,
where k and ` denote two positive integer numbers. Guionnet-Husson obtained this result by showing
that finite-rank spherical integrals asymptotically factor as the product of rank-one spherical integrals.
Recently, Husson-Ko generalized the results for finite-rank spherical integrals from [24] to spherical
integrals of sub-linear rank [27]. We now present Proposition 2.7 of [24] as the following lemma. We
remark that, for the purpose of this paper, we only state the result for the k largest eigenvalues.

Lemma 3.5 (Large deviations of the k largest eigenvalues of the spiked GOE matrix model [24]). The
joint law of (λ1, . . . , λk) satisfies a large deviation principle in the scale N and good rate function Iγ
given by

Iγ(x1, . . . , xk) =
{∑k

i=1 Iγi(xi) if x1 ≥ · · · ≥ xk ≥ 2
+∞ otherwise

,
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where for any γ > 0, Iγ(x) is given by

Iγ(x) =
(
IGOE(x)− 1

2J(ρsc, γ, x)
)
− inf

y

(
IGOE(y)− 1

2J(ρsc, γ, y)
)
,

IGOE(x) = 1
2

∫ x

2

√
y2 − 4 dy,

J(ρsc, γ, x) =
{
γx− 1− log(γ)− Φ∗(x) if Gρsc(x) ≤ γ
1
2γ

2 if Gρsc(x) > γ
.

Here, the function Φ∗(x) is given by (2.3), ρsc(dx) = 1
2π
√

4− x21|x|≤2dx denotes the semicircle distri-
bution and Gρsc its Cauchy-Stieltjes transform, i.e., Gρsc(x) = 1

2 (x−
√
x2 − 4).

In other words, Lemma 3.5 says that for any closed subset F ⊂ Rk, we have that

lim sup
N→∞

1
N

log PγN ((λ1, . . . , λk) ∈ F ) ≤ − inf
F
Iγ

and for any open subset O ⊂ Rk, it holds that

lim inf
N→∞

1
N

log PγN ((λ1, . . . , λk) ∈ O) ≥ − inf
O
Iγ .

Now we establish the large deviation principle for the largest eigenvalue of the finite-rank spiked GOE
matrix through the contraction principle (e.g., see [20, Theorem 4.2.1]). We remark that for r = 1, the
following result reduces to [31, Theorem 3.2].

Lemma 3.6 (Large deviation of the largest eigenvalue of the rank-r spiked GOE matrix model). The
law of the largest eigenvalue of XN satisfies a large deviation principle in the scale N and good rate
function Imax defined as follows.

(i) If γ1 ≥ γ2 ≥ · · · ≥ γk ≥ 1, then

Imax(x) =


Iγ1(x) if x ≥ γ1 + 1

γ1∑j
i=1 Iγi(x) if γj+1 + 1

γj+1
≤ x < γj + 1

γj∑k
i=1 Iγi(x) if 2 ≤ x < γk + 1

γk

∞ if x < 2

, (3.17)

where for any γ ≥ 1, Iγ(x) is given by

Iγ(x) = 1
4

∫ x

γ+ 1
γ

√
y2 − 4dy − 1

2γ
(
x−

(
γ + 1

γ

))
+ 1

8

(
x2 −

(
γ + 1

γ

)2
)
. (3.18)

(ii) If 1 ≥ γ1 ≥ · · · ≥ γk > 0, then

Imax(x) =


1
4
∫ x

2

√
y2 − 4dy + 1

8x
2 − 1

2γ1x+ 1
4 + 1

2 log(γ1) + 1
4γ

2
1 if x > γ1 + 1

γ1
1
2
∫ x

2

√
y2 − 4dy if 2 ≤ x ≤ γ1 + 1

γ1

∞ if x < 2
. (3.19)

(iii) If for some ` ∈ {1, . . . , k − 1}, γ1 ≥ · · · ≥ γ` ≥ 1 > γ`+1 ≥ · · · ≥ γk > 0, then

Imax(x) =


Iγ1(x) if x ≥ γ1 + 1

γ1∑j
i=1 Iγi(x) if γj+1 + 1

γj+1
≤ x < γj + 1

γj
, 1 ≤ j ≤ `− 1∑`

i=1 Iγi(x) if 2 ≤ x < γ` + 1
γ`

∞ if x < 2

, (3.20)

where Iγi is given by (3.18).

Proof of Lemma 3.6. As the max function is continuous, by the contraction principle (e.g., see [20,
Theorem 4.2.1]) we have that λmax(XN ) satisfies a large deviation principle in the scale N and good
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rate function Imax which is given, for any x ∈ R, by

Imax(x) = inf
{
Iγ(x1, . . . , xk) : max

1≤i≤k
xi = x

}
= inf

{
k∑
i=1

Iγi(xi) : x1 ≥ · · · ≥ xk ≥ 2, x = x1

}

= Iγ1(x) +
k∑
i=2

inf
2≤xi≤x

Iγi(xi).

We now specify the function Imax for the three different cases. We first note that∫ x

2

√
y2 − 4 dy = 1

2x
2 − 1− 2Φ∗(x). (3.21)

(i) If γ1 ≥ · · · ≥ γk ≥ 1, then for any x ≥ 2, Gρsc(x) ≤ γi for all 1 ≤ i ≤ k, and

J(ρsc, γi, x) = γix− 1− log(γi)− Φ∗(x).

From (3.21) we have that

IGOE(x)− 1
2J(ρsc, γi, x) = 1

4

∫ x

2

√
y2 − 4dy − 1

2γix+ 1
8x

2 + 1
4 + 1

2 log(γi). (3.22)

Differentiating this function on (2,∞), we see that it is decreasing on (2, γi + 1
γi

) and then
increasing, and its infimum is reached at γi + 1

γi
. This gives Iγi as in (3.18) and it is easy to see

that the good rate function Imax(x) is given as in (3.17).
(ii) For the second assertion, if 1 ≥ γ1 ≥ · · · ≥ γk > 0, then on [2, γi + 1

γi
], Gρsc(x) ≥ γi, and on

[γi + 1
γi
,∞), Gρsc(x) ≤ γi, Therefore, we have that

IGOE(x)− 1
2J(ρsc, γi, x) =

{
I1(x) if 2 ≤ x ≤ γi + 1

γi

I2(x) if x > γi + 1
γi

,

where

I1(x) = 1
2

∫ x

2

√
y2 − 4 dy − 1

4γ
2
i ,

and I2 is given as in (3.22). Both functions I1 and I2 are increasing, and the infimum of
IGOE(x) − 1

2J(ρsc, γi, x) over all x is reached at 2 and is equal to − 1
4γ

2
i . Therefore, Iγi equals

1
2
∫ x

2

√
y2 − 4 dy on [2, γi + 1

γi
] and on (γi + 1

γi
,∞) is given by

Iγi = 1
4

∫ x

2

√
y2 − 4dy + 1

8x
2 − 1

2γ1x+ 1
4 + 1

2 log(γ1) + 1
4γ

2
1 .

Then, for x ≥ 2, the good rate function Imax is given by

Imax(x) = Iγ1(x) +
k∑
i=2

inf
2≤xi≤x

Iγi(xi) = Iγ1(x),

since for all i ≥ 2, the infimum of Iγi(xi) on [2, x] vanishes.
(iii) Finally, the third assertion is a combination of the previous two. For `+ 1 ≤ i ≤ k, the infimum

Iγi(xi) over xi ∈ [2, x] equals zero, and the argument is the same as for the first assertion.
�

We recall the function L of Definition 2.4. For any sequence γ = (γ1, . . . , γr) ∈ Rr arranged in
descending order, γ1 ≥ · · · ≥ γr, and any t ∈ R, L(γ, t) is given by

L(γ, t) =
r∑
`=1

Iγ` (t)1{γ1≥···≥γ`≥1>γ`+1≥···≥γr},
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where the function Iγ` : R→ (R ∪ {−∞,+∞}) is defined by

Iγ` (t) =



∑j
i=1 Iγi(t) if γj+1 + 1

γj+1
≤ t < γj + 1

γj
for all j ∈ {1, . . . , `− 1}∑`

i=1 Iγi(t) if 2 ≤ t < γ` + 1
γ`

+∞ if t < 2
0 otherwise

,

and for any γ ≥ 1 the function Iγ : [2,∞)→ R is given by

Iγ(x) = 1
4

∫ x

γ+ 1
γ

√
y2 − 4 dy − 1

2γ
(
x−

(
γ + 1

γ

))
+ 1

8

(
x2 −

(
γ + 1

γ

)2
)
.

We then readily obtain the following corollary.

Corollary 3.7. For any t ∈ R, it holds that

lim sup
N→∞

1
N

log PγN (λmax(XN ) ≤ t) ≤ −L(γ, t),

lim inf
N→∞

1
N

log PγN (λmax(XN ) < t) ≥ −L(γ, t−),

where L(γ, t−) = limt′→t,t′<t L(γ, t′).

Proof of Corollary 3.7. If γ1 ≥ · · · ≥ γ` ≥ 1 > γ`+1 ≥ · · · ≥ γk > 0 for some ` ∈ {1, . . . , k} and
t ∈ R, then according to Lemma 3.6, we have that L(γ, t) = infx∈[0,t] Imax(x), where Imax is given
by (3.20). It is then straightforward to conclude that L(γ, t) has the explicit form given above. �

4. Proofs of the main results

In this section, we prove Theorems 2.3 and 2.7. Having the characterization of the landscape complex-
ity for all integers N at hand (see Proposition 3.2), the next important step is to study the exponential
asymptotics of the determinant of the random matrix HN−1 given by (3.6).

4.1. Preliminary remarks

We let PN−1(m) denote the finite-rank perturbation matrix in HN−1(m, x) given by Definition 2.5, i.e.,

PN−1(m) =
r∑
i=1

θi(mi)vi(m)vi(m)>,

where θi(mi) is given by (2.10) and v1(m), . . . ,vr(m) ∈ SN−2 are defined by (2.11). We note that
the non-zero eigenvalues of PN−1 = V DθV

> are the same as the eigenvalues of DθV >V ∈ Rr×r, where
Dθ = diag(θ1, . . . , θr) and V = [v1, . . . ,vr]. The entries of (DθV >V )(m), which are given by

(DθV
>V )ij(m) =

{
θi(mi) if i = j

θi(mi)〈vi(m),vj(m)〉 if i 6= j
,

are continuous functions of m ∈ DΣ ⊂ [−1, 1]r (see (2.10) and (2.11)). According to [29, Section 2.5.7],
there exist r eigenvalues µ1(m), . . . , µr(m) of DθV >V (m) which are continuous functions ofm. Hence,
the matrix-valued function PN−1(m) can be factorized as

PN−1(m) =
r∑
i=1

µi(m)ui(m)ui(m)>,

where u1(m), . . . ,ur(m) are the eigenvectors associated to µ1(m), . . . , µr(m). Moreover, there also
exist r continuous functions γ1(m) ≥ · · · ≥ γr(m) which represent a parametrization of the ordered
eigenvalues of PN−1(m). In the following, we denote by µ(m) = (µ1(m), . . . , µr(m)) the unordered
r-tuple and by γ(m) = (γ1(m), . . . , γr(m)) the ordered one.
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Since the law of WN−1 −
√

N
N−1 t(m, x)IN−1 is invariant under conjugation by orthogonal matrices,

without loss of generality we may assume that PN−1(m) is diagonal. In the following, we therefore
consider HN−1(m, x) distributed as

HN−1(m, x) d= WN−1 +
√

N

N − 1

r∑
i=1

γi(m)eie>i −
√

N

N − 1 t(m, x)IN−1, (4.1)

where ei = (δj,i)N−1
j=1 . For any sequence of real numbers γ = (γ1, . . . , γr), we also introduce the matrix

XN−1(γ), whose distribution is given by

XN−1(γ) d= WN−1 +
r∑
i=1

γieie
>
i . (4.2)

Notations. Throughout, we write ‖·‖ for the operator norm on elements of RN×N induced by
the L2-distance on RN . We let P(R) denote the space of probability measures on R and we consider
the following two distances on probability measures on R, called bounded-Lipschitz and Wasserstein-1,
respectively: for any µ, ν ∈ P(R),

dBL(µ, ν) = sup
{∣∣∣∣∫

R
fd(µ− ν)

∣∣∣∣ : ‖f‖Lip + ‖f‖L∞ ≤ 1
}
,

W1(µ, ν) = sup
{∣∣∣∣∫

R
fd(µ− ν)

∣∣∣∣ : ‖f‖Lip ≤ 1
}
.

If (X, d) is a metric space, we denote by B(x, r) = {y ∈ X : d(y, x) < r} the open ball of radius
r > 0 around x ∈ X. For an N × N Hermitian matrix M , we write λ1(M), . . . , λN (M) for its
eigenvalues and µ̂M = 1

N

∑N
i=1 δλi(M) for its empirical spectral measure. We let E [µ̂M ] denote the

mean spectral measure, i.e.,
∫
R fdE [µ̂M ] := E

[∫
R fdµ̂M

]
. We finally denote the semicircle law as

ρsc(dx) = 1
2π
√

4− x21{|x|≤2}dx.

4.2. Proof of complexity result for total critical points

Here, we provide the proof of Theorem 2.3 on the complexity of total critical points. Our general
strategy is to show a weak large deviation principle and exponential tightness. The following three
results are important to prove Theorem 2.3.

Lemma 4.1 (Good rate function). The function −Σtot given by Definition 2.2 is a good rate function.
Moreover, the function S given by (3.3) is continuous in DΣ ×R and the function Φ∗ given by (2.3) is
continuous in R.

Lemma 4.2 (Exponential tightness). It holds that

lim
z→∞

lim sup
N→∞

1
N

log E
[
CrttotN ([−1, 1]r, (−∞,−z] ∪ [z,∞))

]
= −∞.

Lemma 4.3 (Determinant asymptotics). For every compact sets U = U1 × · · · × Ur ⊂ Rr and T ⊂ R,
it holds that

lim sup
N→∞

sup
(γ,t)∈U×T

1
N

log E [|det(XN (γ)− t)|] ≤ sup
t∈T

Φ∗(t), (4.3)

lim inf
N→∞

inf
(γ,t)∈U×T

1
N

log E [|det(XN (γ)− t)|] ≥ inf
t∈T

Φ∗(t). (4.4)

We postpone the proof of these lemmas towards the end of the subsection. Having the average number
of critical points and the determinant asymptotics at hand, we now turn to the proof of Theorem 2.3.
We first prove the upper bound (2.5).

Proof of Theorem 2.3 (Upper bound). We first note that if (M,B) ⊂ [−1, 1]r × R are such that
sup(m,x)∈M×B Σtot(m, x) = −∞, it follows from Proposition 3.2 that E

[
CrttotN (M,B)

]
= 0 for all N ,

since S(m, x) = −∞ by definition. We then obtain that lim supN→∞ 1
N log E

[
CrttotN (M,B)

]
= −∞. In

the following, we consider Borel sets (M,B) ⊂ [−1, 1]r ×R such that sup(m,x)∈M×B Σtot(m, x) > −∞.
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Because of the exponential tightness property (see Lemma 4.2), without loss of generality we may assume
that B is a bounded set.

We let M0 =
∏r
i=1((m0)i − δ0, (m0)i + δ0) and B0 = (x0 − δ0, x0 + δ0) and we claim that

lim
δ0→0+

lim sup
N→∞

1
N

log E
[
CrttotN (M0, B0)

]
≤ Σtot(m0, x0), (4.5)

for every m0 = ((m0)1, . . . , (m0)r) ∈ M and x0 ∈ B. We assume that the claim holds. Then, for any
ε > 0 and any (m, x) ∈M ×B, there exists a radius δm,x such that

lim sup
N→∞

1
N

log E
[
CrttotN (((mi − δm,x,mi + δm,x))ri=1, (x− δm,x, x+ δm,x))

]
≤ Σtot(m, x) + ε. (4.6)

The family of sets {
∏r
i=1(mi − δm,x,mi + δm,x)× (x− δm,x, x+ δm,x) : (m, x) ∈M ×B} is an open

cover of M ×B. Due to the compactness of M ×B, we can extract a finite cover of M ×B by the sets{
r∏
i=1

B((mk)i, δmk,xk)× B(xk, δmk,xk)
}n
k=1

,

where mk = ((mk)1, . . . , (mk)r) and B(y, δ) := (y − δ, y + δ) for any y ∈ R and δ > 0. Then, according
to (3.4), we find that

E
[
CrttotN (M,B)

]
≤ E

[
CrttotN (M,B)

]
≤

n∑
k=1

E
[
CrttotN (B((mk)1, δmk,xk), . . . ,B((mk)r, δmk,xk),B(xk, δmk,xk))

]
,

and consequently we obtain that

lim sup
N→∞

1
N

log E
[
CrttotN (M,B)

]
≤ lim sup

N→∞

1
N

log
n∑
k=1

E
[
CrttotN (B((mk)1, δmk,xk), . . . ,B((mk)r, δmk,xk),B(xk, δmk,xk))

]
= max

1≤k≤n
lim sup
N→∞

1
N

log E
[
CrttotN (B((mk)1, δmk,xk), . . . ,B((mk)r, δmk,xk),B(xk, δmk,xk))

]
≤ max

1≤k≤n

{
Σtot(mk, xk) + ε

}
≤ sup

(m,x)∈M×B
Σtot(m, x) + ε,

where the equality in the third line follows by [20, Lemma 1.2.15] and the last inequality follows by (4.6).
We then obtain the upper bound (2.5) by choosing an arbitrarily small ε.

It remains to show the claim (4.5). We let R0 denote the constant R0 = sup{|x| : x ∈ B0} which is
finite since B0 is bounded. According to Proposition 3.2, we have that

E
[
CrttotN (M0, B0)

]
≤ E

[
CrttotN (M0, B0)

]
= CN

∫
M0×B0

E [|detHN−1(m, x)|]
(

1−
r∑
i=1

m2
i

)− r+2
2

exp {NS(m, x)} dm1 · · · dmr dx

≤ 2r+1R0CN · sup
(m,x)∈M0×B0

E [|detHN−1(m, x)|]

× sup
(m,x)∈M0×B0

exp
{
NS(m, x)− r + 2

2 log
(

1−
r∑
i=1

m2
i

)}
.

(4.7)

For a given small δ > 0, we define the compact sets Uδ ⊂ Rr and T δ ⊂ R by

U i,δ :=
{
γi : |γi − γi(m)| ≤ δ,m ∈M0

}
, for every 1 ≤ i ≤ r,

Uδ := U1,δ × · · · × Ur,δ,
T δ :=

{
t : |t− t(m, x)| ≤ δ,m ∈M0, x ∈ B0

}
.
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We note that for any δ > 0, there exists Nδ > 0 such that
√
N/(N − 1)γi(m) ∈ U i,δ, i ∈ {1, . . . , r}, and√

N/(N − 1)t(m, x) ∈ T δ for all N ≥ Nδ and (m, x) ∈ M0 × B0. Moreover, according to Lemma 4.3
and in particular inequality (4.3), we have that

lim sup
N→∞

1
N − 1 log sup

(γ,t)∈Uδ×T δ
E [|det(XN−1(γ)− t)|]

= lim sup
N→∞

sup
(γ,t)∈Uδ×T δ

1
N − 1 log E [|det(XN−1(γ)− t)|] ≤ sup

t∈T δ
Φ∗(t).

Therefore, for any ε > 0, there exists Nε,δ ≥ Nδ such that for all N ≥ Nε,δ,

sup
(m,x)∈M0×B0

E [|detHN−1(m, x)|] ≤ sup
(γ,t)∈Uδ×T δ

E [|det(XN−1(γ)− t)|]

≤ exp
{

(N − 1)
(

sup
t∈T δ

Φ∗(t) + ε

)}
.

(4.8)

It then follows from (4.7) and (4.8) that

lim sup
N→∞

1
N

log E
[
CrttotN (M0, B0)

]
≤ sup

(m,x)∈M0×B0

S(m, x) + sup
t∈T δ

Φ∗(t) + ε,

where we used the fact the pre-factor 2r+1R0CN is exponentially trivial. Since Φ∗(t) is continuous (see
Lemma 4.1) and T δ is compact, letting ε, δ → 0+ yields

lim sup
N→∞

1
N

log E
[
CrttotN (M0, B0)

]
≤ sup

(m,x)∈M0×B0

S(m, x) + sup
(m,x)∈M0×B0

Φ∗ (t(m, x)) .

Recalling that M0 =
∏r
i=1((m0)i − δ0, (m0)i + δ0) and B0 = (x0 − δ0, x0 + δ0) and letting δ0 → 0+, we

obtain that

lim
δ0→0+

lim sup
N→∞

1
N

log E
[
CrttotN (M0, B0)

]
≤ S(m0, x0) + Φ∗(t(m0, x0)) = Σtot(m0, x0),

which follows by the continuity of S inDΣ×R and of Φ∗ in R (see Lemma 4.1) as well as by the continuity
of the function t (see (2.12)). This proves (4.5) and completes the proof of the upper bound (2.5). �

We next provide the proof of the lower bound (2.6).

Proof of Theorem 2.3 (Lower bound). It is sufficient to consider Borel sets (M,B) ⊂ [−1, 1]r ×R
such that sup(m,x)∈M◦×B◦ Σtot(m, x) > −∞, otherwise (2.14) holds trivially. In light of Lemma 4.2,
we may assume without loss of generality that B is a bounded set.

According to Lemma 4.1, the function Σtot is upper semi-continuous Therefore, for any ε0 > 0, there
exists (m0, x0) ∈M◦ ×B◦ such that

Σtot(m0, x0) ≥ sup
(m,x)∈M◦×B◦

Σtot(m, x)− ε0. (4.9)

Given (m0, x0) ∈M◦ ×B◦ with m0 = ((m0)1, . . . , (m0)r) and some δ0 > 0 arbitrarily small, we define

Mδ0
0 := ((m0)1 − δ0, (m0)1 + δ0)× · · · × ((m0)r − δ0, (m0)r + δ0),

Bδ0
0 := (x0 − δ0, x0 + δ0).
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We fix δ0 sufficiently small such that Bδ0
0 ⊂ B◦ and M

δ0
0 ⊂M◦. Then, according to Proposition 3.2, we

have that

E
[
CrttotN (M,B)

]
≥ E

[
CrttotN (M◦, B◦)

]
≥ E

[
CrttotN (Mδ0

0 , Bδ0
0 )
]

= CN

∫
M
δ0
0 ×B

δ0
0

E [|detHN−1(m, x)|]
(

1−
r∑
i=1

m2
i

)− r+2
2

exp{NS(m, x)} dm1 · · · dmr dx

≥ (2δ)r+1CN inf
(m,x)∈Mδ0

0 ×B
δ0
0

E [|detHN−1(m, x)|]

× inf
(m,x)∈Mδ0

0 ×B
δ0
0

exp
{
NS(m, x)− r + 2

2 log
(

1−
r∑
i=1

m2
i

)}
.

(4.10)

For a given small δ > 0, we define the compact sets Uδ0
δ and T δ0

δ by

Uδ0
i,δ :=

{
γi : |γi − γi(m)| ≤ δ,m ∈M δ0

0

}
, for every 1 ≤ i ≤ r,

Uδ0
δ := Uδ0

1,δ × · · · × U
δ0
r,δ,

T δ0
δ :=

{
t : |t− t(m, x)| ≤ δ,m ∈M δ0

0 , x ∈ Bδ0
0

}
.

We note that given δ0 and ε0, for any δ > 0, there exists Nδ,ε0,δ0 > 0 such that
√
N/(N − 1)γi(m) ∈ Uδ0

i,δ

and
√
N/(N − 1)t(m, x) ∈ T δ0

δ for all N ≥ Nδ,ε0,δ0 and (m, x) ∈ Mδ0
0 × B

δ0
0 . Moreover, according to

Lemma 4.3 and in particular inequality (4.4) we have that

lim inf
N→∞

1
N − 1 log inf

(γ,t)∈Uδ0
δ ×T

δ0
δ

E [|det(XN−1(γ)− t)|]

= lim inf
N→∞

inf
(γ,t)∈Uδ0

δ ×T
δ0
δ

1
N − 1 log E [|det(XN−1(γ)− t)|] ≥ inf

t∈T δ0
δ

Φ∗(t).

Therefore, for any ε > 0, there exists Nε,δ,ε0,δ0 ≥ Nδ,ε0,δ0 such that for all N ≥ Nε,δ,ε0,δ0

inf
(m,x)∈Mδ0

0 ×B
δ0
0

E [|detHN−1(m, x)|] ≥ inf
(γ,t)∈Uδ0

δ ×T
δ0
δ

E [|det(XN−1(γ)− t)|]

≥ exp
{

(N − 1)
(

inf
t∈T δ0

δ

Φ∗(t)− ε
)}

.
(4.11)

It then follows from (4.10) and (4.11) that

lim inf
N→∞

1
N

log E
[
CrttotN (M,B)

]
≥ inf

(m,x)∈Mδ0
0 ×B

δ0
0

S(m, x) + inf
t∈T δ0

δ

Φ∗(t)− ε,

where we used the fact that (2δ)r+1CN is exponentially trivial. Letting ε, δ → 0+ yields

lim inf
N→∞

1
N

log E
[
CrttotN (M,B)

]
≥ inf

(m,x)∈Mδ0
0 ×B

δ0
0

S(m, x) + inf
(m,x)∈Mδ0

0 ×B
δ0
0

Φ∗(t(m, x)).

Since S is continuous in DΣ × R and Φ∗ in R (see Lemma 4.1) and the function t is also continuous
(see (2.12)), letting δ0 → 0+ yields

lim inf
N→∞

1
N

log E
[
CrttotN (M,B)

]
≥ S(m0, x0) + Φ∗(t(m0, x0))

= Σtot(m0, x0)
≥ sup

(m,x)∈M◦×B◦
Σtot(m, x)− ε0,

where the last inequality follows by (4.9). Letting ε0 → 0+ gives the lower bound (2.6). �

It remains to prove the intermediate results, namely Lemmas 4.1, 4.2 and 4.3.
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Proof of Lemma 4.1. We first show that −Σtot(m, x) is lower semi-continuous. According to Defi-
nition 2.2, Σtot(m, x) is continuous in DΣ × R since it is a sum of continuous functions and y(m, x) is
continuous, and it is −∞ in Dc

Σ × R. Hence Σtot(m, x) is upper semi-continuous in [−1, 1]r × R. This
implies that −Σtot is lower semi-continuous. We next show that the rate function −Σtot is good. To
this end, we need to show that its sub-level sets {Σtot ≥ −a} are compact for all a < ∞. We recall
that Σtot(m, x) = S(m, x) + Φ∗(t(m, x)), where S(m, x) is continuous in DΣ × R since it is a sum
of continuous functions (see (3.3)) and Φ∗(x) is continuous in R (see (2.3)). Moreover, by definition
the function t(m, x) =

√
2p/(p− 1)y(m, x) is continuous. According to (3.3), for every m ∈ DΣ the

function S(m, x) can be upper bounded by

S(m, x) ≤ 1
2 log(p− 1) + 1

2 − x
2 + 2

(
r∑
i=1

λim
ki
i

)
x,

where we used the fact that log(1 −
∑r
i=1m

2
i ) ≤ 0 and that

(∑r
i=1 λikim

ki
i

)2
≤
∑r
i=1 λ

2
i k

2
im

2ki−2
i by

the Cauchy-Schwarz inequality. Therefore, for every m ∈ DΣ we have that

Σtot(m, x) = S(m, x) + Φ∗(t(m, x))

≤ 1
2 log(p− 1)− x2 + 2

(
r∑
i=1

λim
ki
i

)
x+ 1

4
2p
p− 1

(
x−

r∑
i=1

λi(1− ki/p)mki
i

)2

≤ − p− 2
2(p− 1)x

2 + rλ1x+K(p, r, (ki)i, (λi)i).

Since −a ≤ Σtot(m, x) ≤ − p−2
2(p−1)x

2 + rλ1x + K(p, r, (ki)i, (λi)i), it follows that the sub-level sets
{Σtot ≥ −a} are subsets of some compact set Ka and this yields the compactness of {Σtot ≥ −a}. �

We next show exponential tightness.

Proof of Lemma 4.2. If m ∈ Dc
Σ, then we have that S(m, x) = −∞ and it follows from Propo-

sition 3.2 that lim supN→∞ 1
N log E

[
CrttotN ([−1, 1]r, (−∞,−z] ∪ [z,∞))

]
= −∞. If m ∈ DΣ, it then

follows from Proposition 3.2 that

E
[
CrttotN (DΣ, (−∞,−z] ∪ [z,∞))

]
≤ 2CN

∫ ∞
z

dx
∫ 1

−1
dm1 · · ·

∫ 1

−1
dmr

(
1−

r∑
i=1

m2
i

)− r+2
2

E [|detHN−1(m, x)|] exp{NS(m, x)}

≤ 2r+1CN

∫ ∞
z

dxE
[
(‖WN−1‖+ γ1 + 2(x+ rλ1))N

]
× exp

{
N

[
1
2 log(p− 1) + 1

2 − x
2 + rλ1x

]}
,

where we bounded S(m, x) as in the proof of Lemma 4.1, i.e., S(m, x) ≤ 1
2 log(p− 1) + 1

2 − x
2 + rλ1x.

We set the parameter KN := 2r+1CN exp
{
N
[ 1

2 (log(p− 1) + 1)
]}

. Since CN is exponentially trivial,
we have that KN is exponentially finite, meaning lim supN→∞ 1

N logKN =: M < ∞. Then, for z ≥
max{γ1, 2rλ1} we have that

E
[
CrttotN ([−1, 1]r(−∞,−z] ∪ [z,∞))

]
≤ KN

∫ ∞
z

E
[
(‖WN−1‖+ 3x)N

]
exp

{
−Nx2/4

}
dx

≤ KN3NE
[
(1 + ‖WN−1‖)N

] ∫ ∞
z

xN exp
{
−Nx2/4

}
dx.

For some constant c > 0, we have that

E
[
(1 + ‖WN‖)N

]
≤ E

[
eN‖WN‖

]
≤ cN ,
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where we used that the operator norm of a GOE matrix has sub-Gaussian tails (see [10, Lemma 6.3]),
i.e., P(‖WN‖ ≥ t) ≤ e−Nt

2/9. Therefore, we have that

lim
z→∞

lim sup
N→∞

1
N

log E
[
CrttotN ([−1, 1]r, (−∞,−z] ∪ [z,∞))

]
≤M + lim

z→∞
lim sup
N→∞

1
N

log
∫ ∞
z

xN exp
{
−Nx2/4

}
dx = −∞,

where the last line follows by [15, Lemma 12]. �

It remains to turn to the proof of the determinant asymptotics given in Lemma 4.3. To this end, we
wish to apply Theorem 1.2 of [11] which we state here as the following lemma.

Lemma 4.4 (Theorem 1.2 of [11]). Let HN be an N × N Hermitian matrix. We assume that the
following holds.

(1) Wasserstein-1 distance: There exist a sequence of deterministic probability measures (µN )N≥1
and a constant κ > 0 such that

W1(E [µ̂HN ] , µN ) ≤ N−κ,
Moreover, the µN ’s are supported in a common compact set, and each has a density µN (·) in
the same neighborhood (−κ, κ) around 0, which satisfies µN (x) < κ−1|x|−1+κ for all |x| < κ
and all N .

(2) Concentration for Lipschitz traces: There exists ε0 > 0 with the following property. For every
ξ > 0, there exists cξ > 0 such that, whenever f : R→ R is Lipschitz, we have for every δ > 0

P
(∣∣∣∣ 1
N

Tr f(HN )− 1
N

E [Tr f(HN )]
∣∣∣∣ > δ

)
≤ exp

(
− cξ
Nξ

min
{(

Nδ

‖f‖Lip

)2
,

(
Nδ

‖f‖Lip

)1+ε0
})

.

(3) Wegner estimate: For every ε > 0,

lim
N→∞

P
(
HN has no eigenvalues in [−e−N

ε

, e−N
ε

]
)

= 1.

Then, we have that

lim
N→∞

(
1
N

log E [|det(HN )|]−
∫
R

log |λ|µN (dλ)
)

= 0.

Moreover, if HN = HN (u) for u ∈ Rm, where m is independent of N , and all the above assumptions
are locally uniform over compact sets K ⊂ Rm, we have that

lim
N→∞

sup
u∈K

∣∣∣∣ 1
N

log E [|det(HN (u))|]−
∫
R

log |λ|µN (u)(dλ)
∣∣∣∣ = 0.

Proof of Lemma 4.3. We wish to apply Lemma 4.4 to the random matrixXN (γ)−tIN , whereXN (γ)
is a spiked GOE matrix distributed as XN

d= WN +
∑r
i=1 γieie

>
i . We next verify that the assumptions

(1)-(3) of Lemma 4.4 are locally uniform over compact sets of (γ, t).
We first check the Wasserstein assumption with all measures µN equal to the semicircle law ρsc. It

is sufficient to check the assumption at t = 0 as (1) is translation-invariant. By the triangle inequality,
we have that

sup
γ∈U

W1(E
[
µ̂XN (γ)

]
, ρsc) ≤ sup

γ∈U
W1(E

[
µ̂XN (γ)

]
,E [µ̂WN

]) +W1(E [µ̂WN
] , ρsc).

The rate of convergence of the Wasserstein-1 distance between the spectral measure of WN and the
semicircle law was studied in [23, 33]. More recently, it was shown in [19] that E [W1(µ̂WN

, ρsc)] ≤
C
√

logNN−1 and this yields

W1(E [µ̂WN
] , ρsc) = sup

‖f‖Lip≤1

∣∣∣∣E [∫
R
f(x)(µ̂WN

− ρsc)(dx)
]∣∣∣∣ ≤ E [W1(µ̂WN

, ρsc)] ≤ C
√

logN
N

. (4.12)

The second summand W1(E [µ̂XN ] ,E [µ̂WN
]) can be written as

W1(E [µ̂XN ] ,E [µ̂WN
]) = sup

‖f‖Lip≤1
E
[∣∣∣∣ 1
N

Tr f(XN )− 1
N

Tr f(WN )
∣∣∣∣]
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and bounded by∣∣∣∣ 1
N

Tr f(XN )− 1
N

Tr f(WN )
∣∣∣∣ ≤ 1

N
‖f‖Lip

N∑
i=1
|λi(XN )− λi(WN )|

≤ 1√
N
‖f‖Lip

(
N∑
i=1
|λi(XN )− λi(WN )|2

) 1
2

≤ 1√
N
‖f‖Lip

(
r∑
i=1

γ2
i

) 1
2

,

(4.13)

where the first inequality follows by the the fact that f is Lipschitz, the second by the Cauchy-Schwarz
inequality, and the last one by the Hoffman-Wielandt inequality (see e.g. [3, Lemma 2.1.19]). Therefore,
we find that

sup
γ∈U

W1(E
[
µ̂XN (γ)

]
,E [µ̂WN

]) ≤ C√
N
, (4.14)

where C =
√
r supγ1∈U1 γ1. Then, (4.14) combined with (4.12) verifies that the rate in assumption (1) is

locally uniform. We next verify assumption (2) on concentration of Lipschitz traces. For any Lipschitz
function f : R→ R, by the triangle inequality and (4.13), we have that

sup
(γ,t)∈U×T

∣∣∣∣ 1
N

Tr f(XN (γ)− t)− 1
N

E [Tr f(XN (γ)− t)]
∣∣∣∣

≤ 2√
N
‖f‖Lip sup

(γ,t)∈U×T

(
r∑
i=1

(γi − t)2

) 1
2

+
∣∣∣∣ 1
N

Tr f(WN )− 1
N

E [Tr f(WN )]
∣∣∣∣

≤ c√
N

+
∣∣∣∣ 1
N

Tr f(WN )− 1
N

E [Tr f(WN )]
∣∣∣∣ ,

where c = 2
√
r‖f‖Lip supγ1∈U1,t∈T |γ1−t|. Now, for some fixed δ > 0, we let N such that cN−1/2 < δ/2.

Then, we obtain that

sup
(γ,t)∈U×T

P
(∣∣∣∣ 1
N

Tr f(XN (γ)− t)− 1
N

E [Tr f(XN (γ)− t)]
∣∣∣∣ > δ

)

≤ P
(

sup
(γ,t)∈U×T

∣∣∣∣ 1
N

Tr f(XN (γ)− t)− 1
N

E [Tr f(XN (γ)− t)]
∣∣∣∣ > δ

)

≤ P
(∣∣∣∣ 1
N

Tr f(WN )− 1
N

E [Tr f(WN )]
∣∣∣∣ > δ − cN− 1

2

)
≤ P

(∣∣∣∣ 1
N

Tr f(WN )− 1
N

E [Tr f(WN )]
∣∣∣∣ > δ

2

)
≤ 2e−N

2δ2/16‖f‖2
Lip ,

where the last inequality is a classical concentration result (see e.g. [3, Theorem 2.3.5]). Finally, the gap
assumption (3) was established in [2, Theorem 2]. Therefore, Lemma 4.4 gives

lim sup
N→∞

sup
(γ,t)∈U×T

{
1
N

log E[|det(XN (γ)− t)|]− Φ∗(t)
}
≤ 0,

and

lim inf
N→∞

inf
(γ,t)∈U×T

{
1
N

log E[|det(XN (γ)− t)|]− Φ∗(t)
}
≥ 0,

which prove (4.3) and (4.4). �

4.3. Proof of complexity result for local maxima

This part is devoted to the proof of Theorem 2.7 on the complexity of local maxima. The proof follows
the approach developed in [15] for the complexity of local maxima of the spiked tensor model. The next
results are crucial in the proof of Theorem 2.7.
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Lemma 4.5 (Good rate function). The function −Σmax given by Definition 2.6 is a good rate function.
Moreover, the function L given by Definition 2.4 is lower semi-continuous.

Lemma 4.6 (Exponential tightness). It holds that

lim
z→∞

lim sup
N→∞

1
N

log E [Crtmax
N ([−1, 1]r, (−∞, z] ∪ [z,∞))] = −∞.

Lemma 4.7 (Determinant asymptotics). The following hold.

(i) Upper bound: For any fixed large U1, . . . , Ur > 0 and T0 > 0, we let U0 ⊂ [−U1, U1] × · · · ×
[−Ur, Ur] and T 0 ⊂ [−T0, T0] be compact sets. Then, it holds that

lim sup
N→∞

sup
(γ,t)∈U0×T 0

1
N

log E
[
|det(XN (γ)− t)| · 1{(XN (γ)−t)�0}

]
≤ sup

(γ,t)∈U0×T 0

(Φ∗(t)− L(γ, t)) .
(4.15)

(ii) Lower bound: For any fixed δ > 0,γ0 = ((γ0)1, . . . , (γ0)r) ∈ Rr and t0 ∈ R, we let Uδ0 =
((γ0)1 − δ, (γ0)1 + δ)× · · · × ((γ0)r − δ, (γ0)r + δ) and T δ0 = (t0 − δ, t0 + δ). Then, it holds that

lim inf
N→∞

1
N

log
∫

(γ,t)∈Uδ0×T δ0
E
[
|det(XN (γ)− t)| · 1{(XN (γ)−t)�0}

]
dγ1 · · · dγrdt

≥ Φ∗(t0)− L(γ0, t0).
(4.16)

We defer the proof of these lemmas to the end of this subsection. We now prove Theorem 2.7. First
we prove the upper bound (2.13).

Proof of Theorem 2.7 (Upper bound). We first note that if (M,B) ⊂ [−1, 1]r × R are such that
sup(m,x)∈M×B Σtot(m, x) = −∞, it follows from Proposition 3.2 that E [Crtmax

N (M,B)] = 0 for all N .
We then obtain that lim supN→∞ 1

N log E [Crtmax
N (M,B)] = −∞. In the following, we consider Borel

sets (M,B) ⊂ [−1, 1]r × R such that sup(m,x)∈M×B Σtot(m, x) > −∞. Because of the exponential
tightness property, i.e., Lemma 4.6, we may assume without loss of generality that B is bounded.

As in the proof of Theorem 2.3, our goal is to show that

lim
δ0→0+

lim sup
N→∞

1
N

log E [Crtmax
N (M0, B0)] ≤ Σmax(m0, x0), (4.17)

where M0 =
∏r
i=1((m0)i − δ0, (m0)i + δ0) and B0 = (x0 − δ0, x0 + δ0). For any x ∈ R and subsets

S ⊆ R, we let d(x, S) denote the distance d(x, S) = inf {|x− y| : y ∈ S}. For δ > 0 arbitrarily small, we
then define the compact sets Uδ and T δ by

Bδ := {x : d(x,B0) ≤ δ},
Mδ := {m = (m1, . . . ,mr) : d(mi, ((m0)i − δ0, (m0)i + δ0)) ≤ δ},
U i,δ := {γi : γi = γi(m),m ∈Mδ}, for every 1 ≤ i ≤ r,
Uδ := U1,δ × · · · × Ur,δ,
T δ := {t : t = t(m, x),m ∈Mδ, x ∈ Bδ}.

We let R0 denote the constant R0 = sup{|x| : x ∈ B0} which is finite since B0 is bounded. Moreover, we
let Ui and T0 denote Ui = 2 sup{|γi(m)| : m ∈M0} and T0 = 2 sup{|t(m, x)| : m ∈M0, x ∈ B0}. Since
M0 and B0 are bounded sets, we also have that the constants (Ui)1≤i≤r and T0 are finite. For δ suffi-
ciently small, we have that Uδ ⊂ [−U1, U1]×· · ·×[−Ur, Ur] and T δ ⊂ [−T0, T0]. In the following, we con-
sider only (M0, B0) such that sup(m,x)∈M0×B0

Σtot(m, x) > −∞ and sup(γ,t)∈Uδ×T δ (Φ∗(t)− L(γ, t)) >
−∞. The case with sup(γ,t)∈Uδ×T δ (Φ∗(t)− L(γ, t)) = −∞ follows by similar arguments.

Then, for all δ > 0, there exists Nδ > 0 large enough such that√
N

N − 1 (γ1(m), . . . , γr(m)) ∈ Uδ and
√

N

N − 1 t(m, x) ∈ T δ
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for all N ≥ Nδ and for all (m, x) ∈ M0 × B0. According to Lemma 4.7, for any ε > 0, there exists
Nε,δ ≥ Nδ such that for all N ≥ Nε,δ:

sup
(m,x)∈M0×B0

E
[
|detHN−1(m, x)| · 1{HN−1(m,x)�0}

]
= sup

(γ,t)∈Uδ×T δ
E
[
|det(XN−1(γ)− t)| · 1{(XN−1(γ)−t)�0}

]
≤ exp

{
(N − 1) sup

(γ,t)∈Uδ×T δ
{Φ∗(t)− L(γ, t)}+ ε

}
.

(4.18)

According to (3.5) of Proposition 3.2, we then have that

E [Crtmax
N (M0, B0)] ≤ E

[
Crtmax

N (M0, B0)
]

≤ 2r+1R0CN sup
(m,x)∈M0×B0

E
[
|detHN−1(m, x)| · 1{HN−1(m,x)�0}

]
× sup

(m,x)∈M0×B0

exp
{
NS(m, x)− r + 2

2 log
(

1−
r∑
i=1

m2
i

)}
.

Therefore, from (4.18) we have that

lim sup
N→∞

1
N

log E [Crtmax
N (M0, B0)] ≤ sup

(m,x)∈M0×B0

S(m, x) + sup
(γ,t)∈Uδ×T δ

{Φ∗(t)− L(γ, t)}+ ε,

where we used the fact that the pre-factor 2r+1R0CN is exponentially trivial. Letting ε, δ → 0+, we
find that

lim sup
N→∞

1
N

log E [Crtmax
N (M0, B0)]

≤ sup
(m,x)∈M0×B0

S(m, x) + sup
(γ,t)∈U0×T 0

{Φ∗(t)− L(γ, t)}

= sup
(m,x)∈M0×B0

S(m, x) + sup
(m,x)∈M0×B0

{Φ∗(t(m, x))− L(γ(m), t(m, x))} ,

where we used that Uδ × T δ is compact and that Φ∗(t) − L(γ, t) is upper semi-continuous since it is
the difference of a continuous and a lower semi-continuous function (see Lemmas 4.1 and 4.5). Since
M0 =

∏r
i=1((m0)i − δ0, (m0)i + δ0) and B0 = (x0 − δ0, x0 + δ0), letting δ0 → 0+, we have that

lim
δ0→0+

lim sup
N→∞

1
N

log E [Crtmax
N (M0, B0)]

≤ S(m0, x0) + Φ∗(t(m0, x0))− L(γ(m0), t(m0, x0)) = Σmax(m0, x0),

which follows by the continuity of S in DΣ × R (see Lemma 4.1), by the continuity of both Φ∗ and t
(see Lemma 4.1 and (2.12)), and by the lower semi-continuity of L (see Lemma 4.5). This proves (4.17)
and thus concludes the proof of the upper bound. �

We next show the lower bound (2.14).

Proof of Theorem 2.7 (Lower bound). It is sufficient to consider Borel sets (M,B) ⊂ [−1, 1]r ×R
such that sup(m,x)∈M◦×B◦ Σmax(m, x) > −∞, otherwise (2.14) holds trivially. According to Lemma 4.6
we may assume without loss of generality that B is a bounded set.

In light of Lemma 4.5, the function Σmax is upper semi-continuous. Therefore, for any Borel M =
M1 × · · · ×Mr ⊂ [−1, 1]r and B ⊂ R, and for any ε0 > 0, there exists (m0, x0) ∈M◦ ×B◦ such that

Σmax(m0, x0) ≥ sup
(m,x)∈M◦×B◦

Σmax(m, x)− ε0. (4.19)

Given (m0, x0) ∈ M◦ × B◦ with m0 = ((m0)1, . . . , (m0)r), we denote by µ0 = ((µ0)1, . . . , (µ0)r) the
unordered r-tuple, where (µ0)i = µi(m0) and t0 = t(x0). Moreover, we let γ0 = ((γ0)1, . . . , (γ0)r)
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denote the r-tuple ((µ0)1, . . . , (µ0)r) arranged in descending order. We let δ > 0 be arbitrarily small
and we introduce the following definitions:

Bδ0 := (x0 − δ, x0 + δ),
Mδ

0 := ((m0)1 − δ, (m0)1 + δ)× · · · × ((m0)r − δ, (m0)r + δ),

Uδi,N :=
{
µi,N : µi,N =

√
N

N − 1µi(m),m ∈Mδ
0

}
, for every 1 ≤ i ≤ r,

UδN := Uδ1,N × · · · × Uδr,N ,

T δN :=
{
tN : tN =

√
N

N − 1 t(m, x),m ∈M δ
0 , x ∈ Bδ0

}
.

We fix δ sufficiently small such that Bδ0 ⊂ B◦ and Mδ
0 ⊂ M◦. For this choice of δ and ε0, in light of

Lemma 4.7, for any ε > 0, we can find some Nε,ε0,δ, and δ0 > 0 such that for all N ≥ Nε,ε0,δ,

Uδ0
0 := ((µ0)1 − δ0, (µ0)1 + δ0)× · · · × ((µ0)r − δ0, (µ0)r + δ0) ⊂ UδN ,

T δ0
0 := (t0 − δ0, t0 + δ0) ⊂ T δN ,

and ∫ (γ0)1+δ0

(γ0)1−δ0

· · ·
∫ (γ0)r+δ0

(γ0)r−δ0

∫ t0+δ0

t0−δ0

E
[
|det(XN−1(γ)− t)| · 1{(XN−1(γ)−t)�0}

]
dγ1 · · · dγrdt

≥ exp {(N − 1) (Φ∗(t0)− L(γ0, t0)− ε)} .

Then, according to Proposition 3.2, it follows that

E [Crtmax
N (M,B)] ≥ E [Crtmax

N (M◦, B◦)] ≥ E
[
Crtmax

N (Mδ
0 , B

δ
0)
]

= CN

∫
Mδ

0×Bδ0
E[|detHN−1(m, x)| · 1{HN−1(m,x)�0}]

(
1−

r∑
i=1

m2
i

)− r+2
2

exp{NS(m, x)} dm1 · · · dmrdx

≥ CN inf
(m,x)∈Mδ

0×Bδ0
exp

{
NS(m, x)− r + 2

2 log
(

1−
r∑
i=1

m2
i

)}

×
∫
Mδ

0×Bδ0
E
[
|detHN−1(m, x)| · 1{HN−1(m,x)�0}

]
dm1 · · · dmrdx,

where we recall that HN−1(m, x) d= WN−1 +
√

N
N−1

∑r
i=1 µi(m)eie>i −

√
N
N−1 t(m, x)IN−1. As already

mentioned in Subsection 4.1, µ1(m), . . . , µr(m) are continuous functions which constitute a representa-
tions of the eigenvalues of PN−1(m). Moreover, according to [29, Section 2.5.7], we also have that the
partial derivatives ∂µi(m)/∂mj are continuous in m ∈ DΣ. If we let ∂(µ,t)

∂(m,x) = ∂(µ1,...,µr,t)
∂(m1,...,mr,x) denote the

Jacobian matrix, then we note that the determinant det (∂(µ, t)/∂(m, x)) is continuous. By change of
variables, we then obtain that∫

Mδ
0×Bδ0

E
[
|detHN−1(m, x)| · 1{HN−1(m,x)�0}

]
dm1 · · · dmrdx

=
(

1− 1
N

) r+1
2
∫
Uδ0

0 ×T
δ0

0

E
[
|det(XN−1(γ)− t)| · 1{(XN−1(γ)−t)�0}

] dµ1 · · · dµrdt
|det (∂(µ, t)/∂(m, x)) |

≥ K−1
(

1− 1
N

) r+1
2
∫
Uδ0

0 ×T
δ0

0

E
[
|det(XN−1(γ)− t)| · 1{(XN−1(γ)−t)�0}

]
dµ1 · · · dµrdt,
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where we bounded |det (∂(µ, t)/∂(m, x)) | by some constant K > 0. Since WN−1 +
∑r
i=1 µieie

>
i −

tIN−1
d= WN−1 +

∑r
i=1 γieie

>
i − tIN−1, from Lemma 4.7 we have that∫

Uδ0
0 ×T

δ0
0

E
[
|det(XN−1(γ)− t)| · 1{(XN−1(γ)−t)�0}

]
dµ1 · · · dµrdt

=
∫ (γ0)1+δ0

(γ0)1−δ0

· · ·
∫ (γ0)r+δ0

(γ0)r−δ0

∫ t0+δ0

t0−δ0

E
[
|det(XN−1(γ)− t)| · 1{(XN−1(γ)−t)�0}

]
dγ1 · · · dγrdt

≥ exp {(N − 1) (Φ∗(t0)− L(γ0, t0)− ε)} .

Therefore, since S(m, x) is continuous in DΣ × R, letting δ → 0+ yields

lim inf
N→∞

1
N

log E [Crtmax
N (M,B)] ≥ inf

(m,x)∈Mδ
0×Bδ0

S(m, x) + Φ∗(t0)− L(γ0, t0)− ε

= Σmax(m0, x0)− ε,

where the pre-factor CNK−1(1− 1/N)(r+1)/2 is exponentially trivial on compact set. Letting ε → 0+,
we obtain that

lim inf
N→∞

1
N

log E [Crtmax
N (M,B)] ≥ Σmax(m0, x0) ≥ sup

(m,x)∈M◦×B◦
Σmax(m, x)− ε0,

where the last inequality follows by (4.19). We obtain the desired result by letting ε0 → 0+. �

It remains to give the proof of the three intermediate results, namely Lemmas 4.5, 4.6 and 4.7.

Proof of Lemma 4.5. We first show that the function Σmax(m, x) = Σtot(m, x)− L(γ(m), t(m, x))
given by Definition 2.6 is upper semi-continuos. Since the difference of an upper and a lower semi-
continuos function is an upper semi-continuous function, in light of Lemma 4.1 it is sufficient to show
that (m, x) 7→ L(γ(m), t(m, x)) is lower semi-continuous. According to Definition 2.4, we recall that
for a sequence γ = (γ1, . . . , γr) ∈ Rr such that γ1 ≥ · · · ≥ γr and t ∈ R, L(γ, t) is given by

L(γ, t) =
r∑
`=1

Iγ` (t)1{γ1≥···≥γ`≥1>γ`+1≥···≥γr},

where Iγ` (t) is given by (2.8). According to (2.9), for any γ ≥ 1, the function Iγ : [2,+∞) → R is
continuous, non-negative and equals 0 at t = γ + 1

γ . Then, according to (2.8), Iγ` is a continuous and
decreasing function in [2,+∞) which is positive in [2, γ1 + 1

γ1
) and vanishes in [γ1 + 1

γ1
,+∞), and equals

+∞ in (−∞, 2). Hence, Iγ` (t) is lower semi-continuous in R and so is L(γ, t) in Rr+1 since the indicator
function of an open set is lower semi-continuous. Since t(m, x) is continuous in (m, x) (see (2.12))
and γi(m) is continuous in m (see Subsection 4.1), we conclude that L(γ(m), t(m, x)) is lower semi-
continuous in (m, x). To show that the sub-level sets {Σmax ≥ −a} are compact for all a <∞, we note
that

{Σmax ≥ −a} ⊆ {Σtot ≥ −a},
since −a ≤ Σmax(m, x) = Σtot(m, x) − L(γ(m), t(m, x)) ≤ Σtot(m, x). According to Lemma 4.1, we
conclude that the sub-level sets {Σmax ≥ −a} are included in a compact set and −Σmax is therefore a
good rate function. �

Proof of Lemma 4.6. Lemma 4.6 follows from the exponential tightness of the expected number of
critical points, see Lemma 4.2. �

Proof of Lemma 4.7. The proof of the upper bound (4.15) and lower bound (4.16) follows by similar
ideas as in the proof of [15, Proposition 4].

Proof of the upper bound (4.15). Let δ > 0 be arbitrarily small. We equip P(R) with the bounded-
Lipschitz distance dBL. Let B(ρsc, δ) denote the open ball which contains all probability measures µ
such that dBL(µ, ρsc) < δ. We then decompose E

[
|det(XN − t)| · 1{(XN−t)�0}

]
as

E
[
|det(XN − t)| · 1{(XN−t)�0}

]
≤ E

[
|det(XN − t)| · 1{(XN−t)�0, µ̂XN∈B(ρsc,δ)}

]
+ E

[
|det(XN − t)| · 1{µ̂XN /∈B(ρsc,δ)}

]
.

(4.20)
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We first show that the second summand in the last line (4.20) is exponentially vanishing for all N large
enough. For every M0 > 0, we have that

E
[
|det(XN − t)| · 1{µ̂XN /∈B(ρsc,δ)}

]
≤ E

[
|det(XN − t)| · 1{µ̂XN /∈B(ρsc,δ),maxi∈[N] |λi(XN )|≤M0}

]
︸ ︷︷ ︸

=:E1

+ E
[
|det(XN − t)| · 1{maxi∈[N] |λi(XN )|>M0}

]
︸ ︷︷ ︸

=:E2

.

We then upper bound E1 = E1(γ, t) by

sup
(γ,t)∈U0×T 0

E1 = sup
(γ,t)∈U0×T 0

E
[
|det(XN (γ)− t)| · 1{µ̂XN (γ) /∈B(ρsc,δ),maxi∈[N] |λi(γ)|≤M0}

]
= sup

(γ,t)∈U0×T 0

∫
RN

N∏
i=1
|λi(γ)− t| · 1{µ̂XN (γ) /∈B(ρsc,δ),maxi∈[N] |λi(γ)|≤M0}dPγN

≤ (M0 + T0)N sup
γ∈U0

PγN
(
µ̂XN (γ) /∈ B(ρsc, δ)

)
.

Since dBL provides a metric for weak convergence and since µ̂XN
w−→ ρsc, we have that for any δ > 0

and any N large enough, dBL(µ̂XN , ρsc) < δ, ensuring that

lim
N→∞

sup
γ∈U0

1
N

log PγN
(
µ̂XN (γ) /∈ B(ρsc, δ)

)
= −∞, (4.21)

which gives that

lim
N→∞

sup
(γ,t)∈U0×T 0

1
N

logE1(γ, t) = −∞.

Since the second expectation E2 = E2(γ, t) satisfies

lim
M0→∞

lim sup
N→∞

sup
(γ,t)∈U0×T 0

1
N

logE2(γ, t)

= lim
M0→∞

lim sup
N→∞

sup
(γ,t)∈U0×T 0

1
N

log E
[
|det(XN (γ)− t)| · 1{maxi∈[N] |λi(γ)|≥M0}

]
= −∞,

for any L0 > 0, we can take an M0 large enough such that

lim
N→∞

sup
(γ,t)∈U0×T 0

1
N

logE2(γ, t) ≤ L0.

We finally conclude that the second summand in the last line of (4.20) is exponentially vanishing on
compact set since

lim sup
N→∞

sup
(γ,t)∈U0×T 0

1
N

log E
[
|det(XN (γ)− t)| · 1{µ̂XN (γ) /∈B(ρsc,δ)}

]
≤ L0,

and letting L0 → ∞ gives the desired result. It remains to consider the first summand in the last line
of (4.20). According to (3.15), we have that

E1 = E
[
|det(XN − t)| · 1{(XN−t)�0} · 1{µ̂XN∈B(ρsc,δ)}

]
=
∫
RN

N∏
i=1
|λi(XN )− t| · 1{µ̂XN∈B(ρsc,δ),maxi∈[N] λi(XN )≤t}PγN (dx1, . . . ,dxN )

= Z0
N

ZγN

∫
RN

exp {NΦ(µ̂XN , t)} · 1{µ̂XN∈B(ρsc,δ),maxi∈[N] λi(XN )≤t}IN (γ, x)P0
N (dx1, . . . ,dxN ),
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where ZγN = Z0
N

∫
RN IN (γ, x)P0

N (dx1, . . . ,dxN ), and for any probability measure µ on R, we write the
log-potential Φ(µ, x) of µ as Φ(µ, x) :=

∫
R log |λ− x|µ(dλ). We therefore bound the expectation E1 as

E1 = E
[
|det(XN − t)| · 1{(XN−t)�0} · 1{µ̂XN∈B(ρsc,δ)}

]
≤ exp

N sup
µ∈B(ρsc,δ)

supp(µ)∈[−t,t]

Φ(µ, t)

 · Z
0
N

ZγN

∫
RN

1{maxi∈[n] λi(XN )≤t} · IN (γ, x) P0
N (dx1, . . . ,dxN )

= exp

N sup
µ∈B(ρsc,δ)

supp(µ)∈[−t,t]

Φ(µ, t)

 ·PγN (λmax(XN ) ≤ t) .

(4.22)

We note that Φ(µ, x) = infν>0 Φν(µ, x) where Φν(µ, x) :=
∫
R log(|λ − x| ∨ ν)µ(dλ) is continuous on

P(T 0) × T 0. Therefore, (µ, x) 7→ Φµ(x) is upper semi-continuous on the same domain. Moreover, by
definition, we have that Φ(ρsc, x) = Φ∗(x) where Φ∗ is defined in (2.3). Therefore,

lim
δ→0+

sup
t∈T 0

sup
µ∈B(ρsc,δ)

supp(µ)∈[−t,t]

Φ(µ, t) ≤ sup
t∈T 0

Φ∗(t). (4.23)

Since PγN (λmax(XN ) ≤ t) is a coordinate-wise monotone function with respect to (γ, t), from Corol-
lary 3.7 we obtain that

lim sup
N→∞

sup
(γ,t)∈U0×T 0

1
N

log PγN (λmax(γ) ≤ t) ≤ −L(γ, t) ≤ − inf
(γ,t)∈U0×T 0

L(γ, t). (4.24)

Finally, combining (4.22) with (4.23) and (4.24) completes the proof of the upper bound, i.e.,

lim sup
N→∞

sup
(γ,t)∈U0×T 0

1
N

logE1(γ, t)

= lim sup
N→∞

sup
(γ,t)∈U0×T 0

1
N

log E
[
|det(XN (γ)− t)| · 1{(XN (γ)−t)�0} · 1{µ̂XN (γ)∈B(ρsc,δ)}

]
≤ sup

(γ,t)∈U0×T 0

[Φ∗(t)− L(γ, t)] .

�

Proof of the lower bound (4.16). In light of Lemma 4.5 and its proof, the function Φ∗(t) − L(γ, t) is
upper semi-continuous since it is the difference of a continuous function and a lower semi-continuous
function. Therefore, we only need to prove it for those (γ0, t0) in a dense subset of Rr+1. Since as
t0 ∈ (−∞, 2) we have that L(γ, t0) = +∞ for any γ, we only need to consider the case when t0 > 2.
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We fix t0 > 2 and take δ0, ε0 > 0 such that δ > δ0 and t0 − δ0 > t0 − δ0 − ε0 > 2. Then, for any
δ′ > 0, we have that

E
[
|det(XN − t)| · 1{(XN−t)�0}

]
= Z0

N

ZγN

∫
RN

exp {NΦ(µ̂XN , t)} · 1{maxi∈[N] λi(XN )≤t} · IN (γ, x)dP0
N

≥ Z0
N

ZγN

∫
RN

exp {NΦ(µ̂XN , t)} · 1{maxi∈[N] λi(XN )≤min{t,t0−δ0−ε0},µ̂XN∈B(ρsc,δ′)} · IN (γ, x)dP0
N

≥ exp

N inf
µ∈B(ρsc,δ′)

supp(µ)∈[−min{t,t0−δ0−ε0},min{t,t0−δ0−ε0}]

Φ(µ, t)


× Z0

N

ZγN

∫
RN

1{maxi∈[N] λi(XN )≤min{t,t0−δ0−ε0},µ̂XN∈B(ρsc,δ′)} · IN (γ, x)dP0
N

≥ exp

N inf
µ∈B(ρsc,δ′)

supp(µ)∈[−min{t,t0−δ0−ε0},min{t,t0−δ0−ε0}]

Φ(µ, t)


×
[
PγN (λmax(XN ) ≤ min{t, t0 − δ0 − ε0})−PγN (µ̂XN /∈ B(ρsc, δ

′))
]

(4.25)

The second term in the last line of (4.25) is exponentially negligible on compact set as N → ∞
(see (4.21)). Since PγN (λmax(XN ) ≤ t) is a coordinate-wise monotone function with respect to (γ, t), it
follows from Corollary 3.7 that

lim inf
N→∞

inf
(γ,t)∈Uδ0

0 ×T
δ0

0

1
N

log PγN (λmax(γ) ≤ min{t, t0 − δ0 − ε0})

≥ − sup
(γ,t)∈Uδ0

0 ×T
δ0

0

L(γ,min{t, t0 − δ0 − ε0}))

= −L ((γ0)1 + δ0, . . . , (γ0)r + δ0, t0 − δ0 − ε0) ,

where we used the fact that the function L(γ, t) is continuous for t > 2 (see the proof of Lemma 4.5).
Therefore, since Uδ0

0 × T
δ0

0 ⊂ Uδ0 × T δ0 , we obtain that

lim inf
N→∞

1
N

log
∫

(γ,t)∈Uδ0×T δ0
E[|det(XN (γ)− t)| · 1{(XN (γ)−t)�0}]dγ1 · · · dγrdt

≥ lim inf
N→∞

1
N

log
∫

(γ,t)∈Uδ0
0 ×T

δ0
0

E[|det(XN (γ)− t)| · 1{(XN (γ)−t)�0}] dγ1 · · · dγrdt

≥ lim inf
N→∞

inf
(γ,t)∈Uδ0

0 ×T
δ0

0

1
N

log E[|det(XN (γ)− t)| · 1{(XN (γ)−t)�0}]

≥ inf
t∈T δ0

0

inf
µ∈B(ρsc,δ′)

supp(µ)∈[−(t0−δ0−ε0),t0−δ0−ε0]

Φ(µ, t)− L ((γ0)1 + δ0, . . . , (γ0)r + δ0, t0 − δ0 − ε0) .

The function Φ(µ, t) is continuous on P([−(t0 − δ0 − ε0), t0 − δ0 − ε0])× T δ0
0 since t0 + δ0 > t0 − δ0 >

t0 − δ0 − ε0 > 2. Therefore, letting δ′ → 0 yields

lim inf
N→∞

1
N

log
∫

(γ,t)∈Uδ0×T δ0
E[|det(XN (γ)− t)| · 1{(XN (γ)−t)�0}] dγ1 · · · dγrdt

≥ lim
δ′→0+

inf
t∈T δ0

0

inf
µ∈B(ρsc,δ′)

supp(µ)∈[−(t0−δ0−ε0),t0−δ0−ε0]

Φ(µ, t)− L ((γ0)1 + δ0, . . . , (γ0)r + δ0, t0 − δ0 − ε0)

≥ Φ∗(t0 − δ0)− L ((γ0)1 + δ0, . . . , (γ0)r + δ0, t0 − δ0 − ε0) .
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Since (γ, t) 7→ Φ∗(t)−L(γ, t) is continuous in Rr × (2,∞), letting ε0 → 0+ followed by δ0 → 0+ results
in the desired lower bound, i.e.,

lim inf
N→∞

1
N

log
∫

(γ,t)∈Uδ0×T δ0
E[|det(XN (γ)− t)| · 1{(XN (γ)−t)�0}] dγ1 · · · dγrdt

≥ lim
δ0→0+

{Φ∗(t0 − δ0)− L ((γ0)1 + δ0, . . . , (γ0)r + δ0, t0 − δ0 − ε0)}

= Φ∗(t0)− L(γ0, t0).

�

�

5. analysis of the variational formula for total complexity

Here, we study the variational problem of Theorem 2.3 and prove Theorem 2.8. In the following, we
consider Borel sets M1, . . . ,Mr ⊂ [0, 1] such that

DΣ =
{
m = (m1, . . . ,mr) ∈M1 × · · · ×Mr :

r∑
i=1

m2
i ∈ (0, 1)

}
⊂ [0, 1]r.

We then define the function Σtot(m) := maxx Σtot(m, x) which stores the mean number of critical
points at given m ∈ DΣ. We also recall the following definitions from Theorem 2.8:

τ(m) = 1
p

r∑
i=1

λikim
ki
i and τc = (p− 2)/

√
2p(p− 1).

We note that τ(m) ≥ 0 for any m ∈ DΣ. Similarly as in [15], we next provide an explicit formula for
the projection Σtot(m).

Lemma 5.1. The function Σtot(m) has the following explicit formula for m ∈ DΣ ⊂ [0, 1]r:

Σtot(m) =
{

Σtot
S (m) if τ(m) < τc

Σtot
L (m) if τ(m) ≥ τc

,

where the functions Σtot
S (m) and Σtot

L (m) are given by

Σtot
S (m) := 1

2 log(p− 1) + 1
2 log

(
1−

r∑
i=1

m2
i

)
− 1
p

r∑
i=1

λ2
i k

2
im

2ki−2
i (1−m2

i )

+ 2
p

∑
1≤i<j≤r

λiλjkikjm
ki
i m

kj
j + p

p− 2

(
1
p

r∑
i=1

λikim
ki
i

)2

,

Σtot
L (m) := 1

2 log
(

1−
r∑
i=1

m2
i

)
− 1
p

r∑
i=1

λ2
i k

2
im

2ki−2
i (1−m2

i ) + 2
p

∑
1≤i<j≤r

λiλjkikjm
ki
i m

kj
j

−

(√
p

2
1
p

r∑
i=1

λikim
ki
i

)2

+
(√

p

2
1
p

r∑
i=1

λikim
ki
i

)
·

√√√√(√p

2
1
p

r∑
i=1

λikim
ki
i

)2

+ 1

+ sinh−1

(√
p

2
1
p

r∑
i=1

λikim
ki
i

)
,

respectively.

We note that the function Σtot(m) is continuous and is given by Σtot
S (m) for smaller values of m

and by Σtot
L (m) for larger values. We also remark that Lemma 5.1 reduces to Proposition 1 of [15] when

r = 1 and k = p. Therefore, the analysis of the complexity function Σtot(m) carried out in this section
reduces to the results obtained in [15, Section 2.4] for the spiked tensor model. We follow the same
ideas of the proof of [15, Proposition 1] to prove Lemma 5.1.
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Proof of Lemma 5.1. We recall that Σtot(m, x) = Σ(m, y(m, x)) with y(m, x) = x −
∑r
i=1 λi(1 −

ki/p)mki
i . Maximizing Σtot(m, x) over x is then equivalent to maximizing Σ(m, y) over y. The function

Φ∗ defined in (2.3) can be rewritten as

Φ∗(x) = x2

4 −
1
2 −

1
2

∫ |x|
2

√
t2 − 4 dt · 1{|x|≥2},

where we used the following identity:∫ x

2

√
t2 − 4 dt = x

2
√
x2 − 4− 2 log

(
x+
√
x2 − 4
2

)
.

Therefore, maximizing Σ(m, y) over y corresponds to

max
y

{
− y2 + 2

(
1
p

r∑
i=1

λikim
ki
i

)
y + 2p

p− 1
y2

4 −
1
2

∫ √ 2p
p−1 |y|

2

√
t2 − 4dt · 1{√2p/(p−1)|y|≥2}

}
. (5.1)

Let u :=
√

2p
p−1y. Then, the optimization problem (5.1) is equivalent to solving − 1

2 minu g(u), where
the function g is given by

g(u) = au2 − bu+
∫ |u|

2

√
t2 − 4 dt · 1{|u|≥2}. (5.2)

Here, a = p−2
2p > 0 and b = 4

√
p−1
2p

(
1
p

∑r
i=1 λikim

ki
i

)
> 0. Since

g′(u) = 2au− b+ sgn(u)
√
u2 − 4 · 1{|u|≥2}

is monotone increasing, the function g has a unique minimum which occurs when

b− 2au = sgn(u)
√
u2 − 4 · 1{|u|≥2}

A simple computation shows that if −2 ≤ b/2a ≤ 2, then the minimum umin occurs at b/2a, otherwise
it occurs at

umin = 2ab−
√
b2 + 4− 16a2

4a2 − 1 .

This implies that

−1
2 min

u
g(u) =

{
b2

8a , if b ≤ 4a
1
4bumin + log

(( 1
2 − a

)
umin + 1

2b
)
, if b ≥ 4a

.

With our notation of a and b, when b ≤ 4a which is equivalent to τ(m) ≤ τc, then (5.1) equals to

2p− 1
p− 2

(
1
p

r∑
i=1

λikim
ki
i

)2

, (5.3)

whereas when b ≥ 4a, i.e., τ(m) ≥ τc,then (5.1) corresponds to(√
p

2
1
p

r∑
i=1

λikim
ki
i

)√√√√(√p

2
1
p

r∑
i=1

λikim
ki
i

)2

+ 1− p− 2
2

(
1
p

r∑
i=1

λikim
ki
i

)2

+ sinh−1

(√
p

2
1
p

r∑
i=1

λikim
ki
i

)
− 1

2 log(p− 1).

(5.4)

Plugging (5.3) and (5.4) into Σ(m, ·) completes the proof of Proposition 5.1. �

Next we let α(m) and β(m) denote

α(m) :=
r∑
i=1

m2
i

and

β(m) := α(m)
τ(m)2

(
1
p2

r∑
i=1

λ2
i k

2
im

2ki−2
i

)
,
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respectively. Since m ∈ DΣ, we have that α(m) < 1. Moreover, we note that β(m) ≥ 1 since by the
Cauchy-Schwarz inequality, we have that(

1
p

r∑
i=1

λikim
ki
i

)2

≤

(
r∑
i=1

m2
i

)
·

(
1
p2

r∑
i=1

λ2
i k

2
im

2ki−2
i

)
,

which, with our notation, is equivalent to τ(m)2 ≤ α(m)β(m)τ(m)2

α(m) , thus β(m) ≥ 1.
We next wish to identify the regimes where the complexity function Σtot(m) is positive, equal to

zero, and negative. We first analyze the functions Σtot
S (m) and Σtot

L (m). In the following, we introduce
the parameter τ∗(m) given by

τ∗(m) := 1
√
p

√√√√−1
2

log ((1− α(m))(p− 1))
p−1
p−2 −

β(m)
α(m)

.

Lemma 5.2. The function Σtot
S (m) satisfies the following:

(i) inside the region α(m)
β(m) ≤ α(m) < p−2

p−1 , Σtot
S (m) is positive in 0 ≤ τ(m) < τ∗(m) and non-

positive in τ(m) ≥ τ∗(m);
(ii) inside the region α(m)

β(m) ≤
p−2
p−1 ≤ α(m), Σtot

S (m) is non-positive;

(iii) inside the region p−2
p−1 < α(m)

β(m) ≤ α(m), Σtot
S (m) is non-positive in 0 ≤ τ(m) ≤ τ∗(m) and

positive in τ(m) > τ∗(m).

Proof of Lemma 5.2. We define the function gα,β by

gα,β(x) := 1
2 log(1− α) + 1

2 log(p− 1) +
(
p− 1
p− 2 −

β

α

)
x2.

With our choice of α and β, it can be easily verified that Σtot
S (m) = gα,β

(√
pτ(m)

)
and the proof

follows easily from Lemma A.1. �

Lemma 5.3. The function Σtot
L (m) is non-positive. In addition, Σtot

L (m) = 0 if and only if there exists
a constant δ > 0 such that ki

p λim
ki−1
i = δmi for all 1 ≤ i ≤ r, and in this case the zeros are described

by

τ(m) = 1√
2p

α(m)√
1− α(m)

.

Proof of Lemma 5.3. We define the function fα,β by

fα,β(x) := 1
2 log(1− α)− 2β

α
x2 + x2 + x

√
1 + x2 + sinh−1(x).

With our choice of α and β, it can be easily verified that Σtot
L (m) = fα,β

(√
p/2 τ(m)

)
. According

to Lemma A.2, we have that Σtot
L (m) is non-positive for all m ∈ DΣ and equals zero if and only if

β(m) = 1, meaning equality in Cauchy-Schwarz, i.e., there exists δ > 0 such that ki
p λim

ki−1
i = δmi for

all 1 ≤ i ≤ r. Moreover, in this case, the zeros of Σtot
L are given by the equation√

p

2τ(m) = 1
2

α(m)√
1− α(m)

,

which completes the proof. �

From Lemmas 5.2 and 5.3 it then follows that

Proposition 5.4. Inside the region {τ(m) ≤ τc} ∩ {α(m) < p−2
p−1}, the complexity Σtot(m) is positive

in 0 ≤ τ(m) < τ∗(m), zero at τ(m) = τ∗(m), and negative in τ(m) > τ∗(m). Outside this region, i.e.,
in {τ(m) ≤ τc} ∩ {α(m) ≥ p−2

p−1} as well as in {τ(m) ≥ τc}, Σtot(m) is non-positive.

Proof of Proposition 5.4. This result follows straightforwardly from Lemmas 5.2 and 5.3. In partic-
ular, we note that in the region α(m)

β(m) >
p−2
p−1 , it holds that τ∗(m) > τc. Indeed, we have that

− log((1−α(m))(p−1)) ≥ 1− (1−α(m))(p−1) = α(m)(p−1)− (p−2) ≥ α(m)(p−1)−β(m)(p−2),
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where for the first inequality we used that log(x) ≥ 1 − 1/x if x > 0 and for the second one we used
that β ≥ 1. Then,

τ∗(m) ≥
√
α(m)p− 2

2p >
p− 2√

2p(p− 1)
= τc,

where the inequality follows from α(m) ≥ α(m)/β(m) > (p − 2)/(p − 1). Therefore, according to
Lemma 5.2, in {τ(m) ≤ τc} ∩ {α(m)

β(m) >
p−2
p−1} the function Σtot(m) is non-positive. �

Having Proposition 5.4 at hand, we now wish to characterize the regions in which the complexity
vanishes when tuning the external parameters. For simplicity, we focus here on the case where ki = k
for all 1 ≤ i ≤ r, i.e., we consider the deterministic polynomials in (1.2) having the same degree. Then,
as already stated in Theorem 2.8, as λ1, . . . , λr increase, we can identify a phase transition in the region
τ(m) ≥ τc. We recall the following definitions from Theorem 2.8:

η(m) :=
r∑
i=1

λ
− 2
k−2

i 1{mi 6=0} and ηc := (k − 2)
(

2k2

p(k − 1)k−1

) 1
k−2

.

Then, Theorem 2.8 is equivalent to the following proposition:

Proposition 5.5. If η(m) > ηc, then Σtot
L (m) < 0, whereas if η(m) ≤ ηc, then Σtot

L ≤ 0 and vanishes
whenever m satisfies the following two identities:

(a) λimk−2
i = λjm

k−2
j for all 1 ≤ i, j ≤ r such that mi,mj 6= 0,

(b) τ(m) = 1√
2p

α(m)√
1−α(m)

.

Proof of Proposition 5.5. According to Lemma 5.3, we know that Σtot
L vanishes if and only if β(m) =

1, meaning k
pλim

k−1
i = δmi for some δ > 0. Therefore, we can rewrite the parameters α(m) and t(m)

as

α(m) = δ
2
k−2

(p
k

) 2
k−2

η(m) and τ(m) = δ
k
k−2

(p
k

) 2
k−2

η(m). (5.5)

Moreover, by Lemma 5.3, Σtot
L (m) = 0 if and only if m satisfies√

p

2τ(m) = 1
2

α(m)√
1− α(m)

. (5.6)

Given α and τ as in (5.5), then equation (5.6) is equivalent to

2p
(p
k

) 2
k−2

η(m)δ
2k−2
k−2 − 2pδ2 + 1 = 0. (5.7)

Analyzing the function h(x) = 2p
(
p
k

) 2
k−2 η(m)x

2p−2
p−2 − 2px2 + 1 for x > 0, we found that the minimum

is attained at xmin = k
p

(
k−2
k−1 ·

1
η(m)

) k−2
2
. If η(m) > ηc, then we have that ymin = h(xmin) > 0 and

thus h(x) is positive for all x > 0. Therefore, there is no δ satisfying (5.7) and the function Σtot
L is

negative. On the other hand, if η(m) ≤ ηc, then the ymin ≤ 0 and h(x) has at least one zero for x > 0.
Therefore, (5.7) is satisfied and Σtot

L vanishes whenever (5.6) is satisfied. �

According to Proposition 5.5, when η(m) ≤ ηc, then in the region τ(m) ≥ τc optimizing fN should
be easier since the complexity function is non-positive and the number of critical points sub-exponential.
Interestingly, this region is characterized by mr ≥ · · · ≥ m2 ≥ m1, as explained in Subsection 2.3.

Appendix A. Calculus results

Lemma A.1 (Calculus result for Σtot
S (m)). For any value of a ∈ (0, 1) and b ≥ 1, we define ga,b : R→ R

by

ga,b(x) = 1
2 log(1− a) + 1

2 log(p− 1) +
(
p− 1
p− 2 −

b

a

)
x2.

Then, the following holds:
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(i) if ab >
p−2
p−1 , then ga,b is negative in (−x∗, x∗), zero at x = ±x∗ and positive otherwise, where

x∗ =

√√√√− 1
2 (log(1− a) + log(p− 1))

p−1
p−2 −

b
a

;

(ii) if a
b <

p−2
p−1 we distinguish three cases: If a < p−2

p−1 , then ga,b(x) > 0 in (−x∗, x∗) and negative
otherwise; if a = p−2

p−1 , then ga,b(x) has exactly one zero in x∗; whereas if a > p−2
p−1 , ga,b(x) < 0

for all x;
(iii) if ab = p−2

p−1 , then ga,b is a non-positive, constant function.

Proof. If a
b = p−2

p−1 , then ga,b = 1
2 log((1 − a)(p − 1)) is a non-positive constant function. Otherwise, if

a
b 6=

p−2
p−1 , the function ga,b is a parabola which is symmetric about the y-axis, and is opening to the top

if ab >
p−2
p−1 and to the bottom if ab <

p−2
p−1 . If

a
b >

p−2
p−1 , the function has two zeros since the y-coordinate

of vertex yV = 1
2 log((1 − a)(p − 1)) is negative. If a

b <
p−2
p−1 , we then have: if a > p−2

p−1 , then yV is
negative and ga,b is always negative; if a = p−2

p−1 , then yV = 0 and ga,b has exactly one zero; if a < p−2
p−1 ,

then yV is positive, so the function ga,b has two zeros. �

Lemma A.2 (Calculus result for Σtot
L (m)). For any value of a ∈ (0, 1) and b ≥ 1, we define fa,b : R→ R

by

fa,b(x) = 1
2 log(1− a)− 2b

a
x2 + x2 + x

√
1 + x2 + sinh−1(x).

Then, the following holds:
(i) fa,b(x) ≤ 0 for all x;
(ii) fa,b(x) has exactly one maximum at xa,b = 1

2
a√

b(b−a)
;

(iii) fa,b(xa,b) = 0 if and only if b = 1.

Proof. By differentiating fa,b, it can be verified that this function has exactly one maximum at

xa,b = a

2
√
b(b− a)

.

Plugging the maximum value xa,b into the function fa,b yields

fa,b(xa,b) = 1
2 log(1− a)− 2b

a

a2

4b(b− a) + a2

4b(b− a) + a

2
√
b(b− a)

√
1 + a2

4b(b− a) + sinh−1

(
a

2
√
b(b− a)

)

= 1
2 log(1− a) + a(a− 2b)

4b(b− a) −
a(a− 2b)
4b(b− a) + log

(√
b

b− a

)
= 1

2 log
(
b(1− a)
b− a

)
,

where in the second line we used the identity sinh−1(x) = log(x+
√
x2 + 1). By assumption b ≥ 1, thus

fa,b(xa,b) ≤ 0. In particular, fa,b(x) ≤ 0 for all x. Moreover, we have that fa,b(xa,b) equals zero if and
only if b = 1. �
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