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On Preemption and Learning in Stochastic Scheduling

Nadav Merlis * 1 Hugo Richard * 1 2 Flore Sentenac * 1 Corentin Odic 1 Mathieu Molina 1 3 Vianney Perchet 1 2

Abstract
We study single-machine scheduling of jobs, each
belonging to a job type that determines its dura-
tion distribution. We start by analyzing the sce-
nario where the type characteristics are known
and then move to two learning scenarios where
the types are unknown: non-preemptive problems,
where each started job must be completed before
moving to another job; and preemptive problems,
where job execution can be paused in the favor of
moving to a different job. In both cases, we de-
sign algorithms that achieve sublinear excess cost,
compared to the performance with known types,
and prove lower bounds for the non-preemptive
case. Notably, we demonstrate, both theoretically
and through simulations, how preemptive algo-
rithms can greatly outperform non-preemptive
ones when the durations of different job types
are far from one another, a phenomenon that does
not occur when the type durations are known.

1. Introduction
Single Machine Scheduling is a longstanding problem with
many variants and applications (Pinedo, 2012). In this prob-
lem, a set of N jobs must be processed on one machine,
each of a different ‘size’ – processing time required for its
completion. An algorithm is a policy assigning jobs to the
machine, and performance is usually measured by flow time
– the sum of the times when jobs have finished. If one has
access to the size of each job, then scheduling the jobs by
increasing size is optimal (Schrage, 1968). Unfortunately,
for most applications, this knowledge is unavailable; yet,
oftentimes, some structure or knowledge on the jobs can
still be leveraged.

In this paper, we focus on scheduling problems where jobs
are grouped by types that determine their duration distribu-
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tion. This model approximates many real-world scenarios.
For example, when scheduling patients for surgery, patients
may be grouped by expected procedure time (Magerlein
& Martin, 1978). The model is also relevant in computing
problems, where jobs with similar features are expected to
have a similar processing time (Li et al., 2006). Lastly, in
calendar learning, where an agent advises the user on how
to organize its day based on the tasks to be done, similar
tasks can be assumed to have a similar duration (White &
Hassan Awadallah, 2019).

In practice, when encountering a new scheduling task, we
usually know the type of each job, but have little-to-no
information on the expected duration under each type. Then,
the scheduling algorithm must learn the characteristics of
each type to be able to utilize this information. This must be
done concurrently with the scheduling of tasks, which poses
an extra challenge – to be useful, learning must be done as
early as possible; however, wrong scheduling allocation at
the beginning delays all jobs and causes large penalties.

In this work, we show how learning can be efficiently done
in scheduling problems with job types, characterized by
exponential distributions, in two different settings – the non-
preemptive setting, where once a job started running, it must
be completed, and the preemptive setting, where jobs can
be put on hold. We present two algorithms in each setting
and show that the preemptive setting has a clear advantage
when the type durations have to be learned. This comes in
contrast to the case of known types, where under reasonable
assumptions, the optimal algorithm is non-preemptive.

While our algorithms resemble classic bandit methods, the
scheduling objective requires different analysis approaches.
In particular, in the context of scheduling, the quality of an
algorithm is measured by the ordering of jobs. In stark con-
trast, regret-minimization objectives measure the number
of plays from each arm (job type). Indeed, in scheduling
problems, the number of pulls from each job type is always
the same – by the end of the interaction, we would finish all
the jobs of all types. Thus, both our algorithmic design and
analysis will be comparative – focus on the number of jobs
evaluations from a bad type before the completion of jobs
of a good type.

Our contributions are as follows. (1) We present the schedul-
ing setting with unknown job types. (2) We analyze the
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optimal algorithm for the case of known job types, called
Follow-the-Perfect-Prediction (FTPP), and bound its com-
petitive ratio (CR). (3) We present explore-then-commit
(ETC) and upper confidence bound (UCB) algorithms for
the preemptive and non-preemptive settings and bound their
performance, compared to FTPP. In particular, our bounds
show that the non-preemptive algorithms have worse depen-
dence on the durations of the longest job types. (4) We com-
plement this by proving lower bounds to the non-preemptive
case. (5) We end by simulating our suggested algorithms
and show that their empirical behavior is consistent with our
theoretical findings.

2. Related Work
Scheduling problems. The scheduling literature and prob-
lem zoology are large. We focus on static scheduling on
a single machine with the objective of minimizing flow
time. Static scheduling (Motwani et al., 1994) means that all
scheduled tasks are given in advance before the scheduling
starts. Possible generalizations include dynamic scheduling
where scheduled tasks arrive online (Becchetti & Leonardi,
2004), weighted flow time (Bansal & Dhamdhere, 2007)
where different jobs have different weights, multiple ma-
chines (Lawler & Labetoulle, 1978)); and many more (Dürr
et al., 2020; Tsung-Chyan et al., 1997). While we only
tackle some versions of this problem, we believe that our
approaches can be adapted or extended to other settings.

Clairvoyant and non-clairvoyant scheduling. In clairvoyant
scheduling, job sizes are assumed to be known, and schedul-
ing the shortest jobs first gives the lowest flow time (Schrage,
1968). In non-clairvoyant scheduling, job sizes are arbi-
trary and unknown. The Round Robin (RR) algorithm,
which gives the same amount of computing time to all
jobs, is the best deterministic algorithm with a competi-
tive ratio of 2− 2

N+1 = 2 + o(N) (Motwani et al., 1994).
The best randomized algorithm has a competitive ratio of
2− 4

N+3 = 2 + o(N) (Motwani et al., 1994).

Stochastic scheduling. Stochastic scheduling covers a mid-
dle ground where job sizes are known random variables. The
field of optimal stochastic scheduling aims to design optimal
algorithms for stochastic scheduling (see Cai et al. 2014 for
a review). When distributions have a non-decreasing hazard
rate, scheduling the shortest mean first is optimal (see Cai
et al. 2014, Corollary 2.1).

In this work, we consider exponential job sizes (which have
a non-decreasing hazard rate), as frequently assumed in
the scheduling literature (Kämpke, 1989; Hamada & Glaze-
brook, 1993; Cunningham & Dutta, 1973; Cai & Zhou,
2000; 2005; Pinedo & Weiss, 1985; Glazebrook, 1979) and
similarly for the presence of different types of jobs (Mitzen-
macher, 2020; Hamada & Glazebrook, 1993; Marbán et al.,

2011). Yet, in contrast to most of the literature on stochas-
tic scheduling, the means of the exponential sizes are un-
known to the scheduler and are learned as the algorithm
runs. Nonetheless, we later present algorithms whose CR
asymptotically converges to the optimal value, obtained in
stochastic scheduling with known job means.

The problem of learning in scheduling has received some
attention lately. Specifically, Levi et al. (2019) consider a
setting where it is possible to ‘test’ jobs to learn about their
attributes, which comes at a cost. In (Krishnasamy et al.,
2018), the authors propose an algorithm to learn the cµ rule
(a rule to balance different holding costs per job) in the
context of dynamic queues. Perhaps closest to our setting,
in (Lee & Vojnovic, 2021), job types are also considered,
but the length of the jobs is assumed to be known, and the
goal is to deal with the uncertainty on the holding costs,
which are noisily observed at each iteration. In the last two
papers, no explicit exploration is needed, which stands in
contrast with our setting.

The problem we tackle was previously studied in a Bayesian
setting (Marbán et al., 2011), under the assumption of two
job types, and a Bayesian algorithm, called LSEPT, was
presented. When run with an uninformative prior (the same
for all job types), LSEPT is reduced to a greedy algorithm;
whenever a job finishes, it runs until completion a job whose
type has the lowest expected belief on its mean size (com-
puted across jobs that have been processed so far). The
author proved it has better performance in expectation than
fully non-adaptive methods, but provided no other guaran-
tee. In Appendix D, we empirically evaluate this algorithm
and show it has a behavior typical of greedy algorithms: it
has a very large variance, and its CR does not converge to
the optimal CR, in contrast to our suggested methods.

3. Setting and Notations
We consider scheduling problems of N jobs on a single
machine, each belonging to one of K job types. We as-
sume that N = nK, i.e, there are n jobs of each type. The
different sizes (also called processing times) of the jobs of
type k are denoted (P k

i )i∈[n],1 where P k
i ∼ E(λk) are inde-

pendent samples from an exponential variable of parameter
λk. By extension, E[P k

i ] = λk, and we call λk the mean
size of type k. We assume without loss of generality that
the mean sizes of the K types are in an increasing order
λ1 ≤ λ2 . . . ≤ λK and denote λ = (λ1, . . . , λK). With
slight abuse of notations, we sometimes ignore the job types
and denote the job durations by Pi for i ∈ [N ].

1For clarity of exposition, we assume that there are exactly
n jobs per type. When types have different numbers of jobs
n1, n2, . . . , nK , all algorithms can run with n = maxℓ nℓ, and
all bounds hold with this same parameter n.
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Next, denote bki and eki the beginning and end dates of the
computation of the ith job of type k. We define the cost
of an algorithm ALG, also called flow time, as the sum
of all completion times: CALG =

∑K
k=1

∑
i∈n e

k
i . Given

knowledge of the job size realizations, the cost is minimized
by an algorithm that computes them in increasing order,
which we term as OPT.

Preemption is the operation of pausing the execution of one
job in the favor of running another one. Thus, preemptive
algorithms are ones that support preemption, while non-
preemptive algorithms do not allow it and must run each
started job until completion.

4. Benchmark: Follow The Perfect Prediction
We compare our algorithms to a baseline that completes each
job by increasing expected sizes, called Follow-The-Perfect-
Prediction (FTPP). For exponential job sizes, this strategy
is optimal between all algorithms without access to job
size realizations (see Cai et al. 2014, Corollary 2.1). Thus,
with learning, we aim at designing algorithms approaching
the performance of FTPP, whilst mitigating the cost of
learning (i.e., mitigating the cost of exploration). In the rest
of this section, we analyze the performance of FTPP.

First, we evaluate the performance of non-clairvoyant algo-
rithms that do not exploit the job type structure. We then
compare the performance of the best of those algorithms
against that of FTPP and show the clear advantage of using
the structure of job types.

4.1. Non-clairvoyant Algorithms

An algorithm A is said non-clairvoyant if it does not have
any information on the job sizes, including the job type
structure. Recall that RR is the algorithm that computes all
unfinished jobs in parallel and is the optimal deterministic
algorithm in the adversarial setting. The following propo-
sition states that in our setting, it is the optimal algorithm
among all non-clairvoyant ones.

Proposition 4.1. For any λ and any (deterministic or ran-
domized) non-clairvoyant algorithm A, there exists a job
ordering such that E[CA] ≥ E[CRR].

Proof sketch (full proof in Appendix A.3). Consider TA
ij ,

the amount of time that job i and job j delay each other. As
the algorithm is unaware of the expected job size order,
its run is independent of whether the expected size of job
i is smaller or greater than that of j. This holds because
a non-clairvoyant algorithm has no information on job
expected sizes nor on the existence of job types. As an
adversary, we can therefore choose the job order so that the
algorithm incurs the largest flow time. A careful analysis
then provides E[TA

ij ] ≥ 2E[TOPT
ij ] where OPT is the

optimal realization-aware algorithm. A similar reasoning is
made in the case of randomized algorithms. We conclude
by observing that RR achieves such delay.

Unfortunately, even though our setting is not adversarial,
the CR of RR is bounded from below (Lemma A.3):

for any λ,
E [CRR]

E [COPT]
≥ 2− 4

n+ 3
. (1)

4.2. Performance of FTPP

The first statement establishes that FTPP outperforms RR
on any instance.

Lemma 4.2. For any n and λ,

E[CFTPP] ≤ E[CRR].

The proof is a straightforward computation, done in Ap-
pendix A.2.3.

This indicates that when information on the job types is
available, it is always advantageous to use it. In the rest of
the section, we quantify the improvement this extra informa-
tion brings. More precisely, we show that on a wide variety
of instances, the CR of FTPP is much smaller than that of
RR. We first present such a bound when K = 2.

Proposition 4.3. The CR of FTPP with K = 2 types of
jobs with n jobs per type with λ1 = 1 and λ2 = λ > 1
satisfies:

E[CFTPP]

E[COPT]
≤ 2− 4

λ− 1

(1 + λ)2 + 4λ
.

Proof sketch (full proof in Proposition A.4). The total ex-
pected flow time of any algorithm is given by the sum
of the expected time spent computing all jobs and the ex-
pected time lost waiting as jobs delay each other. In the
case of OPT, the expected flow time can be computed
in closed form using that job i and j delay each other by
E[min(Xi, Xj)] =

E[Xi]E[Xj ]
E[Xi]+E[Xj ]

. The CR E[CFTPP]
E[COPT] can then

be calculated and is upper bounded to yield the result.

In the case K = 2, there exists values of λ for which
the CR of FTPP is lower than 1.71. In the general case,
Proposition A.5 in Appendix A.2.2 shows that there exist
values of K and λ for which the CR is as low as 1.274.2

5. Non-Preemptive Algorithms
After establishing FTPP as the baseline for learning algo-
rithms, we move to tackle learning in the non-preemptive

2An exact expression for the CR of FTPP is given at Equa-
tion (7) in the appendix and is omitted for clarity reasons.
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Algorithm 1 Non-Preemptive Algorithms routine
1: Init: type set U = [K], active jobs ik = 1,∀k ∈ [K]
2: while U is not empty do
3: Use a type selection subroutine to select a type k ∈ U
4: Run job ik until completion
5: Set ik ← ik + 1
6: if All jobs of type k are completed then
7: Remove type k from U
8: end if
9: end while

setting, where once started, job execution cannot be stopped
(see Algorithm 1). This is relevant, for example, to settings
where switching tasks is very costly (e.g., in running time or
memory) or even impossible (e.g., in medical applications,
where treatment of a patient cannot be stopped). We show
how algorithms from the bandit literature can be adapted to
the scheduling setting and bound their excessive cost, com-
pared to FTPP. Specifically, by treating each job type as an
‘arm’, we adapt explore-then-commit and optimism-based
strategies to the scheduling setting.

5.1. Description of ETC-U and UCB-U

In the following, we describe the type selection mechanism
for ETC-U and UCB-U. The full pseudo-code of both
algorithms is available in Appendix B.1.

Let U be the set of all job types with at least one remaining
job.

ETC-U type selection. While ETC-U runs, it maintains
a set of types A that are candidates for having the lowest
mean size among the incomplete types U . At each iteration,
ETC-U chooses a job of type k of the minimal number of
completed jobs in A and executes it to completion. Then, U
and A are updated and the procedure repeats until no more
jobs are available in U .

We now describe the mechanism of maintaining the candi-
date type set A. At a given iteration, denote by mk and mℓ,
the number of jobs of type k and ℓ that have been computed
up to that iteration. Letting

r̂
min(mk,mℓ)
k,ℓ =

∑min(mk,mℓ)
i=1 1

{
P k
i < P ℓ

i

}
min(mk,mℓ)

and

δ
min(mk,mℓ)
k,ℓ =

√
log(2n2K3)

2min(mk,mℓ)
,

a type ℓ is excluded from A if there exists a type k such that

r̂
min(mk,mℓ)
k,l − δ

min(mk,mℓ)
k,ℓ > 0.5. (2)

In the proof, we show that this condition implies w.h.p. that
λk < λℓ. Thus, when it holds, job type ℓ is no longer

a candidate for the remaining job type with the smallest
expectation, and we say that type k eliminates type ℓ. Once
a job type is eliminated, it remains so until A is empty, at
which point all job types in U are reinstated to A.

Finally, whenever A contains only one type k, all jobs of
this type are run to completion, and after all jobs from type
k are finished, it is removed from U and therefore from
A. This means that types that were eliminated by k can be
candidates again.

UCB-U type selection. At every iteration, the algorithm
computes an index for each job type and plays a type with
the minimal index from the incomplete types U . Specifically,
if mk jobs were completed from type k, the index of the
type is defined as

λmk

k =
2
∑mk

i=1 X
k
i

χ2
2mk

(1− 1
2n2K2 )

,

where χ2
m(δ) is the δ-percentile of a χ2 distribution with m

degrees of freedom. In the proof, we show that these indices
are a lower bound of the job means w.h.p., so choosing the
minimal index corresponds to choosing the type with the
optimistic shortest duration.

5.2. Cost Analysis

Proposition 5.1. The following bounds hold:

E[CETC-U] ≤ E[CFTPP] +
1

n
E[COPT]

+
∑

k∈[K]

[
1

2
(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3)

and

E[CUCB-U] ≤E[CFTPP] +
2

n
E[COPT]

+ n(K − 1)
√

3n ln (2n2K2)
K∑

k=1

λk.

Proposition 5.1 shows that both ETC-U and UCB-U have
sublinear excess cost. Indeed the optimal cost and thus
also the cost of FTPP is lower bounded by Ω(n2

∑
k λk)

which makes the terms in O(n
√
n) strictly sublinear in n

compared to the optimal cost. When all parameters lie
within a finite range bounded away from 0, the optimal cost
scales as K2n2 making the excess cost linear in K (up to
log terms) compared to the optimal cost.

Proof sketch (full proof in Appendix B). The above propo-
sition is a concatenation of Propositions B.2 and B.4.

The proof of both bounds starts with the decomposition
of the cost with the following Lemma (proven in Ap-
pendix B.2).
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Lemma 5.2 (Cost of non-preemptive algorithms). Any non-
preemptive algorithm A has a cost

E[CA] =E[CFTPP]

+
∑

(ℓ,k)∈[K2],k>ℓ

(i,j)∈[n]2

(λk − λℓ)E
[
1
{
eki ≤ bℓj

}]
.

This lemma is obtained by computing explicitly the expected
cost of algorithm FTPP and using the fact that the realized
length of the jobs conditioned on their type is independent
of their start date.

Then the two proofs diverge.

For ETC-U, the first step is to prove that condition (2)
implies w.h.p that λk ≤ λℓ, which implies that the type in
U with the smallest mean is never eliminated. Then, for the
sake of the analysis, the run of the algorithm is divided into
phases. In phase number ℓ, type ℓ is the job type remaining
with the smallest mean. We then bound the total number of
samples before an arm with a large mean is eliminated at
phase ℓ.

The proof for UCB also starts by showing that w.h.p., arm
indices lower bound the true means. Then, under the con-
dition that the bounds hold, we upper bound the number of
times an arm of type k ≥ ℓ can be pulled while type ℓ is
still active.

The bounds in Proposition 5.1 hold for any value of the
parameters. When the parameter values are far from each
other, tighter bounds hold. We give here these tighter bounds
for K = 2 when λ2 ≥ 3λ1. A more general version of this
bound is given in the appendix, Propositions B.2 and B.4.

Lemma 5.3. If K = 2 and λ2 ≥ 3λ1, the following bounds
hold:

E[CETC-U] ≤ E[CFTPP] + 12λ2n log(2n2K3) +
2

n
E[COPT],

and

E[CUCB-U] ≤ E[CFTPP] +
9

2
λ2n ln

(
2n2K2)+ 4

n
E[COPT].

The bounds of this section seem quite discouraging – they
imply that the existence of even one type of extremely large
duration has grave implications on the cost of any algorithm.
Unfortunately, for any non-preemptive algorithm, an extra
cost w.r.t. FTPP scaling as nλK is unavoidable. Indeed, in
the beginning, no information on the mean types is available,
and any started job will be fully computed, delaying all
remaining nK − 1 jobs (see Appendix B.5.2 for a formal
proof).

5.3. Lower bound

We end this section by analyzing lower bounds for any non-
preemptive scheduling algorithm. In particular, we focus on
the dependency of the excessive cost, compared to FTPP,
as a function of n. We focus on lower bounds for the case of
K = 2, providing a lower bound when λ1 and λ2 are close
to each other and showing that in this case, the excess cost
increases as n

√
n.

Proposition 5.4 (Dependency in n). For any λ1 < λ2,
the flow time of any (possibly randomized) non-preemptive
algorithm A satisfies:

E[CA] ≥ E[CFTPP] + (λ2 − λ1)n
2
exp(−n (λ2−λ1)

2

λ1λ2
)

8
.

In particular, for any λ2 ≤ λ1

(
1 + 1√

n

)
,

E[CA] ≥ E[CFTPP] + (λ1 + λ2)n
√
n
e−1/4

24
.

Proof sketch (full proof in Appendix B.5.1). We start with
the decomposition of Lemma 5.2 and look at the event

E = 1

 ∑
(i,j)∈[n]2

1
{
e2j < b1i

}
≥ n2/2

 .

Notice that a since the algorithm is non-preemptive, a job
that terminates delays any incomplete job by its full duration.
Thus, the event indicates that the ‘number of times’ a job
of type 2 delayed any job of type 1 is at least n2/2. Since
λ2 > λ1, this scenario would lead to a large excess cost.

Then, using standard information-theoretic tools, we lower
bound the probability that either E occurs in the original
scheduling problem or Ē occurs in a problem where the
type order has been switched. In both problems, the relevant
event causes an excess cost of Ω(n2), and substituting the
exact probability of this failure case concludes the proof.

6. Preemptive Algorithms
In this section, we show how to leverage preemption to get
better theoretical and practical performances.

In practice, we allow preemption by discretizing the com-
putation time into small time slots of length ∆. Then, at
every iteration, one or multiple job types are selected de-
pending on some algorithm-specific criteria. The current
running job(s) of the selected type is allocated computa-
tion time ∆ instead of being run to completion. As before,
we employ both an explore-then-commit strategy and an
optimism-based strategy. In both cases, the only dependence
of the resulting algorithm on the discretization size is due

5
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Algorithm 2 Preemptive Algorithms routine
1: Init: type set U = [K], active jobs ik = 1,∀k ∈ [K]
2: while U is not empty do
3: Use a type selection subroutine to select a type k ∈ U
4: Run job ik for ∆ time units
5: if ik was completed then
6: Set ik ← ik + 1
7: end if
8: if All jobs of type k are completed then
9: Remove type k from U

10: end if
11: end while

to the discretization error (the time between the end of a
job and the end of a window), which decreases with the
discretization step. We omit that discretization error of at
most ∆N is the bounds.

Note that in practice, any implementation of RR proceeds
in a similar manner. For instance, in (Motwani et al., 1994),
the discretization step is assumed much smaller than the
length of the jobs. In particular, when we say we run jobs
in parallel, in practice, they cyclically run in a RR manner
with a small discretization step.

6.1. ETC-RR and UCB-RR

ETC-RR type selection. As ETC-U, ETC-RR main-
tains a set of types A that are candidates for lowest mean
size among the set U of types with at least one remaining
jobs. The main difference is that the job type selected is the
one in A with the lowest total run-time (not the one with
the lowest number of computed jobs).

The statistics needed to construct A are different from the
ones used in ETC-U. At a given time, βk,ℓ is the number of
times a job of type k has finished while ℓ and k were both
active. Moreover, we define

r̂k,ℓ =
βk,ℓ

βk,ℓ + βℓ,k
and δk,ℓ =

√
log(2n2K3)

2(βk,ℓ + βℓ,k)
.

The elimination rule is the same as the one of ETC-U, using
these modified statistics.

Reducing the number of algorithm updates: In practice, both
the statistics and the chosen types are not updated at every
iteration; active jobs run in parallel (meaning in a round-
robin style), and the statistics are updated every time a job
terminates. This formulation of the algorithm is the one we
implement(see pseudo-code in Appendix C.1).

UCB-RR type selection. For each job type k ∈ [K], we
introduce Tk(t), the number of times job type k has been

chosen up to iteration t, and the random variables (xs
k)s s.t.:

xs
k =

∑
t

1{a(t) = k, Tk(t) = s and the job finishes} .

It is the indicator that a job of type k is completed when this
type is picked for the sth time by the algorithm. We define
the empirical means as:

µ̂k(T ) :=
1

T

T∑
s=1

xs
k,

and define the index for each arm k as

uk(t) = max

{
µ̃ ∈ [0, 1] : d (µ̂k(Tk(t)), µ̃) ≤

log n2

Tk(t)

}
,

with d(x, y) the Kullback-Leibler divergence between x and
y. A job type with the largest index is selected.

Reducing the number of algorithm updates: As for
ETC-RR, the running jobs and statistics are not updated
at every iteration. Suppose type k∗ is chosen at iteration
t. If k∗ is the last remaining type, it is run until the end.
Otherwise, let ℓ be the type with the second largest index.
We define

µ̃γ
k(T ) :=

1

T + 2γ

T∑
s=1

xs
k,

and

ũγ
k(t)

= max

{
µ̃ ∈ [0, 1] : d (µ̃γ

k(Tk(t)), µ̃) ≤
log n2

Tk(t) + 2γ

}
.

This would be the new index of arm k, were it to run for
additional 2γ iterations with no job terminating during this
additional iterations. Then, we set

γ∗ = argmax
γ

ũγ
k∗(t) ≥ uℓ(t),

and type k∗ is allocated 2γ
∗

iterations with no statistics
update.

6.2. Cost Analysis

Proposition 6.1. The following bounds hold:

E[CETC-RR] ≤E[CFTPP] +
12K

n
E[COPT ]

+ 4n
√
n log(2n2K3)

K−1∑
k=1

(K − k)2λk.

and for any ∆ ≤ λ1

4 and n ≥ max(20, 10 ln(K)),

E[CUCB-RR] ≤ E[CFTPP] +
12K

n
E[COPT ]

+ 6n
√
2n log(2n2K2) + 2

K−1∑
k=1

(K − k)λk.

6
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Figure 1. CR of all algorithms with varying number of jobs, λ1 =
1, λ2 = 0.25, averaged over 400 seeds.

Proof sketch (full proof in Appendix C). The above propo-
sition is a combination of Propositions C.3 and C.4.

Both algorithms belong to the following family of type-wise
non-preemptive algorithms.

Definition 6.2. Recall that bki and eki are the beginning
and end dates of the computation of the ith job of type k.
A type-wise non-preemptive algorithm is an algorithm
that computes jobs of the same type one after another, i.e.,
∀i ∈ [n],∀k ∈ [K], eki ≤ bki+1.

The following Lemma, proven in Appendix C.2 bounds the
expected cost of any type-wise non-preemptive algorithms.

Lemma 6.3 (Cost of type-wise non-preemptive algorithms).
Any type-wise non-preemptive algorithm A has the following
upper bound on its cost:

E[CA] ≤E[CFTPP]

+
∑

(ℓ,k)∈[K2],k>ℓ

(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]

+ (K − 1)n

K∑
k=1

λk.

The proof of this Lemma again involves computing explic-
itly the cost of FTPP and using that the realization of a job
length is independent of its start date. A first upper bound is
obtained by noting that a job started before another delays
the former in expectation by at most its expected length.
The second element to the proof is the fact that at every job
termination, at most a job of each other type is currently
active. This observation leads to the upper bound on the
additional cost of preemption and the last term of the ex-
pression of the Lemma. Note that this last term implies that

Figure 2. Normalized excess cost of all algorithms w.r.t. FTPP
with varying value of λ1, for λ2 = 1 and n = 50, averaged over
5, 000 seeds.

our upper bound will include a term scaling as nλK , which
would indicate that preemptive algorithms have an extra
learning cost scaling as the highest mean type. However, we
strongly believe this to be an artefact of the analysis.

Given the decomposition, the two proofs diverge.

The analysis of ETC-RR is split into phases, as the analy-
sis of ETC-U. However, the bound on the number of ‘bad’
jobs computed in each phase requires more care because of
independence arguments. Specifically, the upper bound is
derived from concentration bounds on the computed statis-
tics, and an additional bound on the number of successful
jobs of each type when two types are run in parallel. The de-
tails on how to deal with those two non-independent events
can be found in Appendix C.3.

For UCB-RR, the first step is to distinguish two types of
‘failures’ of the index. In the first failure case, the index
deviates below the true mean. We show that this happens
with probability O(1/n2) (Lemma C.7), independently of
∆. The second type of failure is when the index of a sub-
optimal arm is much larger than its true mean. Here, we
show that the upper bound on the number of iterations where
this happens does diverge as ∆ goes to zero. However, the
algorithm only incurs a cost on the ‘bad pull’ of a type
when the selected job terminates. The probability of job
termination decreases as ∆ decreases, which compensates
for the rise in the upper bound (Equation (32)).

7. Experiments
In this section, we design synthetic experiments to compare
ETC-U, ETC-RR, UCB-RR,UCB-U, RR and FTPP.
All code is written in Python. We use matplotlib (Hunter,

7
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2007) for plotting, and numpy (Harris et al., 2020) for array
manipulations. The above libraries use open-source licenses.
Computations are run on a laptop.3

The first experiment plots the CR of each algorithm for two
types of jobs and fixed values of λ1, λ2 as n varies (see Fig-
ure 1). Even though all our suggested algorithms have the
same asymptotic performance, their non-asymptotic behav-
ior drastically varies. As predicted by theory, the preemptive
versions of the algorithm consistently outperform the non-
preemptive ones.

In the second experiment, n = 50 and λ2 = 1 are fixed,
while λ1 varies in (0, 1) (see Figure 2). To be able to discern
performance gaps when λ1 is small, we plot the difference
between the CR of different algorithms and FTPP at a log-
arithmic scale. Here, for small values of λ, both preemptive
methods outperform the non-preemptive ones. This corre-
sponds with the improvement in the dominant error term of
the preemptive cost upper bounds, as a function of λ2.

7.1. Discussion

Preemptive vs. Non-Preemptive The competitive ratio
of all algorithms is asymptotically the one of FTPP. Indeed,
it always holds that E[COPT] ≥ (λ1+λ2)

n2

4 (Equation (6)),
so by Propositions 6.1 and 5.1, for any algorithm A among
ETC-U, ETC-RR, UCB-U and UCB-RR:

CRA = CRFTPP +O

(√
log(n)

n

)
.

On the one hand, the leading term in the cost is the same
for all algorithms. On the other hand, the error term can be
much smaller in the case of preemptive algorithms.

To illustrate this claim, let us consider the case where there
are two types of jobs of expected sizes λ1 and λ2, respec-
tively. Instantiating the bounds of Propositions 5.1 and 6.1
to this setting, we get:

E[CETC-U] ≤ E[CFTPP] + n(λ1 + λ2)
√

8n log(2n2K3)

+
8

n
E[COPT], (3)

and

E[CETC-RR] ≤E[CFTPP] + 2nλ1(
√
4n log(2n2K3) + 1)

+
16

n
E[COPT]. (4)

If λ2 ≫ λ1 the bound in Equation (3) is much larger than
the bound in Equation (4), which is consistent with what
we observe in Figure 2. In particular, one can observe

3The code to reproduce experiemnts is available at https:
//github.com/hugorichard/ml4a-scheduling.

that for small λ1, non-preemptive algorithms converge to a
strictly positive error (due to the unavoidable dependence
in λ2 = 1), while the error of the preemptive algorithms
diminishes. This empirically supports our claim that the
nλK -dependence, as appears in the preemptive cost decom-
position of Lemma 6.3, is only due to a proof artefact.

Optimism-based vs. explore-then-commit. In the sim-
ulations, we see that optimism-based algorithms perform
much better than their ETC counterparts. In traditional
bandit settings, it is well known that the regret of ETC
strategies is a constant-times larger than that of optimism-
based strategies. Here, we believe that in addition to that, a
second phenomenon, not reflected in the analysis, renders
the optimism-based strategies better than the other ones. Be-
cause of the structure of the cost, a pull of a ‘bad job’ at the
beginning is much more expensive than the same pull done
later in the interaction (as it delays more jobs). Optimism-
based strategies explore continuously as they run, whereas
ETC strategies have all the exploration at the beginning,
when it is more expensive. Again, this phenomenon stands
in contrast with traditional bandits, where only the number
of ‘bad pulls’ matter, and not their position.

8. Conclusion and Future Work
We designed and analyzed a family of algorithms for static
scheduling on a single machine in the presence of job types.
The special cost structure of this problem differs from that
of traditional bandit problems, and early mistakes carry
much more weight than late ones, as they delay more jobs.
This modified cost directly impacts the performance of al-
gorithms; although all suggested algorithms asymptotically
have the same CR as the optimal algorithm that knows job
type sizes (FTPP), their non-asymptotic performances dif-
fer.

When preemption is allowed, algorithms that explore job
types with a strategy inspired by the worst-case optimal
deterministic algorithm RR have a clear advantage over
non-preemptive learning algorithms. Thus, because of the
cost structure, the performance is impacted not only by the
number of exploratory steps but also by the nature of the
exploratory steps.

Due to the ubiquitousness of scheduling problems, we be-
lieve that our results could be extended to many other vari-
ants of this setting. In particular, it would be interesting to
take our algorithmic principles and test them on real-world
scheduling problems. Whether our current assumption on
the exponential distribution of job sizes can be removed is
an exciting direction for future work. We believe that many
of the proofs for the non-preemptive case can be extended
to other well-behaved distributions. However, in the pre-
emptive case, our proofs do heavily rely on the properties
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of the exponential distribution, mainly the memoryless in-
crements property. Without it, we can no longer average
over different sections of a job evaluation to estimate its
expected duration. Nonetheless, we believe that the results
are still generalizable although proving the bounds would
be technically much harder.

Moreover, we believe that elements from our works can
be taken to other online learning settings outside the scope
of scheduling. Specifically, we believe that the notion of
types serves as a reasonable approximation that allows the
integration of learning to many online problems. We also
think that the study of cost functions that are sensitive the
early exploration is of great interest.
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A. Benchmark FTPP
In this section, for all jobs i ∈ [N ], we call Pi the job size of job i. Jobs are ordered in increasing order of their expected
size (Notation Pi and P

⌈i/n⌉
i mod n denote the same job). For any algorithm A, we note TA

ij for each (i, j) ∈ [N ]2 the amount
of time job i and job j delay each other under algorithm A.

A.1. Cost of OPT and FTPP, CR of RR

Let us express the expected cost of any algorithm in terms of TA
i,j for k ∈ [K]:

E[CA] = E

 N∑
i=1

Pi +

N∑
i=1

N∑
j=i+1

TA
i,j

 (5)

Lemma A.1 (Cost of OPT). The cost of OPT is given by

E[COPT] = n2

(
K∑
ℓ=1

1

4
λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ

λk + λℓ

)
+

3n

4

K∑
ℓ=1

λℓ.

Note that this lemma implies the following inequality, which will be used in other proofs:

E[COPT] ≥
n2

4

(
K∑
ℓ=1

λℓ

)
(6)

Proof. We apply Equation (5) with A = OPT. In that case, for any to jobs (i, j) ∈ [N ], i ̸= j, as the shortest job is
scheduled first, we have

E[TA
ij ] = E[min(Pi, Pj)].

So E[TA
ij ] =

λkλℓ

λk+λℓ
if job i is of type k and job j is of type ℓ.

E[COPT] = E

 N∑
i=1

Pi +

N∑
i=1

N∑
j=i+1

TA
i,j


=

K∑
ℓ=1

n∑
i=1

λℓ +

n∑
j=i+1

λℓ

2
+

K∑
k=ℓ+1

n∑
j=1

λkλℓ

λk + λℓ


=

K∑
ℓ=1

(
nλℓ +

n(n− 1)

2

λℓ

2
+ n2

K∑
k=ℓ+1

λkλℓ

λk + λℓ

)

= n2

(
K∑
ℓ=1

1

4
λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ

λk + λℓ

)
+

3n

4

K∑
k=1

λk.

Lemma A.2 (Cost of FTPP). The cost of FTPP is given by:

E[CFTPP] = n2

(
1

2

K∑
ℓ=1

λℓ +

K∑
ℓ=1

(K − ℓ)λℓ

)
+ n

(∑K
ℓ=1 λℓ

2

)
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Proof. We apply Equation (5) with A = OPT, so that E[TA
ij ] = min(λk, λℓ) if job i is of type k and job j is of type ℓ

E[CFTPP] = E

 N∑
i=1

Pi +

N∑
i=1

N∑
j=i+1

TA
i,j


=

K∑
ℓ=1

n∑
i=1

λℓ +

n∑
j=i+1

λℓ +

K∑
k=ℓ+1

n∑
j=1

λℓ


=

K∑
ℓ=1

(
nλℓ +

n(n− 1)

2
λℓ + n2

K∑
k=ℓ+1

λℓ

)

= n2

(
1

2

K∑
ℓ=1

λℓ +

K∑
ℓ=1

(K − ℓ)λℓ

)
+ n

(∑K
ℓ=1 λℓ

2

)
.

Lemma A.3 (CR of RR). For any For any λ, the following lower bound holds:

E[CRR]

E[COPT]
≥ 2− 4

n+ 3
.

Proof. For RR, any two jobs are run in parallel until one terminates, thus:

E[TRR
ij ] = 2E[min(Pi, Pj)].

Thus, by equation 5:

E[CRR] =

N∑
i=1

E[Pi] +

N∑
j=1

2E[min(Pi, Pj)].

On the other hand:

E[COPT] =

N∑
i=1

E[Pi] +

N∑
j=1

E[min(Pi, Pj)].

Thus:

E[CRR]

E[COPT]
= 2−

∑N
i=1 Pi

E[COPT]

= 2−
n
∑K

ℓ=1 λℓ

n2
(∑K

ℓ=1
1
4λℓ +

∑K
ℓ=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ

)
+ 3n

4

∑K
ℓ=1 λℓ

≥ 2−
n
∑K

ℓ=1 λℓ

n2
(∑K

ℓ=1
1
4λℓ

)
+ 3n

4

∑K
ℓ=1 λℓ

= 2− 4

n+ 3
.

With the second line obtained by Lemma A.1.

A.2. CR of FTPP

A.2.1. CR WITH K TYPES

Proposition A.4 (Upper bound on the CR in function of λ). The CR of FTPP with K types of jobs with n jobs per type
satisfies:

E[CFTPP]

E[COPT]
≤ 2− fK(λ)

12
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where fK(λ) =
2
∑K

ℓ=1

∑K
k=ℓ+1

λkλℓ
λk+λℓ

−
∑K

ℓ=1(K−ℓ)λℓ∑K
ℓ=1

1
4λℓ+

∑K
ℓ=1

∑K
k=ℓ+1

λkλℓ
λk+λℓ

Note that instantiating this bound with K = 2 types of jobs, n jobs per type, λ1 = 1 and λ2 = λ > 1, we get Proposition 4.3:

E[CFTPP]

E[COPT]
≤ 2− 4

λ− 1

(1 + λ)2 + 4λ
.

Proof of Proposition A.4. Compute E[COPT] using Lemma A.1, E[CFTPP] using Lemma A.2.

The competitive ratio of FTPP is given by:

CRFTPP =
E[CFTPP]

E[COPT]
=

n2
(

1
2

∑K
ℓ=1 λℓ +

∑K
ℓ=1(K − ℓ)λℓ

)
+ n( 12

∑K
ℓ=1 λℓ)

n2
(∑K

ℓ=1
1
4λℓ +

∑K
ℓ=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ

)
+ n( 34

∑K
ℓ=1 λℓ)

(7)

For any values a, b, c, d ∈ R4
+,

if a > c > 0 and d > b > 0, then
a+ b

c+ d
≤ a

c
. (8)

Now, we have 1
2 ≤

3
4 and

K∑
ℓ=1

1

4
λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ

λk + λℓ
≤ 1

2

K∑
ℓ=1

λℓ +

K∑
ℓ=1

(K − ℓ)λℓ.

This implies:

CRFTPP ≤
1
2

∑K
ℓ=1 λℓ +

∑K
ℓ=1(K − ℓ)λℓ∑K

ℓ=1
1
4λℓ +

∑K
ℓ=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ

= 2−
2
∑K

ℓ=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ
−
∑K

ℓ=1(K − ℓ)λℓ∑K
ℓ=1

1
4λℓ +

∑K
k=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ︸ ︷︷ ︸
fK(λ)

.

A.2.2. UPPER BOUND ON THE CR FOR PARTICULAR VALUES OF λ

Proposition A.5.

∀K > 1,∃λ, 0 < λ1 ≤ · · · ≤ λK = 1,CRFTPP(λ) ≤
HK − 1

2BK

1
4BK +AK

with HK =
∑K

k=1
1
k , BK =

∑K
k=1

1
k2 and AK =

∑K
k=1

∑k−1
ℓ=1

1
k2+ℓ2 .

Furthermore limK→∞
HK− 1

2BK
1
4BK+AK

= 4
π ≈ 1.273 which implies that there exists some value of K for which CRFTPP(λ) ≤

1.274.

Proof. A way to prove such a result would be to find the minimum of CRFTPP with respect to λ. But this is difficult. We
propose another point λ̃.

λ̃k =
1

(K − k + 1)2
. (9)
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We express the competitive ratio using λ̃:

CRFTPP(λ̃) =

∑K
k=1(

1
2 +K − k)λ̃k∑K

k=1

(
1
4 λ̃k +

∑K
ℓ=k+1

λ̃kλ̃ℓ

λ̃k+λ̃ℓ

)
=

∑K
k=1(

1
2 +K − k) 1

(K−k+1)2∑K
k=1

(
1
4

1
(K−k+1)2 +

∑K
ℓ=k+1

1
(K−k+1)2+(K−ℓ+1)2

)
=

∑K
k=1(

1
2 + k − 1) 1

k2∑K
k=1

(
1
4

1
k2 +

∑k−1
ℓ=1

1
k2+ℓ2

)
=

HK − 1
2BK

1
4BK +AK

with HK =

K∑
k=1

1

k
, BK =

K∑
k=1

1

k2
, and AK =

K∑
k=1

k−1∑
ℓ=1

1

k2 + ℓ2
.

This shows the first part of the lemma. The fact that HK− 1
2BK

1
4BK+AK

→ 4
π follows from Lemma A.6.

Lemma A.6.

lim
K→∞

HK − 1
2BK

1
4BK +AK

=
4

π

with HK =
∑K

k=1
1
k , BK =

∑K
k=1

1
k2 and AK =

∑K
k=1

∑k−1
ℓ=1

1
k2+ℓ2

Proof. We now focus on the behavior of HK− 1
2BK

1
4BK+AK

as K goes to∞.

We know that for the harmonic number HK = Θ(log(K)), and that for the partial sum of the Basel problem 0 ≤ BK ≤∑∞
k=1 k

−2 = π2/6 = O(1). Let us bound Ak. Using the fact that for y > 0 and x > 0 the function f : (x, y) 7→ (x2+y2)−1

is decreasing in x, for (k, ℓ) ∈ [K]2 we have∫ ℓ+1

ℓ

1

k2 + t2
dt ≤ 1

k2 + ℓ2
≤
∫ ℓ

ℓ−1

1

k2 + t2

1

k2

∫ ℓ+1

ℓ

1

(t/k)2 + 1
dt ≤ 1

k2 + ℓ2
≤ 1

k2

∫ ℓ

ℓ−1

1

(t/k)2 + 1
dt

1

k
(arctan(

ℓ+ 1

k
)− arctan(

ℓ

k
)) ≤ 1

k2 + ℓ2
≤ 1

k
(arctan(

ℓ

k
)− arctan(

ℓ− 1

k
)).

Hence by summing for 1 ≤ ℓ < k ≤ K:

K∑
k=1

1

k
(arctan(1)− arctan(

1

k
)) ≤ AK ≤

K∑
k=1

1

k
(arctan(

k − 1

k
)− arctan(0)),

K∑
k=1

1

k
(
π

4
− arctan(

1

k
)) ≤ Ak ≤

K∑
k=1

1

k
arctan(

k − 1

k
).

For the right-hand-side we use that arctan is increasing, thus

AK ≤
K∑

k=1

1

k
arctan(

k − 1

k
) ≤ π

4
HK .

Using that arctan(x) ≤ x for x ≥ 0, we have

AK ≥
K∑

k=1

1

k
(
π

4
− 1

k
) =

π

4
HK −BK .

14
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Combining everything we obtain the following inequality:

HK − 1
2BK

π
4HK + 1

4BK

≤ CRFTPP(λ̃) ≤
HK − 1

2BK

π
4HK − 3

4BK

.

Therefore

lim
K→∞

CRFTPP(λ̃) =
4

π
≈ 1.273.

A.2.3. THE COST OF FTPP IS LOWER THAN THE COST OF RR

Let us order all jobs i ∈ [N ] in order of their increasing expected size, and denote Pi, the size of job i. An alternative
notation to Pi is P ⌈i/n⌉

i mod n, where the first is used in this proof for convenience. We consider here the most general setting
where K = N .

We have

Lemma A.7.
E[CFTPP] ≤ E[CRR]

Proof. The cost of FTPP with K = N and n = 1 is given by

E[CFTPP] =

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

E
[
TFTPP
ij

]
=

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

min(λi, λj)

where TFTPP
ij is the amount of time job i and job j delay each other in FTPP which verifies

E
[
TFTPP
ij

]
= min(λi, λj)

Similarly, using TRR
ij = 2min(Pi, Pj) which implies E[TRR

ij ] = 2
λiλj

λi+λj
, we get

E[CRR] =

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

E
[
TRR
ij

]
=

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

2
λiλj

λi + λj

Then we write

2
λiλj

λi + λj
=

2
1
λi

+ 1
λj

≥ 2
1

min(λi,λj)
+ 1

min(λi,λj)

≥ min(λi, λj)

We conclude that CFTPP ≤ CRR.
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A.3. Lower bound: Proof of Proposition 4.1

Let us order all jobs i ∈ [N ] in order of their increasing expected size, and denote Pi, the size of job i. An alternative
notation to Pi is P ⌈i/n⌉

i mod n, where the first is used in this proof for convenience. We consider here the most general setting
where K = N . Any algorithm has a cost:

E[CA] =

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

E[TA
ij ]

where TA
ij = DA

ij +DA
ji where DA

ij is the amount of time job i delay job j.

Lemma A.8. Consider K = N jobs where job i ∈ [N ] has mean size λi and λ1 ≤ · · · ≤ λN . Consider any algorithm A
and let TA

ij the total amount of time spent by A on i or j while both jobs are alive.

E[TA
ij ] ≥ 2E[TOPT

ij ]

where OPT is the optimal offline algorithm

Proof of Lemma A.8. Let us first prove our proposition for any deterministic algorithm A. We denote i(t) amount of time
that A allocates to job i after a time t < TA

ij is allocated to job i or j.

E[TA
ij ]

=

∫ +∞

t=0

P(TA
ij ≥ t)dt

=

∫ +∞

t=0

P (Pi ≥ i(t))P (Pj ≥ t− i(t)) dt

=

∫ +∞

t=0

exp

(
− i(t)

λi

)
exp

(
− t− i(t)

λj

)
dt

=

∫ +∞

t=0

exp

(
− i(t) + t/2− t/2

λi

)
exp

(
− t− (i(t) + t/2− t/2)

λj

)
dt

=

∫ +∞

t=0

exp

(
−
(

1

λi
+

1

λj

)
t

2

)
exp

(
−
(

1

λi
− 1

λj

)(
i(t)− t

2

))
dt.

Calling f(t) = exp
(
−
(

1
λi

+ 1
λj

)
t
2

)
and g(t) = | 1λi

− 1
λj
|
(
i(t)− t

2

)
it holds that either

∫ ∞

t=0

f(t) exp(−g(t))dt ≥
∫ ∞

t=0

f(t)dt

or ∫ ∞

t=0

f(t) exp(g(t))dt ≥
∫ ∞

t=0

f(t)dt.

Otherwise, we would have ∫ ∞

t=0

f(t)
1

2
(exp(−g(t)) + exp(g(t)))dt <

∫ ∞

t=0

f(t)dt

which cannot be true since ∀t, 1
2 (exp(−t) + exp(t)) ≥ 1.

Therefore an adversary knowing i(t) can always chose the order of λi and λj such that

E[TA
ij ] ≥

∫ +∞

t=0

exp(−( 1
λi

+
1

λj
)
t

2
)dt = 2

λiλj

λi + λj
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The optimal delay is

E[TOPT
ij ] = E[min(Pi, Pj)] =

λiλj

λi + λj

so our Lemma is proven for any deterministic algorithm A.

Consider a randomized algorithm R which can be seen as a probabilistic distribution over the set of deterministic algorithms.
Therefore A, i(t) and g(t) are now seen as random variables. By the tower rule, the amount of time job i and j delay each
other in R is such that:

E[TR
ij ] = E[E[TA

ij |A]]

= E[
∫ +∞

t=0

f(t) exp(sign(λi − λj)g(t))dt]

By the same argument as in the deterministic case, it holds that either

E[
∫ ∞

t=0

f(t) exp(−g(t))dt] ≥
∫ ∞

t=0

f(t)dt

or

E[
∫ ∞

t=0

f(t) exp(g(t))dt] ≥
∫ ∞

t=0

f(t)dt

Otherwise, we would have

E[
∫ ∞

t=0

f(t)
1

2
(exp(−g(t)) + exp(g(t)))dt] <

∫ ∞

t=0

f(t)dt

which implies that there exists a deterministic function g such that∫ ∞

t=0

f(t)
1

2
(exp(−g(t)) + exp(g(t)))dt <

∫ ∞

t=0

f(t)dt

which cannot be true as shown in the deterministic case. The rest of the argument is the same as in the deterministic case
and therefore omitted.

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Take any algorithm A

E[CA] =

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

E[TA
ij ] (10)

≥
N∑
i=1

λi + 2

N∑
i=1

N∑
j=i+1

E[TOPT
ij ] (11)

where (11) comes from Lemma A.8.

Observe that applying RR on the same data would yield an expected completion time:

E[CRR] =

N∑
i=1

E[Pi] + 2

N∑
i=1

N∑
j=i+1

E[min(Pi, Pj)]

=

N∑
i=1

E[Pi] + 2

N∑
i=1

N∑
j=i+1

E[TOPT
ij ]

≤ E[CA]

which concludes the proof.
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B. Analysis of Non-Preemptive Learning algorithms
B.1. Full Algorithmic Details

In this appendix, we present a full description of ETC-U and UCB-U.

Algorithm 3 Explore-Then-Commit Uniform (ETC-U)]
1: Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types)
2: For all pairs of different types k, ℓ initialize δk,ℓ = 0, r̂k,ℓ = 0 and hk,ℓ = 0
3: For all types k, set mk = 0
4: repeat
5: U is the set of types with at least one remaining job
6: if A is empty then
7: A = {ℓ ∈ U ,∀k ∈ U , k ̸= ℓ, r̂k,ℓ − δk,ℓ ≤ 0.5}
8: end if
9: Select the type ℓ with the lowest number of finished jobs ℓ = argmink∈A mk and run one job of type ℓ yielding a

size P ℓ
mℓ+1.

10: mℓ = mℓ + 1
11: for k, ℓ in A, k ̸= ℓ do
12: hk,ℓ =

∑min(mk,mℓ)
i=1 1{P k

i < P ℓ
i }

13: δk,ℓ =
√

log(2n2K4)
2min(mk,mℓ)

14: r̂k,ℓ =
hk,ℓ

min(mk,mℓ)

15: if r̂k,ℓ − δk,ℓ ≥ 0.5 or mℓ = n then
16: Remove ℓ from A
17: end if
18: end for
19: until U is not empty

Algorithm 4 Upper-Confidence-Bound-Uniform (UCB-U)
1: Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types)
2: For all types k ∈ [K], set mk = 0
3: Set U = [K]
4: For all types k ∈ [K], compute the lower bound λmk

k using Equation (16)
5: repeat
6: Select k∗ = argmink∈U λmk

k

7: Set mk∗ = mk∗ + 1
8: Compute a job of type k∗ until completion and record its size Pmk∗

k∗

9: Update the lower bound λmk∗
k∗ using again Equation (16)

10: If mk∗ = n, remove k∗ from U
11: until U is empty

B.2. Cost Decomposition

In this appendix, we analyze the non-preemptive learning algorithms presented in our paper - ETC-U and UCB-U. We
start by presenting a general cost decomposition result that relates the cost of any non-preemptive algorithm to the one of
FTPP. We will use this result to derive the bounds of both our suggested algorithms.

Lemma B.1 (Cost of non-preemptive algorithms). Any non-preemptive algorithm A has a cost

E[CA] = E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}]
18
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Proof. Denote Pi, the size of the job i, and TA
ij = DA

ij +DA
ji, where DA

ij is the amount of time a job i delays job j. For any
algorithm, we have:

CA =

N∑
a=1

Pa +

N∑
a=1

N∑
b=a+1

TA
ab

For non-preemptive algorithms, TA
ab = Pa if job a is scheduled before b and Pb otherwise so that we can write

CA =

N∑
a=1

Pa +

N∑
a=1

N∑
b=a+1

(Pa1{Pa computed before Pb}+ Pb1{Pb computed before Pa})

Now assume w.l.o.g. that (Pa)a∈[N ] are in the order chosen by FTPP, i.e., Pa is the ath executed task by FTPP and if
a ≤ b then E[Pa] ≤ E[Pb]. Under this convention, we get:

CFTPP =

N∑
a=1

Pa +

N∑
a=1

N∑
b=a+1

Pa

and recalling that
1{Pa computed before Pb} = 1− 1{Pb computed before Pa}

we have

CA = CFTPP +

N∑
a=1

N∑
b=a+1

(Pb − Pa)1{Pb computed before Pa}

Reindexing the job without changing the order, where P k
i is now the i-th job of type k, we have:

CA = CFTPP +

K∑
ℓ=1

n∑
j=1

K∑
k=ℓ+1

n∑
i=1

(P k
i − P ℓ

j )1
{
P k
i computed before P ℓ

j

}
Taking the expectation finishes the proof.

B.3. Upper bound for ETC-U

Proposition B.2. The following upper bounds hold:

E[CETC-U] ≤ E[CFTPP] +
1

n
E[COPT] +

∑
k∈[K]

[
1

2
(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3).

and

E[CETC-U] ≤ E[CFTPP] +
1

n
E[COPT] +

∑
k∈[K]

k−1∑
ℓ=1

(K − ℓ)
(λk + λℓ)

2

(λk − λℓ)
n8 log(2n2K3).

We start with the following technical lemma, isolated to be reused in other proofs. Pick some α ∈ N. Let (X1
i )i∈[αn] and

(X2
i )i∈[αn] be independent exponential variables of parameters λ1 and λ2 respectively. Define for any m ∈ [αn]:

r̂m =
1

m

m∑
i=1

1X1
i <X2

i

and

δ(m,n) =

√
log(2n2K3)

2m
.

Let r denote the expectation r := E
[
1X1

i <X2
i

]
= λ2

λ1+λ2
.
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Lemma B.3. For any m ∈ [αn], the estimator r̂m is within δ(m,n) of its expectation w.h.p:

P
(
∃m ∈ [αn] s.t. |r̂m − r| ≥ δ(m,n)

)
≤ α

nK3
.

Proof. By Hoeffding’s inequality:

∀m ∈ [αn], P

(
|r̂m − r| ≥

√
log(2n2K3)

2m

)
≤ 1

n2K3

The lemma is then obtained by a union bound over the αn possible values of m.

We are now ready to prove Proposition B.2.

Proof. Recall that we assumed without loss of generality that λ1 ≤ · · · ≤ λK . Recall also the definition for any
(k, ℓ) ∈ [K]2, for any (mℓ,mk) ∈ [n]2, of:

r̂
min(mk,mℓ)
k,ℓ =

1

min(mk,mℓ)

min(mk,mℓ)∑
i=1

1Pk
i <P ℓ

i
.

Let us define the good event E as:

E :=
{
∀(k, ℓ) ∈ [K]2,∀m ∈ [n], |r̂mk,ℓ − E[rmk,ℓ]| < δ(m,n)

}
By Lemma B.3 applied with α = 1, for any couple (ℓ, k) it holds that :

P
(
∃m ∈ [n] s.t. |r̂mk,ℓ − E[rmk,ℓ]| > δ(m,n)

)
≤ 1

n
.

A union bound over the K(K−1)
2 possible pairs gives the following bound:

P
(
E
)
≤ 1

2nK
. (12)

With the help of Lemma B.1, the cost of ETC-U can be decomposed using the event E as follows:

E[CETC-U] = E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}]
(Lemma B.1)

≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}
|E
]

︸ ︷︷ ︸
(i)

+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}
|E
]
P
(
E
)

︸ ︷︷ ︸
(ii)

. (13)

20



On Preemption and Learning in Stochastic Scheduling

Bounding (ii). Recall that by assumption, if k ≥ ℓ, then λk ≥ λℓ. Therefore, we have that

(ii) = P
(
E
) K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)︸ ︷︷ ︸
≥0

E

1{P k
i computed before P ℓ

j

}︸ ︷︷ ︸
≤1

|E


≤ P

(
E
) K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)

= n2P
(
E
) K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)

= n2P
(
E
)( K∑

k=1

(k − 1)λk −
K∑
ℓ=1

(K − ℓ)λℓ

)

≤ n2KP
(
E
) K∑
k=1

λk

≤ 4KE[COPT]P
(
E
)

(Equation (6))

≤ 2

n
E[COPT], (14)

where the last inequality is by Equation (12).

Bounding (i). Consider any couple (k, ℓ) ∈ [K]2 s.t. ℓ ≤ k. Let m∗
ℓ,k be the number of comparisons performed between

jobs of type ℓ and k before the algorithm detects that λℓ ≤ λk. A first obvious upper bound is m∗
ℓ,k ≤ n. A second upper is

obtained by noting that m∗
ℓ,k is smaller than any m′ s.t.

δ(m
′,n) <

1

2

∣∣∣∣ λk

λk + λℓ
− 0.5

∣∣∣∣.
For this value of δ(m

′,n), the event E ensures that if λk ≥ λℓ, then

r̂m
′

ℓ,k − δ(m
′,n)

Under E
≥ E[rm

′

ℓ,k]− 2δ(m
′,n) >

λk

λk + λℓ
−
(

λk

λk + λℓ
− 1

2

)
=

1

2
,

and type k would be eliminated. This implies the following upper bound on m∗
ℓ,k:

m∗
ℓ,k ≤ min

(
n, 8

(
λk + λℓ

λk − λℓ

)2

log
(
2n2K3

))
. (15)

On the other hand, notice that under the good event E , a type ℓ will never be eliminated due to a type k of greater expected
duration λk ≥ λℓ, since

r̂m
′

k,ℓ − δ(m
′,n)

Under E
≤

(
E[rm

′

ℓ,k] + δ(m
′,n)
)
− δ(m

′,n) =
λℓ

λk + λℓ
≤ 1

2
.

We decompose the run of the algorithm into (up to K) phases. For each ℓ ∈ [K], we call phase ℓ the iterations at which jobs
of type ℓ are the jobs with the smallest mean still not terminated. Note that during phase ℓ, job type ℓ is always active, as the
contrary would mean event E does not hold. This implies that the number of jobs of any type k > ℓ computed during phase
ℓ is lower than m∗

ℓ,k. We have the following bound:
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(i) =

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}
|E
]

(1)

≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before phase ℓ+ 1

}
|E
]

≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
i∈[n]

n(λk − λℓ)E

[
ℓ∑

o=1

1
{
P k
i computed during phase o

}
|E

]
(2)

≤
K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

E[m∗
o,k|E ]n(λk − λℓ)

≤
K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

E[m∗
o,k|E ]n(λk − λo)

(3)
=

K∑
k=1

k−1∑
o=1

k−1∑
l=o

E[m∗
o,k|E ]n(λk − λo)

=

K∑
k=1

k−1∑
o=1

E[m∗
o,k|E ]n(k − o)(λk − λo)

(4)

≤
K∑

k=1

k−1∑
ℓ=1

E[m∗
ℓ,k|E ]n(K − ℓ)(λk − λℓ)

(5)

≤
K∑

k=1

k−1∑
ℓ=1

min

(
n, 8

(
λk + λℓ

λk − λℓ

)2

log
(
2n2K3

))
n(K − ℓ)(λk − λℓ).

(1) is since by the beginning of phase ℓ+ 1, all jobs of type ℓ were completed. (2) is since during phase o, the oth type was
not eliminated, so there cannot be more than m∗

o,k jobs of type k in this phase. In (3), we changed the summation order and
in (4), we replaced o→ ℓ. Finally, (5) is due to the bound of Equation (15), which holds under E .

Next, for any λk ≥ λℓ, we have:

(λk − λℓ)min

(
n, 8

(
λk + λℓ

λk − λℓ

)2

log
(
2n2K3

))
≤ (λk + λℓ)

√
8n log(2n2K3),

since min {a, b} ≤
√
ab for any a, b ≥ 0. This implies that

(i) ≤
K∑

k=1

k−1∑
ℓ=1

n(K − ℓ)(λk + λℓ)
√
8n log(2n2K3)

=

K∑
k=1

[
1

2
(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3).

Substituting this and the bound of Equation (14) into the decomposition of Equation (13) gives the first bound of the
proposition.

The second bound is obtained by upper bounding:

(λk − λℓ)min

(
n, 8

(
λk + λℓ

λk − λℓ

)2

log
(
2n2K3

))
≤ 8

(λk + λℓ)
2

λk − λℓ
log
(
2n2K3

)
,
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B.4. Upper bound for UCB-U

Proposition B.4. The expected cost of UCB-U is upper bounded by:

E[CUCB-U] ≤ E[CFTPP] + n(K − 1)
√

3n ln (2n2K2)

K∑
k=1

λk +
2

n
E[COPT],

and:

E[CUCB-U] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

(λk + λℓ)
2

λk − λℓ
3n ln

(
2n2K2

)
+

2

n
E[COPT].

Concentration of exponential distribution If X ∼ E(λ), then 2
λX ∼ E(2) = χ2

2 (χ2 with 2 degrees of freedom). It
follows that if ∀i ∈ [m], Xi ∼ E(λ), then 2

λ

∑m
i=1 Xi ∼ χ2

2m. Denote χ2
2m(α) the α-th percentile, we have with probability

1− δ that
2
∑

i Xi

χ2
2m(1− δ/2)

≤ λ ≤
2
∑

i Xi

χ2
2m(δ/2)

Setting δ = 1
n2K2 , we get the following formula for a lower bound:

λm
k =

2
∑m

i=1 X
k
i

χ2
2m(1− 1

2n2K2 )
(16)

and another formula for the upper bound

λ
m

k =
2
∑m

i=1 X
k
i

χ2
2m( 1

2n2K2 )

If a job k is wrongly scheduled before a job of type ℓ, then the decision rule is misleading meaning that:

λmk

k =
2
∑nk

i=1 X
k
i

χ2
2nk

(1− 1
2n2K2 )

<
2
∑nℓ

i=1 X
ℓ
i

χ2
2nℓ

(1− 1
2n2K2 )

= λmℓ

ℓ

even though λℓ < λk.

Bounding the cost From Lemma B.1, the cost of any non preemptive algorithm A writes

E[CA] = E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}]
(17)

(18)

Let us then introduce the GOOD event which is:

E = {∀i ∈ [n],∀k ∈ [K], λi
k ≤ λk ≤ λ

i

k}

With a union bound, it is easy to show that E holds with probability 1− 1
nK and that the contradictory event E happens with

probability 1
nK .

Using the same method as in the proof of Proposition B.2 (the decomposition using E and E as done in Equation (13) and
the derivation of Equation (14)), we can upper bound the cost of UCB-U as:

E[CUCB−U ] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}
|E
]

︸ ︷︷ ︸
(i)

+ E[COPT ] 4KP (E)︸ ︷︷ ︸
4/n
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Furthermore, P k
i computed before P ℓ

j implies that λi
k < λj

ℓ and therefore

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)P(λi
k < λj

ℓ |E)

Under E , we have λj
ℓ ≤ λℓ. Moreover, it holds that λ

i

k ≥ λk, and by the definition of λi
k, and λ

i

k,

λi
k =

χ2
2i(

1
2n2K2 )

χ2
2i(1− 1

2n2K2 )
λ
i

k ≥
χ2
2i(

1
2n2K2 )

χ2
2i(1− 1

2n2K2 )
λk.

Combined, under E we can bound
{
λi
k < λj

ℓ

}
⊆
{
λk

χ2
2i(

1
2n2K2 )

χ2
2i(1−

1
2n2K2 )

< λℓ

}
and therefore write

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

1

{
λk

χ2
2i(

1
2n2K2 )

χ2
2i(1− 1

2n2K2 )
< λℓ

}
(λk − λℓ)

=

K∑
ℓ=1

K∑
k=ℓ+1

nmax

{
i ∈ [n], λk

χ2
2i(

1
2n2K2 )

χ2
2i(1− 1

2n2K2 )
< λℓ

}
(λk − λℓ)

So finally we have

E[CUCB-U] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

nmax

{
i ∈ [n], λk

χ2
2i(

1
2n2K2 )

χ2
2i(1− 1

2n2K2 )
< λℓ

}
(λk − λℓ) +

2

n
E[COPT] (19)

Bounding the ratio. We now focus on bounding the maximum term in Equation (19). By Lemma 1 of (Laurent & Massart,
2000), if U ∼ χ2

D, then

P
(
U ≥ D + 2

√
Dx+ 2x

)
≤ exp(−x), and P

(
U ≤ D − 2

√
Dx
)
≤ exp(−x), (20)

and in particular,

χ2
D(δ) ≥ D − 2

√
D ln

1

δ
, and χ2

D(1− δ) ≤ D + 2

√
D ln

1

δ
+ 2 ln

1

δ
. (21)

Thus, for any i ∈ [n], a necessary condition to the inequality λk
χ2
2i(

1
2n2K2 )

χ2
2i(1−

1
2n2K2 )

< λℓ is

2i− 2
√
2i ln (2n2K2)

2i+ 2
√
2i ln (2n2K2) + 2 ln (2n2K2)

<
λℓ

λk

⇒
(
1− λℓ

λk

)
i−
√
2 ln (2n2K2)

(
1 +

λℓ

λk

)√
i− λℓ

λk
ln
(
2n2K2

)
< 0

⇒ (λk − λℓ) i−
√
2 ln (2n2K2) (λk + λℓ)

√
i− λℓ ln

(
2n2K2

)
< 0

⇒
√
i <

√
2 ln (2n2K2) (λk + λℓ) +

√
2 ln (2n2K2) (λk + λℓ)

2
+ 4 ln (2n2K2)λℓ (λk − λℓ)

2 (λk − λℓ)

⇒
√
i <

√
2 ln (2n2K2)

(λk + λℓ) +

√
(λk + λℓ)

2
+ 2λℓ (λk − λℓ)

2 (λk − λℓ)

Now, using the fact that 2λℓ ≤ λℓ + λk, we get the simplified bound

√
i <

√
2 ln (2n2K2)

(λk + λℓ) +
√
2λk (λk + λℓ)

2 (λk − λℓ)
≤
√
2 ln (2n2K2)

(
1 +
√
2
) λk + λℓ

2 (λk − λℓ)
, (22)
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or i ≤ 3 ln
(
2n2K2

) (
λk+λℓ

λk−λℓ

)2
. Since we also know that i ∈ [n], we can write

max

{
i ∈ [n], λk

χ2
2i(

1
2n2K2 )

χ2
2i(1− 1

2n2K2 )
< λℓ

}
≤ min

{
3 ln

(
2n2K2

)(λk + λℓ

λk − λℓ

)2

, n

}

≤
√
3n ln (2n2K2)

λk + λℓ

λk − λℓ
,

where the second inequality is since min {a, b} ≤
√
ab for a, b > 0. Substituting back into Equation (19), we get the first

bound in the proposition:

E[CUCB-U] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

n
√

3n ln (2n2K2)
λk + λℓ

λk − λℓ
(λk − λℓ) +

2

n
E[COPT]

= E[CFTPP] + n
√
3n ln (2n2K2)

K∑
ℓ=1

K∑
k=ℓ+1

(λk + λℓ) +
2

n
E[COPT]

= E[CFTPP] + n
√
3n ln (2n2K2)

(
K∑

k=1

(k − 1)λk +

K∑
ℓ=1

(K − ℓ)λℓ

)
+

2

n
E[COPT]

= E[CFTPP] + n(K − 1)
√
3n ln (2n2K2)

K∑
k=1

λk +
2

n
E[COPT].

The second bound is obtained through the upper bound:

(λk − λℓ)min

{
3 ln

(
2n2K2

)(λk + λℓ

λk − λℓ

)2

, n

}
≤ 3 ln

(
2n2K2

)( (λk + λℓ)
2

λk − λℓ

)
.

B.5. Lower bounds for Non-Preemptive Algorithms

B.5.1. SMALL DIFFERENCES (PROPOSITION 5.4)

Proof of Proposition 5.4. Assume K = 2 and take any non-preemptive algorithm A. Call P 1
i the i-th job of type 1 and P 2

j

the j-th job of type 2. According to Lemma B.1, A has a cost

E[CA] = E[CFTPP] + (λ2 − λ1)E

 ∑
(i,j)∈[n]2

1
{
P 2
j computed before P 1

i

}
if λ2 > λ1 (the role of λ2 and λ1 are reversed if λ2 < λ1).

We then follow the same approach as in chapter 15 in (Lattimore & Szepesvári, 2020). Consider situation 1 where
λ1 = a, λ2 = b and situation 2 where λ1 = b and λ2 = a with a < b and assumes that the adversary chooses the situation
based on the algorithm A. Intuitively, if A tends to complete more of jobs of type 1 before jobs of type 2, the adversary will
decide that λ1 > λ2 (situation 2) otherwise, it will choose λ2 > λ1 (situation 1). Call Pν1 the joint probability over the
scheduling decisions and job sizes in situation 1 following the policy prescribed by algorithm A and Pν2

the same probability
in situation 2. Call Pat

(xt) the probability that the job of type at chosen at time t is of size xt. Calling KL the KL divergence,
we have following the Lemma 15.1 in (Lattimore & Szepesvári, 2020): KL(Pν1

,Pν2
) = n(KL(Xa, Xb) +KL(Xb, Xa))

where Xa is an exponential random variable of expectation a and Xb is an exponential random variable of expectation b.

Note right away that KL(Xa, Xb) =
a
b −1− log(ab ) (e.g., Calin & Udrişte, 2014, Example 4.2.1), therefore KL(Xa, Xb)+

KL(Xb, Xa) =
a
b − 2 + b

a = (b−a)2

ab so

KL(Pν1 ,Pν2) ≤ n
(b− a)2

ab
.

The cost of algorithm A in situation 1 is lower bounded as:

Eν1 [CA] ≥ Eν1 [CFTPP] + (b− a)Eν1

1
 ∑

(i,j)∈[n]2

1
{
P 2
j computed before P 1

i

}
≥ n2/2


n2/2.
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The cost of algorithm A in situation 2 is lower bounded as:

Eν1 [CA] ≥ Eν2 [CFTPP] + (b− a)Eν2

1
 ∑

(i,j)∈[n]2

1
{
P 1
i computed before P 2

j

}
> n2/2


n2/2.

Introduce the event E = 1
{∑

(i,j)∈[n]2 1
{
P 2
j computed before P 1

i

}
≥ n2/2

}
, we have that

E[CA] = max
ν∈{ν1,ν2}

Eν [CA]

≥ Eν1
[CA] + Eν2

[CA]

2

≥ Eν1 [CFTPP] + Eν2 [CFTPP]

2
+ (b− a)n2/2

Pν1(E) + Pν2(E)

2

First, let us notice that

E[CFTPP] =
Eν1 [CFTPP] + Eν2 [CFTPP]

2

Then, using Bretagnolle–Huber inequality (Th 14.2 in (Lattimore & Szepesvári, 2020)), we get Pν1(E) + Pν2(E) ≥
1
2 exp(−KL(Pν1

,Pν2
)) and since KL(Pν1

,Pν2
) ≤ n (λ2−λ1)

2

λ1λ2
, we have

E[CA] ≥ E[CFTPP] + (b− a)n2/2
exp(−n (b−a)2

ab )

4

At this stage, we can rewrite the equation assuming λ2 ≥ λ1 and so that we get

E[CA] ≥ E[CFTPP] + (λ2 − λ1)n
2
exp(−n (λ2−λ1)

2

λ1λ2
)

8
,

which proves the first result of the proposition. In particular, taking λ2 ≤ λ1

(
1 + 1√

n

)
gives its second result

E[CA]− E[CFTPP] ≥ λ1n
√
n
exp(−n 1/n

(1+1/
√
n)2

)

8

≥ λ1n
√
n
e−1/4

8

≥ (λ1 + λ2)n
√
n
e−1/4

24
.

B.5.2. LARGE DIFFERENCES

Proposition B.5. For any non-preemptive algorithm, there exists a problem instance with expected type durations of
λ1 ≤ λ2 · · · ≤ λK such that

E[CA] ≥ E[CFTPP] +
n

K

K∑
k=1

(2k −K − 1)λk.

In particular, for K = 2 and λ2 ≥ 3λ1, it holds that

E[CA] ≥ E[CFTPP] +
n

4
(λ1 + λ2),
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Let pk be the probability that a non-preemptive algorithm completes a job of type k at its first round. Notice that this
distribution cannot depend on the expected duration of any of the types, since no data was gathered. Thus, types can be
arbitrarily ordered without affecting this distribution. In particular, we assume w.l.o.g. that p1 ≤ p2 ≤ . . . pK and choose a
problem instance where job types are ordered in an increasing duration λ1 ≤ λ2 ≤ . . . λK . Then, the expected cost of the
algorithm can be bounded according to Lemma B.1, by

E[CA] = E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}]
≥ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
j∈[n]

(λk − λℓ)E
[
1
{
P k
1 computed before P ℓ

j

}]
≥ E[CFTPP] + n

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)E
[
1
{
P k
1 was the first job

}]
= E[CFTPP] + n

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)pk

= E[CFTPP] + n

K∑
k=1

pk

k−1∑
ℓ=1

(λk − λℓ).

Now, one can be easily convinced that between all probability vectors with non-decreasing components, this bound is
minimized by the uniform distribution pk = 1/K. To see this, observe that the sum

∑k−1
ℓ=1 (λk − λℓ) increases with k.

Therefore, if p is non-uniform, then pK > 1/K, and there would exist a coordinate k < K to which we could move weight
from pK , which would decrease the bound.

Substituting pk = 1/K we then get

E[CA] ≥ E[CFTPP] +
n

K

K∑
k=1

k−1∑
ℓ=1

(λk − λℓ)

= E[CFTPP] +
n

K

K∑
k=1

(2k −K − 1)λk.

In particular, if K = 2, we get

E[CA] ≥ E[CFTPP] +
n

2
(λ2 − λ1)

and, for λ2 ≥ 3λ1, we have λ2 − λ1 ≥ λ1+λ2

2 and thus

E[CA] ≥ E[CFTPP] +
n

4
(λ1 + λ2).
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C. Analysis of Preemptive Learning algorithms
C.1. Full Algorithmic Details

In this appendix, we present a full description of ETC-RR and UCB-RR.

Algorithm 5 Explore-Then-Commit-Round-Robin (ETC-RR)
1: Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types)
2: For all pairs of different types k, ℓ initialize δk,ℓ = 0, r̂k,ℓ = 0 and hk,ℓ = 0
3: For all types k, set ck = 0
4: repeat
5: U is the set of types with at least one remaining job
6: if A is empty then
7: A = {ℓ ∈ U ,∀k ∈ U , k ̸= ℓ, r̂k,ℓ − δk,ℓ ≤ 0.5}
8: end if
9: Run jobs (P k

ck+1)k∈A in parallel until a job finishes and denote ℓ the type of this job
10: cℓ = cℓ + 1
11: for k ∈ A, k ̸= ℓ do
12: βℓ,k = βℓ,k + 1

13: δℓ,k = δk,ℓ =
√

log(2n2K4)
2(βℓ,k+βk,ℓ)

14: r̂ℓ,k =
βℓ,k

βk,ℓ+βℓ,k

15: r̂k,ℓ =
βk,ℓ

βk,ℓ+βℓ,k

16: if r̂ℓ,k − δℓ,k ≥ 0.5 then
17: Remove k from A
18: end if
19: if r̂k,ℓ − δk,ℓ ≥ 0.5 or cℓ = n then
20: Remove ℓ from A
21: end if
22: end for
23: until U is empty

Algorithm 6 Upper-Confidence-Bound-Round-Robin (UCB-RR)
1: Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types), discretization step ∆
2: repeat
3: U is the set of types with at least one remaining job
4: Calculate type indices uk for all jobs k ∈ U according to Equation (29)
5: Choose type ℓ ∈ argmaxℓ∈U uℓ

6: Run a job of type ℓ for ∆ time units
7: until U is empty

C.2. Cost Decomposition

We start with a cost decomposition, which relates the performance of preemptive algorithms to the one of FTPP. We limit
ourselves to the natural family of preemptive algorithms that do not simultaneously run two tasks of the same type and is
formally defined as follows.
Definition C.1. Denote bℓi and eℓi the beginning and end dates of the computation of the ith job of type ℓ. A type-wise
non-preemptive algorithm is an algorithm that computes jobs of the same type one after another, i.e., ∀i ∈ [n],∀k ∈
[K], eℓi ≤ bℓi+1.

This property is very natural, as for exponential durations without knowledge of the real execution times, there is no
advantage in simultaneously running two tasks of the same type. Specifically, all of our suggested algorithms fall under this
definition.
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For such algorithms, the cumulative cost can be compared to FTPP using the following lemma.

Lemma C.2 (Cost of type-wise non-preemptive algorithms). Any type-wise non-preemptive algorithm A has the following
upper bound on its cost:

E[CA] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ.

Proof. Recall that if DA
ij is the amount of time a job i delays job j when running algorithm A, then we can write the cost of

algorithm A as

CA =

N∑
j=1

Pj +

N∑
i=1

N∑
j=i+1

(
DA

ij +DA
ji

)
.

Moreover, if bi,ei are the start (end) time of job i, it always holds that DA
ij ≤ Pi1{bi < ej}. Using this inequality and

dividing the summation into types, we get

E[CA] ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
E
[
P ℓ
i 1
{
bℓi < ekj

}]
+ E

[
P k
j 1
{
bkj < eℓi

}])

+

K∑
ℓ=1

 n∑
i=1

E[P ℓ
i ] +

n∑
j=i+1

E[P ℓ
i 1
{
bℓi < eℓj

}
] + E[P ℓ

j 1
{
bℓj < eℓi

}
]

 .

Since jobs are independent, the expected duration of a job of type ℓ is λℓ, independently of its start time. Also, as the
algorithm is type-wise non-preemptive, for all ℓ ∈ [K], j > i, we have 1

{
bℓj < eℓi ]

}
= 0 and 1

{
bℓi ≤ eℓj ]

}
= 1. Thus,

E[CA] ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
bℓi < ekj

}]
+ λkE

[
1
{
bkj < eℓi

}])

+

K∑
ℓ=1

 n∑
i=1

λℓ +

n∑
j=i+1

λℓ


=

K∑
ℓ=1

λℓ
n(n+ 1)

2
+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
bℓi < ekj

}]
+ λkE

[
1
{
bkj < eℓi

}])
︸ ︷︷ ︸

(i)

. (23)

We can now decompose the event that job i of type ℓ started before job j of type k finished:

1
{
bℓi < ekj

}
= 1

{
bℓi < ekj ≤ eℓi

}
+ 1

{
eℓi < ekj

}
= 1

{
bℓi < ekj ≤ eℓi

}
+ 1

{
eℓi < bkj

}
+ 1

{
bkj ≤ eℓi < ekj

}
{
eℓi < bkj

}
is the event that job i of type ℓ was fully computed before job j of type k started.

{
bℓi < ekj ≤ eℓi

}
is the event

that job i of type ℓ was running when job j of type k finished, and reciprocally for
{
bkj ≤ eℓi < ekj

}
. This gives the following
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decomposition:

(i) =

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
eℓi < bkj

}]
+ λkE

[
1
{
ekj < bℓi

}])
︸ ︷︷ ︸

(ii)

+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

λℓE
[
1
{
bℓi < ekj ≤ eℓi

}]
+ λk1

{
bkj ≤ eℓi < ekj

}
︸ ︷︷ ︸

(iii)

+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

λkE
[
1
{
bkj < eℓi ≤ ekj

}
+ λk1

{
bℓi ≤ ekj < eℓi

}]
︸ ︷︷ ︸

(iv)

Since the algorithm is type-wise non-preemptive, a single job of each type may run at a given time. This implies that any job
of type ℓ cannot be in a middle of two different jobs of type k, namely

∀(ℓ, k) ∈ [K]2, ℓ ̸= k, ∀(i, j) ∈ [n]2,

n∑
j=1

1
{
bkj ≤ eℓi < ekj

}
≤ 1.

The same conclusion similarly holds for all other sums in terms (iii) and (iv), and therefore implies the following bound:

(iii) + (iv) ≤ n

K∑
ℓ=1

K∑
k=ℓ+1

(λℓ + λk) = (K − 1)n

K∑
ℓ=1

λℓ.

We also have 1
{
ekj < bℓi

}
≤ 1− 1

{
bℓi < ekj

}
, thus

(ii) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓ + (λk − λℓ)E

[
1
{
ekj < bℓi

}])
= n2

K∑
ℓ=1

K∑
k=ℓ+1

(K − ℓ)λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
.

Combining everything into Equation (23), we get:

E[CA] ≤
K∑
ℓ=1

λℓ
n(n+ 1)

2
+ n2

K∑
ℓ=1

K∑
k=ℓ+1

(K − ℓ)λℓ

+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ

= E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ,

where the last equality is by Lemma A.2.

C.3. Upper bound for ETC-RR

Proposition C.3. The following bound holds:

E[CETC-RR] ≤ E[CFTPP] +
12K

n
E[COPT ] + 4n

√
n log(2n2K3)

K∑
ℓ=1

(K − ℓ)2λℓ. (24)
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Good Event. For any couple (k, ℓ), if at some iteration βk,ℓ + βℓ,k = m, we define the more precise notation for r̂ℓ,k at that
iteration as r̂mℓ,k. Notice that m represents the number of times that jobs of either type were completed while both were
active. Therefore, m can have 2n different values, where the extreme case m = 2n− 1 is, for example, when n− 1 jobs of
type k are first completed and only then all n jobs of type ℓ are completed.

Let us start by showing that the estimators r̂ℓ,k well-concentrate around their expectations. Exponential random variables
are memory-less, i.e., if Xi ∼ Exp(λi), the law of Xi conditionally on it being larger than a constant is unchanged. In
particular, ‘resetting’ (replacing by an independent copy) an exponential random variable at any time that precedes its
activation does not affect its distribution. We employ reset when one of the types is completed, or when either of the types is
removed from A (and then we discard the comparison between types k, ℓ), and say that way a comparison is triggered, it is
taken from an i.i.d. sequence of comparisons. Specifically, given a deterministic number of comparisons m between types
k, ℓ, we write

r̂mℓ,k
L
=

1

m

m∑
i=1

1{Xℓ
i < Xk

i },

with (Xℓ
i )i∈[m] and (Xk

i )i∈[m] independent exponential variables of parameters λℓ and λk respectively.

Finally, E be the event that all comparisons between k, ℓ are well-concentrated, namely,

E =

{
∀(k, ℓ) ∈ [K]2,∀m ∈ [2n],

∣∣∣∣r̂mℓ,k − λk

λℓ + λk

∣∣∣∣ < δ(m,n)

}
with δ(m,n) =

√
log(2n2K3)

2m , and recall that for any m ∈ [2n], E[r̂mℓ,k] =
λk

λℓ+λk
. By Lemma B.3 applied with α = 2, and a

union bound over the K(K−1)
2 possible pairs, we have:

P(E) ≤ 1

nK
. (25)

Notice that under E a type ℓ will never be eliminated by a type k with λk ≥ λℓ, since

r̂k,ℓ − δℓ,k <

(
λℓ

λk + λℓ
+ δℓ,k

)
− δℓ,k =

λℓ

λk + λℓ
≤ 1

2
,

so if k is the minimal type in A, then under the good event, it will never be eliminated. Moreover, type k can only be
compared to a type ℓ with λℓ ≤ λk at most

mmax
ℓ,k ≤ min

{
2n, 8

(
λk + λℓ

λk − λℓ

)2

log(2n2K3)

}
:= m∗

ℓ,k (26)

since clearly m ≤ 2n and if m ≥ 8
(

λk+λℓ

λk−λℓ

)2
log(2n2K3), then δℓ,k ≤ 1

4
λk−λℓ

λk+λℓ
and

r̂ℓ,k − δℓ,k >

(
λk

λk + λℓ
− δℓ,k

)
− δℓ,k ≥

λk

λk + λℓ
− 2 · 1

4

λk − λℓ

λk + λℓ
=

1

2
.

Cost Analysis. Assume that the active type set A can only change at discrete times t ∈ {0,∆, 2∆, . . . } ≜ T for some
∆ > 0. We will later take the limit ∆→ 0, which coincides with the following Algorithm 5. In the following, we denote by
A(t) the active type set at time interval [t, t+∆), and U(t) incomplete type set at [t, t+∆). Also, let bℓi ∈ T be the start
time of the ith job of the ℓth type and eℓi ∈ T be its end-time (w.l.o.g., if a task ended at a time t /∈ T , we delay its ending to
⌈ t
∆⌉∆).

Starting from the cost decomposition of Lemma C.2, we have

E[CA] ≤ E[CFTPP] + (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
≤ E[CFTPP] + (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

n∑
j=1

E
[
1
{
ekj < bℓn

}]
︸ ︷︷ ︸

(∗)

. (27)
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We focus our attention on bounding term (∗). For any t ∈ T and every o ∈ [K], define the events

Fo(t) = {o ∈ A(t),∀p < o : p /∈ A(t)} , F̄o(t) = {∀p ≤ o : p /∈ A(t)}

These events capture the notion of phases, namely, when Fo is active, the o is the type of the smallest mean that has not
been finished. Then, we can write

(∗) =
n∑

j=1

E
[
1
{
ekj < bℓn

}]
=

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆, ekj < bℓn

}]
(1)

≤
n∑

j=1

∑
t∈T

E
[
1
{
ekj = t+∆, ℓ ∈ U(t)

}]
≤

ℓ∑
o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆,Fo(t)

}]
+

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆, ℓ ∈ U(t), F̄ℓ(t)

}]
(2)

≤
ℓ∑

o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆,Fo(t)

}]
+

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆, E

}]
(3)

≤
ℓ∑

o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆,Fo(t)

}]
︸ ︷︷ ︸

(i)

+nP(E).

(1) is true since the event
{
ekj = t+∆, ekj < bℓn

}
implies that bℓn > t, so type ℓ was not completed at time t. (2) holds

since under E , the type of the minimal duration expected is never eliminated, so if ℓ ∈ U(t), it is impossible that p /∈ A(t)
for all p ≤ ℓ (either there is a type p < ℓ, p ∈ U(t) that should not have been eliminated, or type ℓ should not have been
eliminated since it is still incomplete). Finally, (3) is since every job can only end at one time point.

We now further continue to bound term (i). To do so, observe that if ekj = t+∆, then k ∈ A(t) and the task j of this type
was completed at the interval [t, t+∆). Moreover, since the job durations are exponential, the completion of any job in
A(t) at interval [t, t+∆) is independent of the events that occurred until time t. Taking into consideration that only one job
of any type can run in every interval, the two following equalities hold:

E
[
1
{
ekj = t+∆,Fo(t)

}]
= (1− exp(−∆/λk))E [1{Fo(t), k ∈ A(t)}]

E
[
1
{
ekj = t+∆ or eoj = t+∆,Fo(t), k ∈ A(t)

}]
= (1− exp(−∆/λk −∆/λo))E [1{Fo(t), k ∈ A(t)}] .

Thus, (i) can be written as

(i) =

ℓ∑
o=1

(1− exp(−∆/λk))

(1− exp(−∆/λk −∆/λo))

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆ or eoj = t+∆,Fo(t), k ∈ A(t)

}]

≤
ℓ∑

o=1

(1− exp(−∆/λk))

(1− exp(−∆/λk −∆/λo))
E

 n∑
j=1

∑
t∈T

1
{
ekj = t+∆ or eoj = t+∆,Fo(t), k ∈ A(t), E

}
︸ ︷︷ ︸

(ii)

+

ℓ∑
o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆ or eoj = t+∆,Fo(t), E

}]
︸ ︷︷ ︸

(iii)
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The bad-event term can be bounded by

(iii) ≤ E

1{E} ℓ∑
o=1

n∑
j=1

∑
t∈T

1
{
ekj = t+∆ or eoj = t+∆,Fo(t)

}
≤ (ℓ+ 1)nP(E).

For the second term, recall that the ℓth phase, in which type ℓ is the smallest one that was not completed, is represented by
the event Fℓ(t). Furthermore, given the good event, the smallest type is never eliminated. so once Fℓ(t) becomes active, it
would end only when all jobs of type ℓ are completed. In other words, the time indices in which Fℓ(t) hold form a (possibly
empty) interval I∆(ℓ), which represents the ℓth phase. Thus, term (ii) counts the expected number of times that jobs of
either type k or o could finish in this interval while type k is still active.

Now, we take the limit ∆→ 0 (and denoting the limit interval I∆(ℓ)→ I(ℓ)). Notice that the limit and expectation are
interchangeable by the bounded convergence theorem, as the number of times a job of either type k or o can be completed is
bounded by 2n.

(ii) →
∆→0

ℓ∑
o=1

λo

λk + λo
E

 ∑
t∈I(o)

n∑
j=1

1
{
ekj ∈ I(o) or eoj ∈ I(o), k ∈ A(t), E

}
≤

ℓ∑
o=1

λo

λk + λo
m∗

o,k.

The inequality holds since under the good event, at any interval where both types k and o with λo ≤ λk are active, there can
be at most m∗

o,k comparisons. Substituting (ii) and (iii) back into (i), we get

(i) ≤
ℓ∑

o=1

λo

λk + λo
m∗

o,k + (ℓ+ 1)nP(E),

and yet again, substituting this, through (∗), back into Equation (27), yields

E[CA]− E[CFTPP]

≤ (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
ℓ∑

o=1

λo

λk + λo
m∗

o,k + (ℓ+ 2)nP(E)

)

≤ (K − 1)n

K∑
ℓ=1

λℓ + 2Kn2P(E)
K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)

+

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

ℓ∑
o=1

λo

λk + λo
min

{
2n, 8

(
λk + λo

λk − λo

)2

log(2n2K3)

}
(Equation (26))

≤ (K − 1)n

K∑
ℓ=1

λℓ + 2K2n2P(E)
K∑
ℓ=1

λℓ

+

K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

n(λk − λℓ)
λo

λk + λo
4
√

n log(2n2K3)
λk + λo

λk − λo
(min {a, b} ≤

√
ab, ∀a, b ≥ 0)

≤
(
2
K − 1

n
+

4K

n

)
E[COPT ] (Equation (25) and (6))

+ 4n

K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

λo

√
n log(2n2K3) (λo ≤ λℓ)

≤ 6K

n
E[COPT ] + 4n

√
n log(2n2K3)

K∑
ℓ=1

ℓ∑
o=1

(K − ℓ)λo

≤ 6K

n
E[COPT ] + 4n

√
n log(2n2K3)

K∑
ℓ=1

(K − ℓ)2λℓ
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C.4. Analysis of UCB-RR

Proposition C.4. The following bound holds for any ∆ ≤ λ1

4 and n ≥ max(20, 10 ln(K)) :

E[CUCB-RR] ≤E[CFTPP] +
12K

n
E[COPT ] + 6n

√
2n log(2n2K2)

K∑
ℓ=1

(K − ℓ)λℓ. (28)

Assume discretization of the time to units of ∆, as was done in the analysis of ETC-RR. Specifically, assume that the active
job only changes at times t ∈ {0,∆, 2∆, . . . } ≜ T for some ∆ > 0. We then denote the index of the discretization step by
h = t

∆ + 1 ∈ {1, 2, . . . }.

For each job type ℓ ∈ [K], we introduce Tℓ(h), the number of times job type ℓ has been chosen up to iteration h. Due to
the fact that job durations are exponential, their increments are independent, and increments of length ∆ of jobs of type
ℓ have a termination probability of µℓ = 1− e

− ∆
λk . Leveraging this, let (xs

ℓ)s≥1 be sequences of i.i.d Bernoulli random
variables of mean µℓ,. We then fix our probability space for the analysis s.t. when choosing a job of type ℓ for the sth time,
it is terminated if xs

ℓ = 1. Notice that while we allow the sequence (xs
ℓ)s≥1 to have more than n job terminations, it is of no

consequence of the analysis, as the algorithm will never choose a job type after its nth job was terminated.

Next, define the empirical means after running m discretized intervals of type-ℓ jobs as µ̂ℓ(m) := 1
m

∑m
s=1 x

s
ℓ , and the

index at iteration h as

uℓ(h) = max

{
µ̃ ∈ [0, 1] : d (µ̂ℓ(Tℓ(t− 1)), µ̃) ≤

log
(
n2K2

)
Tℓ(t− 1)

}
. (29)

Starting from the cost decomposition of Lemma C.2, we have

E[CA] ≤ E[CFTPP] + (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
≤ E[CFTPP] + (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

n∑
j=1

E
[
1
{
ekj < eℓn

}]
︸ ︷︷ ︸

(∗)

. (30)

Denote a(h) ∈ [K], the type of job chosen at iteration h, and let εℓ,k > 0 be some constant that will be determined later in
the proof. Notice that if ekj < eℓn, then there must be an iteration where type ℓ was not completed and the jth job of type k
were played and completed:

(∗) ≤
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1
{
a(h) = k, ℓ ∈ U(h), xTk(h)

k = 1
}]

=

∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1
{
a(h) = k, ℓ ∈ U(h), uℓ(h) ≤ uk(h), x

Tk(h)
k = 1

}]

≤
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1
{
a(h) = k, ℓ ∈ U(h), uk(h) ≥ uℓ(h) ≥ µℓ − εℓ,k, x

Tk(h)
k = 1

}]

+

∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1
{
a(h) = k, ℓ ∈ U(h), uℓ(h) ≤ µℓ − εℓ,k, x

Tk(h)
k = 1

}]
(1)

≤
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk )E [1{a(h) = k, uk(h) ≥ µℓ − εℓ}]︸ ︷︷ ︸
(i)

+

K∑
ℓ=1

K∑
k=ℓ+1

n2(λk − λℓ)P (∃h s.t. uℓ(h) ≤ µℓ − εℓ)︸ ︷︷ ︸
(ii)

(31)
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In (1), we get the first line by the memoryless property of exponential random variables, noting that all the events inside the
indicator are determined before the beginning of the hth iteration. The second line of this relation uses the fact that all tasks
will eventually be completed, so

∑∞
h=1 E

[
1
{
a(h) = k, x

Tk(h)
k = 1

}]
= n.

Bounding term (i). We now bound the first term of the decomposition in Equation (31).

(i) :=

∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk )E [1{a(h) = k, uk(h) ≥ µℓ − εℓ}]

=

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk )

∞∑
h=1

E [1{a(h) = k, uk(h) ≥ µℓ − εℓ}] .

Denoting d(p, q) = d(p, q)1{p ≤ q}, we have

{µℓ−εℓ,k ≤ uk(h)} =⇒ {µ̂k(Tk(h)) ≤ µℓ−εℓ,k and d(µ̂k(Tk(h)), µℓ−εℓ,k) ≤
log
(
n2K2

)
Tk(h)

} or {µ̂k(Tk(h)) ≥ µℓ−εℓ,k},

which is equivalent to
{
d(µ̂k(Tk(h)), µℓ − εℓ,k) ≤

log(n2K2)
Tk(h)

}
. Thus, we can bound

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk )

∞∑
h=1

E

[
1

{
a(h) = k, d(µ̂k(Tk(h)), µℓ − εℓ,k) ≤

log
(
n2K2

)
Tk(h)

}]

≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk )

∞∑
s=1

E

[
d(µ̂k(s), µℓ − εℓ,k) ≤

log
(
n2K2

)
Tk(h)

]
,

where the second inequality is since Tk(h) increases by 1 every time that a(h) = k. This can be naturally bounded using
the following lemma.

Lemma C.5. Let X1, X2, . . . be a sequence of Bernoulli independent random variables with mean µ, and let µ̂s =
1
s

∑s
t=1 Xt be the sample mean. Further, let a > 0, µ′ > µ and define κ =

∑∞
s=1 1

{
d(µ̂s, µ

′) ≤ a
s

}
. Then,

E[κ] ≤ inf
ε∈(0,µ′−µ)

(
a

d(µ+ ε, µ′)
+

1

d (µ+ ε, µ)

)
.

Proof. The proof closely follows the one of (Lattimore & Szepesvári, 2020, Lemma 10.8). For completeness, we now state
the well-known Chernoff bound.

Lemma C.6 (Chernoff’s bound, e.g., Lattimore & Szepesvári (2020), Lemma 10.3). Let X1, X2, . . . , XT be a sequence of
Bernoulli independent random variables with mean µ, and let µ̂ = 1

T

∑T
t=1 Xt be the sample mean. Then, for a ≥ 0:

P(d(µ̂, µ) ≥ a, µ̂ ≤ µ) ≤ exp(−Ta).
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Let ϵ ∈ (0, µ′ − µ) and u = a
d(µ+ε,µ′) . Then, it holds that

E[κ] =
∞∑
s=1

P
{
d(µ̂s, µ

′) ≤ a

s

}
=

∞∑
s=1

P
{
µ̂s ≥ µ′ or d(µ̂s, µ

′) ≤ a

s

}
≤

∞∑
s=1

P
{
µ̂s ≥ µ+ ε or d(µ̂s, µ

′) ≤ a

s

}
(µ′ > µ+ ϵ)

≤
∞∑
s=1

P
{
µ̂s ≥ µ+ ε or d(µ+ ε, µ′) ≤ a

s

}
(d(·, µ′) is decreasing in [0, µ′])

≤u+

∞∑
s=1

P {µ̂s ≥ µ+ ε}

≤u+

∞∑
s=1

∞∑
s=1

exp (−sd(µ+ ϵ, µ)) (Chernoff’s bound)

≤ a

d(µ+ ε, µ′)
+

1

d (µ+ ε, µ)
,

and the proof is concluded by taking the infimum over all ε ∈ (0, µ′ − µ).

Now, assume w.l.o.g. that λk > λℓ (or, equivalently, µℓ < µk) for all k > ℓ; otherwise, terms where λk = λℓ in (i) will be

equal to 0. Then, letting κk,ℓ =
∑∞

s=1 1

{
d(µ̂k(s), µℓ − εℓ,k) ≤

log(n2K2)
s

}
, the last lemma implies that

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk )E[κk,ℓ]

≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk )

(
log
(
n2K2

)
d(µk + εk,ℓ, µℓ − εℓ)

+
1

d (µk + εk,ℓ, µk)

)
(32)

for some εk,ℓ ∈ (0, µℓ − εℓ,k − µk) that will be determined later.

Bounding term (ii). We next focus on bounding the probabilities at the second summation of Equation (31). To do so, we
prove the following lemma, which bounds each of the summands of term (ii).

Lemma C.7. The following bound holds: P (∃h s.t. uℓ(h) ≤ µℓ − εℓ,k) ≤ µℓ

n2K2d(µℓ−εℓ,k,µℓ)
.

Proof. Define Smax
ℓ :=

∑∞
h=1 1{a(h) = ℓ}, the number of iterations ℓ is picked by the algorithm. We have:

P (∃h s.t. uℓ(h) ≤ µℓ − εℓ,k) =P

(
∃h s.t. µ̂ℓ(Tℓ(h)) ≤ µℓ − εℓ,k and d(µ̂ℓ(Tℓ(h)), µℓ − εℓ,k) ≥

log
(
n2K2

)
Tℓ(h)

)

=P

(
∃s ≤ Smax

ℓ s.t. µ̂ℓ(s) ≤ µℓ − εℓ,k and d(µ̂ℓ(s), µℓ − εℓ,k) ≥
log
(
n2K2

)
s

)

≤P

(
∃1 ≤ s <∞ s.t. µ̂ℓ(s) ≤ µℓ − εℓ,k and d(µ̂ℓ(s), µℓ − εℓ,k) ≥

log
(
n2K2

)
s

)
.

Now, observe that the empirical means µ̂ℓ decrease in intervals without successes. Namely, if a < b are time indices such
that xa

ℓ = 1, xb
ℓ = 1 and for all s ∈ [a+ 1, b− 1], xs

ℓ = 0, then for any s ∈ [a, b− 1], it holds that µ̂ℓ(s) ≥ µ̂ℓ(b− 1). We
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thus have:

P

(
∃1 ≤ s <∞ : d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k

)

= P

(
∃1 ≤ s <∞ : d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k, x
s+1
ℓ = 1

)
.

Using the union bound, this implies

P (∃h s.t. uℓ(h) ≤ µℓ − εℓ,k) ≤
∞∑
s=1

P

(
d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k, and xs+1
ℓ = 1

)

=

∞∑
s=1

P
(
xs+1
ℓ = 1

)
P

(
d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k|xs+1
ℓ = 1

)

=

∞∑
s=1

µℓP

(
d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) < µℓ − εℓ,k

)

≤
∞∑
s=1

µℓP

(
d (µ̂ℓ(s), µ) >

log
(
n2K2

)
s

+ d(µℓ − εℓ,k, µℓ), µ̂ℓ(s) < µℓ

)
,

where we used the fact that the sequence xs
ℓ is independent and the last inequality is by (Lattimore & Szepesvári, 2020,

Lemma 10.2, (c)). Next, using Chernoff’s bound (Lemma C.6), we get

P (∃h s.t. uℓ(h) ≤ µℓ − εℓ,k) ≤ µℓ

∞∑
s=1

exp

(
−s

(
d(µℓ − εℓ,k, µℓ) +

log
(
n2K2

)
s

))

≤ µℓ

n2K2

∞∑
s=1

exp (−sd(µℓ − εℓ,k, µℓ))

≤ µℓ

n2K2d(µℓ − εℓ,k, µℓ)
,

which concludes the proof of Lemma C.7.

Finally, substituting back into (ii) leads to the bound

(ii) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n2(λk − λℓ)
µℓ

n2K2d(µℓ − εℓ,k, µℓ)

=
1

K2

K∑
ℓ=1

K∑
k=ℓ+1

µℓ(λk − λℓ)

d(µℓ − εℓ,k, µℓ)
. (33)

Combining both bounds.

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
µk log

(
n2K2

)
d(µk + εk,ℓ, µℓ − εℓ,k)

+
µk

d (µk + εk,ℓ, µk)

)

+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
µℓ

K2d(µℓ − εℓ,k, µℓ)
.

We now use a local refinement of Pinsker’s inequality (Garivier et al., 2019):

d(p, q) ≥ 1

2max(p, q)
(p− q)2.
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This implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
2µk (µℓ − εℓ,k) log

(
n2K2

)
(µℓ − εℓ,k − µk − εk,ℓ)2

+
2µk(µk + εk,ℓ)

ε2k,ℓ

)

+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2ℓ,k
.

Case 1: Assume µℓ ≥ 5µk. Setting εk,ℓ = µk, we obtain,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
2µk(µℓ − εℓ,k) log

(
n2K3

)
(µℓ − εℓ,k − 2µk)2

+ 4

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2ℓ,k

≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
2µk(µℓ − εℓ,k) log

(
n2K3

)
( 35µℓ − εℓ,k)2

+ 4

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2ℓ,k

Setting εℓ,k = 1
5µℓ, we get:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
10µk log

(
n2K2

)
µℓ

+ 4

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
50

K2
.

We have µk = 1− e
− ∆

λk ≤ ∆
λk

, and if ∆ ≤ 1
4λℓ, 1

µℓ
≤ 1.13λℓ

∆ , this implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

nλℓ11.3 log
(
n2K2

)
+

K∑
ℓ=1

λℓ

(
50

K
+ 4nK

)
.

Since K ≥ 2, this implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

nλℓ11.3 log
(
n2K2

)
+

K∑
ℓ=1

λℓ (12.5 + 4n)K.

Case 2: Assume µℓ ≤ 5µk. Setting εk,ℓ = (µℓ − µk)/4 and εℓ,k = (µℓ − µk)/4, we obtain,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
µ2
k

(µℓ − µk)2
(
32 log

(
n2K2

)
+ 64

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
32µ2

ℓ

K2(µℓ − µk)2
.

It also holds that (∗) ≤
∑K

ℓ=1

∑K
k=ℓ+1 n

2(λk − λℓ). Thus:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
4µk

(µℓ − µk)

√
2n (log (n2K3) + 4) +

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
4
√
2µℓn

K(µℓ − µk)
.

If ∆ ≤ 1
4λℓ, we have:

1

µℓ − µk
≤ 1.46

λkλℓ

(λk − λℓ)
.

We thus obtain:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

6nλℓ

√
2n (log (n2K2) + 4) +

K∑
ℓ=1

9nλℓ.

For any n ≥ max(10, 10 log(K)), we have:

ln(n2K2) ≤ 1

2
n

which implies 6nλℓ

√
2n (log (n2K2) + 4) ≥ 11.3 log

(
n2K2

)
. Thus for any n ≥ max(10, 10 log(K)) and ∆ ≤ 1

4λℓ,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

6nλℓ

√
2n (log (n2K2) + 4) +

10K

n
E[COPT ].
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D. Additional experiments
We implemented the Bayesian approach of (Marbán et al., 2011) that we call LSEPT. We used an uninformative prior α = 1,
w = 0 (the same for all job types). LSEPT is then in essence a greedy algorithm. Whenever a job finishes, it runs until
completion a job whose type has the lowest empirical mean size (computed across jobs that have been processed so far).

We ran all algorithms with K = 2, where jobs of type 1 have a mean size λ1 = 0.8 and jobs of type 2 have a mean λ2 = 1.

As can be seen in Figure 3, LSEPT has better mean performance than RR, a non-adaptive method. However, it has a large
variance and its performance does not improve with n. This is typical of the performance of greedy algorithms: since the
algorithm commits very early, it can either get very good or very bad performances. We plot the mean over 200 seeds.

Figure 3. CR on jobs with 2 different types. K = 2, λ2 = 1 and λ1 = 0.8, n takes a grid of values.
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