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Abstract

We introduce a triangular array L̂(α) of 5-variable homogeneous polyno-
mials that enumerate Laguerre digraphs (digraphs in which each vertex has
out-degree 0 or 1 and in-degree 0 or 1) with separate weights for peaks, valleys,
double ascents, double descents, and loops. These polynomials generalize the
classical Laguerre polynomials as well as the rook and Lah polynomials. We
show that this triangular array is totally positive and that the sequence of its
row-generating polynomials is Hankel-totally positive, under suitable restric-
tions on the values given to the indeterminates. This implies, in particular,
the coefficientwise Hankel-total positivity of the monic unsigned univariate La-
guerre polyomials. Our proof uses the method of production matrices as applied
to exponential Riordan arrays. Our main technical lemma concerns the total
positivity of a large class of quadridiagonal production matrices; it generalizes
the tridiagonal comparison theorem. In some cases these polynomials are given
by a branched continued fraction. Our constructions are motivated in part by
recurrences for the multiple orthogonal polynomials associated to weights based
on modified Bessel functions of the first kind Iα.
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1 Introduction and statement of main results

In a seminal 1980 paper, Flajolet [29] showed that the coefficients in the Taylor
expansion of the generic Stieltjes-type (resp. Jacobi-type) continued fraction — which
he called the Stieltjes–Rogers (resp. Jacobi–Rogers) polynomials — can be interpreted
as the generating polynomials for Dyck (resp. Motzkin) paths with specified height-
dependent weights. More recently it was independently discovered by several authors
[34,41,56,70] that Thron-type continued fractions also have an interpretation of this
kind: namely, their Taylor coefficients — which we call, by analogy, the Thron–Rogers
polynomials — can be interpreted as the generating polynomials for Schröder paths
with specified height-dependent weights.

In a recent paper [59] we presented an infinite sequence of generalizations of the
Stieltjes–Rogers and Thron–Rogers polynomials, which are parametrized by an inte-
ger m ≥ 1 and reduce to the classical Stieltjes–Rogers and Thron–Rogers polynomials
when m = 1; they are the generating polynomials of m-Dyck and m-Schröder paths,
respectively, with height-dependent weights, and are also the Taylor coefficients of cer-
tain branched continued fractions. We proved that these generalizations all possess
the fundamental property of coefficientwise Hankel-total positivity [66,70], jointly in
all the (infinitely many) indeterminates. These facts were known when m = 1 [66,70]
but were new when m > 1. By specializing the indeterminates we were able to
give many examples of Hankel-totally positive sequences whose generating functions
do not possess nice classical continued fractions. (The concept of Hankel-total pos-
itivity [66, 70] will be explained in more detail later in this Introduction.) Similar
considerations apply to the m-Jacobi–Rogers polynomials, which are the generating
polynomials of m- Lukasiewicz paths; but here the Hankel-total positivity is a more
delicate matter, for which a sufficient (but not necessary) condition is the total posi-
tivity of a lower-Hessenberg production matrix.

In the present paper we will apply the m-Jacobi–Rogers theory with m = 2 to
prove the coefficientwise Hankel-total positivity for some multivariate generalizations
of the Laguerre, rook and Lah polynomials. Our constructions are motivated in
part by the work of Coussement and Van Assche [19] on the multiple orthogonal
polynomials associated to weights based on modified Bessel functions of the first kind
Iα; we will explain this unexpected connection in Section 7. Our method — to use
production matrices for a binomial row-generating matrix, exploiting the theory of
exponential Riordan arrays — was employed previously by ourselves [13, 58, 67] and
Zhu [90, 92]; but the present case is more delicate than these previous applications
because the total positivity of the quadridiagonal production matrix (Section 6.2) is
decidedly nontrivial.

The starting point of this work was the fact, due to Gantmakher and Krein [36],
that a Hankel matrix of real numbers is totally positive if and only if the underlying
sequence is a Stieltjes moment sequence (see Section 1.5 below), combined with the

classical fact that, for each α ≥ −1 and x ≥ 0, the sequence (L(α)
n (x))n≥0 of monic

unsigned Laguerre polynomials [defined in (1.3) below] is a Stieltjes moment sequence
[cf. (7.1) below]. This led Sylvie Corteel and one of the authors (A.D.S.) to conjecture,

a few years ago [18], that the sequence (L(α)
n (x))n≥0 is coefficientwise Hankel-totally

positive (see Section 1.5 for the definition). The purpose of this paper is to prove this
conjecture, along with a vast multivariate generalization. The univariate conjecture
was also recently proven by Zhu [90,92].
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1.1 Univariate Laguerre polynomials

The Laguerre polynomials L
(α)
n are conventionally defined as [3, 40,63,77]

L(α)
n (x) =

n∑
k=0

(
n + α

n− k

)
(−x)k

k!
(1.1)

and have the generating function

∞∑
n=0

L(α)
n (x) tn = (1 − t)−(1+α) e−xt/(1−t) . (1.2)

However, for our purposes it is more convenient to work with the monic unsigned
Laguerre polynomials

L(α)
n (x)

def
= n!L(α)

n (−x) =
n∑

k=0

n!

k!

(
n + α

n− k

)
xk =

n∑
k=0

(
n

k

)
(n + α)n−k xk

= (1 + α)n F1 1

( −n

1 + α

∣∣∣∣ − x

)
(1.3)

[where ρn
def
= ρ(ρ−1) · · · (ρ−n+1) and ρn

def
= ρ(ρ+1) · · · (ρ+n−1)], or the reversed

monic unsigned Laguerre polynomials

L(α)

n (x)
def
= n!xn L(α)

n (−1/x) =
n∑

k=0

(
n

k

)(
n + α

k

)
k!xk =

n∑
k=0

(
n

k

)
(n + α)k xk

= F2 0

(−n, −n− α

—

∣∣∣∣x) . (1.4)

Note that L(α)
n (x) and L(α)

n (x) are polynomials jointly in x and α, with nonnegative

integer coefficients. The first few L(α)
n (x) are thus

L(α)
0 (x) = 1 (1.5a)

L(α)
1 (x) = (1 + α) + x (1.5b)

L(α)
2 (x) = (1 + α)(2 + α) + 2(2 + α)x + x2 (1.5c)

L(α)
3 (x) = (1 + α)(2 + α)(3 + α) + 3(2 + α)(3 + α)x + 3(3 + α)x2 + x3 (1.5d)

It follows from (1.2) that these polynomials have the exponential generating functions

∞∑
n=0

L(α)
n (x)

tn

n!
= (1 − t)−(1+α) ext/(1−t) (1.6)

∞∑
n=0

L(α)

n (x)
tn

n!
= (1 − xt)−(1+α) et/(1−xt) (1.7)

A major role will be played in what follows by the coefficient matrix of the
monic unsigned Laguerre polynomials: it is the unit-lower-triangular matrix L(α) with
entries

(L(α))n,k =
n!

k!

(
n + α

n− k

)
=

(
n

k

)
(n + α)n−k =

(
n

k

)
(1 + α + k)n−k . (1.8)
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This matrix is an exponential Riordan array (see Section 2.5) R[F,G] with F (t) =
(1 − t)−(1+α) and G(t) = t/(1 − t): compare (1.6) with (2.33) below. It is also the
matrix of generalized Stieltjes–Rogers polynomials of the first kind (see Section A.1)
for the Stieltjes-type continued fraction associated to the sequence

(
(1 + α)n

)
n≥0

: see
Proposition 3.1.

An important role will also be played by the binomial row-generating matrix
L(α)Bx, where Bx is the weighted binomial matrix

(Bx)ij =

(
i

j

)
xi−j (1.9)

(note that it too is unit-lower-triangular). The matrix L(α)Bx is an exponential
Riordan array R[exGF,G] with F and G as above (see Corollary 2.20). The ze-

roth column of L(α)Bx consists of the monic unsigned Laguerre polynomials L(α)
n (x).

More generally, it can be shown (see Proposition 3.2) that

(L(α)Bx)n,k =
1

k!

dk

dxk
L(α)

n (x) =

(
n

k

)
L(α+k)

n−k (x) . (1.10)

Several specializations of the Laguerre polynomials to integer values of α corre-
spond to well-known combinatorial objects:

1) The rook polynomial RB(x) of a chessboard B is the generating polyno-
mial for placements of zero or more nonattacking rooks on B, with a weight x for
each rook.1 In particular, for an m×n rectangular chessboard, the number of ways of
placing k non-attacking rooks is

(
m
k

)(
n
k

)
k!: we choose k rows, k columns, and a permu-

tation connecting them. It follows that the rook polynomial of an n×n square chess-

board is the reversed monic unsigned Laguerre polynomial L(0)

n (x) =
∑n

k=0

(
n
k

)2
k!xk;

and more generally, for any integer α ≥ −n, the rook polynomial of an n×(n+α) rect-

angular chessboard is L(α)

n (x) =
∑n

k=0

(
n
k

)(
n+α
k

)
k!xk.2 The first few rook polynomials

for square chessboards are

L(0)

0 (x) = 1 (1.11a)

L(0)

1 (x) = 1 + x (1.11b)

L(0)

2 (x) = 1 + 4x + 2x2 (1.11c)

L(0)

3 (x) = 1 + 9x + 18x2 + 6x3 (1.11d)

L(0)

4 (x) = 1 + 16x + 72x2 + 96x3 + 24x4 (1.11e)

2) The Lah number
⌊
n
k

⌋
is the number of partitions of an n-element set into k

nonempty linearly ordered blocks (also called lists); we set
⌊
0
k

⌋
= δk0. The Lah

1See [64, chapters 7 and 8] [72, sections 2.3 and 2.4] for further discussion of rook polynomials.

2See [55, A144084] for the triangular array corresponding to the rook polynomial of the n × n
chessboard, and see [55, A002720] for the row sums.

Note also that a rook configuration of an m × n chessboard can equivalently be viewed as a
matching of the complete bipartite graph Km,n; so the rook polynomial of the m× n chessboard is
also the matching polynomial [50, p. 334] of Km,n.
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polynomial is then defined as Lahn(x) =
∑n

k=0

⌊
n
k

⌋
xk. It is easy to see that the Lah

numbers have the explicit expression

⌊
n

k

⌋
=

n!

k!

(
n− 1

n− k

)
=

δk0 if n = 0

n!
k!

(
n−1
k−1

)
if n ≥ 1

(1.12)

It follows that Lahn(x) is the monic unsigned Laguerre polynomial L(−1)
n (x).3 The

first few Lah polynomials are

L(−1)
0 (x) = 1 (1.13a)

L(−1)
1 (x) = x (1.13b)

L(−1)
2 (x) = 2x + x2 (1.13c)

L(−1)
3 (x) = 6x + 6x2 + x3 (1.13d)

L(−1)
4 (x) = 24x + 36x2 + 12x3 + x4 (1.13e)

3) More generally, for any integer r ≥ 0, the r-Lah number
⌊
n
k

⌋
r

is the number
of partitions of an (n + r)-element set into k + r nonempty linearly ordered blocks,
with the restriction that r distinguished elements must belong to distinct blocks
[54]. The r-Lah polynomial is then defined as Lah[r]

n (x) =
∑n

k=0

⌊
n
k

⌋
r
xk. Clearly,

Lah[0]
n (x) = Lahn(x) and Lah[1]

n (x) = Lahn+1(x)/x. It is not difficult to show [54,
Theorem 3.7] that the r-Lah numbers have the explicit expression

⌊
n

k

⌋
r

=
n!

k!

(
n + 2r − 1

n− k

)
=

δk0 if n = 0

n!
k!

(
n+2r−1
k+2r−1

)
if n ≥ 1

(1.14)

It follows that Lah[r]
n (x) is the monic unsigned Laguerre polynomial L(2r−1)

n (x).4

In summary, the rook polynomials correspond to α = 0 for square chessboards
and α = 1, 2, 3, . . . for rectangular chessboards, the Lah polynomials correspond to
α = −1, and the r-Lah polynomials correspond to α = 2r − 1.

1.2 Combinatorial interpretation in terms of Laguerre di-
graphs

Four decades ago, Foata and Strehl [31] introduced a beautiful combinatorial
interpretation of the Laguerre polynomials, which will form the starting point for our
work.5 Let us define a Laguerre digraph to be a digraph in which each vertex
has out-degree 0 or 1 and in-degree 0 or 1. It follows that each weakly connected
component of a Laguerre digraph is either a directed path of some length ℓ ≥ 0 (where
a path of length 0 is an isolated vertex) or else a directed cycle of some length ℓ ≥ 1

3See [55, A105278/A008297/A066667] for further information on the Lah numbers and Lah poly-
nomials.

4See [55, A143497/A143498/A143499] for further information on the r-Lah numbers and r-Lah
polynomials.

5See also the recent paper of Strehl [76] for further applications of this formalism.
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3 45 6
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8 910 11

Figure 1: A Laguerre digraph on 11 vertices with 2 cycles (one of which is a loop)
and 2 paths (one of which is an isolated vertex).

(where a cycle of length 1 is a loop): see Figure 1. For each integer n ≥ 0, let us

write LDn for the set of Laguerre digraphs on the vertex set [n]
def
= {1, . . . , n}; and

for n ≥ k ≥ 0, let us write LDn,k for the set of Laguerre digraphs on the vertex set
[n] with k paths. For G ∈ LDn, we write e(G) [resp. cyc(G), pa(G)] for the number
of edges (resp. cycles, paths) in G, and observe that e(G) = n − pa(G). Foata and
Strehl [31] then showed that

L(α)
n (x) =

∑
G∈LDn

xpa(G) (1 + α)cyc(G) (1.15)

or equivalently

L(α)

n (x) =
∑

G∈LDn

xe(G) (1 + α)cyc(G) . (1.16)

Indeed, the proof of (1.15)/(1.16) is an easy argument using the exponential formula
[73, chapter 5], or equivalently, the theory of species [7]. Let us do (1.15): The
number of directed paths on n ≥ 1 vertices is n!, so with a weight x per path they
have exponential generating function xt/(1 − t). The number of directed cycles on
n ≥ 1 vertices is (n − 1)!, so with a weight 1 + α per cycle they have exponential
generating function −(1 + α) log(1 − t). A Laguerre digraph is a disjoint union of
paths and cycles, so by the exponential formula it has exponential generating function

exp
[ xt

1 − t
− (1 + α) log(1 − t)

]
= (1 − t)−(1+α) ext/(1−t) , (1.17)

which coincides with (1.6).6 The principal virtue of the combinatorial model (1.15)/(1.16)
is that it treats α as an indeterminate; it need not be an integer.7

The identity (1.15) can equivalently be understood as a combinatorial represen-
tation for the coefficient matrix L(α):

(L(α))n,k =
∑

G∈LDn,k

(1 + α)cyc(G) . (1.18)

This formula will be the starting point for our multivariate generalizations, in which
we will enumerate Laguerre digraphs with additional statistics.

6Foata and Strehl [31] also gave a direct combinatorial proof that (1.15)/(1.16) is equivalent to
(1.3)/(1.4); this requires a bit more work [31, Lemma 2.1].

7The formulae (1.15)/(1.16) also make clear (as Rota [53, p. 206] realized many years ago) that

the natural parameter for the Laguerre polynomials is λ
def
= 1 + α, not α. But it would be too

confusing to try to change the notation at this late date.
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Remarks. 1. There is a one-to-one correspondence between Laguerre digraphs
and rook configurations on an n×n chessboard: for a rook at position (i, j) we draw
an edge i → j. This explains why α = 0 corresponds to the rook polynomial, for
which there is no special weighting of cycles. However, we prefer the digraph point
of view, where the cycles (and therefore the role of α) can be seen more clearly.

2. Note also from (1.15) that the case α = −1 leads to Laguerre digraphs with no
cycles — that is, only directed paths — with a weight x per path. These digraphs
are in obvious one-to-one correspondence with partitions of [n] into linearly ordered
blocks; this explains why α = −1 corresponds to the Lah polynomials. ■

1.3 A first multivariate generalization

It is now natural to generalize the Laguerre polynomials by introducing further
statistics into the digraph model. Here is one way: Let us write e−(G), e0(G), e+(G)
for the number of edges i → j in G where j < i, j = i or j > i, respectively. We then
generalize the coefficient matrix (1.18) by introducing separate variables v−, v0, v+ for
the three types of edges:

L(α)(v−, v0, v+)n,k
def
=

∑
G∈LDn,k

v
e−(G)
− v

e0(G)
0 v

e+(G)
+ (1 + α)cyc(G) . (1.19)

This polynomial is homogeneous of degree n − k in v−, v0, v+. We call the matrix
L(α)(v−, v0, v+) the (first) multivariate Laguerre coefficient matrix . In Sec-
tion 4.1 we will compute the bivariate exponential generating function for this matrix:
see (4.15). By specializing v− = v0 = v+ = v, we recover a rescaled version of the
univariate Laguerre coefficient matrix

L(α)(v, v, v)n,k = (L(α))n,k v
n−k . (1.20)

Let us then introduce the row-generating polynomials of the multivariate Laguerre
coefficient matrix:

L(α)
n (x; v−, v0, v+)

def
=

n∑
k=0

L(α)(v−, v0, v+)n,k x
k (1.21)

L(α)

n (x; v−, v0, v+)
def
=

n∑
k=0

L(α)(v−, v0, v+)n,k x
n−k (1.22)

Of course, by homogeneity (1.22) can also be understood as

L(α)

n (x; v−, v0, v+) =
n∑

k=0

L(α)(xv−, xv0, xv+)n,k . (1.23)

Remark. In the rook model, the three v variables correspond to giving different
weights for rooks below the diagonal, on the diagonal, or above the diagonal. To our
knowledge this type of weighting has not previously been considered, even in the rook
case α = 0. However, two special cases generalize previously known results:

8



1) If we set v+ = 0, then the only possible connected components of G are de-
creasing paths (of length ℓ ≥ 0) and loops. It follows that

L(α)(v−, v0, 0)n,k =
n∑

i=0

(
n

i

)
[(1 + α)v0]

i

{
n− i

k

}
vn−i−k
− , (1.24)

where
{
n
k

}
denotes the number of partitions of an n-element set into k nonempty

blocks: we choose i loops and then partition the remaining vertices into k nonempty
blocks. Further specializing to α = 0 and v0 = 0 yields the well-known [72, Corol-
lary 2.4.2] formula for the counting of rook configurations on an n × n triangular
board:

L(0)(1, 0, 0)n,k =

{
n

k

}
, (1.25)

where a configuration with k paths has n− k edges and hence n− k rooks. Similarly,
for α = 0 and v0 = 1 we get

L(0)(1, 1, 0)n,k =

{
n + 1

k + 1

}
, (1.26)

which follows from (1.24) by a standard identity [39, eq. (6.15)].

2) At the other extreme, when k = 0, paths are forbidden, and we obtain the
generating polynomial for permutations of [n] with a weight v+ for each cycle ascent
(= excedance), v− for each cycle descent (= anti-excedance), v0 for each fixed point,
and 1 + α for each cycle. For the corresponding exponential generating function, see
(4.15) specialized to u = 0. In particular, when v− = v0 = v+ = v we obtain

L(α)(v, v, v)n,0 = (1 + α)n vn . (1.27)

And when α = 0 and v0 = v−, we obtain

L(0)(v−, v−, v+)n,0 =
n−1∑
j=0

〈
n

j

〉
vj+ vn−j

− , (1.28)

where the Eulerian number
〈
n
j

〉
is the number of permutations of [n] with j excedances

(or j descents). More generally, these two specializations can be combined: we obtain
the generating polynomial for permutations by number of excedances and number of
cycles [71, eq. (2.12)] [65, Proposition 3.3]

L(α)(v−, v−, v+)n,0 =
n∑

j=0

{
n

j

}
(v+ − v−)n−j vj− (1 + α)j . (1.29)

And most generally, we can introduce additional fixed points, to obtain

L(α)(v−, v0, v+)n,0 =
n∑

i=0

(
n

i

)
[(1 + α)(v0 − v−)]i L(α)(v−, v−, v+)n−i,0 . (1.30)

■
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1.4 A second multivariate generalization

But we can go farther: instead of weighting edges according to whether they
are increasing, decreasing or fixed points, we can weight pairs of successive edges
according to whether they are peaks (+−), valleys (−+), double ascents (++), double
descents (−−) or fixed points (00). To define these concepts for a Laguerre digraph,
we first need to make a convention about boundary conditions at the two ends of
a path. We will here use 0–0 boundary conditions: that is, we extend the Laguerre
digraph G on the vertex set [n] to a digraph Ĝ on the vertex set [n]∪{0} by decreeing
that any vertex i ∈ [n] that has in-degree (resp. out-degree) 0 in G will receive
an incoming (resp. outgoing) edge from (resp. to) the vertex 0. In this way each
vertex i ∈ [n] will have a unique predecessor p(i) ∈ [n] ∪ {0} and a unique successor
s(i) ∈ [n] ∪ {0}. We then say that a vertex i ∈ [n] is a

• peak (p) if p(i) < i > s(i);

• valley (v) if p(i) > i < s(i);

• double ascent (da) if p(i) < i < s(i);

• double descent (dd) if p(i) > i > s(i);

• fixed point (fp) if p(i) = i = s(i).

(Note that “fixed point” is a synonym of “loop”.) When these concepts are applied to
the cycles of a Laguerre digraph, we obtain the usual cycle classification of indices
in a permutation as cycle peaks, cycle valleys, cycle double rises, cycle double falls
and fixed points [71,84]. When applied to the paths of a Laguerre digraph, we obtain
the usual linear classification of indices in a permutation (written in word form)
as peaks, valleys, double ascents or double descents [72, p. 45]. Note that, because of
the 0–0 boundary conditions, an isolated vertex is always a peak, the initial vertex
of a path is always a peak or double ascent, and the final vertex of a path is always
a peak or double descent; moreover, each path contains at least one peak.

We write p(G), v(G), da(G), dd(G), fp(G) for the number of vertices i ∈ [n] that
are, respectively, peaks, valleys, double ascents, double descents or fixed points. We
then introduce the second multivariate Laguerre coefficient matrix

L̂(α)(yp, yv, yda, ydd, yfp)n,k
def
=

∑
G∈LDn,k

yp(G)
p yv(G)

v y
da(G)
da y

dd(G)
dd y

fp(G)
fp (1+α)cyc(G) . (1.31)

This polynomial is homogeneous of degree n in yp, yv, yda, ydd, yfp. In Section 4.1 we
will compute the bivariate exponential generating function for this matrix (and indeed
for a matrix that further generalizes it).

Because each path contains at least one peak, we can, if we wish, remove a factor
ykp and define a unit-lower-triangular matrix by

L̂(α)♭(yp, yv, yda, ydd, yfp)n,k
def
= L̂(α)(yp, yv, yda, ydd, yfp)n,k/y

k
p . (1.32)

This polynomial is homogeneous of degree n− k in yp, yv, yda, ydd, yfp.
We can recover the first multivariate Laguerre coefficient matrix by looking only

at the second step of each pair: specializing yp = ydd = v−, yv = yda = v+ and
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yfp = v0, we obtain the previous counting with an extra weight v− associated to the
final vertex of each path:

L̂(α)(v−, v+, v+, v−, v0)n,k = L(α)(v−, v0, v+)n,k v
k
− (1.33)

or equivalently

L̂(α)♭(v−, v+, v+, v−, v0)n,k = L(α)(v−, v0, v+)n,k . (1.34)

Alternatively, we can look only at the first step of each pair: specializing yv = ydd =
v−, yp = yda = v+ and yfp = v0, we obtain the previous counting with an extra weight
v+ associated to the initial vertex of each path:

L̂(α)(v+, v−, v+, v−, v0)n,k = L(α)(v−, v0, v+)n,k v
k
+ (1.35)

or equivalently

L̂(α)♭(v+, v−, v+, v−, v0)n,k = L(α)(v−, v0, v+)n,k . (1.36)

Once again we can introduce the row-generating polynomials:

L̂(α)
n (x; yp, yv, yda, ydd, yfp)

def
=

n∑
k=0

L(α)(yp, yv, yda, ydd, yfp)n,k x
k (1.37)

L̂
(α)

n (x; yp, yv, yda, ydd, yfp)
def
=

n∑
k=0

L(α)(yp, yv, yda, ydd, yfp)n,k x
n−k (1.38)

1.5 Total positivity

The main results of this paper concern the total positivity of various matrices
associated to the univariate and multivariate Laguerre polynomials. Recall first that
a finite or infinite matrix of real numbers is called totally positive (TP) if all its
minors are nonnegative, and totally positive of order r (TPr) if all its minors of size
≤ r are nonnegative. Background information on totally positive matrices can be
found in [28, 35, 42, 60]; they have application to many fields of pure and applied
mathematics.8 In particular, it is known [36, Théorème 9] [60, section 4.6] that an
infinite Hankel matrix (ai+j)i,j≥0 of real numbers is totally positive if and only if the
underlying sequence (an)n≥0 is a Stieltjes moment sequence, i.e. the moments of a
positive measure on [0,∞).

But this is only the beginning of the story, because we are here principally con-
cerned, not with sequences and matrices of real numbers, but with sequences and
matrices of polynomials (with integer or real coefficients) in one or more indetermi-
nates x: they will typically be generating polynomials that enumerate some combi-
natorial objects with respect to one or more statistics. We equip the polynomial ring
R[x] with the coefficientwise partial order: that is, we say that P is nonnegative (and
write P ⪰ 0) in case P is a polynomial with nonnegative coefficients. We then say
that a matrix with entries in R[x] is coefficientwise totally positive if all its mi-
nors are polynomials with nonnegative coefficients; and analogously for coefficientwise

8See [67, footnote 4] for many references.
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total positivity of order r. We say that a sequence a = (an)n≥0 with entries in R[x] is
coefficientwise Hankel-totally positive if its associated infinite Hankel matrix
is coefficientwise totally positive; and likewise for the version of order r. Similar def-
initions apply to the formal-power-series ring R[[x]]. Most generally, we can consider
sequences and matrices with values in an arbitrary partially ordered commutative ring
(a precise definition will be given in Section 2.1); total positivity and Hankel-total
positivity are then defined in the obvious way. Coefficientwise Hankel-total positivity
of a sequence of polynomials (Pn(x))n≥0 implies the pointwise Hankel-total positivity
(i.e. the Stieltjes moment property) for all x ≥ 0, but it is vastly stronger.

For instance, it is known (see Section 7) that, for each α ≥ −1 and x ≥ 0, the

sequence (L(α)
n (x))n≥0 of monic unsigned Laguerre polynomials is a Stieltjes moment

sequence. So every minor of the Hankel matrix (L(α)
i+j(x))i,j≥0 is a polynomial in x

and α that is nonnegative whenever α ≥ −1 and x ≥ 0. But much more turns out to
be true: every minor of the Hankel matrix (L(α)

i+j(x))i,j≥0 is in fact a polynomial in x

and α that is coefficientwise nonnegative in x and λ
def
= 1 + α. That is, the sequence

(L(−1+λ)
n (x))n≥0 is coefficientwise Hankel-totally positive in x and λ: this will be our

first main result (Theorem 1.1(c)). We will then extend this result to the multivariate
polynomials introduced in Sections 1.3 and 1.4.

Our proofs of total positivity and Hankel-total positivity will be based on the
method of production matrices [22,23]. We will review this theory in Sections 2.2 and
2.3, so now we state only the bare-bones definitions. Let P = (pij)i,j≥0 be an infinite
matrix with entries in a commutative ring R; we assume that P is either row-finite
(i.e. has only finitely many nonzero entries in each row) or column-finite. Now define
an infinite matrix A = (ank)n,k≥0 by

ank = (P n)0k . (1.39)

We call P the production matrix and A the output matrix , and we write A =
O(P ). The two key facts here are the following [70]: if R is a partially ordered
commutative ring, P is totally positive of order r, and a is a nonnegative element
of R, then O(P +aI) is totally positive of order r and the zeroth column of O(P +aI)
is Hankel-totally positive of order r. See Section 2.3 for precise statements and proofs.

1.6 Statement of main results: Univariate case

Our first main result is the following:

Theorem 1.1 (Total positivity of the univariate Laguerre polynomials).

(a) The Laguerre coefficient matrix L(−1+λ) is totally positive in the ring Z[λ] equipped
with the coefficientwise order.

(b) The binomial row-generating matrix L(−1+λ)Bx is totally positive in the ring
Z[x, λ] equipped with the coefficientwise order.

(c) The sequence of monic unsigned Laguerre polynomials (L(−1+λ)
n (x))n≥0 is Hankel-

totally positive in the ring Z[x, λ] equipped with the coefficientwise order.

(d) The sequence of reversed monic unsigned Laguerre polynomials (L(−1+λ)

n (x))n≥0

is Hankel-totally positive in the ring Z[x, λ] equipped with the coefficientwise
order.
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Theorem 1.1(c,d) proves a conjecture made a few years ago by Sylvie Corteel and
one of us [18]. Theorem 1.1 was also proven recently by Zhu [90, Proposition 4.14] [92,
Proposition 5.11]; his methods are very similar to ours.9

The result in part (a) is fairly easy, and we will give two proofs using different
methods: one direct proof (Section 3.3), and one proof using production matrices.
Part (b) is then an immediate consequence of part (a) together with the coefficientwise
total positivity of the binomial matrix Bx (Lemma 2.2). Also, part (d) is trivially

equivalent to part (c) by virtue of the relation L(−1+λ)

n (x) = xn L(−1+λ)
n (1/x). So

our main effort will be directed to proving part (c): we will do this by constructing
the production matrix for the binomial row-generating matrix L(−1+λ) Bx and then
proving its total positivity. More precisely, we will prove the following:

Proposition 1.2 (Production matrices for the univariate Laguerre polynomials).

(a) The production matrix of the Laguerre coefficient array L(α) is the tridiagonal
unit-lower-Hessenberg matrix P ◦ = (p◦ij)i,j≥0 defined by

p◦n,n+1 = 1 (1.40a)

p◦n,n = 2n + 1 + α (1.40b)

p◦n,n−1 = n(n + α) (1.40c)

p◦n,k = 0 if k < n− 1 or k > n + 1 (1.40d)

(b) The production matrix of the binomial row-generating matrix L(α)Bx is the
quadridiagonal unit-lower-Hessenberg matrix P = (pij)i,j≥0 defined by

pn,n+1 = 1 (1.41a)

pn,n = (2n + 1 + α) + x (1.41b)

pn,n−1 = n(n + α) + 2nx (1.41c)

pn,n−2 = n(n− 1)x (1.41d)

pn,k = 0 if k < n− 2 or k > n + 1 (1.41e)

Remarks. 1. When α ∈ {−1, 0, 1}, the production matrix (1.41) arises from a
2-branched S-fraction [59] — more precisely, as the production matrix for the gener-
alized m-Stieltjes–Rogers polynomials of type j with m = 2 and j ∈ {0, 1, 2}. See
Appendix A.3 for the theory of these generalized m-Stieltjes–Rogers polynomials, and
Appendix A.4 for the application to (1.41).

2. It will follow easily from our general theory (Lemma 2.7) that the production
matrices of Proposition 1.2(a,b) are related by P = B−1

x P ◦Bx. What is far from
obvious is why P is quadridiagonal, since it is not in general true that B−1

x TBx

is quadridiagonal whenever T is tridiagonal. In Appendix B we explain why P is
quadridiagonal in the present case, by answering the more general question: Which
lower-Hessenberg matrices P have the property that B−1

ξ PBξ is (r, 1)-banded? ■

9Zhu [90, Proposition 4.14] [92, Proposition 5.11] states a slightly weaker form of Theorem 1.1
in which λ is a nonnegative real number rather than an indeterminate. But his methods actually
prove the stronger result claimed here.
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Proposition 1.3 (Total positivity of the univariate production matrices).

(a) The matrix P ◦ = (p◦ij)i,j≥0 defined by (1.40), with the change of variable α =
−1+λ, is totally positive in the ring Z[λ] equipped with the coefficientwise order.

(b) The matrix P = (pij)i,j≥0 defined by (1.41), with the change of variable α =
−1 + λ, is totally positive in the ring Z[x, λ] equipped with the coefficientwise
order.

Combining Propositions 1.2 and 1.3 with the general theory of production matrices
proves Theorem 1.1.

We will prove Proposition 1.2 in Section 3, and Proposition 1.3 in Section 5.

1.7 Statement of main results: Multivariate case

We now state the corresponding results for the first and second multivariate La-
guerre polynomials that were introduced in Sections 1.3 and 1.4, respectively. We
begin by considering the second multivariate Laguerre coefficient matrix, for which it
is convenient to use the form L̂(α)♭(yp, yv, yda, ydd, yfp) that was defined in (1.32). Our
main result, generalizing Theorem 1.1, is the following:

Theorem 1.4 (Total positivity of the second multivariate Laguerre polynomials).
Let λ, yp, yv, yda, ydd, yfp be elements of a partially ordered commutative ring R that
satisfy λ ≥ 0, λyfp ≥ λyp, yp ≥ 0, yv ≥ 0 and yda + ydd ≥ yp + yv; and let x be an
indeterminate. Then:

(a) The second multivariate Laguerre coefficient array L̂(−1+λ)♭(yp, yv, yda, ydd, yfp)
is totally positive in the ring R.

(b) The binomial row-generating matrix L̂(−1+λ)♭(yp, yv, yda, ydd, yfp)Bx is totally pos-
itive in the ring R[x] equipped with the coefficientwise order.

(c) The sequence of row-generating polynomials L̂(−1+λ)
n (x; yp, yv, yda, ydd, yfp) de-

fined by (1.37) is Hankel-totally positive in the ring R[x] equipped with the co-
efficientwise order.

(d) The sequence of reversed row-generating polynomials L̂
(−1+λ)

n (x; yp, yv, yda, ydd, yfp)
defined by (1.38) is Hankel-totally positive in the ring R[x] equipped with the co-
efficientwise order.

These statements are also true when the roles of yp and yv are interchanged.

As in the univariate case, part (b) is an immediate consequence of part (a), and
part (d) is trivially equivalent to part (c). We therefore concentrate on proving (a)
and (c).

As before, we will prove Theorem 1.4 by exhibiting the production matrices and
then proving their total positivity.

Proposition 1.5 (Production matrices for the multivariate Laguerre polynomials).

(a) The production matrix of the multivariate Laguerre coefficient array

L̂(α)♭(yp, yv, yda, ydd, yfp) is the tridiagonal unit-lower-Hessenberg matrix P ◦♭ =
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(p◦♭ij )i,j≥0 defined by

p◦♭n,n+1 = 1 (1.42a)

p◦♭n,n = (1 + α)yfp + n(yda + ydd) (1.42b)

p◦♭n,n−1 = n(n + α)ypyv (1.42c)

p◦♭n,k = 0 if k < n− 1 or k > n + 1 (1.42d)

(b) The production matrix of the binomial row-generating matrix L̂(α)♭(yp, yv, yda, ydd, yfp)Bx

is the quadridiagonal unit-lower-Hessenberg matrix P ♭ = (p♭ij)i,j≥0 defined by

p♭n,n+1 = 1 (1.43a)

p♭n,n = (1 + α)yfp + n(yda + ydd) + x (1.43b)

p♭n,n−1 = n(n + α)ypyv + n(yda + ydd)x (1.43c)

p♭n,n−2 = n(n− 1)ypyvx (1.43d)

p♭n,k = 0 if k < n− 2 or k > n + 1 (1.43e)

Proposition 1.6 (Total positivity of the multivariate production matrices).

(a) The matrix P ◦♭ = (p◦♭ij )i,j≥0 defined by (1.42), with the variables substituted
to elements of a partially ordered commutative ring R that satisfy α ≥ −1,
(1 + α)yfp ≥ (1 + α)yp, yp ≥ 0, yv ≥ 0 and yda + ydd ≥ yp + yv, is totally
positive in the ring R.

(b) The matrix P ♭ = (p♭ij)i,j≥0 defined by (1.43), with the variables substituted
to elements of a partially ordered commutative ring R that satisfy α ≥ −1,
(1 + α)yfp = (1 + α)yp, yp ≥ 0, yv ≥ 0, yda + ydd ≥ yp + yv and x ≥ 0, is totally
positive in the ring R.

These statements are also true when the roles of yp and yv are interchanged.

We will prove Proposition 1.5 in Section 4.2, and Proposition 1.6 in Section 6.
Here the most difficult part is Proposition 1.6(b): namely, proving the total positiv-
ity of the quadridiagonal matrix (1.43) under the specified conditions. We will do
this by proving the total positivity of a much more general quadridiagonal matrix
(Theorem 6.1); and see also Appendix C (Theorem C.1) for a variant of this result.

Remarks. 1. The zeroth column of the multivariate Laguerre coefficient array
L̂(α)♭(yp, yv, yda, ydd, yfp) is the sequence of generating polynomials for permutations
weighted according to the cycle classification, and the tridiagonal production matrix
(1.42) is the production matrix for the corresponding J-fraction, namely, [71, Theo-
rem 2.4] specialized to x1 = u1 = yp, x2 = u2 = ydd, y1 = v1 = yv, y2 = v2 = yda,
wn = yfp, λ = 1 + α.

2. Note that in part (a) we require only the inequality
(1 + α)yfp ≥ (1 + α)yp, while in part (b) we require the equality (1 + α)yfp = (1 + α)yp.
However, this will not preclude us from proving Theorem 1.4 assuming only the in-
equality, as our general theory (Corollaries 2.12 and 2.16) entitles us to use the pro-
duction matrix P ♭ + aI with a = λ(yfp − yp) ≥ 0. ■
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We can now recover the first multivariate Laguerre coefficient matrix L(α)(v−, v0, v+)

defined in (1.19), and its corresponding row-generating polynomials L(α)
n (x; v−, v0, v+)

defined in (1.21), by specializing either

yp = ydd = v−, yv = yda = v+, yfp = v0 as in (1.33)/(1.34) (1.44)

or
yv = ydd = v−, yp = yda = v+, yfp = v0 as in (1.35)/(1.36) . (1.45)

By applying these specializations to Theorem 1.4, we obtain:

Corollary 1.7 (Total positivity of the first multivariate Laguerre polynomials).

(a) The first multivariate Laguerre coefficient matrix L(−1+λ)(v−, v0, v+), defined in
(1.19), is totally positive when the variables are substituted to elements of a
partially ordered commutative ring R that satisfy λ ≥ 0, v− ≥ 0, v+ ≥ 0, and
either v0 ≥ v− or v0 ≥ v+.

Equivalently, the matrices L(−1+λ)(v−, v− +w, v+) and L(−1+λ)(v−, v+ +w, v+)
are totally positive in the ring Z[v−, v+, w, λ] equipped with the coefficientwise
order.

(b) The sequences
(
L(α)

n (x; v−, v−, v+)
)
n≥0

and
(
L(α)

n (x; v−, v+, v+)
)
n≥0

of row-generating

polynomials, defined in (1.21), are Hankel-totally positive, in the ring R[x]
equipped with the coefficientwise order, when the variables are substituted to
elements of a partially ordered commutative ring R that satisfy λ ≥ 0, v− ≥ 0,
v+ ≥ 0, and either v0 ≥ v− or v0 ≥ v+.

Equivalently, the sequences
(
L(α)

n (x; v−, v− + w, v+)
)
n≥0

and(
L(α)

n (x; v−, v++w, v+)
)
n≥0

are Hankel-totally positive in the ring Z[x, v−, v+, w, λ]
equipped with the coefficientwise order.

The multivariate case (Theorem 1.4 and Propositions 1.5 and 1.6) obviously sub-
sumes the univariate case (Theorem 1.1 and Propositions 1.2 and 1.3), so it is in
principle redundant to consider the latter. But since the proofs in the univariate case
are quite a bit simpler, and since this case exhibits some special features that do not
carry over to the fully multivariate case, we think it useful to present the univariate
case first.

1.8 Plan of this paper

Although the present paper is a follow-up to our papers [58,59], we have endeav-
ored, for the convenience of the reader, to make it as self-contained as possible. We
have therefore begun, in Section 2, with a brief review of the key definitions and re-
sults from [58,59] (plus a few other things) that will be needed in the sequel. We then
proceed as follows: In Section 3 we determine the production matrices for the univari-
ate Laguerre coefficient matrix and binomial row-generating matrix. In Section 4 we
compute the exponential generating function for the multivariate Laguerre coefficient
matrix (1.31) and employ this to determine the corresponding production matrices,
using the theory of exponential Riordan arrays. In Sections 5 and 6 we prove the to-
tal positivity of the univariate and multivariate production matrices, respectively. In
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particular, in Section 6.2 (Theorem 6.1) we prove the coefficientwise total positivity
of a rather general class of quadridiagonal matrices; we think that this result, and
its method of proof, may be of some independent interest. In Section 7 we explain
the unexpected connection with multiple orthogonal polynomials; in particular, we
explain how we were led to guess the production matrices (1.41) and (1.43).

In Appendix A we review the theory of classical and branched S-fractions, and then
introduce the generalized m-Stieltjes–Rogers polynomials and modified m-Stieltjes–
Rogers polynomials of type j ≥ 0; this expands and supersedes some of the dis-
cussion in [59, sections 5, 7 and 9]. We also apply this theory to the univariate
Laguerre production matrix (1.41). In Appendix B we answer the question: Which
lower-Hessenberg matrices P have the property that B−1

ξ PBξ is (r, 1)-banded? In
Appendix C we prove the total positivity of a class of quadridiagonal matrices, giving
a variant of what was done in Section 6.2.

The first proof of the production matrices in this paper was found in 2019 by one
of us (M.P.) using a bijection from Laguerre digraphs to labeled 2- Lukasiewicz paths.
We hope to revisit this powerful method in a subsequent paper.

2 Preliminaries

In this section we review some definitions and results from [13, 58, 59, 67, 70] that
will be needed in what follows. After a brief introduction to total positivity in a
partially ordered commutative ring (Section 2.1), we provide a précis of the theory of
production matrices (Section 2.2) and its application to total positivity (Section 2.3);
these latter results form the theoretical foundation for our work. Then we introduce
the concept of binomial row-generating matrices (Section 2.4). Finally, we review
the theory of exponential Riordan arrays (Section 2.5); this theory will be our main
technical tool.

For the benefit of readers who are familiar with the papers [13, 58, 59, 67], let us
mention two things that are new here (and crucial for the present paper): the tridi-
agonal comparison theorem (Proposition 2.6), and adding a multiple of the identity
to the production matrix (Corollaries 2.12 and 2.16).

2.1 Partially ordered commutative rings and total positivity

In this paper all rings will be assumed to have an identity element 1 and to be
nontrivial (1 ̸= 0).

A partially ordered commutative ring is a pair (R,P) where R is a commu-
tative ring and P is a subset of R satisfying

(a) 0, 1 ∈ P .

(b) If a, b ∈ P , then a + b ∈ P and ab ∈ P .

(c) P ∩ (−P) = {0}.

We call P the nonnegative elements of R, and we define a partial order on R (com-
patible with the ring structure) by writing a ≤ b as a synonym for b− a ∈ P . Please
note that, unlike the practice in real algebraic geometry [9, 46, 51, 61], we do not as-
sume here that squares are nonnegative; indeed, this property fails completely for our
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prototypical example, the ring of polynomials with the coefficientwise order, since
(1 − x)2 = 1 − 2x + x2 is not coefficientwise nonnegative.

Now let (R,P) be a partially ordered commutative ring and let x = {xi}i∈I be a
collection of indeterminates. In the polynomial ring R[x] and the formal-power-series
ring R[[x]], let P [x] and P [[x]] be the subsets consisting of polynomials (resp. series)
with nonnegative coefficients. Then (R[x],P [x]) and (R[[x]],P [[x]]) are partially or-
dered commutative rings; we refer to this as the coefficientwise order on R[x] and
R[[x]].

A finite or infinite matrix with entries in a partially ordered commutative ring is
called totally positive (TP) if all its minors are nonnegative; it is called totally
positive of order r (TPr) if all its minors of size ≤ r are nonnegative. It follows
immediately from the Cauchy–Binet formula that the product of two TP (resp. TPr)
matrices is TP (resp. TPr).

10 This fact is so fundamental to the theory of total
positivity that we shall henceforth use it without comment.

We say that a sequence a = (an)n≥0 with entries in a partially ordered commuta-
tive ring is Hankel-totally positive (resp. Hankel-totally positive of order r)
if its associated infinite Hankel matrix H∞(a) = (ai+j)i,j≥0 is TP (resp. TPr). We say
that a is Toeplitz-totally positive (resp. Toeplitz-totally positive of order r)

if its associated infinite Toeplitz matrix T∞(a) = (ai−j)i,j≥0 (where an
def
= 0 for n < 0)

is TP (resp. TPr).
11

We will need a few easy facts about the total positivity of special matrices:

Lemma 2.1 (Bidiagonal matrices). Let A be a matrix with entries in a partially
ordered commutative ring, with the property that all its nonzero entries belong to two
consecutive diagonals. Then A is totally positive if and only if all its entries are
nonnegative.

Proof. The nonnegativity of the entries (i.e. TP1) is obviously a necessary condition
for TP. Conversely, for a matrix of this type it is easy to see that every nonzero minor
is simply a product of some entries. □

Lemma 2.2 (Binomial matrix). In the ring Z, the binomial matrix B =
((

n
k

))
n,k≥0

is totally positive. More generally, the weighted binomial matrix

Bx,y =
(
xn−kyk

(
n
k

))
n,k≥0

(2.1)

is totally positive in the ring Z[x, y] equipped with the coefficientwise order.

We also write Bx as a shorthand for Bx,1.

Proof of Lemma 2.2. It is well known that the binomial matrix B is totally
positive, and this can be proven by a variety of methods: e.g. using production

10For infinite matrices, we need some condition to ensure that the product is well-defined. For
instance, the product AB is well-defined whenever A is row-finite (i.e. has only finitely many nonzero
entries in each row) or B is column-finite.

11When R = R, Toeplitz-totally positive sequences are traditionally called Pólya frequency se-
quences (PF), and Toeplitz-totally positive sequences of order r are called Pólya frequency sequences
of order r (PFr). See [42, chapter 8] for a detailed treatment.
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matrices [42, pp. 136–137, Example 6.1] [60, pp. 108–109], by diagonal similarity to a
totally positive Toeplitz matrix [60, p. 109], by exponentiation of a nonnegative lower-
subdiagonal matrix [28, p. 63], or by an application of the Lindström–Gessel–Viennot
lemma [33, p. 24].

Then Bx,y = DBD′ where D = diag
(
(xn)n≥0

)
and D′ = diag

(
(x−kyk)k≥0

)
. By

Cauchy–Binet, Bx,y is totally positive in the ring Z[x, x−1, y] equipped with the coef-
ficientwise order. But because B is lower-triangular, the elements of Bx,y actually lie
in the subring Z[x, y]. □

See also Example 2.10 below for an ab initio proof of Lemma 2.2 using production
matrices.

Lemma 2.3 (Introducing indeterminates). Let A = (aij)i,j≥0 be a lower-triangular
matrix with entries in a partially ordered commutative ring R, and let x = (xi)i≥1.
Define the lower-triangular matrix B = (bij)i,j≥0 by

bij = xj+1xj+2 · · ·xi aij . (2.2)

Then:

(a) If A is TPr and x are indeterminates, then B is TPr in the ring R[x] equipped
with the coefficientwise order.

(b) If A is TPr and x are nonnegative elements of R, then B is TPr in the ring R.

Proof. (a) Let x = (xi)i≥1 be commuting indeterminates, and let us work in the ring
R[x,x−1] equipped with the coefficientwise order. Let D = diag(1, x1, x1x2, . . .).
Then D is invertible, and D−1 = diag(1, x−1

1 , x−1
1 x−1

2 , . . .) has nonnegative ele-
ments. It follows that B = DAD−1 is TPr in the ring R[x,x−1] equipped with
the coefficientwise order. But the matrix elements bij actually belong to the subring
R[x] ⊆ R[x,x−1]. So B is TPr in the ring R[x] equipped with the coefficientwise
order.

(b) follows from (a) by specializing indeterminates. □

Finally, we need some special facts about the total positivity of tridiagonal ma-
trices. We recall that a contiguous principal minor of a matrix A is a minor detAII

for I = {r, r + 1, r + 2, . . . , s} for some r ≤ s.

Lemma 2.4. Every nonzero k × k minor of a tridiagonal matrix is a product of
off-diagonal elements and contiguous principal minors, with sizes adding up to k.

The standard proof for real matrices [60, p. 98] is valid in any commutative ring.

Corollary 2.5 (Total positivity of tridiagonal matrices). Let A be a tridiagonal ma-
trix with entries in a partially ordered commutative ring. Then A is totally positive
of order r if and only if all its off-diagonal elements and all its contiguous principal
minors of size ≤ r are nonnegative.

In other words, the well-known [60, Theorem 4.3] criterion for total positivity of
tridiagonal matrices with real entries extends without change to matrices with entries
in an arbitrary partially ordered commutative ring.

This has the following important consequence:
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u0 v0

a0 d0

e0

u1 v1

a1 d1

e1

u2 v2

a2 d2

e2

u3 v3

a3 d3

e3

... ...

b1 c1

b2 c2

b3 c3

Figure 2: Digraph representation of the matrix LU+D where L is the lower-bidiagonal
matrix with a0, a1, . . . on the diagonal and b1, b2, . . . on the subdiagonal, U is the
upper-bidiagonal matrix with c1, c2, . . . on the superdiagonal and d0, d1, . . . on the
diagonal, and D is a diagonal matrix with entries e0, e1, . . . .

Proposition 2.6 (Tridiagonal comparison theorem, weak form). Let A and D be
matrices with entries in a partially ordered commutative ring, with A being tridiagonal
and D being diagonal. If A is totally positive of order r and D is nonnegative, then
A + D is totally positive of order r.

Proof. We apply Corollary 2.5. The off-diagonal elements of A + D are the same
as those of A. The principal minors of A + D are

det (A + D)II =
∑
J⊆I

(detAJJ)
∏
i∈I\J

di , (2.3)

where di are the diagonal elements of D. □

Remarks. 1. There is a stronger form of the tridiagonal comparison theorem [70]
[91, Proposition 3.1] in which we can increase the diagonal elements and decrease the
off-diagonal elements (while keeping them nonnegative). But we will not need this
stronger result here.

2. In the special case where A = LU with L nonnegative lower-bidiagonal and U
nonnegative upper-bidiagonal, Proposition 2.6 can be proven by a Lindström–Gessel–
Viennot argument [2, Chapter 32] using the digraph shown in Figure 2. ■

20



2.2 Production matrices

The method of production matrices [22, 23] has become in recent years an im-
portant tool in enumerative combinatorics. In the special case of a tridiagonal pro-
duction matrix, this construction goes back to Stieltjes’ [74, 75] work on continued
fractions: the production matrix of a classical S-fraction or J-fraction is tridiago-
nal. In the present paper, by contrast, we shall need production matrices that are
lower-Hessenberg (i.e. vanish above the first superdiagonal) but are not in general
tridiagonal. We therefore begin by reviewing briefly the basic theory of production
matrices. The important connection of production matrices with total positivity will
be treated in the next subsection.

Let P = (pij)i,j≥0 be an infinite matrix with entries in a commutative ring R.
In order that powers of P be well-defined, we shall assume that P is either row-finite
(i.e. has only finitely many nonzero entries in each row) or column-finite.

Let us now define an infinite matrix A = (ank)n,k≥0 by

ank = (P n)0k (2.4)

(in particular, a0k = δ0k). Writing out the matrix multiplications explicitly, we have

ank =
∑

i1,...,in−1

p0i1 pi1i2 pi2i3 · · · pin−2in−1 pin−1k , (2.5)

so that ank is the total weight for all n-step walks in N from i0 = 0 to in = k, in which
the weight of a walk is the product of the weights of its steps, and a step from i to j
gets a weight pij. Yet another equivalent formulation is to define the entries ank by
the recurrence

ank =
∞∑
i=0

an−1,i pik for n ≥ 1 (2.6)

with the initial condition a0k = δ0k.
We call P the production matrix and A the output matrix , and we write

A = O(P ). Note that if P is row-finite, then so is O(P ); if P is lower-Hessenberg,
then O(P ) is lower-triangular; if P is lower-Hessenberg with invertible superdiagonal
entries, then O(P ) is lower-triangular with invertible diagonal entries; and if P is
unit-lower-Hessenberg (i.e. lower-Hessenberg with entries 1 on the superdiagonal),
then O(P ) is unit-lower-triangular. In all the applications in this paper, P will be
lower-Hessenberg, most often unit-lower-Hessenberg.

The matrix P can also be interpreted as the adjacency matrix for a weighted
directed graph on the vertex set N (where the edge i → j is omitted whenever
pij = 0). Then P is row-finite (resp. column-finite) if and only if every vertex has
finite out-degree (resp. finite in-degree); and P is lower-Hessenberg if and only if all
edges i → j satisfy j ≤ i + 1.

This iteration process can be given a compact matrix formulation. Let us define
the augmented production matrix

P̃
def
=

[
1 0 0 0 · · ·

P

]
, (2.7)

or in other words

(P̃ )n,k =

{
δ0k if n = 0

pn−1,k if n ≥ 1
(2.8)

21



Then the recurrence (2.6) together with the initial condition a0k = δ0k can be written
as

A =

[
1 0 0 0 · · ·

AP

]
=

[
1 0
0 A

] [
1 0 0 0 · · ·

P

]
=

[
1 0
0 A

]
P̃ . (2.9)

This identity can be iterated to give the factorization

A = · · ·

[
I3 0

0 P̃

][
I2 0

0 P̃

][
I1 0

0 P̃

]
P̃ (2.10)

where Ik is the k × k identity matrix; and conversely, (2.10) implies (2.9).
Now let ∆ = (δi+1,j)i,j≥0 be the matrix with 1 on the superdiagonal and 0 else-

where. Then for any matrix M with rows indexed by N, the product ∆M is simply
M with its zeroth row removed and all other rows shifted upwards. (Some authors

use the notation M
def
= ∆M .) The recurrence (2.6) can then be written as

∆O(P ) = O(P )P . (2.11)

It follows that if A is a row-finite matrix that has a row-finite inverse A−1 and has
first row a0k = δ0k, then P = A−1∆A is the unique matrix such that A = O(P ).
This holds, in particular, if A is lower-triangular with invertible diagonal entries and
a00 = 1; then A−1 is lower-triangular and P = A−1∆A is lower-Hessenberg. And if A
is unit-lower-triangular, then P = A−1∆A is unit-lower-Hessenberg.

Later we shall need the following easy but fundamental fact, which shows how
the production matrix transforms when the output matrix A is right-multiplied by
another matrix B:

Lemma 2.7 (Right-multiplication lemma). Let P = (pij)i,j≥0 be a row-finite matrix
(with entries in a commutative ring R), with output matrix A = O(P ); and let
B = (bij)i,j≥0 be a lower-triangular matrix with invertible (in R) diagonal entries.
Then

AB = b00O(B−1PB) . (2.12)

That is, up to a factor b00, the matrix AB has production matrix B−1PB.

Proof. Since P is row-finite, so is A = O(P ); then the matrix products AB and
B−1PB arising in the lemma are well-defined. Now

ank =
∑

i1,...,in−1

p0i1 pi1i2 pi2i3 · · · pin−2in−1 pin−1k , (2.13)

while

O(B−1PB)nk =
∑

j,i1,...,in−1,in

(B−1)0j pji1 pi1i2 pi2i3 · · · pin−2in−1 pin−1in bink . (2.14)

But B is lower-triangular with invertible diagonal entries, so B is invertible and B−1

is lower-triangular, with (B−1)0j = b−1
00 δj0. It follows that AB = b00O(B−1PB). □
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Remark. If b00 = 1, then (AB)00 = 1 and hence AB can be the output matrix
of some production matrix; and in this case (2.12) is an immediate consequence of
(2.11). Indeed, right-multiplying (2.11) by B yields

∆ (O(P )B) = O(P )PB = (O(P )B)B−1PB . (2.15)

■

We will frequently apply this lemma with B taken to be the binomial matrix
Bx. Unfortunately we know very little about what happens to the production matrix
when the output matrix is left-multiplied by another matrix B. But we do know one
special case: see Lemma 2.11 below.

2.3 Production matrices and total positivity

Let P = (pij)i,j≥0 be a matrix with entries in a partially ordered commutative
ring R. We will use P as a production matrix; let A = O(P ) be the corresponding
output matrix. As before, we assume that P is either row-finite or column-finite.

When P is totally positive, it turns out [70] that the output matrix O(P ) has
two total-positivity properties: firstly, it is totally positive; and secondly, its zeroth
column is Hankel-totally positive. More generally, the same properties hold whenever
P = P0 + aI, where P0 is totally positive and a is nonnegative. Since [70] is not yet
publicly available, we shall present briefly here (with proof) the main results that will
be needed in the sequel.

The fundamental fact that drives the whole theory is the following:

Proposition 2.8 (Minors of the output matrix). Every k × k minor of the output
matrix A = O(P ) can be written as a sum of products of minors of size ≤ k of the
production matrix P .

In this proposition the matrix elements p = {pij}i,j≥0 should be interpreted in the
first instance as indeterminates: for instance, we can fix a row-finite or column-finite
set S ⊆ N× N and define the matrix P S = (pSij)i,j∈N with entries

pSij =

{
pij if (i, j) ∈ S

0 if (i, j) /∈ S
(2.16)

Then the entries (and hence also the minors) of both P and A belong to the polyno-
mial ring Z[p], and the assertion of Proposition 2.8 makes sense. Of course, we can
subsequently specialize the indeterminates p to values in any commutative ring R.

Proof of Proposition 2.8. For any infinite matrix X = (xij)i,j≥0, let us write
XN = (xij)0≤i≤N−1, j≥0 for the submatrix consisting of the first N rows (and all the
columns) of X. Every k× k minor of A is of course a k× k minor of AN for some N ,
so it suffices to prove that the claim about minors holds for all the AN . But this is
easy: the fundamental identity (2.9) implies

AN =

[
1 0
0 AN−1

] [
1 0 0 0 · · ·

P

]
. (2.17)
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So the result follows by induction on N , using the Cauchy–Binet formula. □

If we now specialize the indeterminates p to values in some partially ordered
commutative ring R, we can immediately conclude:

Theorem 2.9 (Total positivity of the output matrix). Let P be an infinite matrix that
is either row-finite or column-finite, with entries in a partially ordered commutative
ring R. If P is totally positive of order r, then so is A = O(P ).

Remarks. 1. In the case R = R, Theorem 2.9 is due to Karlin [42, pp. 132–134];
see also [60, Theorem 1.11]. Karlin’s proof is different from ours.

2. Our quick inductive proof of Proposition 2.8 follows an idea of Zhu [86, proof of
Theorem 2.1], which was in turn inspired in part by Aigner [1, pp. 45–46]. The same
idea recurs in recent work of several authors [87, Theorem 2.1] [11, Theorem 2.1(i)] [12,
Theorem 2.3(i)] [47, Theorem 2.1] [14, Theorems 2.1 and 2.3] [37]. However, all of
these results concerned only special cases: [1, 12,47,86] treated the case in which the
production matrix P is tridiagonal; [87] treated a (special) case in which P is upper-
bidiagonal; [11] treated the case in which P is the production matrix of a Riordan
array; [14,37] treated (implicitly) the case in which P is upper-triangular and Toeplitz.
But the argument is in fact completely general, as we have just seen; there is no need
to assume any special form for the matrix P .

3. A slightly different version of this proof was presented in [58,59]. The simplified
reformulation given here, using the augmented production matrix, is due to Mu and
Wang [52]. ■

Example 2.10 (Binomial matrix). Let P be the upper-bidiagonal Toeplitz matrix
xI + y∆, where x and y are indeterminates. By Lemma 2.1, P is TP in the ring
Z[x, y] equipped with the coefficientwise order. An easy computation shows that
O(xI + y∆) = Bx,y, the weighted binomial matrix with entries (Bx,y)nk = xn−kyk

(
n
k

)
.

So Theorem 2.9 implies that Bx,y is TP in the ring Z[x, y] equipped with the coeffi-
cientwise order. This gives an ab initio proof of Lemma 2.2. ■

More generally, we have:

Lemma 2.11. O(aI + bP ) = Ba,b O(P ).

Note that Example 2.10 is the special case P = ∆.

Proof of Lemma 2.11. Since

(aI + bP )n =
n∑

j=0

an−j bj
(
n

j

)
P j , (2.18)

we have

O(aI + bP )nk
def
= [(aI + bP )n]0k =

n∑
j=0

an−j bj
(
n

j

)
(P j)0k (2.19a)

=
n∑

j=0

(Ba,b)nj O(P )jk (2.19b)

= [Ba,b O(P )]nk . (2.19c)
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□

Since the binomial matrix Ba,b is totally positive by Lemma 2.2, we conclude:

Corollary 2.12 (Total positivity of output matrix, improved). Let P be an infinite
matrix that is either row-finite or column-finite, with entries in a partially ordered
commutative ring R. Then P is TPr =⇒ O(P ) is TPr ⇐⇒ O(aI + bP ) is TPr

for all a, b ≥ 0.

Here a and b can be nonnegative elements of R; or a and b can be indeterminates and
we work in the ring R[a, b] equipped with the coefficientwise order. Corollary 2.12
allows us to prove the total positivity of the output matrix O(aI + bP ) whenever
P is TP, even if aI + bP is not TP . This will play a crucial role in our proof of
Theorem 1.4, by allowing us to take λyfp ≥ λyp rather than just λyfp = λyp.

Remark. Lemma 2.11 and Corollary 2.12 are a special case of an idea of Zhu [88];
see [70] for a general version. ■

Now define O0(P ) to be the zeroth-column sequence of O(P ), i.e.

O0(P )n
def
= O(P )n0

def
= (P n)00 . (2.20)

Then the Hankel matrix of O0(P ) has matrix elements

H∞(O0(P ))nn′ = O0(P )n+n′ = (P n+n′
)00 =

∞∑
k=0

(P n)0k (P n′
)k0 =

∞∑
k=0

(P n)0k ((PT)n
′
)0k =

∞∑
k=0

O(P )nk O(PT)n′k =
[
O(P )O(PT)

T]
nn′ . (2.21)

(Note that the sum over k has only finitely many nonzero terms: if P is row-finite,
then there are finitely many nonzero (P n)0k, while if P is column-finite, there are
finitely many nonzero (P n′

)k0.
12) We have therefore proven:

Lemma 2.13 (Identity for Hankel matrix of the zeroth column). Let P be a row-finite
or column-finite matrix with entries in a commutative ring R. Then

H∞(O0(P )) = O(P )O(PT)
T
. (2.22)

Combining Proposition 2.8 with Lemma 2.13 and the Cauchy–Binet formula, we
obtain:

Corollary 2.14 (Hankel minors of the zeroth column). Every k × k minor of the
infinite Hankel matrix H∞(O0(P )) = ((P n+n′

)00)n,n′≥0 can be written as a sum of
products of the minors of size ≤ k of the production matrix P .

12Or to put it another way: If P is row-finite, then O(P ) is row-finite; O(PT) need not be row-

or column-finite, but the product O(P )O(PT)
T
is anyway well-defined. Likewise, if P is column-

finite, then O(PT)
T

is column-finite; O(P ) need not be row- or column-finite, but the product

O(P )O(PT)
T
is anyway well-defined.
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And specializing the indeterminates p to nonnegative elements in a partially or-
dered commutative ring, in such a way that P is row-finite or column-finite, we
deduce:

Theorem 2.15 (Hankel-total positivity of the zeroth column). Let P = (pij)i,j≥0 be
an infinite row-finite or column-finite matrix with entries in a partially ordered com-
mutative ring R, and define the infinite Hankel matrix H∞(O0(P )) = ((P n+n′

)00)n,n′≥0.
If P is totally positive of order r, then so is H∞(O0(P )).

Once again we can we can improve these results to replace P by aI + bP . It
suffices to note that

H∞(O0(aI + bP )) = O(aI + bP )O(aI + bPT)
T

(2.23a)

= Ba,b O(P )O(PT)
T

(Ba,b)
T (2.23b)

= Ba,b H∞(O0(P )) (Ba,b)
T (2.23c)

by Lemmas 2.11 and 2.13. Since the binomial matrix Ba,b is totally positive by
Lemma 2.2, we conclude:

Corollary 2.16 (Hankel-total positivity of zeroth column, improved). Let P be an
infinite matrix that is either row-finite or column-finite, with entries in a partially
ordered commutative ring R. Then P is TPr =⇒ O(P ) and O(PT) are TPr =⇒
O0(P ) is Hankel-TPr ⇐⇒ O0(aI + bP ) is Hankel-TPr for all a, b ≥ 0.

Once again, a and b can be nonnegative elements of R, or a and b can be inde-
terminates and we work in the ring R[a, b] equipped with the coefficientwise order.
Corollary 2.16 allows us to prove the Hankel-total positivity of the output sequence
O0(aI + bP ) whenever P is TP, even if aI + bP is not TP. It will play an important
role in our proof of Theorem 1.4.

Remark. We see from (2.19b) specialized to k = 0 that O0(aI +bP ) is a binomial
transform of O0(P ):

O0(aI + bP )n =
n∑

j=0

an−j bj
(
n

j

)
O0(P )j . (2.24)

Now, it is known [70, 89] that the binomial transform preserves Hankel-TPr of arbi-
trary sequences in a partially ordered commutative ring. So Corollary 2.16 is just a
special case of this general result combined with Theorem 2.15. ■

2.4 Binomial row-generating matrices

Let A = (ank)n,k≥0 be a row-finite matrix with entries in a commutative ring R.
(In most applications, including all those in the present paper, the matrix A will be
lower-triangular.) We define its row-generating polynomials in the usual way:

An(x)
def
=

∞∑
k=0

ank x
k , (2.25)
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where the sum is actually finite because A is row-finite. More generally, let us define
its binomial partial row-generating polynomials

An,k(x)
def
=

∞∑
ℓ=k

anℓ

(
ℓ

k

)
xℓ−k (2.26a)

=
1

k!

dk

dxk
An(x) . (2.26b)

(Note that the operator (1/k!) dk/dxk has a well-defined action on the polynomial
ring R[x] even if R does not contain the rationals, since (1/k!)(dk/dxk)xn =

(
n
k

)
xn−k.)

The polynomials An,k(x) are the matrix elements of the binomial row-generating
matrix ABx:

(ABx)nk = An,k(x) , (2.27)

where Bx = Bx,1 is the weighted binomial matrix defined in (1.9). The zeroth column
of the matrix ABx consists of the row-generating polynomials An(x) = An,0(x).

In this paper the matrix A will be either the Laguerre coefficient matrix L(α) or
one of its multivariate generalizations.

We can now explain the method that we will use to prove Theorems 1.1 and 1.4:

Proposition 2.17. Let P be a row-finite matrix with entries in a partially ordered
commutative ring R, and let A = O(P ).

(a) If P is totally positive of order r, then so is A.

(b) If the matrix B−1
x PBx is totally positive of order r in the ring R[x] equipped

with the coefficientwise order, then the sequence (An(x))n≥0 of row-generating
polynomials is Hankel-totally positive of order r in the ring R[x] equipped with
the coefficientwise order.

Indeed, (a) is just a restatement of Theorem 2.9; and (b) is an immediate consequence
of Lemma 2.7 and Theorem 2.15 together with the fact that the zeroth column of the
matrix ABx consists of the row-generating polynomials An(x).

Remark. The binomial row-generating matrix ABx can also be considered as a
modified Wronskian matrix. To see this, let N ∈ N ∪ {∞}, and fix formal power
series f1(x), . . . , fN(x) ∈ R[[x]]. We define the N ×∞ Wronskian matrix

W (f1, . . . , fN)(x) =
(
f (k)
n (x)

)
1≤n≤N, k≥0

(2.28)

(where (k) denotes the kth derivative) and the N×∞modified Wronskian matrix

W̃ (f1, . . . , fN)(x) =
(
f (k)
n (x)/k!

)
1≤n≤N, k≥0

; (2.29)

these are matrices with entries in R[[x]]. Of course, we have

W (f1, . . . , fN)(x) = W̃ (f1, . . . , fN)(x) D (2.30)

where D = diag
(
(k!)k≥0

)
. The key fact is that

W̃ (f1, . . . , fN)(x) = W̃ (f1, . . . , fN)(0) Bx . (2.31)

In particular, if the ring R carries a partial order, the total positivity of order r of the
matrix W̃ (f1, . . . , fN)(0) in the ring R implies the total positivity of order r of the

matrix W̃ (f1, . . . , fN)(x) in the ring R[[x]] equipped with the coefficientwise order.
■
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2.5 Exponential Riordan arrays

Let R be a commutative ring containing the rationals, and let F (t) =
∑∞

n=0 fnt
n/n!

and G(t) =
∑∞

n=1 gnt
n/n! be formal power series with coefficients in R; we set g0 = 0.

Then the exponential Riordan array [5,23,24] associated to the pair (F,G) — or
equivalently to the pair of sequences f = (fn)n≥0 and g = (gn)n≥1 — is the infinite
lower-triangular matrix R[F,G] = (R[F,G]nk)n,k≥0 defined by

R[F,G]nk =
n!

k!
[tn]F (t)G(t)k . (2.32)

That is, the kth column of R[F,G] has exponential generating function F (t)G(t)k/k!.
It follows that the bivariate exponential generating function of R[F,G] is

∞∑
n,k=0

R[F,G]nk
tn

n!
uk = F (t) euG(t) . (2.33)

Please note that the diagonal elements of R[F,G] are R[F,G]nn = f0g
n
1 , so the matrix

R[F,G] is invertible in the ring RN×N
lt of lower-triangular matrices if and only if f0

and g1 are invertible in R.
We shall use an easy but important result that is sometimes called the fundamental

theorem of exponential Riordan arrays (FTERA):

Lemma 2.18 (Fundamental theorem of exponential Riordan arrays). Let b = (bn)n≥0

be a sequence with exponential generating function B(t) =
∑∞

n=0 bnt
n/n!. Considering

b as a column vector and letting R[F,G] act on it by matrix multiplication, we obtain
a sequence R[F,G]b whose exponential generating function is F (t)B(G(t)).

Proof. We compute

n∑
k=0

R[F,G]nk bk =
∞∑
k=0

n!

k!
[tn]F (t)G(t)k bk (2.34a)

= n! [tn] F (t)
∞∑
k=0

bk
G(t)k

k!
(2.34b)

= n! [tn] F (t)B(G(t)) . (2.34c)

□

Let us now consider the product of two exponential Riordan arrays R[F1, G1] and
R[F2, G2]. Applying the FTERA to the kth column of R[F2, G2], whose exponential
generating function is F2(t)G2(t)

k/k!, we readily obtain:

Lemma 2.19 (Product of two exponential Riordan arrays). We have

R[F1, G1]R[F2, G2] = R[(F2 ◦G1)F1, G2 ◦G1] (2.35)

where ◦ denotes composition of formal power series.

In particular, if we let R[F2, G2] be the weighted binomial matrix Bξ = R[eξt, t],
we obtain:
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Corollary 2.20 (Binomial row-generating matrix of an exponential Riordan array).
We have

R[F,G]Bξ = R[eξGF,G] . (2.36)

We can now determine the production matrix of an exponential Riordan array
R[F,G]. Let a = (an)n≥0 and z = (zn)n≥0 be sequences in a commutative ring R,
with ordinary generating functions A(s) =

∑∞
n=0 ans

n and Z(s) =
∑∞

n=0 zns
n. We

then define the exponential AZ matrix associated to the sequences a and z to be
the lower-Hessenberg matrix with entries

EAZ(a, z)nk =
n!

k!
(zn−k + k an−k+1) (2.37)

(where z−1
def
= 0), or equivalently (if R contains the rationals)

EAZ(a, z) = DT∞(z)D−1 + DT∞(a)D−1 ∆ (2.38)

where D = diag
(
(n!)n≥0

)
. We also write EAZ(A,Z) as a synonym for EAZ(a, z).

Theorem 2.21 (Production matrices of exponential Riordan arrays). Let L be a
lower-triangular matrix (with entries in a commutative ring R containing the ra-
tionals) with invertible diagonal entries and L00 = 1, and let P = L−1∆L be its
production matrix. Then L is an exponential Riordan array if and only if P is an
exponential AZ matrix.

More precisely, L = R[F,G] if and only if P = EAZ(A,Z), where the generating
functions

(
F (t), G(t)

)
and

(
A(s), Z(s)

)
are connected by

G′(t) = A(G(t)) ,
F ′(t)

F (t)
= Z(G(t)) (2.39)

or equivalently

A(s) = G′(Ḡ(s)) , Z(s) =
F ′(Ḡ(s))

F (Ḡ(s))
(2.40)

where Ḡ(s) is the compositional inverse of G(t).

Proof (mostly contained in [5, pp. 217–218]). Suppose that L = R[F,G]. The
hypotheses on L imply that f0 = 1 and that g1 is invertible in R; so G(t) has a
compositional inverse. Now let P = (pnk)n,k≥0 be a matrix; its column exponential
generating functions are, by definition, Pk(t) =

∑∞
n=0 pnk t

n/n!. Applying the FTERA
to each column of P , we see that R[F,G]P is a matrix whose column exponential
generating functions are

(
F (t)Pk(G(t))

)
k≥0

. On the other hand, ∆R[F,G] is the

matrix R[F,G] with its zeroth row removed and all other rows shifted upwards, so it
has column exponential generating functions

d

dt

(
F (t)G(t)k/k!

)
=

1

k!

[
F ′(t)G(t)k + k F (t)G(t)k−1G′(t)

]
. (2.41)

Comparing these two results, we see that ∆R[F,G] = R[F,G]P if and only if

Pk(G(t)) =
1

k!

F ′(t)G(t)k + k F (t)G(t)k−1G′(t)

F (t)
, (2.42)
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or in other words

Pk(t) =
1

k!

[
F ′(Ḡ(t))

F (Ḡ(t))
tk + k tk−1G′(Ḡ(t))

]
. (2.43)

Therefore

pnk =
n!

k!
[tn]

[
F ′(Ḡ(t))

F (Ḡ(t))
tk + k tk−1G′(Ḡ(t))

]
(2.44a)

=
n!

k!

[
[tn−k]

F ′(Ḡ(t))

F (Ḡ(t))
+ k [tn−k+1] G′(Ḡ(t))

]
(2.44b)

=
n!

k!
(zn−k + k an−k+1) (2.44c)

where a = (an)n≥0 and z = (zn)n≥0 are given by (2.40).
Conversely, suppose that P = EAZ(A,Z). Define F (t) and G(t) as the unique so-

lutions (in the formal-power-series ring R[[t]]) of the differential equations (2.39) with
initial conditions F (0) = 1 and G(0) = 0. Then running the foregoing computation
backwards shows that ∆R[F,G] = R[F,G]P . □

A central role will be played later in this paper by a simple but remarkable identity
for B−1

x EAZ(a, z)Bx, where Bx is the x-binomial matrix defined in (1.9):

Lemma 2.22 (Identity for B−1
x EAZ(a, z)Bx). Let a = (an)n≥0, z = (zn)n≥0 and x

be indeterminates. Then

B−1
x EAZ(a, z)Bx = EAZ(a, z + xa) (2.45)

as an identity in Z[a, z].

The special case z = 0 of this lemma was proven in [58, Lemma 3.6]; a simpler
proof was given in [67, Lemma 2.16]. Here we give the easy generalization to include z,
taken from [13]:

Proof. We work temporarily in the ring Q[a, z] and use the matrix definition (2.38):

EAZ(a, z) = DT∞(z)D−1 + DT∞(a)D−1 ∆ (2.46)

where D = diag
(
(n!)n≥0

)
. Since EAZ(a, z) = EAZ(a,0) + EAZ(0, z), it suffices to

consider separately the two contributions.
The key observation is that Bx = DT∞

(
(xn/n!)n≥0

)
D−1. Now two Toeplitz

matrices always commute: T∞(a)T∞(b) = T∞(a ⋆ b) = T∞(b)T∞(a). It follows that
DT∞(z)D−1 and DT∞(a)D−1 commute with Bx. Therefore

B−1
x EAZ(0, z)Bx = EAZ(0, z) . (2.47)

On the other hand, the classic recurrence for binomial coefficients implies

∆Bx = Bx (xI + ∆) (2.48)
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(cf. Example 2.10). Therefore

B−1
x EAZ(a,0)Bx = B−1

x DT∞(a)D−1 ∆Bx (2.49a)

= B−1
x DT∞(a)D−1Bx (xI + ∆) (2.49b)

= DT∞(a)D−1 (xI + ∆) (2.49c)

= EAZ(a, xa) . (2.49d)

Adding (2.47) and (2.49) yields (2.45). □

The identity (2.45) can alternatively be proven by combining Lemma 2.7 and
Corollary 2.20 with Theorem 2.21: see [13] for details.

3 Production matrices: Univariate case

In this section we will prove Proposition 1.2, which gives the production matrices
for the Laguerre coefficient matrix L(α) [defined in (1.8)] and for the binomial row-
generating matrix L(α)Bx. The proofs are in fact quite easy. We also give a simple
direct proof of the coefficientwise total positivity of the Laguerre coefficient matrix
L(−1+λ),

3.1 Coefficient matrix L(α): Proof of Proposition 1.2(a)

We begin by proving Proposition 1.2(a), which asserts that the production matrix
for the Laguerre coefficient matrix L(α) is the tridiagonal unit-lower-Hessenberg matrix
P ◦ = (p◦ij)i,j≥0 defined by

p◦n,n+1 = 1 (3.1a)

p◦n,n = 2n + 1 + α (3.1b)

p◦n,n−1 = n(n + α) (3.1c)

p◦n,k = 0 if k < n− 1 or k > n + 1 (3.1d)

We give two proofs: one by direct computation, and one using the theory of expo-
nential Riordan arrays.

First Proof. Recall that the Laguerre coefficient matrix L(α) has entries

ℓ
(α)
n,k

def
=

(
n

k

)
(α + 1 + k)n−k . (3.2)

We need to verify that
∑

j ℓ
(α)
n,j p

◦
j,k = ℓ

(α)
n+1,k, or in other words that

ℓ
(α)
n,k−1 + (2k + 1 + α)ℓ

(α)
n,k + (k + 1)(k + 1 + α)ℓ

(α)
n,k+1 = ℓ

(α)
n+1,k . (3.3)

This is a straightforward computation. □

Second Proof. It follows from (1.6) and (2.33) that the matrix L(α) is an exponential
Riordan array R[F,G] with F (t) = (1 − t)−(1+α) and G(t) = t/(1 − t). Since

G′(t) = [1 + G(t)]2 , (3.4)

31



from (2.39) we have
A(s) = 1 + 2s + s2 . (3.5)

Then
F ′(t)

F (t)
=

1 + α

1 − t
= (1 + α) [1 + G(t)] , (3.6)

so from (2.39) we have
Z(s) = (1 + α) (1 + s) . (3.7)

By Theorem 2.21, the production matrix for L(α) is the exponential AZ matrix
EAZ(A,Z). Inserting (3.5)/(3.7) into (2.37) yields (3.1). □

We now wish to make an observation about the connection of the Laguerre co-
efficient matrix L(α) with continued fractions. The zeroth column of L(α) is the se-
quence of rising powers (= Stirling cycle polynomials) (λn)n≥0, where λ

def
= α + 1.

And this sequence has a well-known classical S-fraction for its ordinary generating
function, which was found more than two-and-a-half centuries ago by Euler [26, sec-
tion 26] [27]13:

∞∑
n=0

λn tn =
1

1 −
λt

1 −
t

1 −
(λ + 1)t

1 −
2t

1 − · · ·

(3.8)

with coefficients α2k−1 = λ+k−1 and α2k = k. Now, any S-fraction has an associated
production matrix

P =


α1 1

α1α2 α2 + α3 1
α3α4 α4 + α5 1

. . . . . . . . .

 (3.9)

(see eq. (A.7) in Appendix A.1), which has as its output matrix the triangular array of
generalized Stieltjes–Rogers polynomials of the first kind. And the production matrix
corresponding to the coefficients α2k−1 = λ + k − 1 and α2k = k is precisely (3.1). In
view of Proposition 1.2(a), this shows:

Proposition 3.1. The Laguerre coefficient matrix L(α) is the matrix S = (Sn,ℓ(α))n,ℓ≥0

of generalized Stieltjes–Rogers polynomials of the first kind corresponding to the coef-
ficients α2k−1 = k + α and α2k = k.

Remark. Proposition 3.1 looks at first sight a bit bizarre, because the coeffi-
cient matrix for the monic orthogonal polynomials associated to a Stieltjes moment
sequence a = (an)n≥0 is in general the inverse matrix of the corresponding matrix

13The paper [26], which is E247 in Eneström’s [25] catalogue, was probably written circa 1746;
it was presented to the St. Petersburg Academy in 1753, and published in 1760. The paper [27],
which is E616 in Eneström’s [25] catalogue, was apparently presented to the St. Petersburg Academy
in 1776, and published posthumously in 1788.
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S of generalized Stieltjes–Rogers polynomials14; therefore, the coefficient matrix for
the monic unsigned Laguerre polynomials should be the unsigned inverse matrix of
S, i.e.

S♯ def
= Q S−1Q (3.10)

where Q = ((−1)iδij)i,j≥0 is the diagonal matrix of alternating 1’s and −1’s. This
apparent paradox is explained by the curious fact that the matrix L(α) equals its own
unsigned inverse: that is,

L(α) = Q (L(α))−1Q . (3.11)

Proof. From (1.8) we see that L(α) = DB(α) D−1 where B(α) is the generalized
binomial matrix

(B(α))nk =

(
n + α

n− k

)
(3.12)

and D = diag
(
(n!)n≥0

)
. So it suffices to prove that B(α) equals its own unsigned

inverse: ∑
j

(
n + α

n− j

)(
j + α

j − k

)
(−1)j−k =

(
n + α

n− k

) ∑
j

(
n− k

j − k

)
(−1)j−k (3.13a)

= δnk (3.13b)

(cf. [39, eq. (5.21)]). ■

3.2 Binomial row-generating matrix L(α)Bx: Proof of Propo-
sition 1.2(b)

We now prove Proposition 1.2(b), which asserts that the production matrix for the
binomial row-generating matrix L(α)Bx is the quadridiagonal unit-lower-Hessenberg
matrix P = (pij)i,j≥0 defined by

pn,n+1 = 1 (3.14a)

pn,n = (2n + 1 + α) + x (3.14b)

pn,n−1 = n(n + α) + 2nx (3.14c)

pn,n−2 = n(n− 1)x (3.14d)

pn,k = 0 if k < n− 2 or k > n + 1 (3.14e)

This is an easy consequence of the theory of exponential Riordan arrays. In the pre-
ceding subsection we saw that the production matrix P ◦ for the Laguerre coefficient
matrix L(α) is the exponential AZ matrix EAZ(A,Z) where A and Z are given by
(3.5)/(3.7). By Lemma 2.7 the production matrix for L(α)Bx is P = B−1

x P ◦Bx; and
by Lemma 2.22 we have B−1

x P ◦Bx = EAZ(A,Z + xA). Using this together with
(3.5)/(3.7) and (2.37) yields (3.14).

14This is a well-known fact: see, for instance [79, p. III-2, Théorème 1]. And for a generalization
to unit-lower-Hessenberg production matrices that are not necessarily tridiagonal, see [68, Proposi-
tion 3.2 and Remark 1 following it].
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In Appendix B we will explain why P = B−1
x P ◦Bx is quadridiagonal, by answering

the more general question: Which lower-Hessenberg matrices P have the property
that B−1

ξ PBξ is (r, 1)-banded?

We also have an explicit formula for the binomial row-generating matrix:

Proposition 3.2 (Binomial row-generating matrix of the Laguerre coefficient array).
The matrix elements of the binomial row-generating matrix L(α)Bx are

(L(α)Bx)n,k =
1

k!

dk

dxk
L(α)

n (x) =

(
n

k

)
L(α+k)

n−k (x) . (3.15)

Proof. The first equality is a special case of the general property (2.26) of bino-
mial row-generating polynomials. The second equality follows by repeated use of the
differentiation formula

d

dx
L(α)

n (x) = nL(α+1)
n−1 (x) . (3.16)

□

It can also be shown, by direct computation using classical identities for the La-
guerre polynomials, that the matrix (3.15) is indeed the output matrix for the pro-
duction matrix (3.14). But since this proof is rather lengthy, we refrain from showing
it here.

3.3 Total positivity of the coefficient matrix L(−1+λ)

Finally, let us give a simple direct proof of the coefficientwise total positivity of
the Laguerre coefficient matrix L(−1+λ). Start from the binomial matrix ank =

(
n
k

)
,

which is totally positive by Lemma 2.2. Now use Lemma 2.3(b) with xi = λ + i− 1
for i ≥ 1, which are nonnegative elements of Z[λ]. Then

bnk = xk+1xk+2 · · · xn ank (3.17a)

= (λ + k)n−k

(
n

k

)
, (3.17b)

which is (1.8) with α = −1 + λ.

4 Multivariate Laguerre polynomials:

Exponential generating functions and produc-

tion matrices

In this section we compute the column and bivariate exponential generating func-
tions for the multivariate Laguerre coefficient matrix (1.31); we then use these expo-
nential generating functions, together with the theory of exponential Riordan arrays,
to deduce the corresponding production matrices.
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4.1 Exponential generating functions

In this subsection we shall compute the column and bivariate exponential gen-
erating functions for the coefficient matrix L̂(α)(yp, yv, yda, ydd, yfp) that was defined
in (1.31), which enumerates Laguerre digraphs according to the status of vertices as
peaks, valleys, double ascents, double descents or fixed points. Indeed, we shall go
farther, by assigning different weights for the vertices belonging to a cycle or to a
path. For a Laguerre digraph G, let us write pcyc(G), vcyc(G), dacyc(G), ddcyc(G),
fp(G) for the number of peaks, valleys, double ascents, double descents and fixed
points that belong to a cycle of G, and ppa(G), vpa(G), dapa(G), ddpa(G) for the
number of peaks, valleys, double ascents and double descents that belong to a path
of G (of course fixed points can only belong to a cycle). We then assign weights
yp, yv, yda, ydd, yfp to the vertices belonging to a cycle, and weights zp, zv, zda, zdd to
the vertices belonging to a path. We therefore define the generalized second mul-
tivariate Laguerre coefficient matrix

L̃(α)(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd)n,k

def
=

∑
G∈LDn,k

ypcyc(G)
p yvcyc(G)

v y
dacyc(G)
da y

ddcyc(G)
dd y

fp(G)
fp zppa(G)

p zvpa(G)
v z

dapa(G)
da z

ddpa(G)
dd ×

(1 + α)cyc(G) . (4.1)

This polynomial is homogeneous of degree n in yp, yv, yda, ydd, yfp, zp, zv, zda, zdd.
Because of the 0–0 boundary conditions, each path contains at least one peak;

so we can, if we wish, remove a factor zkp and define a unit-lower-triangular matrix by

L̃(α)♭(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd)n,k
def
= L̃(α)(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd)n,k/z

k
p .

(4.2)
This polynomial is homogeneous of degree n− k in yp, yv, yda, ydd, yfp, zp, zv, zda, zdd.

We now proceed to compute the exponential generating functions for the matrices
(4.1) and (4.2). We do this by combining the known exponential generating functions
for permutations with cyclic statistics [84, Théorème 1] and permutations with linear
statistics [84, Proposition 4]. These formulae are as follows:

1) Permutations with cyclic statistics are enumerated by the polynomials

P cyc
n (yp, yv, yda, ydd, yfp, λ)

def
=

∑
σ∈Sn

ypcyc(σ)p yvcyc(σ)v y
dacyc(σ)
da y

ddcyc(σ)
dd y

fp(σ)
fp λcyc(σ) (4.3)

where pcyc(σ), vcyc(σ), dacyc(σ), ddcyc(σ), fp(σ) denote the number of cycle peaks,
cycle valleys, cycle double rises, cycle double falls and fixed points in σ, and cyc(σ)
denotes the number of cycles in σ. By convention we set P cyc

0 = 1. The polynomial
P cyc
n is homogeneous of degree n in yp, yv, yda, ydd, yfp. We write

F (t; yp, yv, yda, ydd, yfp, λ)
def
=

∞∑
n=0

P cyc
n (yp, yv, yda, ydd, yfp, λ)

tn

n!
(4.4)

for the corresponding exponential generating function.
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Lemma 4.1. [84, Théorème 1] We have

F (t; yp, yv, yda, ydd, yfp, λ) = eλyfpt
(

r1 − r2
r1er2t − r2er1t

)λ

(4.5a)

= F (t; yp, yv, yda, ydd, yfp, 1)λ (4.5b)

where r1r2 = ypyv and r1 + r2 = yda + ydd. Otherwise put, r1 and r2 are the roots
(in either order) of the quadratic equation ρ2 − (yda + ydd)ρ + ypyv = 0. Concretely,

r1,2 =
yda + ydd ±

√
(yda + ydd)2 − 4ypyv

2
. (4.6)

2) Permutations with linear statistics and 0–0 boundary conditions are enumerated
by the polynomials

P lin(00)
n (zp, zv, zda, zdd)

def
=

∑
σ∈Sn

zppa(σ)p zvpa(σ)v z
dapa(σ)
da z

ddpa(σ)
dd (4.7)

where ppa(σ), vpa(σ), dapa(σ), ddpa(σ) denote the number of peaks, valleys, double
ascents and double descents in the permutation σ written as a word σ1 · · ·σn, where we
impose the boundary conditions σ0 = σn+1 = 0. By convention we restrict attention

to n ≥ 1. The polynomial P
lin(00)
n is homogeneous of degree n in zp, zv, zda, zdd. We

write

G(t; zp, zv, zda, zdd)
def
=

∞∑
n=1

P lin(00)
n (zp, zv, zda, zdd)

tn

n!
(4.8)

for the corresponding exponential generating function (note that the sum starts at
n = 1).

Lemma 4.2. [84, Proposition 4] We have

G(t; zp, zv, zda, zdd) = zp

(
er1t − er2t

r1er2t − r2er1t

)
(4.9)

where r1r2 = zpzv and r1 + r2 = zda + zdd analogously to Lemma 4.1. This function
satisfies the differential equation

G′(t) = zp + (zda + zdd)G(t) + zvG(t)2 . (4.10)

We can now put these ingredients together to determine the exponential gener-
ating functions for the matrix (4.1). A Laguerre digraph G ∈ LDn,k consists of a
permutation (that is, a collection of disjoint cycles) on some subset S ⊆ [n] together
with k disjoint paths on [n] \ S. Each of these paths can be considered as a permu-
tation written in word form. By the exponential formula, the exponential generating
function for the kth column of the matrix (4.1) is then

∞∑
n=0

L̃(α)(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd)n,k
tn

n!

= F (t; yp, yv, yda, ydd, yfp, 1)1+α G(t; zp, zv, zda, zdd)k

k!
, (4.11)
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where the 1/k! comes because the paths are indistinguishable. The bivariate expo-
nential generating function is therefore

∞∑
n=0

n∑
k=0

L̃(α)(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd)n,k
tn

n!
uk

= F (t; yp, yv, yda, ydd, yfp, 1)1+α exp
[
uG(t; zp, zv, zda, zdd)

]
. (4.12)

Comparing this with (2.32)/(2.33) shows:

Proposition 4.3 (Generalized second multivariate Laguerre coefficient matrix as

exponential Riordan array). The matrix L̃(α)(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd), which
was defined in (4.1), is an exponential Riordan array R[F,G] where F is given by
(4.5) with λ = 1 + α and G is given by (4.9).

For the matrix L̃(α)♭ defined in (4.2), the formulae are the same except that G is
replaced by

G♭(t; zp, zv, zda, zdd)
def
= G(t; zp, zv, zda, zdd)/zp =

er1t − er2t

r1er2t − r2er1t
, (4.13)

which satisfies the differential equation

(G♭)′(t) = 1 + (zda + zdd)G♭(t) + zpzvG
♭(t)2 . (4.14)

Remark. For the first multivariate coefficient matrix (1.19), the formulae sim-
plify: taking yp = ydd = zp = zdd = v−, yv = yda = zv = zda = v− and yfp = v0,
we get r1 = v+, r2 = v− and hence, using (1.33),

∞∑
n=0

n∑
k=0

L(α)(v−, v0, v+)n,k
tn

n!
uk

= e(1+α)v0t

(
v+ − v−

v+ev−t − v−ev+t

)1+α

exp

[
u

(
ev+t − ev−t

v+ev−t − v−ev+t

)]
. (4.15)

4.2 Production matrices: Proof of Proposition 1.5(a,b)

We now restrict attention to the case in which the vertices belonging to paths
and cycles are given the same weights, i.e. (zp, zv, zda, zdd) = (yp, yv, yda, ydd). In this
situation it is easy to find the series A(s) and Z(s) that satisfy the relations (2.39)
leading to the production matrix of an exponential Riordan array. Namely, from
(4.10) we have immediately

A(s) = yp + (yda + ydd)s + yvs
2 . (4.16)

And a straightforward computation shows that the logarithmic derivative of F equals
λyfp + λyvG, so we have

Z(s) = λyfp + λyvs . (4.17)

Theorem 2.21 then yields:
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Proposition 4.4 (Production matrix of the second multivariate Laguerre coefficient

matrix). The second multivariate Laguerre coefficient matrix L̂(α)(yp, yv, yda, ydd, yfp),
which was defined in (1.31), has production matrix P ◦ = EAZ(A,Z) where A and Z
are given by (4.16)/(4.17) with λ = 1 + α. In detail, P ◦ is the tridiagonal matrix

p◦n,n+1 = yp (4.18a)

p◦n,n = (1 + α)yfp + n(yda + ydd) (4.18b)

p◦n,n−1 = n(n + α)yv (4.18c)

p◦n,k = 0 if k < n− 1 or k > n + 1 (4.18d)

From this it is straightforward to deduce the production matrix for the bino-
mial row-generating matrix L̂(α)(yp, yv, yda, ydd, yfp)Bx. Namely, by Lemma 2.7 this
production matrix is P = B−1

x P ◦Bx; and by Lemma 2.22 we have B−1
x P ◦Bx =

EAZ(A,Z + xA). We have therefore proven:

Proposition 4.5 (Production matrix of the second multivariate Laguerre binomial

row-generating matrix). The binomial row-generating matrix L̂(α)(yp, yv, yda, ydd, yfp)Bx

has production matrix P = EAZ(A,Z+xA) where A and Z are given by (4.16)/(4.17)
with λ = 1 + α. In detail, P is the quadridiagonal lower-Hessenberg matrix

pn,n+1 = yp (4.19a)

pn,n = (1 + α)yfp + n(yda + ydd) + ypx (4.19b)

pn,n−1 = n(n + α)yv + n(yda + ydd)x (4.19c)

pn,n−2 = n(n− 1)yvx (4.19d)

pn,k = 0 if k < n− 2 or k > n + 1 (4.19e)

For the matrix L̃(α)♭, the formulae are the same except that A and Z are replaced
by

A♭(s) = 1 + (yda + ydd)s + ypyvs
2 (4.20)

Z♭(s) = λyfp + λypyvs (4.21)

This leads to the production matrices

p◦♭n,n+1 = 1 (4.22a)

p◦♭n,n = (1 + α)yfp + n(yda + ydd) (4.22b)

p◦♭n,n−1 = n(n + α)ypyv (4.22c)

p◦♭n,k = 0 if k < n− 1 or k > n + 1 (4.22d)

and

p♭n,n+1 = 1 (4.23a)

p♭n,n = (1 + α)yfp + n(yda + ydd) + x (4.23b)

p♭n,n−1 = n(n + α)ypyv + n(yda + ydd)x (4.23c)

p♭n,n−2 = n(n− 1)ypyvx (4.23d)

p♭n,k = 0 if k < n− 2 or k > n + 1 (4.23e)
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This completes the proof of Proposition 1.5.

5 Total positivity of the production matrices:

Univariate case

In this section we will prove the total positivity of the production matrices for
the univariate Laguerre polynomials: namely, the tridiagonal production matrix P ◦

[defined in (1.40)] for the Laguerre coefficient matrix L(α), and the quadridiagonal pro-
duction matrix P [defined in (1.41)] for the binomial row-generating matrix L(α) Bx.
Throughout, we use the parameter λ = 1 + α.

The proofs are easy factorizations; in the quadridiagonal case we will also need to
invoke the tridiagonal comparison theorem (Proposition 2.6).

5.1 The tridiagonal matrix P ◦: Proof of Proposition 1.3(a)

The tridiagonal matrix P ◦ is given by

p◦n,n+1 = 1 (5.1a)

p◦n,n = 2n + λ (5.1b)

p◦n,n−1 = n(n− 1 + λ) (5.1c)

p◦n,k = 0 if k < n− 1 or k > n + 1 (5.1d)

As observed preceding Proposition 3.1, this is the production matrix (A.7) corre-
sponding to the classical S-fraction with coefficients α2k−1 = k − 1 + λ and α2k = k
(see Appendix A.1). And as observed in (A.8), the production matrix (A.7) can be
factorized in the form LU where L is the lower-bidiagonal matrix with 1 on the di-
agonal and α2, α4, . . . on the subdiagonal, and U is the upper-bidiagonal matrix with
1 on the superdiagonal and α1, α3, . . . on the diagonal. And finally, as also observed
there, this factorization shows, by Lemma 2.1, that the matrix (A.7) is coefficientwise
totally positive in the indeterminates α. Putting this all together, we conclude:

Proposition 5.1 (Factorization and total positivity of P ◦).

(a) The tridiagonal matrix P ◦ defined by (5.1) has the factorization P ◦ = LU where

• L is the lower-bidiagonal matrix with 1 on the diagonal and 1, 2, 3, . . . on
the subdiagonal, and

• U is the upper-bidiagonal matrix with 1 on the superdiagonal and λ, λ + 1,
λ + 2, . . . on the diagonal.

(b) P ◦ is totally positive in the ring Z[λ] equipped with the coefficientwise order.

In particular, this proves Proposition 1.3(a).
Note that we can also write U = L∆+λI, since L∆ is the upper-bidiagonal matrix

with 1 on the superdiagonal and 0, 1, 2, . . . on the diagonal.
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5.2 The quadridiagonal matrix P : Proof of Proposition 1.3(b)

The quadridiagonal matrix P is given by

pn,n+1 = 1 (5.2a)

pn,n = (2n + λ) + x (5.2b)

pn,n−1 = n(n− 1 + λ) + 2nx (5.2c)

pn,n−2 = n(n− 1)x (5.2d)

pn,k = 0 if k < n− 2 or k > n + 1 (5.2e)

Proposition 5.2 (Factorization and total positivity of P ).

(a) The quadridiagonal matrix P defined by (5.2) has the factorization P = L(LUx + λI)
where

• L is the lower-bidiagonal matrix with 1 on the diagonal and 1, 2, 3, . . . on
the subdiagonal, and

• Ux = ∆ + xI is the upper-bidiagonal matrix with 1 on the superdiagonal
and x on the diagonal.

(b) P is totally positive in the ring Z[x, λ] equipped with the coefficientwise order.

Proof. (a) It is easy to see that P = P ◦ + xLL. Since P ◦ = L(L∆ + λI) by
Proposition 5.1(a), we have P = L[L(∆ + xI) + λI], which proves part (a).

(b) By Lemma 2.1, the bidiagonal matrices L and Ux are totally positive in the
ring Z[x] equipped with the coefficientwise order. It follows that the tridiagonal
matrix LUx is also totally positive in the ring Z[x] equipped with the coefficientwise
order. Then the tridiagonal comparison theorem (Proposition 2.6) shows that the
tridiagonal matrix LUx + λI is totally positive in the ring Z[x, λ] equipped with the
coefficientwise order. Therefore the same holds for P = L(LUx + λI). □

This completes the proof of Proposition 1.3(b).

Remarks. 1. For λ = 0 (α = −1), we have P = LLUx, which is the production
matrix for the known 2-S-fraction for the Lah polynomials [58, Theorem 1.5 with
r = 2], which has coefficients

α3n−1 = x (5.3a)

α3n = n (5.3b)

α3n+1 = n (5.3c)

(For the production matrix associated to a 2-S-fraction, see [59, Propositions 7.2 and
8.2 and eqn. (7.8)] or the case j = 0 of Proposition A.3 below.) However, it turns out
that this same production matrix has a one-parameter family of distinct factorizations
P = L1L2Ux, arising from the 2-S-fractions with

α3n−1 = x (5.4a)

α3n = cn n (5.4b)

α3n+1 = (2 − cn)n (5.4c)
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where

cn
def
=

(n− 1) − (n− 2)κ

n − (n− 1)κ
for n ≥ 1 (5.5)

and κ ∈ [0, 1]: see Proposition A.8 below. The case κ = 1 is the known 2-S-fraction;
all the others appear to be new.

2. It is easy to see that L∆ + I = ∆L (this is a special case of (A.23) below)
and hence LUx + I = UxL. This implies that for λ = 1 (α = 0), we have P =
L(LUx + I) = LUxL. This is the production matrix for the generalized 2-Stieltjes–
Rogers polynomials of type j = 1 with the coefficients (5.3): see Proposition A.3 for
the general theory, and Proposition A.12 for this application. ■

6 Total positivity of the production matrices:

Multivariate case

In this section we will prove Proposition 1.6 on the total positivity of the pro-
duction matrices for the multivariate Laguerre polynomials. The proof of Proposi-
tion 1.6(a), dealing with the tridiagonal matrix P ◦♭, is an easy factorization combined
with an appeal to the tridiagonal comparison theorem. By contrast, the proof of
Proposition 1.6(b), dealing with the quadridiagonal matrix P ♭, is decidedly nontriv-
ial.

6.1 The tridiagonal matrix P ◦♭: Proof of Proposition 1.6(a)

Proof of Proposition 1.6(a). Let Q the matrix (A.8) with α2k−1 = (k+α)yp and
α2k = kyv for k ≥ 1; note that these coefficients are nonnegative in the ring R because
of the hypotheses α ≥ −1, yp ≥ 0 and yv ≥ 0. It then follows from Lemma 2.1 that
Q is totally positive in the ring R. The matrix Q has elements

qn,n+1 = 1 (6.1a)

qn,n = (1 + α)yp + n(yp + yv) (6.1b)

qn,n−1 = n(n + α)ypyv (6.1c)

qn,k = 0 if k < n− 1 or k > n + 1 (6.1d)

Then P ◦♭ = Q+D, where D is the diagonal matrix with entries dn = (1 + α)(yfp − yp)+
n(yda + ydd − yp − yv). By hypothesis these entries are nonnegative in the ring R, so
the tridiagonal comparison theorem (Proposition 2.6) implies that P ◦♭ is totally pos-
itive in the ring R. □

6.2 The quadridiagonal matrix P ♭: Proof of Proposition 1.6(b)

We will now prove Proposition 1.6(b), which asserts the total positivity of the
production matrix (1.43) when the variables are substituted to elements of a partially
ordered commutative ring R that satisfy λ ≥ 0, λyfp = λyp, yp ≥ 0, yv ≥ 0, yda+ydd ≥
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yp + yv and x ≥ 0. We will do this by proving the coefficientwise total positivity of
a much more general quadridiagonal lower-Hessenberg matrix P , defined by

P
def
= L1UL2 + L1D1 + D2L2 (6.2a)

= L1(UL2 + D1) + D2L2 (6.2b)

= (L1U + D2)L2 + L1D1 (6.2c)

where

• L1 is the lower-bidiagonal matrix with the sequence a0, a1, . . . on the diagonal,
the sequence b1, b2, . . . on the subdiagonal, and zeroes elsewhere;

• U is the upper-bidiagonal matrix with the sequence c1, c2, . . . on the superdiag-
onal, the sequence d0, d1, . . . on the diagonal, and zeroes elsewhere;

• L2 is the lower-bidiagonal matrix with the sequence e0, e1, . . . on the diagonal,
the sequence f1, f2, . . . on the subdiagonal, and zeroes elsewhere;

• D1 is the diagonal matrix with entries g0, g1, . . . ;

• D2 is the diagonal matrix with entries h0, h1, . . . ;

and a = (an)n≥0, b = (bn)n≥1, c = (cn)n≥1, d = (dn)n≥0, e = (en)n≥0, f = (fn)n≥1,
g = (gn)n≥0, and h = (hn)n≥0 are all indeterminates. The entries in the nth row of
P = (pn,k)k≥0 are given by

pn,n+1 = ancn+1en+1 (6.3a)

pn,n = andnen + bncnen + ancn+1fn+1 + angn + hnen (6.3b)

pn,n−1 = andnfn + bncnfn + bndn−1en−1 + bngn−1 + hnfn (6.3c)

pn,n−2 = bndn−1fn−1 (6.3d)

pn,k = 0 if k < n− 2 or k > n + 1 (6.3e)

where by definition b0 = c0 = f0 = 0 and an = bn = cn = dn = en = fn = gn = hn = 0
whenever n < 0. Our main result is:

Theorem 6.1 (Total positivity of the generalized production matrix). The ma-
trix P defined by (6.2)/(6.3) is totally positive, coefficientwise in the indeterminates
a,b, c,d, e, f ,g,h.

Proof of Proposition 1.6(b) assuming Theorem 6.1. Specialize the matrix
(6.3) by setting

an = cn = en = 1 (6.4a)

bn = nyv (6.4b)

dn = nyp (6.4c)

fn = x (6.4d)

gn = λyp (= λyfp) (6.4e)

hn = n(yda + ydd − yp − yv) (6.4f)

□
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Theorem 6.1 will be proven as follows. Define the matrix Q = (qn,k)n,k≥0 by

Q
def
= P

∣∣
h=0

= L1(UL2 + D1) , (6.5)

or in other words

qn,n+1 = ancn+1en+1 (6.6a)

qn,n = andnen + bncnen + ancn+1fn+1 + angn (6.6b)

qn,n−1 = andnfn + bncnfn + bndn−1en−1 + bngn−1 (6.6c)

qn,n−2 = bndn−1fn−1 (6.6d)

qn,k = 0 if k < n− 2 or k > n + 1 (6.6e)

Then
P = Q + D2L2. (6.7)

We will begin by proving (Lemma 6.6) that Q is coefficientwise totally positive; this
proof uses the factorization Q = L1(UL2 +D1) together with the tridiagonal compar-
ison theorem, in close analogy with Propositions 1.6(a) and 5.2. It follows that for
every integer m ≥ 0, the matrix consisting of first m rows of Q is also coefficientwise
totally positive.

The rest of the proof shows how to restore the terms in P involving h. In terms
of the row vectors (pn)n≥0, (qn)n≥0, (ℓn)n≥0 associated to the matrices P,Q, L2, equa-
tion (6.7) can be rewritten as

pn = qn + hnℓn , (6.8)

where

ℓ0 =
[
e0 01×∞

]
(6.9a)

ℓn =
[
01×n−1 fn en 01×∞

]
for n ≥ 1 (6.9b)

Remark. Here we have chosen to write Q
def
= P |h=0 = L1(UL2 + D1) and

P = Q+D2L2 and to argue by rows (because D2 acts on the left). We could equally

well have started from Q′ def
= P |g=0 = (L1U + D2)L2 and P = Q′ + L1D1 and to

argue by columns (because D1 acts on the right). The reader is invited to work out
this variant proof. ■

Our proof is based on considering the matrix



q0
...

qn−1

pn
...
pm


, which we shall sometimes

write henceforth for typographical simplicity as [[q0, . . . , qn−1,pn, . . . ,pm]] (and like-
wise for other matrices written by rows). We will show (Lemma 6.10) that for every
pair of integers 0 ≤ n ≤ m+ 1, this matrix is totally positive; and we will do this, for
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each fixed m ≥ 0, by induction on n = m+1,m,m−1, . . . , 0. The base case n = m+1
of this induction is thus Lemma 6.6, and the final case n = 0 is Theorem 6.1. The
proof of Lemma 6.10 will involve the following steps:

Lemma 6.7: The matrix [[q0, . . . , qn−1, ℓn]] is totally positive.

Lemma 6.8: If the matrix [[pn+1, . . . ,pm]] is totally positive,
then so is [[q0, . . . , qn−1, ℓn,pn+1, . . . ,pm]].

The induction step (Lemma 6.9): If the matrix [[q0, . . . , qn,pn+1, . . . ,pm]] is
totally positive, then so is [[q0, . . . , qn−1,pn, . . . ,pm]].

Putting this all together will prove Lemma 6.10 and hence Theorem 6.1.
As preparation, we need some simple lemmas concerning operations that preserve

total positivity. All of these hold in an arbitrary partially ordered commutative ring,
and apply to rectangular (i.e. not necessarily square) matrices of suitably conformable
dimensions.

Lemma 6.2 (Increasing the upper-left entry). Let A be a (finite or infinite) matrix
with entries in a partially ordered commutative ring R; let c be a nonnegative element
of R; and let A′ be the matrix obtained from A by adding c to the upper-left entry and
leaving all other entries unchanged. If A is totally positive of order r, then so is A′.

Proof. Consider a minor on rows I and columns J . If I and J do not both contain 1,
then obviously det(A′)IJ = detAIJ . If I and J both contain 1, then det(A′)IJ =
detAIJ + c detAI\1,J\1. □

Lemma 6.3 (Matrices that coincide except in one row).

Let A =

Mα
N

 and B =

Mβ
N

 be matrices that coincide except in one row; let a, b ≥ 0;

and let C =

 M
aα + bβ

N

. If A and B are totally positive of order r, then so is C.

Proof. This is an immediate consequence of the row linearity of determinants. □

Of course, an analogous result holds for matrices that coincide except in one column.

Lemma 6.4 (Block-diagonal matrices). If the matrices A and B are totally positive

of order r, then so is the matrix C =

[
A

B

]
.

Proof. This is trivial: every nonzero minor of C is a product of minors of A and B.
□

A slightly less trivial result [42, p. 398] concerns matrices that are not quite block-
diagonal, being shifted so as to overlap in one row:
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Lemma 6.5 (Almost-block-diagonal matrices). Let A =

[
A′

α

]
and B =

[
β
B′

]
be two

matrices, where the row vector α is the last row of A and the row vector β is the first
row of B. Now form the matrix

M =

 A′ 0
α β
0 B′

 , (6.10)

in which the blocks A and B overlap in one row. If A and B are totally positive of
order r, then so is M .

Proof. By Lemma 6.4, the block-diagonal matrices

M1
def
=

 A

B′

 =

 A′

α 0
B′

 and M2
def
=

 A′

B

 =

 A′

0 β
B′


(6.11)

are totally positive of order r. But then, by Lemma 6.3, so is M . □

Of course, an analogous result holds for matrices that overlap in one column.

We now begin the proof of Theorem 6.1.

Lemma 6.6 (Total positivity of Q). The matrix Q defined by (6.5)/(6.6) is totally
positive, coefficientwise in the indeterminates a,b, c,d, e, f ,g.

In particular, for every integer m ≥ 0, the matrix [[q0, . . . , qm]] is coefficientwise
totally positive.

Proof. From (6.2)/(6.5) we have

Q = L1(UL2 + D1) . (6.12)

By Lemma 2.1, the matrices L1, L2, U and D1 are all totally positive. Therefore,
UL2 is totally positive and tridiagonal, while D1 is totally positive and diagonal.
The tridiagonal comparison theorem (Proposition 2.6) then implies that UL2 +D1 is
totally positive. The result then follows. □

Lemma 6.7. For each integer n ≥ 0, the matrix [[q0, . . . , qn−1, ℓn]] is coefficientwise
totally positive.

Proof. The case when n = 0 is trivial. So we assume that n ≥ 1.
Let q̃n−1 = (q̃n−1,k)k≥0 be the row vector with entries

q̃n−1,n = an−1cnen (6.13a)

q̃n−1,n−1 = an−1dn−1en−1 + bn−1cn−1en−1 + an−1gn−1 (6.13b)

q̃n−1,n−2 = an−1dn−1fn−1 + bn−1cn−1fn−1 + bn−1dn−2en−2 + bn−1gn−2 (6.13c)

q̃n−1,n−3 = bn−1dn−2fn−2 (6.13d)

q̃n−1,k = 0 if k < n− 3 or k > n (6.13e)
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Thus, q̃n−1 is identical to qn−1 except that the entry q̃n−1,n−1 does not contain the

summand an−1cnfn. Also, let ℓ̃n = (l̃n,k)k≥0 be the row vector

ℓ̃n =
[
01×n en 01×∞

]
. (6.14)

Then

qn−1,n−1 = q̃n−1,n−1 +
fn
en

q̃n−1,n (6.15a)

ln,n−1 = l̃n,n−1 +
fn
en

l̃n,n (6.15b)

(actually l̃n,n−1 = 0 but it is convenient to write it anyway).
By Lemma 6.6, the matrix

M1 = [[q0, . . . , qn−2, qn−1]] (6.16)

is coefficientwise totally positive. Therefore the matrix

M2 = [[q0, . . . , qn−2, q̃n−1]] , (6.17)

which is obtained from M1 by setting fn = 0, is also coefficientwise totally positive.
(Setting fn = 0 also affects rows n and n + 1 of Q, but these are not contained in
M1.) Then

M3 = [[q0, . . . , qn−2, q̃n−1, ℓ̃n]] (6.18)

is obtained from M2 by adjoining a row that has en in the nth column and 0 elsewhere;
this is totally positive because M2 is zero beyond the nth column (this reasoning is a
very special case of Lemma 6.5). Finally, the matrix

M = [[q0, . . . , qn−1, ℓn]] (6.19)

can be obtained by right-multiplying M3 by the lower-bidiagonal matrix that has 1 on
the diagonal, fn/en in position (n, n− 1), and 0 elsewhere (this adds fn/en times the
nth column to the (n− 1)st column, which is the content of (6.15)). This completes
the proof of Lemma 6.7. □

Remark. To justify the use of the quantity fn/en, it suffices to work in a ring of
Laurent polynomials with indeterminates e = (en)n≥0 and e−1 = (e−1

n )n≥0, and then
to consider coefficientwise total positivity in this ring. At the end, all quantities will
belong to the subring consisting of ordinary polynomials with nonnegative exponents.
■

Lemma 6.8. Fix integers 0 ≤ n ≤ m. If the matrix [[pn+1, . . . ,pm]] is coefficientwise

totally positive, then so is the matrix M0
def
= [[q0, . . . , qn−1, ℓn,pn+1, . . . ,pm]] .

Proof. The case n = m is Lemma 6.7; so assume that n < m.
Let tn+1 be obtained from pn+1 by specializing dn to zero; then

pn+1 = tn+1 + bn+1dnℓn . (6.20)
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Note that this specialization does not affect pℓ for ℓ > n + 1. By hypothesis

M1
def
=

pn+1
...
pm

 (6.21)

is coefficientwise totally positive; this implies, by specialization, that

M2
def
=


tn+1

pn+2
...
pm

 (6.22)

is coefficientwise totally positive. Also let

M3
def
=


q0
...

qn−1

ℓn

 . (6.23)

(Here for clarity we have avoided the notation [[ · · · ]].)

Now observe that the matrix S
def
=

[
M3

M2

]
consists of two blocks overlapping in a

single column (namely, column n when the columns are numbered starting at 0):

S =

[
M3

M2

]
=



q0
...

qn−1

ℓn
tn+1

pn+2
...
pm


=

 ∗ ∗ ∗ 0n×∞

01×n−1 fn en 01×∞

0 0 ∗ ∗

 (6.24)

where the asterisks stand for blocks of unspecified entries (which may be zero or
nonzero). By Lemma 6.7, the matrix M3 is totally positive; and we have just shown
that the matrix M2 is totally positive. So the transpose of Lemma 6.5 implies that
the matrix S is totally positive.

On the other hand, the matrix M0 can be obtained from S by left-multiplying it
by the lower-bidiagonal matrix that has 1 on the diagonal, bn+1dn in position (n+1, n)
and zeroes elsewhere (this adds bn+1dn times row n to row n+ 1, which is the content
of (6.20)). This proves that the desired matrix M0 is totally positive. □

Lemma 6.9 (Induction step).
Fix integers 0 ≤ n ≤ m. If the matrix [[q0, . . . , qn,pn+1, . . . ,pm]] is coefficientwise
totally positive, then so is [[q0, . . . , qn−1,pn, . . . ,pm]].

47



Proof. Notice that pn = qn + hnℓn. The matrix [[q0, . . . , qn−1, qn,pn+1, . . . ,pm]]
is totally positive by hypothesis; and the matrix [[q0, . . . , qn−1, ℓn,pn+1, . . . ,pm]] is
totally positive by Lemma 6.8. So the conclusion follows by Lemma 6.3 with a = 1
and b = hn. □

Lemma 6.10.
For every pair of integers 0 ≤ n ≤ m + 1, the matrix [[q0, . . . , qn−1,pn, . . . ,pm]] is
coefficientwise totally positive.

Proof. Start from Lemma 6.6, and apply Lemma 6.9 for n = m,m− 1, . . . , 0. □

This completes the proof of Theorem 6.1.

We conclude by posing the following open problem:

Problem 6.11. Find a combinatorial interpretation for the output matrix A =
O(P ) generated by the production matrix (6.2)/(6.3), or by interesting specializations
thereof.

7 The connection with multiple orthogonal poly-

nomials

In this section we would like to explain how we were led to guess the quadridiag-
onal production matrix (1.41), by virtue of an unexpected connection with multiple
orthogonal polynomials.

Let us first show that, for each α ≥ −1 and x ≥ 0, the sequence (L(α)
n (x))n≥0 is

a Stieltjes moment sequence, by explicitly exhibiting its Stieltjes moment representa-
tion. Indeed, we have the integral representation (compare [77, p. 103, eq. (5.4.1)])

L(α)
n (x) = e−xx−α/2

∞∫
0

un+α/2 e−u Iα(2
√
xu) du (7.1)

valid for α > −1, where Iα is a modified Bessel function of the first kind [83, p. 77]

Iα(z) =
∞∑
k=0

(z/2)α+2k

k! Γ(α + k + 1)
. (7.2)

For n = 0, the formula (7.1) is easily verified by inserting (7.2) and integrating term-
by-term. The general formula then follows by computing the exponential generating
function of the right-hand side of (7.1), i.e. multiplying (7.1) by tn/n! and summing
over n ≥ 0; the result is (1−t)−(α+1)ext/(1−t), which is indeed [by (1.2)] the exponential

generating function of L(α)
n (x) = n!L

(α)
n (x). And since Iα is nonnegative on [0,∞), the

integral representation (7.1) is a Stieltjes moment representation, with representing
measure

dµα,x(u) = e−xx−α/2 uα/2 e−u Iα(2
√
xu) du on [0,∞) (7.3)
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for α > −1 (with the corresponding limiting measure when α = −1).15

We now invoke a recently discovered [68] connection between multiple orthog-
onal polynomials and branched continued fractions. Recall that multiple orthog-
onal polynomials [40, Chapter 23] are a generalization of conventional orthogonal
polynomials [15, 40, 77] in which the polynomials satisfy orthogonality relations with
respect to several measures µ1, . . . , µr rather than just one. In particular, the multi-
ple orthogonal polynomials of type II, denoted Pn(x) and indexed by a multi-index
n = (n1, . . . , nr) ∈ Nr, are monic polynomials of degree |n| =

∑r
i=1 ni that satisfy the

orthogonality relations∫
xk Pn(x) dµi(x) = 0 for 1 ≤ i ≤ r and 0 ≤ k < ni . (7.4)

(Here we restrict attention to the case in which the system of measures µ1, . . . , µr

is perfect : namely, there exists, for each multi-index n, a unique monic polynomial
Pn(x) of degree |n| satisfying (7.4). Several general sufficient conditions for a system
to be perfect are known (Angelesco systems, AT systems, Nikishin systems, . . . ):
see [40, Chapter 23] [78].)

Now recall [81, Theorems 50.1 and 51.1] [79, Chapitre V] [17, Theorem 2.3 and
Corollary 2.5] [85, Section 5.2.1] that the conventional orthogonal polynomials asso-
ciated to a measure µ (which we here normalize to total mass 1) satisfy a three-term
recurrence relation of the form

Pn+1(x) = (x− γn)Pn(x) − βn Pn−1(x) , (7.5)

where the coefficients γn and βn occurring in this recurrence relation are identical to
those occurring in the classical J-fraction for the moments of µ, i.e.

∞∑
n=0

an t
n =

1

1 − γ0t−
β1t

2

1 − γ1t−
β2t

2

1 − γ2t−
β3t

2

1 − γ3t− · · ·

(7.6)

where an =
∫
xn dµ(x). Now, Flajolet [29] showed that the Taylor coefficient an in

(7.6) is the generating polynomial for Motzkin paths from (0, 0) to (n, 0) in which
each rise gets weight 1, each level step at height i gets weight γi, and each fall from
height i gets weight βi. In other words, an is the (n, 0) matrix element of the output
matrix A = O(Π), where Π is the tridiagonal production matrix

Π =


γ0 1
β1 γ1 1

β2 γ2 1
. . . . . . . . .

 . (7.7)

It turns out [68] that a generalization of this connection holds for multiple or-
thogonal polynomials. Fix measures µ1, . . . , µr, and let (Pn(x))n∈Nr be the corre-
sponding multiple orthogonal polynomials of type II. Among these, let us consider

15These facts were observed many years ago by Karlin [42, p. 440] [43, p. 62].
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the multi-indices n = (n1, . . . , nr) lying on the so-called stepline : this is the near-
diagonal sequence starting at (0, 0, . . . , 0) and following the path (n, n, . . . , n) →
(n + 1, n, . . . , n) → (n + 1, n + 1, . . . , n) → . . . → (n + 1, n + 1, . . . , n + 1) → . . . .

That is, we define a singly-indexed sequence (P̃n(x))n≥0 by

P̃n(x) = P(n1,...,nr)(x) where ni =
⌊n + r − i

r

⌋
for 1 ≤ i ≤ r . (7.8)

It is well known [40, Theorem 23.1.7] that the stepline sequence (P̃n(x))n≥0 satisfies
an (r + 2)-term recurrence of the form

P̃n+1(x) = (x− πnn) P̃n(x) −
r∑

i=1

πn,n−i P̃n−i(x) , (7.9)

or equivalently

xP̃n(x) =
n+1∑

k=n−r

πnk P̃k(x) (7.10)

where πn,n+1 = 1. Here the production matrix Π = (πnk)n,k≥0 is an (r, 1)-banded unit-
lower-Hessenberg matrix, i.e. πnk = 0 for k < n−r or k > n+1. Furthermore, it turns
out [68] — and this is the key fact — that the zeroth column of the output matrix
A = O(Π) is precisely the moment sequence of the measure µ1. Therefore, if one
knows the recurrence relation (7.9)/(7.10) for the multiple orthogonal polynomials
along the stepline, one also knows a production matrix for the moment sequence of
the measure µ1.

Remark. The subsequent columns of the output matrix A = O(Π) also have
interpretations [68] as linear combinations of the moment sequences of µ1, . . . , µr.
For instance, for 0 ≤ i ≤ r−1, the ith column of the output matrix is that particular
linear combination of the moment sequences of µ1, µ2, . . . , µi+1 that annihilates the
first i entries and makes the next entry equal to 1. But we will not need this fact
here. ■

Return now to our Laguerre polynomials and their Stieltjes moment representation
with the measure µα,x defined in (7.3). We then benefit from exceedingly good for-
tune: some years ago, Coussement and Van Assche [19] studied the multiple orthogo-
nal polynomials with r = 2 associated to the pair of measures (µ1, µ2) = (µα,x, µα+1,x).
(They actually used a slightly different normalization, so that their moments are a

rescaled version of the reversed monic unsigned Laguerre polynomials L(α)

n (x): com-
pare [19, Lemma 1] to our (1.4).) And they computed explicitly, among other things,
the four-term recurrence relation for the multiple orthogonal polynomials of type II
along the stepline [19, Theorem 9]. After translating their normalization to ours, this
four-term recurrence corresponds precisely to the quadridiagonal production matrix
(1.41) for the monic unsigned Laguerre polynomials L(α)

n (x). This is how we first
discovered these production matrices.

From here it was a small step to discover the production matrix (1.43) for our
multivariate Laguerre polynomials. Indeed, once we had exploited the Foata–Strehl
[31] combinatorial model to define the multivariate Laguerre polynomials (1.37), it
was not difficult to guess — helped by a bit of computer experimentation — how the
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production matrix (1.41), with its single variable x, should be refined to introduce
the further variables yp, yv, yda, ydd, yfp.

Let us also observe that there is another way that we could have discovered the
production matrix (1.41) for the univariate Laguerre polynomials. As observed pre-
ceding Proposition 3.1, we already knew a tridiagonal production matrix for the
Laguerre polynomials at x = 0, which are L(α)

n (0) = (1 + α)n. It would then have
been natural to try perturbing this tridiagonal matrix by terms linear in x; and if one
also realized that one ought to consider introducing a second subdiagonal, one could
try the Ansatz

pn,n+1 = 1 (7.11a)

pn,n = (2n + 1 + α) + Anx (7.11b)

pn,n−1 = n(n + α) + Bnx (7.11c)

pn,n−2 = Cnx (7.11d)

pn,k = 0 if k < n− 2 or k > n + 1 (7.11e)

A little computer work — setting the zeroth column of the output matrix equal to
L(α)

n (x) — would then lead quickly to the values of An, Bn, Cn for small n, from which
one could easily guess that An = 1, Bn = 2n and Cn = n(n− 1). This is not, in fact,
the way we first found the production matrix (1.41), but it easily could have been.
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A Generalized and modified m-Stieltjes–Rogers poly-

nomials

In this Appendix we introduce, for each integer m ≥ 1, an infinite sequence of
triangular arrays, indexed by an integer j ≥ 0, whose matrix elements we call the
generalized m-Stieltjes–Rogers polynomials of type j. We examine in particular the en-
tries in these matrices’ zeroth columns, which we call the modified m-Stieltjes–Rogers
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polynomials of type j. When j = 0 these polynomials reduce to the (generalized) m-
Stieltjes–Rogers polynomials introduced in [59, sections 5, 7 and 9]. When m = 1 they
reduce to the generalized classical Stieltjes–Rogers polynomials of the first (j = 0)
and second (j = 1) kinds. The discussion here expands and supersedes the treatment
in [59].

We begin (Section A.1) by reviewing the the theory of classical Stieltjes–Rogers
polynomials, and then (Section A.2) the basic ideas from [59] concerning the m-
Stieltjes–Rogers polynomials (of type 0). Then (Section A.3) we introduce the gener-
alized m-Stieltjes–Rogers polynomials of type j. Finally (Section A.4), we apply this
theory to the univariate Laguerre production matrix (1.41).

A.1 Classical Stieltjes–Rogers polynomials

A Dyck path is a path in the upper half-plane Z×N, starting and ending on the
horizontal axis, using steps (1, 1) [“rise” or “up step”] and (1,−1) [“fall” or “down
step”]. More generally, a Dyck path at level k is a path in Z× N≥k, starting and
ending at height k, using steps (1, 1) and (1,−1). Clearly a Dyck path must be of
even length; we denote by D2n the set of Dyck paths from (0, 0) to (2n, 0).

Now let α = (αi)i≥1 be an infinite set of indeterminates, and let Sn(α) be the
generating polynomial for Dyck paths from (0, 0) to (2n, 0) in which each rise gets
weight 1 and each fall from height i gets weight αi. Clearly Sn(α) is a homogeneous
polynomial of degree n with nonnegative integer coefficients; following Flajolet [29],
we call it the Stieltjes–Rogers polynomial of order n.

Let f0(t) =
∑∞

n=0 Sn(α) tn be the ordinary generating function for Dyck paths
with these weights (considered as a formal power series in t); and more generally, let
fk(t) be the ordinary generating function for Dyck paths at level k with these same
weights. (Obviously fk is just f0 with each αi replaced by αi+k; but we shall not
explicitly use this fact.) Then a straightforward “renewal” argument [29] gives the
functional equation

fk(t) = 1 + αk+1t fk(t) fk+1(t) (A.1)

or equivalently

fk(t) =
1

1 − αk+1t fk+1(t)
. (A.2)

Iterating (A.2), we see immediately that fk is given by the continued fraction

fk(t) =
1

1 −
αk+1t

1 −
αk+2t

1 −
αk+3t

1 − · · ·

(A.3)

and in particular that f0 is given by

f0(t) =
1

1 −
α1t

1 −
α2t

1 −
α3t

1 − · · ·

. (A.4)
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The right-hand sides of (A.3)/(A.4) are called (classical) Stieltjes-type continued
fractions , or (classical) S-fractions for short. This combinatorial interpretation
of S-fractions in terms of weighted Dyck paths is due to Flajolet [29].

We now generalize the Stieltjes–Rogers polynomials to a triangular array, as fol-
lows: We use the term partial Dyck path to denote a path in the upper half-plane
Z×N, using steps (1, 1) and (1,−1), that starts on the horizontal axis but is allowed
to end anywhere in the upper half-plane. For n, ℓ ≥ 0, we define the generalized
Stieltjes–Rogers polynomial of the first kind Sn,ℓ(α) to be the generating
polynomial for partial Dyck paths starting at (0, 0) and ending at (2n, 2ℓ), in which
each rise gets weight 1 and each fall from height i gets weight αi. Obviously Sn,ℓ

is nonvanishing only for 0 ≤ ℓ ≤ n, so we have an infinite lower-triangular array
S = (Sn,ℓ(α))n,ℓ≥0 in which the zeroth column displays the ordinary Stieltjes–Rogers
polynomials Sn,0 = Sn. In particular we have Sn,n = 1 and Sn,n−1 =

∑2n−1
i=1 αi.

Analogously, we define the generalized Stieltjes–Rogers polynomial of the
second kind S ′

n,ℓ(α) to be the generating polynomial for partial Dyck paths starting
at (0, 0) and ending at (2n + 1, 2ℓ + 1), in which again each rise gets weight 1 and
each fall from height i gets weight αi. Since S ′

n,ℓ is nonvanishing only for 0 ≤ ℓ ≤ n,
we obtain a second infinite lower-triangular array S′ = (S ′

n,ℓ(α))n,ℓ≥0. In particular

we have S ′
n,n = 1 and S ′

n,n−1 =
∑2n

i=1 αi.
The polynomials Sn,ℓ(α) and S ′

n,ℓ(α) manifestly satisfy the joint recurrence

S ′
n,ℓ = Sn,ℓ + α2ℓ+2 Sn,ℓ+1 (A.5a)

Sn+1,ℓ = S ′
n,ℓ−1 + α2ℓ+1 S

′
n,ℓ (A.5b)

for n, ℓ ≥ 0, with the initial condition S0,ℓ = δℓ0 (where of course we also set
S ′
n,−1 = 0). It follows that the Sn,ℓ satisfy the recurrence

Sn+1,ℓ = Sn,ℓ−1 + (α2ℓ + α2ℓ+1)Sn,ℓ + α2ℓ+1α2ℓ+2 Sn,ℓ+1 (A.6)

with the initial condition S0,ℓ = δℓ0 (where we set Sn,−1 = 0 and α0 = 0). In other
words, the unit-lower-triangular array S has the tridiagonal production matrix

P =


α1 1

α1α2 α2 + α3 1
α3α4 α4 + α5 1

. . . . . . . . .

 . (A.7)

Please observe now that the production matrix (A.7) can be factorized as a product
of two bidiagonal matrices:

α1 1
α1α2 α2 + α3 1

α3α4 α4 + α5 1
. . . . . . . . .

 =


1
α2 1

α4 1
. . . . . .



α1 1

α3 1
α5 1

. . . . . .


(A.8)

By Lemma 2.1 this shows [82, Lemma 3.3] that the production matrix (A.7) is totally
positive in the ring Z[α] equipped with the coefficientwise order. It then follows [70]
from Theorems 2.9 and 2.15 that the unit-lower-triangular array S of generalized
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Stieltjes–Rogers polynomials is coefficientwise totally positive, and that the sequence
(Sn(α))n≥0 of Stieltjes–Rogers polynomials is coefficientwise Hankel-totally positive.

Similar considerations apply to the matrix S′ of generalized Stieltjes–Rogers poly-
nomials of the second kind [59, eq. (7.12)]; we leave the details as an exercise for the
reader.

A.2 m-Stieltjes–Rogers polynomials (branched S-fractions)

In what follows we fix an integer m ≥ 1. We recall [4,10,59,62] that an m-Dyck
path is a path in the upper half-plane Z× N, starting and ending on the horizontal
axis, using steps (1, 1) [“rise” or “up step”] and (1,−m) [“m-fall” or “down step”].
More generally, an m-Dyck path at level k is a path in Z × N≥k, starting and
ending at height k, using steps (1, 1) and (1,−m). Since the number of up steps must
equal m times the number of down steps, the length of an m-Dyck path must be a
multiple of m + 1.

Now let α = (αi)i≥m be an infinite set of indeterminates. Then [59] the m-

Stieltjes–Rogers polynomial of order n, denoted S
(m)
n (α), is the generating poly-

nomial for m-Dyck paths from (0, 0) to ((m+ 1)n, 0) in which each rise gets weight 1

and each m-fall from height i gets weight αi. Clearly S
(m)
n (α) is a homogeneous

polynomial of degree n with nonnegative integer coefficients.
Let f0(t) =

∑∞
n=0 S

(m)
n (α) tn be the ordinary generating function for m-Dyck

paths with these weights; and more generally, let fk(t) be the ordinary generating
function for m-Dyck paths at level k with these same weights. (Obviously fk is just
f0 with each αi replaced by αi+k; but we shall not explicitly use this fact.) Then
straightforward combinatorial arguments [59] lead to the functional equation

fk(t) = 1 + αk+mt fk(t) fk+1(t) · · · fk+m(t) (A.9)

or equivalently

fk(t) =
1

1 − αk+mt fk+1(t) · · · fk+m(t)
. (A.10)

Iterating (A.10), we see immediately that fk is given by the branched continued
fraction

fk(t) =
1

1 − αk+mt
m∏

i1=1

1

1 − αk+m+i1t
m∏

i2=1

1

1 − αk+m+i1+i2t
m∏

i3=1

1

1 − · · ·

(A.11a)

= 1

1 −
αk+mt(

1 −
αk+m+1t(

1 −
αk+m+2t

(· · · ) · · · (· · · )

)
· · ·
(

1 −
αk+2m+1t

(· · · ) · · · (· · · )

)
)

· · ·

(
1 −

αk+2mt(
1 −

αk+2m+1t

(· · · ) · · · (· · · )

)
· · ·
(

1 −
αk+3mt

(· · · ) · · · (· · · )

)
)

(A.11b)

and in particular that f0 is given by the specialization of (A.11) to k = 0. We shall call
the right-hand side of (A.11) an m-branched Stieltjes-type continued fraction ,
or m-S-fraction for short.
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Remark. In truth, we hardly ever use the branched continued fraction (A.11); in-
stead, we work directly with the m-Dyck paths and/or with the recurrence (A.9)/(A.10)
that their generating functions satisfy. ■

A.3 Generalized m-Stieltjes–Rogers polynomials of type j

Fix again an integer m ≥ 1. A partial m-Dyck path is a path in the upper
half-plane Z × N, starting on the horizontal axis but ending anywhere in the upper
half-plane, using steps (1, 1) [“rise”] and (1,−m) [“m-fall”]. A partial m-Dyck path
starting at (0, 0) must stay always within the set Vm = {(x, y) ∈ Z × N : x =
y mod (m + 1)}. An m-Dyck path is simply a partial m-Dyck path that ends on
the horizontal axis.

Now let α = (αi)i≥m be an infinite set of indeterminates. We recall (Section A.2)

that the m-Stieltjes–Rogers polynomial S
(m)
n (α) is defined to be the generating poly-

nomial for m-Dyck paths from (0, 0) to ((m + 1)n, 0), in which each rise gets weight 1
and each m-fall from height i gets weight αi. Now, more generally, for any integer
j ≥ 0, we define the modified m-Stieltjes–Rogers polynomial of type j, de-
noted S

(m;j)
n (α), to be the generating polynomial for partial m-Dyck paths from (0, 0)

to ((m + 1)n + j, j), in which each rise gets weight 1 and each m-fall from height i
gets weight αi.

16

For j = 0, the modified m-Stieltjes–Rogers polynomials are of course the usual m-
Stieltjes–Rogers polynomials S

(m;0)
n (α) = S

(m)
n (α), with ordinary generating function

f0(t). For general j ≥ 0, the ordinary generating function of the modified m-Stieltjes–
Rogers polynomials of type j was found in [59, section 2.3] (though this terminology
was not used there). Recall that fk(t) is the ordinary generating function for m-Dyck
paths at level k with the weights α. We then have:

Proposition A.1 (Generating function of modified m-Stieltjes–Rogers polynomials).
For each integer j ≥ 0, we have

∞∑
n=0

S(m;j)
n (α) tn = f0(t) f1(t) · · · fj(t) . (A.12)

The proof is a simple combinatorial argument based on splitting the partial m-Dyck
path at its last return to level 0, then its last return to level 1, etc. [59, sections 2.1
and 2.3].

For 0 ≤ j ≤ m, the modified m-Stieltjes–Rogers polynomials S
(m;j)
n (α) also have

interpretations in terms of the ordinary m-Stieltjes–Rogers polynomials S
(m)
n (α). Be-

sides the trivial case j = 0, the simplest case is j = m: since an m-Dyck path of
nonzero length must always end with an m-fall from height m, we have

S(m;m)
n (α) =

S
(m)
n+1(α)

αm

. (A.13)

16In [59] we used the notation S
(m)
n|j (α) for what we are now calling S

(m;j)
n (α).
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Observe also that, multiplying both sides of (A.13) by tn and summing over n ≥ 0
and then using (A.12), we obtain

f0(t) f1(t) · · · fm(t) =
f0(t) − 1

αmt
, (A.14)

which is precisely the fundamental functional equation (A.9) at k = 0.
Now consider (A.13) specialized to αm = 0: it generates partial m-Dyck paths

from (0, 0) to ((m + 1)n + m,m) with the constraint that they must stay always at
height ≥ 1 (except of course for the starting point). Removing the first step, which is
necessarily a rise, we have paths from (1, 1) to ((m+ 1)n+m,m) with the constraint
that must stay always at height ≥ 1; or translating everything by (−1,−1), we have
partial m-Dyck paths from (0, 0) to ((m + 1)n + m− 1,m− 1). It follows that

S(m;m−1)
n (α) =

S
(m)
n+1(α)

αm

∣∣∣∣∣
αm=0, αi→αi−1

. (A.15)

Continuing in the same way, we have for 0 ≤ ℓ ≤ m,

S(m;m−ℓ)
n (α) =

S
(m)
n+1(α)

αm

∣∣∣∣∣
αm=αm+1=...=αm+ℓ−1=0, αi→αi−ℓ

. (A.16)

So all the modified m-Stieltjes–Rogers polynomials S
(m;j)
n (α) for 0 ≤ j ≤ m can

be interpreted as S
(m)
n+1(α)/αm with some initial coefficients αi set to zero (and the

variables renamed). Multiplying both sides of (A.16) by tn and summing over n ≥ 0,
we obtain an alternate form for the generating function of Proposition A.1 when
j ≤ m:

Proposition A.2 (Alternate generating function of modified m-Stieltjes–Rogers
polynomials). For each integer j satisfying 0 ≤ j ≤ m, we have

∞∑
n=0

S(m;j)
n (α) tn =

f0(t) − 1

αmt

∣∣∣∣
αm=αm+1=...=α2m−j−1=0, αi→αi+j−m

. (A.17)

We now generalize this construction by introducing, for each integer j ≥ 0, a
triangular array. For each triplet of integers j, n, k ≥ 0, let S

(m;j)
n,k (α) be the generat-

ing polynomial for partial m-Dyck paths from (0, 0) to ((m + 1)n + j, (m + 1)k + j),
in which each rise gets weight 1 and each m-fall from height i gets weight αi. We call
the S

(m;j)
n,k the generalized m-Stieltjes–Rogers polynomials of type j. Obvi-

ously S
(m;j)
n,k is nonvanishing only for 0 ≤ k ≤ n, and S

(m;j)
n,n = 1. We therefore have, for

each integer j ≥ 0, an infinite unit-lower-triangular array S(m;j) =
(
S
(m;j)
n,k (α)

)
n,k≥0

.

The zeroth column of this array (k = 0) consists of the modified m-Stieltjes–Rogers

polynomials of type j defined earlier: S
(m;j)
n,0 (α) = S

(m;j)
n (α),

Let us now take a closer look at the triangular arrays S(m;j). Note first that the
arrays for 0 ≤ j ≤ m are the most fundamental, in the sense that any array S(m;j)

for j ≥ m + 1 is a submatrix of the array S(m;j′) with j′
def
= j mod (m + 1): namely,
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if j = j′ + (m + 1)ℓ, then S
(m;j)
n,k = S

(m;j′)
n+ℓ,k+ℓ. In terms of the matrix ∆ with 1 on the

superdiagonal and 0 elsewhere, we can write

S(m;j′+(m+1)ℓ) = ∆ℓS(m;j′)(∆T)ℓ . (A.18)

So we shall concentrate, wherever necessary, on the cases 0 ≤ j ≤ m.
The polynomials S

(m;j)
n,k satisfy a simple pair of recurrences, based on examining

the two possibilities (rise or m-fall) for the final step of a partial m-Dyck path:

S
(m;j+1)
n,k = S

(m;j)
n,k + α(m+1)(k+1)+j S

(m;j)
n,k+1 (A.19)

S
(m;j)
n+1,k = S

(m;j+m)
n,k−1 + α(m+1)k+j+m S

(m;j+m)
n,k (A.20)

In each case, the first (resp. second) term on the right-hand side corresponds to the
final step being a rise (resp. an m-fall). For the classical case m = 1 and j = 0, these
recurrences are (A.5).

The production matrix for the triangle S(m;0) was found in [59, sections 7.1 and
8.2]; and the production matrix for the triangle S(m;m) was in essence found in [59,
section 7.2] (though this terminology was not used there). Here we will generalize this
analysis, and find the production matrices for all the triangles S(m;j) with 0 ≤ j ≤ m.

We begin by defining some special matrices M = (mij)i,j≥0:

• L(s1, s2, . . .) is the lower-bidiagonal matrix with 1 on the diagonal and s1, s2, . . .
on the subdiagonal:

L(s1, s2, . . .) =


1
s1 1

s2 1
s3 1

. . . . . .

 . (A.21)

• U⋆(s1, s2, . . .) is the upper-bidiagonal matrix with 1 on the superdiagonal and
s1, s2, . . . on the diagonal:

U⋆(s1, s2, . . .) =


s1 1

s2 1
s3 1

s4 1
. . . . . .

 . (A.22)

Note that

∆L(s1, s2, . . .) = U⋆(s1, s2, . . .) (A.23a)

L(s1, s2, . . .) ∆ = U⋆(0, s1, s2, . . .) (A.23b)

Let us now define, for each r ≥ 0, the matrices

Lr
def
= L(αm+r, α2m+r+1, α3m+r+2, . . .) (A.24)

and
Ur

def
= ∆Lr = U⋆(αm+r, α2m+r+1, α3m+r+2, . . .) . (A.25)

We then have:
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Proposition A.3 (Production matrices for the generalized m-Stieltjes–Rogers poly-
nomials of type j). For 0 ≤ j ≤ m, the generalized m-Stieltjes–Rogers matrix of type

j, namely S(m;j) =
(
S
(m;j)
n,k (α)

)
n,k≥0

, has production matrix P (m;j) def
= (S(m;j))−1∆S(m;j)

given by
P (m;j) = Lj+1Lj+2 · · · Lm U0 L1L2 · · · Lj . (A.26)

(Here Lj+1Lj+2 · · · Lm is the identity matrix when j = m, and L1L2 · · ·Lj is the
identity matrix when j = 0.)

This result was also found independently, and almost simultaneously, by Hélder
Lima [49].

Remark. Any production matrix P (m;j) as in (A.26) can be rewritten as P (m;j′)

for any j′ ∈ [j,m] with different parameters α, by using (A.23) to move the matrix
∆ to the left: L(s1, s2, . . .) ∆ = ∆L(0, s1, s2, . . .). A little thought then shows that
this result can be stated as

P (m;j)(αm, αm+1, αm+2, . . .) = P (m;j+1)(0, αm, αm+1, αm+2, . . .) for 0 ≤ j ≤ m− 1 .
(A.27)

There is also a simple combinatorial argument for this identity: as explained below,
(P (m;j))k,k′ is the sum over (m + 1)-step walks in N going from height (m + 1)k + j
to height (m+ 1)k′ + j, using steps (1, 1) and (1,−m), with weight αi for each m-fall
from height i; and these quantities manifestly satisfy (A.27).

However, the converse is not true: it is not in general possible to reduce j. In
particular, the modified m-Stieltjes–Rogers polynomials of type j > 0 are a genuine
generalization of those of type 0. ■

The proof of Proposition A.3 is in fact a very minor modification of the proof
of [59, Proposition 7.2], but for clarity we include a few more details:

Proof. Let us first clarify what the matrices Lr and U0 do. The ith row of the
matrix Lr corresponds to steps starting at height (m + 1)i + r − 1: more precisely,
the diagonal (i → i) entries in the matrix Lr give the weights for rises from height
(m + 1)i + r − 1 to height (m + 1)i + r, while the subdiagonal (i → i − 1) entries
in the matrix Lr give the weights for m-falls from height (m + 1)i + r − 1 to height
(m+1)(i−1)+r. Similarly, the ith row of the matrix U0 corresponds to steps starting
at height (m + 1)i + m: more precisely, the superdiagonal (i → i + 1) entries in the
matrix U0 give the weights for rises from height (m+ 1)i+m to height (m+ 1)(i+ 1),
while the diagonal (i → i) entries in the matrix U0 give the weights for m-falls from
height (m + 1)i + m to height (m + 1)i.

The production matrix of S(m;j) tells us how to get from the nth row of S(m;j)

to the (n + 1)st row. That is, to get the (k, k′) matrix element of P (m;j), we need
to enumerate the (m + 1)-step walks in N going from height (m + 1)k + j to height
(m + 1)k′ + j, using steps (1, 1) and (1,−m), with weights α; we will show that the
right-hand side of (A.26) does the job. The first step starts at height (m + 1)k + j
and uses the matrix Lj+1: it is either a rise, using the diagonal (i → i) with weight 1,
or an m-fall, using the subdiagonal (i → i− 1) with weight α(m+1)k+j. We are now at
height (m+ 1)k1 + j + 1, where k1 is either k (if we made a rise) or k− 1 (if we made
an m-fall). The next step uses the matrix Lj+2 in an analogous way, and we end up
at height (m + 1)k2 + j + 2, where k2 is either k1 (if we made a rise) or k1 − 1 (if we
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made an m-fall). And so forth, through the matrix Lm. After using the matrix Lm,
we are at height (m+1)km−j +m, and we use the matrix U0: this step is either a rise,
using the superdiagonal (i → i+1) with weight 1, or else an m-fall, using the diagonal

(i → i) with weight α(m+1)km−j+m. We are now at height (m + 1)k̂, where k̂ equals
k + 1 minus the number of m-falls that have occurred so far. Now we use the matrix
L1: it is either a rise, using the diagonal (i → i) with weight 1, or an m-fall, using

the subdiagonal (i → i−1) with weight α(m+1)k̂. We are now at height (m+ 1)k̂1 + 1,

where k̂1 is either k̂ (if we made a rise) or k̂−1 (if we made an m-fall). The next step
uses the matrix L2 in an analogous way, and so forth through Lj. We end at height

(m+ 1)k̂j + j, where k̂j equals k + 1 minus the number of m-falls that have occurred
throughout the whole process. But k + 1 minus the number of m-falls is exactly
the index we have arrived at in the matrix product Lj+1Lj+2 · · · Lm U0 L1L2 · · · Lj,
because each rise (resp. m-fall) corresponds to a step i → i (resp. i → i− 1), except
for the case of U0, for which a rise (resp. m-fall) corresponds to a step i → i + 1

(resp. i → i). That is, k̂j = k′, and the proof is complete. □

It will be useful to write out explicitly the production matrices for the case m = 2,
which is the one arising in this paper. For j = 0 we have [68, eq. (7.11)]

Pn,n = α3n + α3n+1 + α3n+2 (A.28a)

Pn,n−1 = α3n−2α3n + α3n−1α3n + α3n−1α3n+1 (A.28b)

Pn,n−2 = α3n−4α3n−2α3n (A.28c)

provided that we make the convention α0 = α1 = 0. (If α3n and α3n+1 are given by
polynomial expressions in n that do not vanish when n = 0, then Pn,n and Pn,n−1 are
given by the corresponding polynomial expressions plus correction terms proportional
to δn,0 and δn,1.) For j = 1 we have

Pn,n = α3n+1 + α3n+2 + α3n+3 (A.29a)

Pn,n−1 = α3n−1α3n+1 + α3nα3n+1 + α3nα3n+2 (A.29b)

Pn,n−2 = α3n−3α3n−1α3n+1 (A.29c)

provided that we make the convention α1 = 0. For j = 2 we have

Pn,n = α3n+2 + α3n+3 + α3n+4 (A.30a)

Pn,n−1 = α3nα3n+2 + α3n+1α3n+2 + α3n+1α3n+3 (A.30b)

Pn,n−2 = α3n−2α3nα3n+2 (A.30c)

Note that these expressions arise from (A.28) simply by incrementing all the indices
by j; this fact is equivalent to (A.27).

Let us now prove some theorems on total positivity. We begin with the total
positivity of the production matrices:

Proposition A.4 (Total positivity of the production matrices). For 0 ≤ j ≤ m,

the production matrix P (m;j) def
= (S(m;j))−1∆S(m;j) is totally positive in the ring Z[α]

equipped with the coefficientwise order.
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Proof. This is an immediate consquence of the factorization (A.26) combined with
Lemma 2.1. □

Next we prove the total positivity of the triangular arrays S(m;j). As in [59], we
will give two proofs of each result: a graphical proof, based on the Lindström–Gessel–
Viennot lemma; and an algebraic proof, based on production matrices.

Theorem A.5 (Total positivity for generalized m-Stieltjes–Rogers polynomials).
For each integer j ≥ 0, the lower-triangular matrix S(m;j) is totally positive in the
ring Z[α] equipped with the coefficientwise order.

Graphical Proof. We apply the Lindström–Gessel–Viennot lemma (see [59, sec-
tion 9.4] for a summary) to the directed graph Gm = (Vm, Em) with vertex set

Vm = {(x, y) ∈ Z× N : x = y mod (m + 1)} (A.31)

and edge set

Em =
{(

(x1, y1), (x2, y2)
)
∈ Vm×Vm : x2−x1 = 1 and y2−y1 ∈ {1,−m}

}
. (A.32)

It is easy to see that Gm is planar and acyclic.
Now consider an ℓ × ℓ minor of S(m;j): that is, we choose sets of integers I =

{i1, i2, . . . , iℓ} with 0 ≤ i1 < i2 < . . . < iℓ and J = {j1, j2, . . . , jℓ} with 0 ≤ j1 < j2 <
. . . < jℓ, and we consider the ℓ× ℓ submatrix

S
(m;j)
IJ =

(
S
(m;j)
ir,js

(α)
)
1≤r,s≤ℓ

(A.33)

and the corresponding minor

∆IJ(S(m;j)) = det S
(m;j)
IJ . (A.34)

We can write the elements of the submatrix S
(m;j)
IJ as sums over walks in the directed

graph Gm: it is easy to see that S
(m;j)
ir,js

(α) is the sum over walks from (−(m+ 1)ir, 0)
to (j, (m + 1)js + j), with a weight 1 on each rising directed edge and a weight αi

on each m-falling directed edge starting at height i. Note that the sets of vertices
I⋆ = {(0, 0) = i⋆0 < (−(m + 1), 0) = i⋆1 < (−2(m + 1), 0) = i⋆2 < . . .} and J⋆ =
{(j, j) = j⋆0 < (j,m + 1 + j) = j⋆1 < (j, 2(m + 1) + j) = j⋆2 < . . .} lie on the boundary
of Gm ↾ ((−∞, j] × N) in the order “first I⋆ in reverse order, then J⋆ in order”;
therefore, by [59, Lemma 9.18] they form a fully nonpermutable pair. Applying the
Lindström–Gessel–Viennot lemma, we conclude that the minor ∆IJ(S(m;j)) is the
generating polynomial for families of vertex-disjoint paths P1, . . . , Pℓ in the digraph
Gm, where path Pr starts at (−(m + 1)ir, 0) and ends at (j, (m + 1)jr + j), in which
each rise gets weight 1 each m-fall from height i gets weight αi. Since every such
polynomial manifestly has nonnegative integer coefficients, Theorem A.5 is proven.
□

Algebraic Proof. Since the array S(m;j) for j ≥ m+ 1 is a submatrix of the array

S(m;j′) with j′
def
= j mod (m + 1), it suffices to prove the theorem for 0 ≤ j ≤ m.

And the latter is an immediate consequence of the total positivity of the production
matrix P (m;j) (Proposition A.4) combined with Theorem 2.9. □
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Remark. Theorem A.5 was proven for the special case j = 0 in [59, Theo-
rem 9.10], with both graphical and algebraic proofs. The graphical proof given here
for general j ≥ 0 is the obvious generalization of the graphical proof given there.
The algebraic proof given here reduces to the one given there when j = 0, but for
1 ≤ j ≤ m it requires the new production matrices (A.26), and for j ≥ m + 1 it
requires the obvious submatrix argument. ■

The second result concerns the Hankel-total positivity of the modified m-Stieltjes–
Rogers polynomials S

(m;j)
n (α). It was already proven in [59, Theorem 9.12], so we

simply state the result here:

Theorem A.6 (Hankel-total positivity for modified m-Stieltjes–Rogers polynomials).

For 0 ≤ j ≤ m, the sequence S(m;j) = (S
(m;j)
n (α))n≥0 of modified m-Stieltjes–Rogers

polynomials of type j is a Hankel-totally positive sequence in the polynomial ring Z[α]
equipped with the coefficientwise partial order.

The proof of Theorem A.6 using the Lindström–Gessel–Viennot lemma is similar
to that of Theorem A.5, but using sink vertices J⋆⋆ = {(j, j) = j⋆⋆0 < (m+ 1 + j, j) =
j⋆⋆1 < (2(m + 1) + j, j) = j⋆2 < . . .} in place of J⋆. For j ≤ m (but only then), the
source and sink vertices lie on the boundary of the graph Gm, and the pair (I⋆, J⋆⋆) is
fully nonpermutable. The algebraic proof of Theorem A.6 uses the production matrix
(A.26) together with Theorem 2.15; once again, it works only for j ≤ m, since the
“submatrix argument” does not apply to the zeroth column. Indeed, the restriction
of these proofs to j ≤ m is no accident: as explained in [59, end of section 9.4], the
conclusion of Theorem A.6 is false for j > m; in fact, it fails even for the 2×2 minors.

Final remark. For each fixed m ≥ 1, the quantities S
(m;j)
n,k depend on the three pa-

rameters n, k, j. We have chosen here to fix j and then assemble these quantities into
a lower-triangular matrix S(m;j) =

(
S
(m;j)
n,k (α)

)
n,k≥0

. Lima [48] has pointed out that

one can also fix k = 0 and assemble them into a (full) matrix Ŝ(m) =
(
S
(m;j)
n,0 (α)

)
n,j≥0

.

He then shows [48, Proposition 3.1] the wonderful LU factorization

Ŝ(m) = S(m;0) Λ(m) (A.35)

for an explicit upper-triangular matrix Λ(m). Furthermore, he shows [48, Proposi-
tion 3.2] that Λ(m) is coefficientwise totally positive. Since S(m;0) is also coefficientwise
totally positive by [59, Theorem 9.10] (i.e., the case j = 0 of Theorem A.5), this shows

that Ŝ(m) is coefficientwise totally positive [48, Theorem 3.3]. ■

A.4 Application to the univariate Laguerre production matrix

Let us now apply this theory to determine the conditions under which the uni-
variate Laguerre production matrix (1.41), namely

pn,n+1 = 1 (A.36a)

pn,n = (2n + 1 + α) + x (A.36b)

pn,n−1 = n(n + α) + 2nx (A.36c)

pn,n−2 = n(n− 1)x (A.36d)
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j = 0 j = 1 j = 2

α = −1

Proposition A.8

α3n−1 = x
α3n = cn n

α3n+1 = (2 − cn)n

Proposition A.11

α2 = 0
α3n = x

α3n+1 = cn n
α3n+2 = (2 − cn)n

Proposition A.14

α2 = α3 = 0
α3n+1 = x
α3n+2 = cn n
α3n+3 = (2 − cn)n

α = 0

Proposition A.12

α3n−1 = x
α3n = n

α3n+1 = n

Proposition A.15

α2 = 0
α3n = x

α3n+1 = n
α3n+2 = n

α = 1

Proposition A.16

α3n−1 = x
α3n = cn n

α3n+1 = (2 − cn)n

Table 1: Cases where the univariate Laguerre production matrix (1.41)/(A.36) can
be written as the production matrix P (m;j) for the generalized m-Stieltjes–Rogers
polynomials of type j with m = 2 and j = 0, 1 or 2. Here cn is given by (A.39), with
κ ∈ [0, 1]. Note that each passage to the right (at fixed α) in this table is given by
the transformation (A.27).

can be written as the production matrix P (m;j) [cf. (A.26)] for the generalized m-
Stieltjes–Rogers polynomials of type j with m = 2 and j = 0, 1 or 2 and some α. To
do this, we will use the formulae (A.28)–(A.30) for m = 2 and j = 0, 1, 2, remembering

that α0 = α1
def
= 0. In this analysis, we will interpret the Laguerre parameter α

as a fixed real number ≥ −1. We will require that the Stieltjes parameters α be
polynomials with real coefficients in the indeterminate x, and we will most often
require that these be polynomials with nonnegative real coefficients.

Since some of the computations are fairly lengthy, it may be helpful to the reader
to give now a summary of our results. We will find that

• j = 0 works for α = −1, and only that value;

• j = 1 works for α = −1, 0, and only those values;

• j = 2 works for α = −1, 0, 1, and only those values.

The allowed parameter sets α for each pair (j, α) are summarized in Table 1. We
stress that the different columns in each row correspond to different factorizations of
the same production matrix.
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A.4.1 Case j = 0

Proposition A.7 (j = 0 implies α = −1). The univariate Laguerre production
matrix (1.41)/(A.36) can be written as the production matrix P (2;0), where α2, α4, α6

are polynomials in x, only if α = −1.

Proof. From (A.36) and (A.28) we have

p0,0 = 1 + α + x = α2 (A.37a)

p2,0 = 2x = α2α4α6 (A.37b)

Since α4 and α6 are polynomials in x, the polynomial p0,0 = 1 + α + x must divide
p2,0 = 2x, which occurs only if α = −1. □

Proposition A.8 (Solutions for j = 0 and α = −1). The univariate Laguerre pro-
duction matrix (1.41)/(A.36) with α = −1 can be written as the production matrix
P (2;0), where the α are polynomials in x with nonnegative coefficients, in the following
ways (and only the following ways):

Let κ be any real number in the interval [0, 1], and set

α3n−1 = x (A.38a)

α3n = cn n (A.38b)

α3n+1 = (2 − cn)n (A.38c)

where

cn
def
=

(n− 1) − (n− 2)κ

n − (n− 1)κ
for n ≥ 1 . (A.39)

Please note that 0 ≤ κ = c1 ≤ c2 ≤ c3 ≤ . . . ≤ 1 and lim
n→∞

cn = 1.

Proof. We first prove the necessity, then the sufficiency.

Necessity. For j = 0 and α = −1 we have

p0,0 = x = α2 (A.40a)

pn,n = 2n + x = α3n + α3n+1 + α3n+2 for n ≥ 1 (A.40b)

p1,0 = 2x = α2(α3 + α4) (A.40c)

pn,n−1 = n(n− 1) + 2nx = α3n−2α3n + α3n−1(α3n + α3n+1) for n ≥ 2 (A.40d)

pn,n−2 = n(n− 1)x = α3n−4α3n−2α3n (A.40e)

From p0,0 we get α2 = x; from p1,0 we then get α3 + α4 = 2; and from p2,0 we then
get α4α6 = 2. We will now prove by induction that for all n ≥ 1, we have

α3n−1 = x (A.41a)

α3n + α3n+1 = 2n (A.41b)

α3n+1α3n+3 = n(n + 1) (A.41c)
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The base case n = 1 has just been proven. Using the inductive hypothesis α3n + α3n+1 =
2n and the formula for pn,n, we deduce α3n+2 = x. Then using this together with the
inductive hypothesis α3n+1α3n+3 = n(n + 1) and the formula for pn+1,n, we deduce
α3n+3 + α3n+4 = 2n + 2. And finally, from α3n+2 = x and the formula for pn+2,n, we
deduce α3n+4α3n+6 = (n + 1)(n + 2). This completes the induction.

Writing α3n = cn n, (A.41b,c) say that α3n+1 = (2 − cn)n and cn+1 = 1/(2 − cn).
It is then easily proven by induction that the solution to this recurrence, with initial
condition c1 = κ, is given by (A.39).

By hypothesis we must have c1 ≥ 0, i.e. κ ≥ 0. On the other hand, if κ > 1, then
there exists a positive integer n satisfying

n− 1

n− 2
< κ ≤ n

n− 1
, (A.42)

which makes either cn < 0 or cn = ∞, both of which are forbidden. So we must have
κ ∈ [0, 1].

Sufficiency. It is easy to verify that, for any κ ∈ [0, 1], the parameters α defined
by (A.38)/(A.39) satisfy (A.41) and thence (A.40). □

Remarks. 1. The reasoning in this proof can be abstracted as a general method
for writing a quadridiagonal unit-lower-Hessenberg matrix P as the production matrix
P (2;0) of a 2-S-fraction of type j = 0 [cf. (A.28)] whenever this is possible in the chosen
ring, as follows: For n ≥ 1, define

an = α3n−1 (A.43a)

bn = α3n + α3n+1 (A.43b)

cn = α3n+1α3n+3 (A.43c)

Then the equations for p0,0, p1,0 and p2,0 give

a1 = p0,0 (A.44a)

b1 =
p1,0
p0,0

(A.44b)

c1 =
p2,0
p0,0

(A.44c)

if these divisions make sense in the chosen ring. Then the equations for pn,n, pn+1,n

and pn+2,n give successively

an+1 = pn,n − bn (A.45a)

bn+1 =
pn+1,n − cn

an+1

=
pn+1,n − cn
pn,n − bn

(A.45b)

cn+1 =
pn+2,n

an+1

=
pn+2,n

pn,n − bn
(A.45c)

if these divisions make sense. Now define, for n ≥ 1,

dn = α3n (A.46a)

en = α3n+1 (A.46b)
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Then d1 = α3 can be a freely chosen ring element, call it κ; and we have the recurrences

en = bn − dn (A.47a)

dn+1 =
cn
en

=
cn

bn − dn
(A.47b)

if these divisions make sense.
2. There are two extreme cases in Proposition A.8. On the one hand, κ = 1

implies cn = 1 and hence

α = (αi)i≥2 = x, 1, 1, x, 2, 2, x, 3, 3, x, 4, 4, . . . . (A.48)

This is the known 2-S-fraction for the Lah polynomials [58, Theorem 1.5 with r = 2].
On the other hand, κ = 0 implies cn = (n− 1)/n and hence

α = (αi)i≥2 = x, 0, 2, x, 1, 3, x, 2, 4, x, 3, 5, . . . , (A.49)

which is apparently new. But there is in fact a one-parameter family, indexed by
κ ∈ [0, 1], that interpolates between these two extreme cases. ■

A.4.2 Case j = 1

Proposition A.9 (j = 1 implies α = −1 or 0). The univariate Laguerre pro-
duction matrix (1.41)/(A.36) can be written as the production matrix P (2;1), where
α2, α3, . . . , α13 are polynomials in x with nonnegative real coefficients, only if α = −1
or 0.

Proof. From (A.36) and (A.29) we have

p0,0 = 1 + α + x = α2 + α3 (A.50a)

p1,1 = 3 + α + x = α4 + α5 + α6 (A.50b)

p2,2 = 5 + α + x = α7 + α8 + α9 (A.50c)

p1,0 = 1 + α + 2x = (α2 + α3)α4 + α3α5 (A.50d)

p2,1 = 4 + 2α + 4x = (α5 + α6)α7 + α6α8 (A.50e)

p2,0 = 2x = α3α5α7 (A.50f)

p3,1 = 6x = α6α8α10 (A.50g)

p4,2 = 12x = α9α11α13 (A.50h)

Since α2 and α3 have nonnegative coefficients, from p0,0 we see that α ≥ −1. If α = −1
we are done; so we henceforth assume that α > −1.

Comparing the equations for p0,0 and p1,0 gives

1 + α + 2x = (1 + α + x)α4 + α3α5 . (A.51)

Since α3 and α5 have nonnegative coefficients, we can avoid an x2 (or higher-order)
term on the right-hand side only if α4 is some real constant c; moreover, by comparing
the constant terms in (A.51) and using α > −1, we see that 0 ≤ c ≤ 1.

65



Next we observe that α3 must divide p2,0 = 2x, so either α3 = d or α3 = dx, for
some real constant d > 0.

Case α3 = d. From p0,0 with α3 = d we get d ≤ 1 +α. From (A.51) with α4 = c
and α3 = d we get

α5 =
(1 + α)(1 − c)

d
+

2 − c

d
x . (A.52)

Since α5 divides p2,0 = 2x, we must either have (1 + α)(1 − c) = 0 or c = 2. Since
α > −1 and 0 ≤ c ≤ 1, we conclude that c = 1. Then α5 = x/d, and from p1,1 we get

α6 = (2 + α) +
(

1 − 1

d

)
x . (A.53)

Since α6 must divide p3,1 = 6x, we must either have α = −2 (which is not allowed)
or d = 1; so d = 1 and α6 = 2 + α. From p2,1 we then get

4 + 2α + 4x = (2 + α + x)α7 + (2 + α)α8 . (A.54)

From p3,1 we see that α8 is either a constant or a constant times x: the first possibility
gives α7 = 4 and α8 = −2, which is forbidden; the second possibility gives α7 = 2
and

α8 =
2

2 + α
x . (A.55)

Then using p2,2 we get

α9 = (3 + α) +
α

2 + α
x . (A.56)

But α9 must divide p4,2 = 12x, which is possible only if α = −3 (which is not allowed)
or α = 0. This completes the proof in the case α3 = d.

Case α3 = dx. From (A.51) with α4 = c and α3 = dx, comparing constant
terms and using α ̸= −1 we conclude that c = 1; then α5 = 1/d. From p1,1 we then
get

α6 =
(

2 + α − 1

d

)
+ x . (A.57)

Since α6 must divide p3,1 = 6x, we must have d = 1/(2 + α) and α6 = x. From p2,0
we get α7 = 2, and then p2,1 gives α8 = 2. Then using p2,2 we get α9 = 1 + α + x.
But α9 must divide p4,2 = 12x, so α = −1, contrary to hypothesis. We conclude that
the case α3 = dx cannot occur when α ̸= −1. □

Question A.10. Does this result hold if we omit the condition that the coefficients
of the polynomials α are nonnegative?

Proposition A.11 (Solutions for j = 1 and α = −1). The univariate Laguerre
production matrix (1.41)/(A.36) with α = −1 can be written as the production matrix
P (2;1) where the α are polynomials in x with nonnegative coefficients, in the following
ways (and only the following ways):

α2 = 0 (A.58a)

α3n = x (A.58b)

α3n+1 = cn n (A.58c)

α3n+2 = (2 − cn)n for n ≥ 1 (A.58d)

where cn is given by (A.39), with κ ∈ [0, 1].
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Note that these coefficients α are precisely those that are obtained from Propo-
sition A.8 by the transformation (A.27). So the sufficiency of these coefficients is an
immediate consequence of the sufficiency half of Proposition A.8. The interesting part
of the present result is therefore the necessity: namely, these are the only solutions
for j = 1 and α = −1.

Proof. Necessity. In the proof of Proposition A.9 we saw that either α3 = d or
α3 = dx, for some real constant d > 0; and that if α3 = d, then d ≤ 1 + α. But for
α = −1 this contradicts d > 0. Therefore, for α = −1 we must have α3 = dx.

For j = 1 and α = −1 we have

p0,0 = x = α2 + α3 (A.59a)

pn,n = 2n + x = α3n+1 + α3n+2 + α3n+3 for n ≥ 1 (A.59b)

pn,n−1 = n(n− 1) + 2nx = α3n−1α3n+1 + α3nα3n+1 + α3nα3n+2 (A.59c)

pn,n−2 = n(n− 1)x = α3n−3α3n−1α3n+1 (A.59d)

From α3 = dx and p0,0 we have α2 = (1−d)x. Hence 0 < d ≤ 1. From p1,0 we deduce
that α4 +α5d = 2; so α4 = c for some real constant c, and α5 = (2− c)/d. Then from
p1,1 we get

α6 =

[
2 −

(
c +

2 − c

d

)]
+ x , (A.60)

Since α6 must divide p3,1 = 6x, we conclude that c + (2 − c)/d = 2 and hence either
c = 2 or d = 1. Then either way we have α6 = x, and from p2,1 we get

2 + 4x =
(2 − c

d
+ x

)
α7 + α8x (A.61a)

=
2 − c

d
α7 + (α7 + α8)x . (A.61b)

It follows that α7 = 2d/(2 − c) and α7 + α8 = 1; therefore, c = 2 is impossible, and
we have d = 1 and hence α2 = 0.

From here on the proof is identical to that of Proposition A.8, with each αi replaced
by αi+1.

Sufficiency. It is easily verified that (A.58), inserted into (A.29), yields (A.36)
with α = −1. □

Proposition A.12 (Solutions for j = 1 and α = 0). The univariate Laguerre produc-
tion matrix (1.41)/(A.36) with α = 0 can be written as the production matrix P (2;1)

where the α are polynomials in x with nonnegative coefficients, in the following way
(and only the following way):

α3n−1 = x (A.62a)

α3n = n (A.62b)

α3n+1 = n (A.62c)

Proof. Necessity. In the proof of Proposition A.9 we saw that either α3 = d
or α3 = dx, for some real constant d > 0; and we saw that α3 = dx leads to a
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contradiction whenever α ̸= −1. So for α = 0 we must have α3 = d; and in that case
we saw that d = 1 (hence α3 = 1) and α4 = 1, α5 = x, α6 = 2, α7 = 2, α8 = x,
α9 = 3. And from p0,0 and α3 = 1 we get α2 = x.

For j = 1 and α = 0 we have

p0,0 = 1 + x = α2 + α3 (A.63a)

pn,n = 2n + 1 + x = α3n+1 + α3n+2 + α3n+3 for n ≥ 1 (A.63b)

pn,n−1 = n2 + 2nx = α3n−1α3n+1 + α3nα3n+1 + α3nα3n+2 (A.63c)

pn,n−2 = n(n− 1)x = α3n−3α3n−1α3n+1 (A.63d)

We now prove by induction that (A.62) holds for all n ≥ 1. The base case n = 1 has
already been proven (as has n = 2). Using the inductive hypothesis, from pn,n−1 we
get α3n+2 = x. Then from pn,n we get α3n+3 = n + 1. And finally from pn+1,n−1 we
get α3n+4 = n + 1.

Sufficiency. It is easily verified that (A.62), inserted into (A.29), yields (A.36)
with α = 0. □

Proposition A.12 shows that the monic unsigned Laguerre polynomials with α = 0
are given by the modified 2-Stieltjes–Rogers polynomials of type j = 1 with the
coefficients

α = (αi)i≥2 = x, 1, 1, x, 2, 2, x, 3, 3, x, 4, 4, . . . . (A.64)

Equivalently, the rook polynomials of an n × n chessboard, which are the reversed
monic unsigned Laguerre polynomials with α = 0, are given by the modified 2-
Stieltjes–Rogers polynomials of type j = 1 with the coefficients

α = (αi)i≥2 = 1, x, x, 1, 2x, 2x, 1, 3x, 3x, 1, 4x, 4x, . . . . (A.65)

It was through this particular example that we first discovered the importance of the
modified m-Stieltjes–Rogers polynomials.

Please note that the coefficients (A.64) are precisely (A.48), i.e. the κ = 1 case of
the coefficients in Proposition A.8. Thus, these coefficients with j = 0 give α = −1,
while the same coefficients with j = 1 give α = 0; and we will see in Proposition A.16
that the same coefficients with j = 2 give α = 1. But it is curious that for j = 1,
only κ = 1 is allowed, while for j = 0 and j = 2, we can take any κ ∈ [0, 1].

A.4.3 Case j = 2

Proposition A.13 (j = 2 implies α = −1 or 0 or 1). The univariate Laguerre
production matrix (1.41)/(A.36) can be written as the production matrix P (2;2), where
α2, α3, . . . are polynomials in x with nonnegative coefficients, only if α = −1 or 0 or
1.
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Proof. From (A.36) and (A.30) we have

p0,0 = 1 + α + x = α2 + α3 + α4 (A.66a)

p1,1 = 3 + α + x = α5 + α6 + α7 (A.66b)

p2,2 = 5 + α + x = α8 + α9 + α10 (A.66c)

p1,0 = 1 + α + 2x = (α3 + α4)α5 + α4α6 (A.66d)

p2,1 = 4 + 2α + 4x = (α6 + α7)α8 + α7α9 (A.66e)

p3,2 = 9 + 3α + 6x = (α9 + α10)α11 + α10α12 (A.66f)

p2,0 = 2x = α4α6α8 (A.66g)

p3,1 = 6x = α7α9α11 (A.66h)

p4,2 = 12x = α10α12α14 (A.66i)

Since α2, α3, α4 have nonnegative coefficients, from p0,0 we see that α ≥ −1. If α = −1
we are done; so we henceforth assume that α > −1.

We also conclude from p0,0 that

α3 + α4 = c1 + c2x (A.67)

with 0 ≤ c1 ≤ 1 + α and 0 ≤ c2 ≤ 1. Furthermore, from p2,0 we see that either
α4α6 = d or α4α6 = dx, for some d > 0. Finally, we observe that α3 + α4 cannot be
identically zero, because p1,0 = 1+α+2x has both constant and linear terms nonzero
(since α > −1) but α4α6 has only a constant term or a linear term. So we must have
either c1 > 0 or c2 > 0.

Case α4α6 = d. From p2,0 we get α8 = (2/d)x. Furthermore, from p1,0 we get

• If c2 = 0, then c1 > 0 and α5 =
(1 + α− d) + 2x

c1
.

• If c2 > 0, then α5 =
2

c2
and d = (1 + α) − c1α5.

When c2 = 0, we substitute α5 into p1,1 to get

α6 + α7 =
(

3 + α − 1 + α− d

c1

)
+
(

1 − 2

c1

)
x . (A.68)

From p2,1 we have

4 + 2α + 4x = (α6 + α7)
2

d
x + α7α9 . (A.69)

It follows that α6 + α7 cannot have a term x, hence c1 = 2. This implies α6 + α7 =
(5 + α + d)/2. Inserting this into (A.69) we conclude that

α7α9 = (4 + 2α) +
3d− 5 − α

d
x . (A.70)

Now α7α9 must divide p3,1 = 6x; but since 4 + 2α > 0, we must have d = (5 + α)/3.

Then α7α9 = 4 + 2α and α11 =
3

2 + α
x. Also, since α8 = (2/d)x, we have α8 =
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6

5 + α
x. Next, from p2,2 we get

α9 + α10 = (5 + α) +
(

1 − 6

5 + α

)
x . (A.71)

From p3,2 we have

9 + 3α + 6x = (α9 + α10)
3

2 + α
x + α10α12 . (A.72)

Combining (A.71) and (A.72), to avoid an x2 term we must have 6/(5 + α) = 1,
i.e. α = 1.

When c2 > 0, we substitute α5 into p1,1 to get

α6 + α7 =
(

3 + α − 2

c2

)
+ x . (A.73)

But then α8 = (2/d)x produces an x2 term on the right-hand side of p2,1, which is a
contradiction. So c2 > 0 is impossible.

This completes the case α4α6 = d.

Case α4α6 = dx. From p2,0 we get α8 = 2/d. Furthermore, from p1,0 we get

• If c2 = 0, then c1 > 0 and α5 =
1 + α + (2 − d)x

c1
.

• If c2 > 0, then c1 > 0 and α5 =
1 + α

c1
=

2 − d

c2
.

When c2 = 0, we substitute α5 into p1,1 to get

α6 + α7 =
(

3 + α − 1 + α

c1

)
+
(

1 − 2 − d

c1

)
x . (A.74)

From p2,1 we have

4 + 2α + 4x = (α6 + α7)
2

d
+ α7α9 , (A.75)

so

α7α9 =

[
4+2α−

(
3+α− 1 + α

c1

) 2

d

]
+

[
4 −

(
1 − 2 − d

c1

) 2

d

]
x

def
= A+Bx . (A.76)

Now α7α9 must divide p3,1 = 6x, so either A = 0 or B = 0. From p2,2 we get

α9 + α10 =
(

5 + α− 2

d

)
+ x , (A.77)

and from p3,2 we have

9 + 3α + 6x = (α9 + α10)α11 + α10α12 . (A.78)

Combining (A.77) and (A.78), to avoid an x2 term, α11 must be a constant; therefore,
from p3,1 we conclude that A = 0, hence α7α9 = Bx and α11 = 6/B. It follows that

α10α12 =

[
9 + 3α −

(
5 + α− 2

d

) 6

B

]
+
(

6 − 6

B

)
x . (A.79)
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Now α10α12 must divide p4,2 = 12x, so either B =
10 + 2α− 4

d

3 + α
or B = 1. Combining

this with α > −1, it can be shown that there are no solutions.17

When c2 > 0, from p1,1 we get

α6 + α7 = (3 + α− α5) + x . (A.80)

From p2,1 we then have

4 + 2α + 4x =
[
(3 + α− α5) + x

] 2

d
+ α7α9 , (A.81)

so

α7α9 =

[
4 + 2α − (3 + α− α5)

2

d

]
+
(

4 − 2

d

)
x

def
= A′ + B′x . (A.82)

Now α7α9 must divide p3,1 = 6x, so either A′ = 0 or B′ = 0. From p2,2 we get as
before

α9 + α10 =
(

5 + α− 2

d

)
+ x , (A.83)

and from p3,2 we get as before

9 + 3α + 6x = (α9 + α10)α11 + α10α12 ; (A.84)

so to avoid an x2 term, α11 must again be a constant. Therefore, from p3,1 we conclude
that A′ = 0, hence α7α9 = B′x and α11 = 6/B′. As before we get

α10α12 =

[
9 + 3α −

(
5 + α− 2

d

) 6

B′

]
+
(

6 − 6

B′

)
x ; (A.85)

and since α10α12 must divide p4,2 = 12x, we have either B′ = 1 or B′ =
10 + 2α− 4

d

3 + α
.

In the first case we must have d = 2/3 to satisfy (A.82), and hence α10α12 = −3(1 +
α) < 0, contrary to hypothesis. In the second case we must have d = 1 and hence
B′ = 2, α4α6 = x, α8 = 2, α7α9 = 2x, α11 = 3 and α10α12 = 3x, and then (from
A′ = 0) α5 = 1, c2 = 1 and c1 = 1+α; here α > −1 is arbitrary. But we now argue as
follows: Since α6 + α7 = 2 + α + x and α6 divides p2,0 = 2x and α7 divides p3,1 = 6x,
we must have either

• α6 = 2 + α and α7 = x, which implies α9 = 2 and α10 = 1 + α + x; but α10

must divide p4,2 = 12x, which is a contradiction since α ̸= −1.

17 If B = 1, then d = 2(c1 − 2)/(3c1 − 2); substituting this into A = 0 gives

(2 + 2α) − (1 + α)c1 + (5 + α)c21 = 0 .

But the discriminant of this quadratic is −(1 + α)(39 + 7α), which is < 0 whenever α > −1.

If B =
10 + 2α − 4

d

3 + α
, then d = [6 + 2α − (1 + α)c1]/[3 + α − (1 + α)c1]; substituting this into

A = 0 gives (assuming α ̸= −1)
(3 + α) + 2c1 + c21 = 0 .

Now the discriminant is −4(2 + α), which is < 0 whenever α > −2.
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• α6 = x and α7 = 2 + α, which implies α9 = 2x/(2 + α) and α10 = 3 + α +
[1 − 2/(2 + α)]x; but α10 must divide p4,2 = 12x, which implies α = 0.

□

Proposition A.14 (Solutions for j = 2 and α = −1). The univariate Laguerre
production matrix (1.41)/(A.36) with α = −1 can be written as the production matrix
P (2;2) where the α are polynomials in x with nonnegative coefficients, in the following
ways (and only the following ways):

α2 = α3 = 0 (A.86a)

α3n+1 = x (A.86b)

α3n+2 = cn n for n ≥ 1 (A.86c)

α3n+3 = (2 − cn)n for n ≥ 1 (A.86d)

where cn is given by (A.39), with κ ∈ [0, 1].

Note that these coefficients α are precisely those that are obtained from Propo-
sition A.8 by applying twice the transformation (A.27). So the sufficiency of these
coefficients is an immediate consequence of the sufficiency half of Proposition A.8.
The interesting part of the present result is therefore the necessity: namely, these are
the only solutions for j = 2 and α = −1.

Proof. Necessity. For j = 2 and α = −1 we have

pn,n = 2n + x = α3n+2 + α3n+3 + α3n+4 (A.87a)

pn,n−1 = n(n− 1) + 2nx = (α3n + α3n+1)α3n+2 + α3n+1α3n+3 (A.87b)

pn,n−2 = n(n− 1)x = α3n−2α3nα3n+2 (A.87c)

From p0,0 we have α2 + α3 + α4 = x, hence α3 + α4 = c2x and α4 = ĉx with
0 ≤ ĉ ≤ c2 ≤ 1. From p2,0 we have α4α6α8 = 2x, hence ĉ > 0 and α4α6 = dx for some
d > 0; this gives α6 = d/ĉ and α8 = 2/d.

Next from p1,0 we have 2x = c2xα5 + dx, hence α5 = (2 − d)/c2. From p1,1 we
then get

α7 =
(

2 − 2 − d

c2
− d

ĉ

)
+ x

def
= A + x . (A.88)

Since α7 must divide p3,1 = 6x, we conclude that A = 0, hence

0 = 2 − 2 − d

c2
− d

ĉ
≤ 2 − 2 − d

c2
− d

c2
= 2 − 2

c2
. (A.89)

Since c2 ≤ 1, this implies c2 = 1, and then equality here implies also ĉ = c2 = 1. This
implies α2 = α3 = 0.

From here on the proof is identical to that of Proposition A.8, with each αi replaced
by αi+2. □
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Proposition A.15 (Solutions for j = 2 and α = 0). The univariate Laguerre produc-
tion matrix (1.41)/(A.36) with α = 0 can be written as the production matrix P (2;2)

where the α are polynomials in x with nonnegative coefficients, in the following way
(and only the following way):

α2 = 0 (A.90a)

α3n = x (A.90b)

α3n+1 = n (A.90c)

α3n+2 = n (A.90d)

Proof. Necessity. In the proof of Proposition A.13 we saw that either α4α6 = d or
α4α6 = dx, for some real constant d > 0; and we saw that α4α6 = d leads to α = 1
whenever α ̸= −1. So, for α = 0 we must have α4α6 = dx. Furthermore, we saw that
α3 + α4 = c1 + c2x, and whenever α ̸= −1 and α4α6 = dx, to obtain α = 0, we need
c2 > 0. In this case, we saw that we must have d = 1 with α6 = x and thus, α4 = 1.
We also obtained c2 = 1 and c1 = 1, and thus, α3 = x and from p0,0, α2 = 0.

From here on the proof is identical to that of Proposition A.12, with each αi

replaced by αi+1.

Sufficiency. This is easily checked. □

Proposition A.16 (Solutions for j = 2 and α = 1). The univariate Laguerre produc-
tion matrix (1.41)/(A.36) with α = 1 can be written as the production matrix P (2;2)

where the α are polynomials in x with nonnegative coefficients, in the following ways
(and only the following ways):

α3n−1 = x (A.91a)

α3n = cnn (A.91b)

α3n+1 = (2 − cn)n (A.91c)

where cn is given by (A.39), with κ ∈ [0, 1].

Proof. Necessity. In the proof of Proposition A.13 we saw that either α4α6 = d
or α4α6 = dx, for some real constant d > 0; and we saw that α4α6 = dx leads to
α = 0 whenever α ̸= −1. So, for α = 1 we must have α4α6 = d. Furthermore, in
this case we found that c2 = 0 and c1 = 2, hence α3 + α4 = 2. We also found that
d = (5 + α)/3 = 2, hence α4α6 = 2.

For j = 2 and α = 1 we have

pn,n = 2n + 2 + x = α3n+2 + α3n+3 + α3n+4 (A.92a)

pn,n−1 = n(n + 1) + 2nx = (α3n + α3n+1)α3n+2 + α3n+1α3n+3 (A.92b)

pn,n−2 = n(n− 1)x = α3n−2α3nα3n+2 (A.92c)

From p0,0 and α3 + α4 = 2, we see that α2 = x. We will now prove by induction that
for all n ≥ 1, we have

α3n−1 = x (A.93a)

α3n + α3n+1 = 2n (A.93b)

α3n+1α3n+3 = n(n + 1) (A.93c)
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The base case n = 1 has just been proven. Using the inductive hypotheses α3n + α3n+1 =
2n and α3n+1α3n+3 = n(n+1) and the formula for pn,n−1, we deduce α3n+2 = x. Then
using this together with the formula for pn,n, we deduce α3n+3+α3n+4 = 2n+2. Using
α3n+1α3n+3 = n(n + 1) and the formula for pn+1,n−1, we deduce that α3n+5 = x. And
using this together with α3n+3 +α3n+4 = 2n+2 and the formula for pn+1,n, we deduce
that α3n+4α3n+6 = (n + 1)(n + 2). This completes the induction.

From here on the proof is identical to that of Proposition A.8.

Sufficiency. It is easy to verify that, for any κ ∈ [0, 1], the parameters α defined
by (A.91)/(A.39) satisfy (A.93) and thence (A.92). □

B When is B−1
ξ PBξ (r,1)-banded?

We say that a matrix A = (aij)i,j≥0 is (r, s)-banded if aij = 0 whenever j < i− r
or j > i+ s. Otherwise put, the nonzero elements aij can occur only on the diagonal,
in the first r bands below the diagonal, and in the first s bands above the diagonal.
We say that a matrix is lower-Hessenberg if it is (∞, 1)-banded.

Let P = (pij)i,j≥0 be a lower-Hessenberg matrix with entries in a commutative ring
R. We are interested in the matrix B−1

ξ PBξ, where Bξ is the ξ-binomial matrix (1.9)
and ξ is an indeterminate, understood as a matrix with entries in the polynomial
ring R[ξ]. Obviously B−1

ξ PBξ is lower-Hessenberg; we want to know under what
conditions it is (r, 1)-banded for some integer r ≥ 0. An obvious necessary condition
is that P must itself be (r, 1)-banded, since P can be recovered from B−1

ξ PBξ by
specializing ξ to zero. The full necessary and sufficient condition can be written in
terms of the superdiagonal sequence (pn,n+1)n≥0 and the mth subdiagonal sequences
(pn,n−m)n≥m for 0 ≤ m ≤ r, and goes as follows:

Proposition B.1. Fix an integer r ≥ 0, and let P = (pij)i,j≥0 be an (r, 1)-banded
matrix with entries in a commutative ring R containing the rationals. Then the
following are equivalent:

(a) B−1
ξ PBξ is (r, 1)-banded. [That is, the mth subdiagonal of B−1

ξ PBξ vanishes for
all m ≥ r + 1.]

(b) The (r + 1)st subdiagonal of B−1
ξ PBξ vanishes.

(c) The superdiagonal satisfies

pn,n+1 = f−1(n) (B.1)

where f−1( · ) is a polynomial of degree at most r with coefficients in R; and the
mth subdiagonals for 0 ≤ m ≤ r satisfy

pn,n−m = n(n− 1) · · · (n−m + 1) fm(n) , (B.2)

where in each case fm( · ) is a polynomial of degree at most r−m with coefficients
in R.
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Proof. (a) =⇒ (b) is trivial; we will prove (b) =⇒ (c) and (c) =⇒ (a).
We begin by computing the matrix element (B−1

ξ PBξ)k+t,k for k, t ≥ 0:

(B−1
ξ PBξ)k+t,k = (B−ξPBξ)k+t,k =

r∑
m=−1

k+t−m∑
j=k

(
k + t

j + m

)
(−ξ)(k+t)−(j+m) pj+m,j

(
j

k

)
ξj−k

(B.3a)

=
r∑

m=−1

ξt−m

k+t−m∑
j=k

(−1)(t−m)−(j−k)

(
k + t

j + m

)(
j

k

)
pj+m,j .

(B.3b)

(Here we let the binomial coefficient
(
N
−1

)
= 0 and p−1,0 = 0. This happens in (B.3)

when j = k = 0 and m = −1.)
With l = j − k, we can rewrite equation (B.3) as

[ξt−m] (B−1
ξ PBξ)k+t,k =

t−m∑
l=0

(−1)(t−m)−l

(
k + t

k + l + m

)(
k + l

k

)
pk+l+m,k+l (B.4a)

=
(k + t)!

k! (t−m)!

t−m∑
l=0

(−1)(t−m)−l

(
t−m

l

)
pk+l+m,k+l

(k + l + m)!/(k + l)!
,

(B.4b)

valid when k, t ≥ 0 and −1 ≤ m ≤ t (remembering that p−1,0 = 0).
So, for m ≥ −1, let gm be the function defined on the domain N (with values in

R) by

gm(k)
def
=

pk+m,k

(k + m)!/k!
(B.5)

with the convention that g−1(0) = 0. Then we have

[ξt−m] (B−1
ξ PBξ)k+t,k =

(k + t)!

k! (t−m)!

t−m∑
l=0

(−1)(t−m)−l

(
t−m

l

)
gm(k + l) (B.6a)

=
(k + t)!

k! (t−m)!
(∆t−mgm)(k) (B.6b)

where ∆ denotes the forward difference operator (∆f)(n) = f(n + 1) − f(n); this is
valid when k, t ≥ 0 and −1 ≤ m ≤ t. It follows that [ξt−m] (B−1

ξ PBξ)k+t,k vanishes
for all k ≥ 0 if and only if gm is a polynomial of degree < t−m.

Applying this now under hypothesis (b) for t = r+1 and m ∈ [−1, r], we conclude
that gm is a polynomial of degree ≤ r −m. When m ≥ 0, we set n = k + m, which
gives us (B.2). When m = −1, equation (B.5) gives us

pk−1,k =
g−1(k)

k
for k ≥ 1 (B.7)

where g−1 is a polynomial of degree ≤ r+1 that satisfies g−1(0) = 0. Setting n = k−1
gives us (B.1). We have therefore proven that (b) implies (c).

On the other hand, if gm is a polynomial of degree ≤ r−m for all m ∈ [0, r], and
pk−1,k = f−1(k) where f−1 is a polynomial of degree at most r, it follows from (B.6b)
that (B−1

ξ PBξ)k+t,k = 0 for all t ≥ r + 1. So (c) implies (a). □
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C Total positivity for a variant class of quadridi-

agonal matrices

In this appendix we prove total positivity for a class of quadridiagonal matrices.
The result is very similar to Theorem 6.1, but for a slightly different class of matrices;
and the proof is also very similar, though slightly more difficult. We present this
variant result because we think that it may be useful in future work. Indeed, in one
current project of ours [20, 21], the total positivity of the production matrix can be
proven using a special case of Theorem C.1, but not, as far as we can tell, using
Theorem 6.1.

Consider the quadridiagonal lower-Hessenberg matrix P , defined by

P
def
= L1L2U + L1D1 + L2D2 (C.1a)

= L1(L2U + D1) + L2D2 (C.1b)

= L2(L1U + D2) + L1D1 (C.1c)

where

L1 = αI + xL (C.2a)

L2 = βI + yL (C.2b)

and

• L is the lower-bidiagonal matrix with the sequence a0, a1, . . . on the diagonal,
the sequence b1, b2, . . . on the subdiagonal, and zeroes elsewhere;

• U is the upper-bidiagonal matrix with the sequence c1, c2, . . . on the superdiag-
onal, the sequence d0, d1, . . . on the diagonal, and zeroes elsewhere;

• D1 is the diagonal matrix with entries e0, e1, . . . ;

• D2 is the diagonal matrix with entries f0, f1, . . . ;

and α, β, x, y, a = (an)n≥0, b = (bn)n≥1, c = (cn)n≥1, d = (dn)n≥0, e = (en)n≥0,
f = (fn)n≥0 are all indeterminates. Note that (C.1b) = (C.1c) because by construction
L1 and L2 commute:

L1L2 = L2L1 . (C.3)

This commutation is what makes the present situation more restrictive than that of
Theorem 6.1; in compensation, the diagonal matrices D1 and D2 can both act on the
same side (here the right).

The entries in the kth column of P = (pn,k)n≥0 are given by

pk−1,k = (α + xak−1)(β + yak−1)ck (C.4a)

pk,k = (α + xak)(β + yak)dk + (α + xak)ybkck + xbk(β + yak−1)ck

+ (α + xak)ek + (β + yak)fk (C.4b)

pk+1,k = (α + xak+1)ybk+1dk + xbk+1(β + yak)dk + xbk+1ybkck

+xbk+1ek + ybk+1fk (C.4c)

pk+2,k = xybk+2bk+1dk (C.4d)

pn,k = 0 if n < k − 1 or n > k + 2 (C.4e)
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where by definition b0 = c0 = 0 and an = bn = cn = dn = en = fn = 0 whenever
n < 0. Our main result is:

Theorem C.1 (Total positivity of the generalized production matrix). The matrix P
defined by (C.1)/(C.2)/(C.4) is totally positive, coefficientwise in the indeterminates
α, β, x, y, a,b, c,d, e, f .

The proof of Theorem C.1 follows the same pattern as that of Theorem 6.1, but
works with columns rather than rows (because the matrices D1 and D2 act on the
right). More precisely, Theorem C.1 will be proven as follows: Define the matrix
Q = (qn,k)n,k≥0 = (q0, q1, . . .) by

Q
def
= P

∣∣
f=0

= L1(L2U + D1) , (C.5)

so that

qk−1,k = (α + xak−1)(β + yak−1)ck (C.6a)

qk,k = (α + xak)(β + yak)dk + (α + xak)ybkck + xbk(β + yak−1)ck

+ (α + xak)ek (C.6b)

qk+1,k = (α + xak+1)ybk+1dk + xbk+1(β + yak)dk + xbk+1ybkck

+xbk+1ek (C.6c)

qk+2,k = xybk+2bk+1dk (C.6d)

qn,k = 0 if n < k − 1 or n > k + 2 (C.6e)

Then
P = Q + L2D2. (C.7)

We will begin by proving (Lemma C.2) that Q is coefficientwise totally positive;
this proof uses the factorization Q = L1(L2U + D1) together with the tridiagonal
comparison theorem. We omit the proof as it is almost identical to that of Lemma 6.6.
It follows that for every integer m ≥ 0, the matrix (q0, . . . , qm) is totally positive.

The rest of the proof shows how to restore the terms in P involving f . In terms
of the column vectors (pk)k≥0, (qk)k≥0, (ℓk)k≥0 associated to the matrices P,Q,L2,
equation (C.7) can be rewritten as

pk = qk + fkℓk, (C.8)

where

ℓk =


0k×1

β + yak

ybk+1

0∞×1

 for k ≥ 0 . (C.9)

We will show (Lemma C.6) that for every pair of integers 0 ≤ k ≤ m + 1, the matrix
(q0, . . . , qk−1,pk, . . . ,pm) is totally positive; and we will do this, for each fixed m ≥ 0,
by induction on k = m+1,m,m−1, . . . , 0. The base case k = m+1 of this induction
is thus Lemma C.2, and the final case k = 0 is Theorem C.1. Similar to the proof of
Lemma 6.10, the proof of Lemma C.6 will involve the following steps:
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Lemma C.3: The matrix (q0, . . . , qk−1, ℓk) is totally positive.

Lemma C.4: If the matrix (pk+1, . . . ,pm) is totally positive, then so is
(q0, . . . , qk−1, ℓk,pk+1, . . . ,pm).

The induction step (Lemma C.5): If the matrix (q0, . . . , qk,pk+1, . . . ,pm)
is totally positive, then so is (q0, . . . , qk−1,pk, . . . ,pm).

Putting this all together will prove Lemma C.6 and hence Theorem C.1. Here Lem-
mas C.3 and C.4 are closely analogous to Lemmas 6.7 and 6.8, but their proofs are
somewhat more difficult.

We now begin the proof of Theorem C.1.

Lemma C.2 (Total positivity of Q). The matrix Q defined by (C.5)/(C.6) is totally
positive, coefficientwise in the indeterminates α, β, x, y, a,b, c,d, e.

In particular, for every integer m ≥ 0, the matrix (q0, . . . , qm) is coefficientwise
totally positive.

Lemma C.2 follows from the factorization Q = L1(L2U + D1) by the same argu-
ment as in Lemma 6.6.

Lemma C.3. For each integer k ≥ 0, the matrix (q0, . . . , qk−1, ℓk) is totally positive.

Proof. We prove this by induction on k. The base case k = 0 is trivial. So we
need to show the inductive step: if (q0, . . . , qk−2, ℓk−1) is totally positive, then so is
(q0, . . . , qk−1, ℓk).

Define q̃k−1
def
= qk−1|dk−1=0, so that q̃k−1 = (q̃n,k−1)

⊺
n≥0 where

q̃k−2,k−1 = (α + xak−2)(β + yak−2)ck−1 (C.10a)

q̃k−1,k−1 = (α + xak−1)ybk−1ck−1 + xbk−1(β + yak−2)ck−1

+ (α + xak−1)ek−1 (C.10b)

q̃k,k−1 = xbkybk−1ck−1 + xbkek−1 (C.10c)

q̃n,k−1 = 0 if n < k − 2 or n > k . (C.10d)

Then
qk−1 = q̃k−1 + dk−1(α + xak−1)ℓk−1 + dk−1xbkℓk . (C.11)

We will successively handle the second and third terms on the right-hand side of this
formula.

By Lemma C.2 the matrix (q0, . . . , qk−1) is totally positive; and specializing this

matrix to dk−1 = 0 yields M1
def
= (q0, . . . , qk−2, q̃k−1), which is therefore also totally

positive. And by the induction hypothesis, the matrix M2
def
= (q0, . . . , qk−2, ℓk−1) is

totally positive. Applying Lemma 6.3 (or rather its transpose) to the matrices M1 and

M2, we conclude that the matrix M3
def
= (q0, . . . , qk−2, q̃k−1 + dk−1(α + xak−1)ℓk−1)

is totally positive. Note that M3 has k + 1 nonzero rows (i.e. 0 ≤ n ≤ k); all
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subsequent rows are zero. On the other hand, the column vector ℓk begins with k
zeroes. Therefore, Lemma 6.5 implies that

M4
def
= (M3 | ℓk) =

(
q0, . . . , qk−2, q̃k−1 + dk−1(α + xak−1)ℓk−1, ℓk

)
(C.12)

is totally positive. Right-multiplying M4 by the lower-bidiagonal matrix that has 1
on the diagonal, dk−1xbk in position (k, k−1) and zeroes elsewhere — in other words,
adding dk−1xbk times the last column of M4 to its next-to-last column — we obtain
the matrix

(q0, . . . , qk−2, q̃k−1 + dk−1(α + xak−1)ℓk−1 + dk−1xbkℓk, ℓk) = (q0, . . . , qk−2, qk−1, ℓk)
(C.13)

and prove its total positivity, completing the inductive step. □

Lemma C.4. Fix integers 0 ≤ k ≤ m. If the matrix (pk+1, . . . ,pm) is totally positive,
then so is the matrix (q0, . . . , qk−1, ℓk,pk+1, . . . ,pm).

Proof. The case k = m is Lemma C.3; so assume that k < m. Let tk+1 be obtained
from pk+1 by first specializing bk+1 = 0, and followed by the substitution fk+1 →
fk+1 + xbk+1ck+1: that is,

tk+1 =
(
pk+1|bk+1=0

)∣∣∣
fk+1→fk+1+xbk+1ck+1

. (C.14)

The entries in the column vector tk+1 are tk+1 = (tn,k+1)
⊺
n≥0 where

tk,k+1 = (α + xak)(β + yak)ck+1 (C.15a)

tk+1,k+1 = (α + xak+1)(β + yak+1)dk+1 + xyak+1bk+1ck+1 + βxbk+1ck+1

+ (α + xak+1)ek+1 + (β + yak+1)fk+1 (C.15b)

tk+2,k+1 = (α + xak+2)ybk+2dk+1 + xbk+2(β + yak+1)dk+1 + xbk+2ybk+1ck+1

+xbk+2ek+1 + ybk+2fk+1 (C.15c)

tk+3,k+1 = xybk+3bk+2dk+1 (C.15d)

tn,k+1 = 0 if n < k or n > k + 3 (C.15e)

Note that these substitutions would not affect pℓ for ℓ > k + 1. Next, let p̃k+1 be
identical to tk+1 except that the entry tk,k+1 is now made equal to 0, i.e. p̃k+1 =
(p̃n,k+1)

⊺
n≥0 where

p̃k+1,k+1 = (α + xak+1)(β + yak+1)dk+1 + xyak+1bk+1ck+1 + βxbk+1ck+1

+ (α + xak+1)ek+1 + (β + yak+1)fk+1 (C.16a)

p̃k+2,k+1 = (α + xak+2)ybk+2dk+1 + xbk+2(β + yak+1)dk+1 + xbk+2ybk+1ck+1

+xbk+2ek+1 + ybk+2fk+1 (C.16b)

p̃k+3,k+1 = xybk+3bk+2dk+1 (C.16c)

p̃n,k+1 = 0 if n < k + 1 or n > k + 3 (C.16d)

Notice that
pk+1 = p̃k+1 + (α + xak)ck+1ℓk . (C.17)

79



By hypothesis M1
def
= (pk+1, . . . ,pm) is totally positive; this implies, by substitu-

tion, that M2
def
= (tk+1,pk+2, . . . ,pm) is totally positive; and finally, this implies that

M3
def
= (p̃k+1,pk+2, . . . ,pm) is totally positive, because the nonzero rows of M3 form

a submatrix of M2.

Now observe that the matrix S
def
= (q0, . . . , qk−1, ℓk, p̃k+1,pk+2, . . . ,pm) consists of

two blocks overlapping in a single row:

S = (q0, . . . , qk−1, ℓk | p̃k+1,pk+2, . . . ,pm) =


∗ 0k×1 0k×(m−k)

∗ β + yak 01×(m−k)

∗ ybk+1 ∗
0∞×k 0∞×1 ∗


(C.18)

where the asterisks stand for blocks of unspecified entries (which may be zero or
nonzero). By Lemma C.3, the matrix (q0, . . . , qk−1, ℓk) is totally positive; and we
have just shown that the matrix (p̃k+1,pk+2, . . . ,pm) is totally positive. So Lemma 6.5
implies that the matrix S is totally positive.

On the other hand, using equation (C.17) we can conclude that the matrix
(q0, . . . , qk−1, ℓk,pk+1, . . . ,pm) can be obtained from S by right-multiplying it by the
upper-bidiagonal matrix that has 1 on the diagonal, (α+xak)ck+1 in position (k, k+1)
and zeroes elsewhere. This proves that the matrix (q0, . . . , qk−1, ℓk,pk+1, . . . ,pm) is
totally positive. □

The next two lemmas are the following:

Lemma C.5. Fix integers 0 ≤ k ≤ m. If the matrix (q0, . . . , qk,pk+1, . . . ,pm) is
totally positive, then so is (q0, . . . , qk−1,pk, . . . ,pm).

Lemma C.6. For every pair of integers 0 ≤ k ≤ m+1, the matrix (q0, . . . , qk−1,pk, . . . ,pm)
is totally positive.

We omit the proofs of Lemmas C.5 and C.6 as they are analogous to the proofs
of Lemmas 6.9 and 6.10, respectively, but using columns instead of rows.

This completes the proof of Theorem C.1.

We conclude by posing the following open problem:

Problem C.7. Find a combinatorial interpretation for the output matrix A = O(P )
generated by the production matrix (C.1)/(C.4), or by interesting specializations thereof.
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[84] J. Zeng, Énumérations de permutations et J-fractions continues, European J.
Combin. 14, 373–382 (1993).

[85] J. Zeng, Combinatorics of orthogonal polynomials and their moments, in Lec-
tures on Orthogonal Polynomials and Special Functions , edited by H.S. Cohl
and M.E.H. Ismail, London Mathematical Society Lecture Note Series #464
(Cambridge University Press, Cambridge, 2021), pp. 280–334.

[86] B.-X. Zhu, Log-convexity and strong q-log-convexity for some triangular arrays,
Adv. Appl. Math. 50, 595–606 (2013).

[87] B.-X. Zhu, Some positivities in certain triangular arrays, Proc. Amer. Math.
Soc. 142, 2943–2952 (2014).

[88] B.-X. Zhu, Total positivity, continued fractions and Stieltjes moment sequences,
unpublished manuscript (2018).

[89] B.-X. Zhu, Positivity and continued fractions from the binomial transformation,
Proc. Roy. Soc. Edinburgh A 149, 831–847 (2019).

[90] B.-X. Zhu, Total positivity from the exponential Riordan arrays, SIAM J. Dis-
crete Math. 35, 2971–3003 (2021).

[91] B.-X. Zhu, Stieltjes moment properties and continued fractions from combina-
torial triangles, Adv. Appl. Math. 130, 102232 (2021).

[92] B.-X. Zhu, Coefficientwise Hankel-total positivity of row-generating polynomi-
als for the m-Jacobi-Rogers triangle, preprint (March 2022), arXiv:2202.03793
[math.CO].

86


