

Can we teach transferable knowledge? An adversarial collaboration

Louis Bourgaux, Margaux Tissot, Mathilde Bressier, Lucas Raynal, Emmanuel Sander, André Tricot, Pierre Tchounikine.

The ASTRAPI Project

4 years project funded by the French National Research Agency:

Pr. André Tricot

Ph.D. Student - Louis Bourgaux

The ASTRAPI Project

4 years project funded by the French National Research Agency:

Pr. André Tricot

Ph.D. Student - Louis Bourgaux

Pr. Pierre Tchounikine Head

PostDoc – Lucas Raynal

The ASTRAPI Project

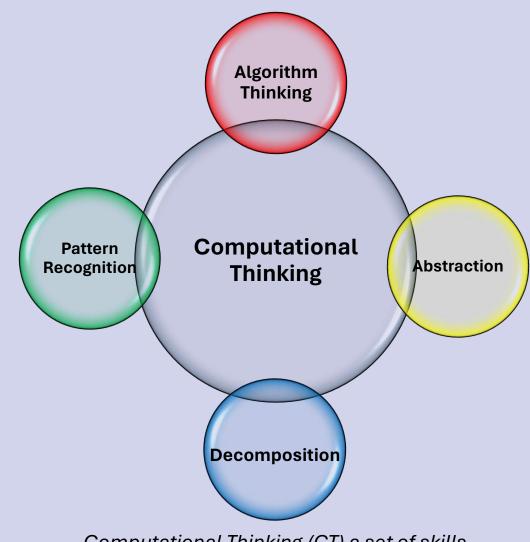
4 years project funded by the French National Research Agency:

Pr. Emmanuel Sander

Ph.D. Student – Margaux Tissot

Pr. André Tricot

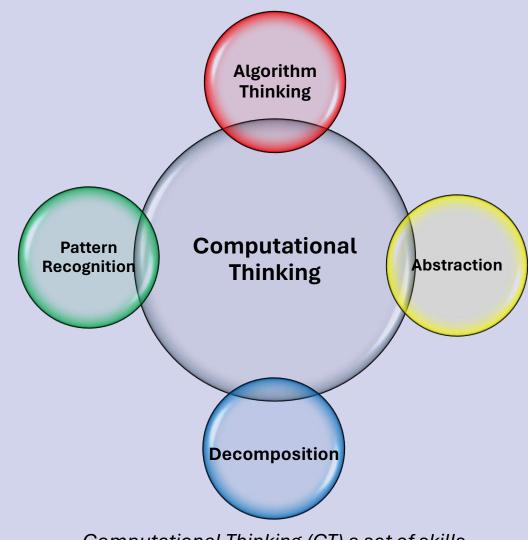
Pr. Pierre Tchounikine Head


Université **Grenoble Alpes**

PostDoc – Lucas Raynal

Ph.D. Student - Louis Bourgaux

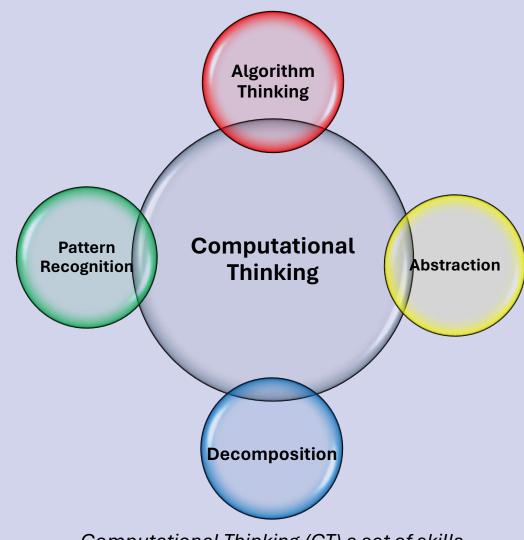
Computational Thinking (CT)


Introduced by Wing (2006)

Computational Thinking (CT) a set of skills

Computational Thinking (CT)

- Introduced by Wing (2006)
- 21st-century skill and general ability (Barr, Harrison, & Conery, 2011; Bocconi et al., 2016)


Computational Thinking (CT) a set of skills

Computational Thinking (CT)

- Introduced by Wing (2006)
- 21st-century skill and general ability (Barr, Harrison, & Conery, 2011; Bocconi et al., 2016)

Considered as a general skill –

Can we transfer CT knowledge to other disciplines or learning contexts?

Computational Thinking (CT) a set of skills

Transfer of Knowledge

- Ability to apply knowledge and skills in new contexts (Salomon & Perkins, 1992)
- Major aspect of education

Transfer of Knowledge

- Ability to apply knowledge and skills in new contexts (Salomon & Perkins, 1992)
- Major aspect of education

- Distance dimension (Barnett & Ceci, 2002)
 - Near Transfer: similar contexts
 - * Far Transfer: dissimilar contexts

Transfer of Knowledge

- Ability to apply knowledge and skills in new contexts (Salomon & Perkins, 1992)
- Major aspect of education

- Distance dimension (Barnett & Ceci, 2002)
 - Near Transfer: similar contexts
 - Far Transfer: dissimilar contexts

How far can I transfer knowledge that I learned?

Adversarial collaboration

Analogy Theory

- Analogical comparison
- Foster abstraction
- Far transfer

Hofstatdter & Sander (2013)

Cognitive Load Theory

- Knowledge specificity
- Transfer only within the same context
- Near transfer

Tricot & Sweller (2014)

Rationale

Objective: Investigate Computational Thinking and its overall impact in education.

How far can I transfer the Computational Thinking knowledge?

Rationale

Objective: Investigate Computational Thinking and its overall impact in education.

How far can I transfer the Computational Thinking knowledge?

Can we foster (near and/or far) transfer through teaching?

The Present Experiment

Teaching problem-solving in 5th grades classrooms based on algorithmic thinking concept.

Example:

To unlock his lock, Marius had to create a two-digit code. The digits can be 0, 1, 2 and/or 3. Unfortunately, Marius has forgotten his code and can no longer open his lock. Help Marius to find his code, which codes he needs to try to make sure he finds the one that will open his lock?

The Present Experiment

Teaching problem-solving in 5th grades classrooms based on algorithmic thinking concept.

Example:

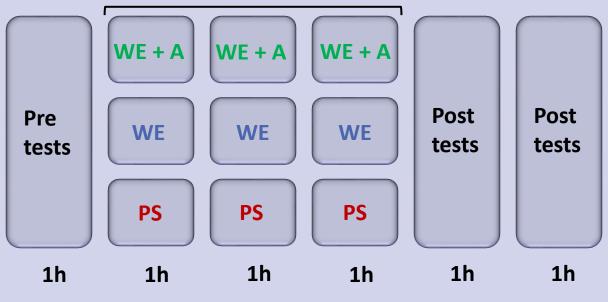
To unlock his lock, Marius had to create a two-digit code. The digits can be 0, 1, 2 and/or 3. Unfortunately, Marius has forgotten his code and can no longer open his lock. Help Marius to find his code, which codes he needs to try to make sure he finds the one that will open his lock?

Solution:

Experimental Design

6 Classrooms for WE and WE + A and 3 for the PS Condition.

6 Sessions over 6 weeks


3 Teaching conditions:

WE + A = Worked-examples + Analogical comparison

WE = Worked-examples

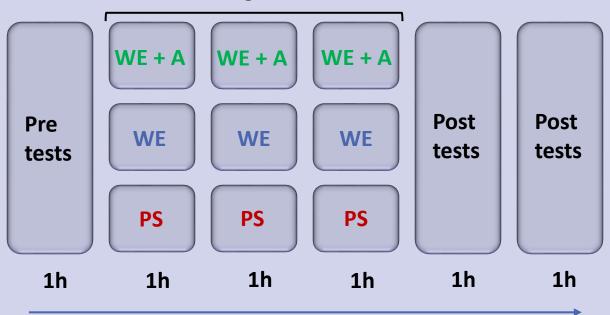
PS = Problem-solving

Teaching sessions

Experimental Design

6 Classrooms for WE and WE + A and 3 for the PS Condition.

6 Sessions over 6 weeks


3 Teaching conditions:

WE + A = Worked-examples + Analogical comparison

WE = Worked-examples

PS = Problem-solving

Teaching sessions

Posttest = **Near** and **far** transfer problems

Dependent Variable = Strategy_Score

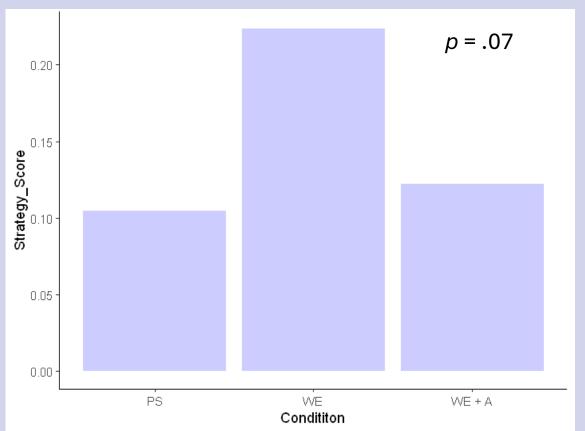
Predictions

DV: Strategy Score

Cognitive Load Theory

Analogy Theory

Near Transfer Problems


Far Transfer Problems

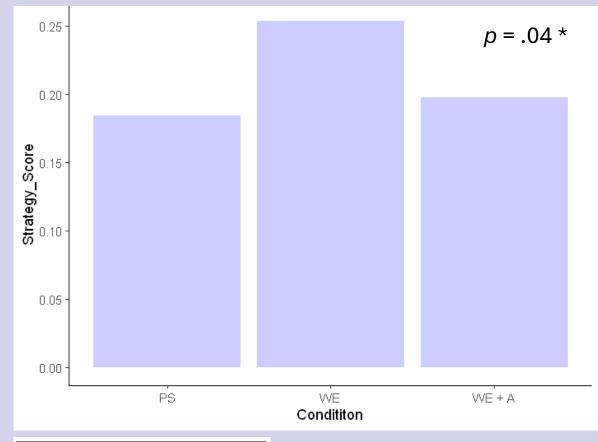
WE > WE + A > PS

WE + A > WE > PS

Results

Near Transfer Problems

 Condition (N)
 M
 SD


 WE + A (N = 91)
 0.12
 0.11

 WE (N = 88)
 0.22
 0.26

 PS (N = 33)
 0.1
 0.09

Table 1. Srategy_Score from 0 to 1 for Near transfer Problems - Mean and SD per condition.

Far Transfer Problems

M	SD
0.18	0.24
0.25	0.2
0.2	0.21
	0.18 0.25

Table 2. Srategy_Score from 0 to 1 for Far transfer Problems - Mean and SD per condition.

Discussion

- WE:
 - useful teaching method to promote near transfer AND far transfer?

Discussion

- WE:
 - useful teaching method to promote near transfer AND far transfer?
- WE + A
 - wasn't effective

Discussion

- WE:
 - useful teaching method to promote near transfer AND far transfer?
- WE + A
 - wasn't effective
- WE > PS

Conclusion

- New experiments
 - Refine the material
 - Increase the statistical power
 - Explore other populations

Conclusion

- New experiments
 - Refine the material
 - Increase the statistical power
 - Explore other populations

Can we teach general abilities?

Conclusion

- New experiments
 - Refine the material
 - Increase the statistical power
 - Explore other populations

- Can we teach general abilities?
- Shed light on relevant teaching types to enhance transfer

Thank you for your attention!

References:

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer. Psychological bulletin, 128(4), 612.

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20-23.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016). EXPLORING THE FIELD OF COMPUTATIONAL THINKING AS A 21ST CENTURY SKILL. 4725-4733. https://doi.org/10.21125/edulearn.2016.2136

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15(1), 1-38. https://doi.org/10.1016/0010-0285(83)90002-6

Hofstadter, D. R., & Sander, E. (2013). Surfaces and essences: Analogy as the fuel and fire of thinking. Basic books.

Perkins, D., & Salomon, G. (1992). Transfer Of Learning. 11.

Tricot, A., & Sweller, J. (2014). Domain-Specific Knowledge and Why Teaching Generic Skills Does Not Work. Educational Psychology Review, 26(2), 265-283.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215