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4 INSERM, EFS BFC, UMR1098, RIGHT Interactions, Greffon-Hôte-Tumeur/Ingénierie Cellulaire
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Abstract: The movement of cells during (normal and abnormal) wound healing is the result of bio-
mechanical interactions that combine cell responses to growth factors as well as cell-cell and cell-
matrix interactions (adhesion and remodelling). It is known that cells can communicate and interact
locally and non-locally with other cells inside the tissues, through mechanical forces that act locally
and at a distance, as well as through long non-conventional cell protrusions. In this study, we consider
a non-local PDE model for the interactions between fibroblasts, macrophages, and extracellular ma-
trix via a growth factor (TGF-β) in the context of wound healing. For the non-local interactions, we
consider two types of kernels (a Gaussian kernel and a cone-shaped kernel), two types of cell-ECM
adhesion functions (adhesion only to higher ECM densities vs. adhesion to higher/lower densities) and
two types of cell proliferation terms (with and without decay due to overcrowding). We investigate
numerically the dynamics of this non-local model, as well as the dynamics of the localised versions
of this model (obtained when cell perception radius reduces towards 0). The results suggest that: (i)
local models explain normal wound healing and non-local models could explain also abnormal wound
healing (although the results are parameter-dependent); (ii) the models can explain two types of wound
healing (by primary intention, when the wounds margins come together from the side; and by sec-
ondary intention when the wound heals from bottom up).

Keywords: normal and abnormal wound healing; non-local models; local models; FEM;

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023xxx


2

1. Introduction

Wound healing is a complex process through which an organism tries to restore the integrity of
biological tissues following their physical damage [1,2]. While different tissues in the body are able to
heal after wounding, here we focus only on normal and abnormal wounds associated with skin tissue.
There are two main ways for cutaneous tissue to heal: (i) by primary intention, where the incision is
narrow and wound heals as its edges are brought close together; (ii) by secondary intention, where the
wound heals from the bottom of the wound up. A normal wound healing (either by primary or sec-
ondary intention) follows a series of interconnected phases (hemostasis, inflammation, proliferation,
and remodelling) [3], which eventually returns the wounded tissue close to its original state. How-
ever, when there are dysregulation during the various phases of wound healing, it can lead to abnormal
wounds and excessive scars [4], such as hypertrophic scars and keloids. In regard to these fibrotic
pathologies, we first note that both hypertrophic and keloid scars can occur following healing by pri-
mary and/or secondary intention. Second, we note that although both hypertrophic scars and keloids
are both characterised by the presence of excessive scar tissue, only keloids grow beyond the borders
of the original wound in a tumour-like manner [5, 6].

Unfortunately, neither hypertrophic scars nor keloids benefit from satisfactory prevention tools or
treatment, and thus remain an uncovered clinical need. Deciphering the overlapping phases involved
in normal and abnormal wound healing is key to understanding how these fibrosis are triggered and
evolve overtime. In the following, we briefly detail key biological aspects associated with each of these
four phases:

• Hemostasis: following an injury, blood fills the wound area and blood platelets coagulate to form
a fibrin mesh (i.e., blood clot) that prevents further blood loss. Moreover, this fibrin mesh (which
forms the basis of the new extracellular matrix inside the wounded tissue) acts as a scaffold for
early cell migration into the wound. Platelets also release different inflammatory cytokines and
growth factors, such as TGF-β, which promote the inflammatory phase [7–9]. In fact, as we will
see below, TGF-β has a critical role in the different phases of wound healing [10], and for this
reason throughout this study we focus on this growth factor.
• Inflammation: this phase is characterised by increased capillary permeability and cell infiltration

and migration into the wound site [7]. The neutrophils that arrive within hours to the wound area
to clean the debris, are followed within 3-4 days by macrophages that also deterse the wound and
also secrete various cytokines and growth factors, such as TGF-β, which then recruit fibroblasts
and initiate the formation of granulation tissue [7, 9].
• Proliferation: this phase is characterised by ECM proteins deposition and connective tissue

contraction through the differentiation of fibroblasts into myofibroblasts, and finally wound re-
epithelization. During proliferation phase, fibroblasts are chemo-attracted and migrate (namely
in response to TGF-β), proliferate and produce ECM components (e.g., collagens and fibronectin)
that lead to the formation of granulation tissue [7, 9].
• Remodelling: this phase is characterised by a re-organisation of collagen fibres in granulation

tissue [9], with type III collagen being replaced with newly secreted type-I collagen. Such re-
modelling is the result of a ”synthesis-degradation” balance under the control of matrix metal-
loproteinases (MMPs) that cause collagen breakdown. These proteinases, and their inhibitors
(TIMPs) are secreted by fibroblasts and macrophages as well. TGF-β can inhibit the secretion
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of these metalloproteinases leading to accumulation of collagen fibres [7] as observed in both
hypertrophic scars and keloids.

Since the complexity of the above wound healing processes makes it challenging to interpret the
experimental results, over the past three decades various mathematical models have been derived to
investigate the biological mechanisms involved in wound healing [11, 12]. Some of these models
focus on normal wounds [13–16], while others focus on abnormal wounds [17–19]. Models usually
describe healing by first intention [20], focus mainly on bio-chemical interactions between cells (or
between cells and ECM) and do not include bio-mechanical forces involved in wound contraction.
In contrast, models that focus on mechanical interactions [2, 9, 21, 22] usually describe healing by
second intention [20]. However, to our knowledge, there are not many models that investigate at the
same time the biological mechanisms behind healing by first or secondary intentions, in the context
of understanding normal vs. abnormal healing phenomena. Also, there are not many models that
investigate keloid formation as a result of abnormal wound healing (see the review in [12]).

The goal of this study is to shed new light on the biological mechanisms that could generate different
types of wounds (normal or abnormal), that heal by primary or by secondary intention. To this end, we
consider a theoretical (i.e., modelling and numerical) approach to investigate some of the inflammatory
and bio-mechanical aspects involved in the different phases of wound healing discussed above. Here
we focus on the roles of TGF-β, macrophages, and fibroblasts during the inflammation, proliferation,
and remodelling steps. The non-local model developed here accounts for the non-local impact of
bio-mechanical interactions between cells, and among cells and extracellular matrix (ECM)(as recent
experimental studies have shown long-distance interactions between cells [23–25]). By considering
different non-local interaction kernels, different cell adhesion functions and cell proliferation functions,
we aim to shed light on the potential mechanisms involved in normal and abnormal wounds healed by
first or second intent.

The paper is structured as follows. In Section 2, we describe the non-local model and present its
reduction to a local model when we assume that the interactions become very localised. In Section 3,
we describe briefly the finite element approach used to discretise the equations and present a series of
numerical simulations of the local and non-local models. We conclude in Section 4 with a summary
and discussion of the results

2. Description of the mathematical model

To describe the wound healing process, we focus on the coupled dynamics of the following main
variables: the concentration of a growth factor such as TGF−β, g(x, t), the density of fibroblasts, f (x, t),
the density of macrophages, m(x, t), and the density of the ECM, e(x, t). For simplicity, throughout this
study, we use the compact vector notation u = (g, f ,m, e)

T
. The time and space evolution of these

variables is described by the following equations:

∂g
∂t
= Dg∆g − λgg +W( f ,m), (2.1a)

∂ f
∂t
= ∇ · (D f∇ f − µ f f A f

[
g, f ,m, e

]
) − λ f f + p f (g) f (1 − ρ(u)), (2.1b)

∂m
∂t
= ∇ · (Dm∇m − µmmAm

[
g, f ,m, e

]
) − λmm + pm(g)m(1 − ρ(u)), (2.1c)
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∂e
∂t
= −e(α f f + αmm) + pe( f ) e(1 − ρ(u)). (2.1d)

These equations incorporate the following biological assumptions:

• The changes in the concentration of the growth factor (Eq (2.1a)) at a position (x, t), are the
result of the diffusion of these molecules (with diffusion coefficient Dg) [26], the decay of the
growth factor (at a rate λg) [7, 27] and the secretion of this growth factor by fibroblasts and
macrophages [28–30], as described by the term W( f ,m) below:

W( f ,m) = p
f

g
f + p

m

g
m, (2.2)

where p
f

g
is the production rate of the growth factor by fibroblasts [28–30], and p

m

g
is the produc-

tion rate of the growth factor by macrophages [28].
• The changes in the density of fibroblasts (Eq (2.1b)) at a position (x, t), are the result of the

flux of the fibroblasts [28, 31] (which consists of a linear diffusion term with coefficient D f ,
and a cell migration term with coefficient µ f , which is a consequence of cell-cell and cell-ECM
adhesion [32, 33]). In addition, the change in fibroblasts densities is the result of fibroblasts’
apoptosis [28] (at a rate λ f ), and fibroblasts self-renewal via proliferation [31, 34] (at a rate p f (g)
which depends on the concentration of the growth factor g). Note that Since various experimental
studies have shown that cells can interact at a distance with other cells [23–25], in Eq (2.1b),
A f

[
g, f ,m, e

]
denotes a non-local spatial flux term describing the adhesion processes between the

fibroblasts, macrophages, and ECM, responsible for the directed movement of the fibroblasts (and
the role of growth factor in these processes). A detailed description of this non-local flux term is
given below. Moreover,

ρ(u) = wg g + w f f + wm m + we e,

is the cumulative volume fraction space occupied by the components of our system. Here
wg ,w f ,wm ,we > 0 are indices for the volume fraction spaces occupied by the growth factor,
fibroblasts, macrophages, and the ECM respectively. Therefore, the proliferation of cells is de-
scribed by the logistic term f (1 − ρ(u)) that models cell proliferation under nutrient availability,
which is consistent with some experimental studies [35].
• The changes in the density of macrophages (Eq (2.1c)) at a position (x, t), are a result of the flux of

macrophages [36] (which consists of a linear diffusion term with coefficient Dm , a cell migration
term with coefficient µm , which is a consequence of cell-cell and cell-ECM adhesion [32, 33]),
macrophages’ apoptosis (at a rate λm), and the logistic proliferation of macrophages (at a rate
pm(g) which depends on the growth factor g) [37]. Here Am

[
g, f ,m, e

]
denotes a non-local spatial

flux term describing the adhesion processes between the fibroblasts, macrophages, ECM (and the
role of TGF−β on these adhesive interactions). The proliferation of macrophages is described by
the logistic term m(1 − ρ(u)).
• The changes in the density of ECM (Eq (2.1d)) are the result of degradation [38, 39] caused

by ECM degrading enzymes secreted by fibroblasts [40] at a constant rate α f , and by
macrophages [41, 42] at a constant rate αm . It is also the result of ECM remodelling [37, 43] at a
rate pe( f ) assumed to depend linearly on fibroblasts’ density (since dermal fibroblasts are closely
linked to ECM as both producer and resident cells [44]). Finally, as in [45, 46], we consider a
logistic-type remodelling of ECM.
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The adhesive cell-cell and cell-ECM interactions between the cells distributed at x and the surrounding
cells and ECM perceived over a ball-shaped sensing region B(x,R) := x + B(0,R) of radius R > 0 are
expressed via the non-local terms:

A f ,m[g, f ,m, e](x, t) =
1
R

∫
B(0,R)

K(∥y∥2)n(y)(1 − ρ(u))
+

Γ f ,m(x + y, t) dy. (2.3)

Here, B(0,R) := {ζ ∈ R
2

: ∥ζ∥2 ≤ R} is the usual closed ball of radius R centred at 0, and n(y) denotes
the unit radial vector originating from x and moving towards x + y ∈ B(0,R) for any y ∈ B(0,R) and is
defined as follows:

n(y) :=

 y
∥y∥2

, if y ∈ B(0,R) \ {(0, 0)}

(0, 0), otherwise,
(2.4)

where ∥ · ∥2 is the usual Euclidean norm. The kernel K(·) : [0,R] −→ [0, 1] is a radially symmetric kernel
that gives the interaction range of cells (i.e., interactions between the reference cell at position x and
neighbours at x + y). Examples of such kernels are

a. Gaussian kernel (see Figure 1(a))

K1(z) =
1

2πσ2 e
−

z
2

2σ2
. (2.5)

b. Cone-shaped kernel (see Figure 1(b))

K2(z) =
3
πR2

(
1 −

z
R

)
. (2.6)

Figure 1. Kernels describing the long-distance cell-cell and cell-ECM interactions. (a) Gaus-
sian kernel (see Eq (2.5)) with standard deviation σ = 0.04; (b) cone-shaped kernel (see Eq

(2.6)) with R = 0.1. In Eqs (2.6) and (2.5), z =
√

y2

1
+ y2

2
.

Moreover, the term (1− ρ(u))
+

:= max{(1− ρ(u)), 0} is included to avoid overcrowding within the non-
local interactions. Finally, the function Γ f ,m(x + y, t) describes the type and magnitude of cell-cell and
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cell-ECM adhesive interactions between cells at position x and neighbours at position x + y. To define
these functions Γ f ,m , we assume that fibroblasts are co-cultured with macrophages on ECM. Note here
that some experimental studies observed that macrophages cannot adhere to ECM (at least to type-I
collagen) [47], while other experimental studies showed that macrophages can adhere to some type of
substrate (e.g., cross-linked hydrogel) [48]. To investigate these contradictory experimental results, in
this study, we consider two sub-cases:

I. No macrophage-ECM adhesion.

Γ f (x + y, t) := S f f f (x + y, t) + S f mm(x + y, t) + S f ee(x + y, t), (2.7a)
Γm(x + y, t) := Smmm(x + y, t) + Sm f f (x + y, t). (2.7b)

II. Including macrophage-ECM adhesion (S me > 0 in Γm).

Γ f (x + y, t) := S f f f (x + y, t) + S f mm(x + y, t) + S f ee(x + y, t), (2.8a)
Γm(x + y, t) := Smmm(x + y, t) + Sm f f (x + y, t) + Smee(x + y, t). (2.8b)

In the above equations, we considered the strengths of fibroblast-fibroblast interactions (S f f ), fibroblast-
macrophage interactions (S f m), fibroblast-ECM interactions (S f e), macrophage-macrophage interac-
tions (Smm), macrophage-fibroblast interactions (Sm f ), macrophage-ECM interactions (Sme). Since these
interaction strengths depend on TGF-β and on the presence of ECM [49], to define them we consider
a monotonically-increasing Hill-type function (depending on “ e + g ” and satisfying S j(e, g)= 0 for
e = 0 and g = 0):

S j := S
max

j

e + g
1 + e + g

, j ∈ { f f , f m,mm,m f , f e,me}, (2.9)

The above function is used to describe cell movement up-gradient of ECM and neighbouring cells
in the presence of the growth factor (and will be used throughout this study). However, in the early
stages of wound healing, the fibroblasts and macrophages leave the healthy tissue to move onto the
newly-formed fibrin mesh at the bottom of the wound, to help with the formation of granulation tissue.
To describe this dynamics, in Section 3.3, we use the following function for cell-cell and cell-ECM
adhesion:

S j := S
max

j

(e − ec) + g
1 + e + g

, j ∈ { f f , f m,mm,m f , f e,me}, (2.10)

where ec is a matrix threshold for the transition between up-gradient cell movement and down-gradient
cell movement.
Because we do not really know the spatial range over which this adhesive cell-cell and cell-ECM
interactions have an impact (although some experimental studies have suggested that cells can sense
up to a few rows of neighbouring cell [50]), in the next section we also consider localised versions of
model (2.1). To this end, we assume that the cell perception radius R→ 0 and thus we can use classical
Taylor expansions to transform the non-local interactions into local interactions.
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2.1. Reduction of the non-local models to local models: Gaussian kernel

The non-local term in Eq (2.3), with the Gaussian kernel defined by Eq (2.5) on a square domain (see
also Figure 1(a)) can be written as:

A(.)[g, f ,m, e](x, t) :=
1
R

R∫
−R

R∫
−R

K(y)n(y)(G(u(x + y, t)) dy1dy2 , (2.11)

where A(.)[g, f ,m, e] ∈ {Am[g, f ,m, e], A f [g, f ,m, e]}, y = (y1 , y2). The function G(u(x + y, t)) is defined
by the following expressions:

• for A f we have

G(u(x + y, t)) = (S f f f (x + y, t) + S f mm(x + y, t)
+S f ee (x + y, t)) (1 − ρ(u))+ (2.12)

• for Am we have the following general expression

G(u(x + y, t)) =
(
Smmm(x + y, t) + Sm f f (x + y, t)
+ Smee(x + y, t)

)
(1 − ρ(u))+ (2.13)

Case I. (i.e., Eq (2.7), no macrophage-ECM adhesion) corresponds to S me = 0 in Eq (2.13), while
Case II. (i.e., Eq (2.8), with macrophage-ECM adhesion) corresponds to S me > 0.

The truncated local Taylor expansion of G(u(x + y, t)) around x := (x1 , x2) is given as

G(u(x + y, t)) = G(u(x, t)) + y1

∂

∂x1

G(u(x, t)) + y2

∂

∂x2

G(u(x, t)) + O
(
y

2

1
+ y

2

2

)
. (2.14)

Inserting Eq (2.14) into Eq (2.11) we have that

A(.)[g, f ,m, e](x, t) =
1
R

R∫
−R

R∫
−R

K(y)n(y)
(
G(u(x, t)) + y1

∂

∂x1

G(u(x, t))+

y2

∂

∂x2

G(u(x, t)) + O
(
y

2

1
+ y

2

1

) )
dy1dy2 . (2.15)

Choosing a kernel as in Eq (2.5), and n(y) defined in Eq (2.4), and inserting them into Eq (2.15)
(ignoring the higher order terms) we have that:

A(.)[g, f ,m, e](x, t) =

1
R

G(u(x, t))
( R∫
−R

R∫
−R

y1

2πσ2
√

y2

1
+ y2

1

exp

−y
2

1
+ y

2

2

2σ2

dy1dy2 ,

R∫
−R

R∫
−R

y2

2πσ2
√

y2

1
+ y2

1

exp

−y
2

1
+ y

2

2

2σ2

dy1dy2

)
+
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+
1
R

(
∂

∂x1

G(u(x, t))
R∫

−R

R∫
−R

y
2

1

2πσ2
√

y2

1
+ y2

1

exp

−y
2

1
+ y

2

2

2σ2

 dy1dy2 ,

∂

∂x2

G(u(x, t))
R∫

−R

R∫
−R

y
2

2

2πσ2
√

y2

1
+ y2

1

exp

−y
2

1
+ y

2

2

2σ2

 dy1dy2

)
. (2.16)

Following the steps detailed in Appendix 4, we obtain that A(.)[g, f ,m, e] −→ 0 as R −→ 0 for all consid-
ered cases (see Eq (4.1)). Hence, model (2.1) reduces to:

∂g
∂t
= Dg∆g − λgg +W( f ,m), (2.17a)

∂ f
∂t
= ∇ · (D f∇ f ) − λ f f + p f (g) f (1 − ρ(u)), (2.17b)

∂m
∂t
= ∇ · (Dm∇m) − λmm + pm(g)m(1 − ρ(u)), (2.17c)

∂e
∂t
= −e(α f f + αmm) + pe( f ) e(1 − ρ(u)). (2.17d)

We emphasize that the difference between the localised model (2.17) and the non-local model (2.1) (for
the case of the Gaussian kernel), is that cell motility in the local model is given only by the diffusion
terms.

2.2. Reduction of the non-local models to local models: cone-shaped kernel.

Now we consider as in Gerisch and Chaplain [51], a cone-shaped kernel given by Eq (2.6) on a
circular domain with a radius R. Then, the non-local term in Eq (2.3) takes the form:

A(.)[g, f ,m, e](x, t) :=
1
R

R∫
0

r

2π∫
0

n(θ)K(r)G(u(x + rn(θ), t)) dθdr. (2.18)

Here, n(θ) = (cos θ, sin θ)
T

is a vector denoting the outer unit normal of the angle θ.

• For the fibroblasts non-local flux term A f

[
g, f ,m, e

]
, the cell-cell and cell-ECM interactions are

given by

G(u(x + rn(θ), t)) = (S f f f (x + rn(θ), t) + S f mm(x + rn(θ), t)
+S f ee(x + rn(θ), t))(1 − ρ(u)).

• For the macrophages non-local flux term Am

[
g, f ,m, e

]
, the cell-cell and cell-ECM interactions

are given by

G(u(x + rn(θ), t)) = (Smmm(x + rn(θ), t) + Sm f f (x + rn(θ), t)
+Smee(x + rn(θ), t))(1 − ρ(u)).

As before, in the above equation condition Sme = 0 corresponds to Case I. (no macrophage-ECM
adhesion), while condition Sme > 0 corresponds to Case II. (macrophage-ECM adhesion present).
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The Taylor series expansion of G(u(x + rn(θ), t)) = (G ◦ u)(x + r n(θ), t) around r = 0 is given as:

G(u(x + rn(θ), t)) = G(u(x, t)) +
〈 d

dr
G(u(x, t)), rn(θ)

〉
+ . . . (2.19)

where
d
dr

G(u(x, t)) = ∇uG(u(x, t))∇u(x, t).

Assuming that the functions G and u are smooth, Eq (2.18) becomes

A(.)[g, f ,m, e] =
1
R

R∫
0

r

2π∫
0

n(θ)K(r)G(u(x, t)) dθdr

+
1
R

R∫
0

r

2π∫
0

n(θ)K(r)⟨∇uG(u(x, t))∇u(x, t), rn(θ)⟩ dθ dr. (2.20)

For K(r) chosen as in Eq (2.6) and using the expression in Eq (4.2) in Appendix (4), we obtain that for
R −→ 0, A(.)[g, f ,m, e]→ A

0

(.)
(g, f ,m, e). Since the limit function A

0

(.)
depends on G, in the following, we

describe in detail this limit function. To this end, we also assume that (1 − ρ(u)) > 0. Moreover, we
write u(x, t) as u to simplify the notation.

In the limit R→ 0, the non-local flux terms A f ,m

[
g, f ,m, e

]
approach the local terms A

0

f ,m
(g, f ,m, e),

where

A
0

f
(g, f ,m, e) =

1
4

{
(1−ρ(u))

(
S f f∇ f +S f m∇m+S f e∇e+ f

(
∂

∂g
S f f∇g +

∂

∂e
S f f∇e

)
+ m

(
∂

∂g
S f m∇g +

∂

∂e
S f m∇e

)
+e

(
∂

∂g
S f e∇g +

∂

∂e
S f e∇e

))
−

(
S f f f + S f mm + S f ee

) (
wg∇g + w f∇ f + wm∇m + we∇e

) }
, (2.21a)

A
0

m
(g, f ,m, e) =

1
4

{
(1 − ρ(u))

(
Sm f∇ f + Smm∇m + Sme∇e+ f

(
∂

∂g
Sm f∇g +

∂

∂e
Sm f∇e

)
+ m

(
∂

∂g
Smm∇g +

∂

∂e
Smm∇e

)
+ e

(
∂

∂g
Sme∇g+

∂

∂e
Sme∇e

))
−

(
Sm f f + Smmm + S f ee

) (
wg∇g + w f∇ f + wm∇m + we∇e

) }
. (2.21b)

In Eq (2.21a), the term S f f∇ f + S f m∇m + S f e∇e on the right-hand side describes fluxes due to
fibroblast-fibroblast, fibroblast-macrophage, and fibroblast-ECM adhesions, with strengths S f f ,S f m ,
and S f e respectively. The term f

(
∂
∂gS f f∇g + ∂

∂eS f f∇e
)
+m

(
∂
∂gS f m∇g + ∂

∂eS f m∇e
)
+e

(
∂
∂gS f e∇g + ∂

∂eS f e∇e
)

describes the change in the strength of fibroblast-fibroblast, fibroblast-macrophage, and fibroblast-
ECM adhesion with respect to the growth factor and ECM, along the positive gradients of growth
factor and ECM respectively. Finally, the term −(S f f f + S f mm + S f ee)(wg∇g + w f∇ f + wm∇m + we∇e)
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prevents the uncontrolled accumulation of fibroblasts, macrophages, and ECM by directing them down
the gradients of growth factor, fibroblasts, macrophages and ECM.

In Eq (2.21b), the term Sm f∇ f + Smm∇m on the right-hand side represents macrophage-
fibroblast and macrophage-macrophage adhesion with strengths Sm f and Smm respectively. The term
f
(
∂
∂gSm f∇g + ∂

∂eSm f∇e
)
+ m

(
∂
∂gSmm∇g + ∂

∂eSmm∇e
)

represents the change in the macrophage-fibroblast
and macrophage-macrophage adhesion strength with respect to growth factor and ECM, up the pos-
itive gradients of growth factor and ECM, respectively. The term −(Sm f f + Smmm)(wg∇g + w f∇ f +
wm∇m + we∇e) prevents the uncontrolled accumulation of macrophages and fibroblasts by directing
them down the negative gradients of growth factors, fibroblasts, macrophages and ECM.

The difference between Case I. (no macrophage-ECM adhesion; S me = 0) and Case II. (macrophage-
ECM adhesion present; S me > 0) consists in the additional terms on the right-hand side of Eq (2.21b)
that contain Sme . The term e

(
∂
∂gSme∇g + ∂

∂eSme∇e
)

represents the change in the macrophage-ECM adhe-
sion strength with respect to the growth-factor and ECM, along the positive gradients of growth-factor
and ECM respectively.

The term −Smee (wg∇g + w f∇ f + wm∇m + we∇e) prevents the uncontrolled accumulation of
macrophages-ECM, by directing them down the negative gradients of the growth-factor, fibroblasts,
macrophages, and the ECM.

Substituting Eq (2.21) into Eq (2.1) leads to the following local model:

∂g
∂t
=Dg∆g − λgg +W( f ,m), (2.22a)

∂ f
∂t
=∇ ·

[
(D f∇ f −

1
4
µ f f

{
(1 − ρ(u))

(
S f f∇ f + S f m∇m + S f e∇e

+ f
(
∂

∂g
S f f∇g +

∂

∂e
S f f∇e

)
+ m

(
∂

∂g
S f m∇g +

∂

∂e
S f m∇e

)
+ e

(
∂

∂g
S f e∇g +

∂

∂e
S f e∇e

) )
− (S f f f + S f mm + S f ee)(wg∇g

+ w f∇ f + wm∇m + we∇e)
}]
− λ f f + p f (g) f (1 − ρ(u)), (2.22b)

∂m
∂t
=∇ ·

[
Dm∇m −

1
4
µmm

{
(1 − ρ(u))

(
Sm f∇ f + Smm∇m + Sme∇e

+ f
(
∂

∂g
Sm f∇g +

∂

∂e
Sm f∇e

)
+ m

(
∂

∂g
Smm∇g +

∂

∂e
Smm∇e

)
+ e

(
∂

∂g
Sme∇g +

∂

∂e
Sme∇e

) )
− (Smmm + Sm f f + Smee)(wg∇g

+ w f∇ f + wm∇m + we∇e)
}]
− λmm + pm(g)m(1 − ρ(u)), (2.22c)

∂e
∂t
= − e(α f f + αmm) + pe( f )e (1 − ρ(u)) . (2.22d)
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3. Numerical approach and simulations

Throughout this section, we investigate numerically the macrophage-ECM hypothesis mentioned
above (see cases I and II). We do this for both the original non-local system (2.1) and the local versions
of it: systems (2.17) and (2.22).

3.1. The finite element discretisation

Denoting by Ω, the 2D spatial domain of interest and I = [0,T ] the temporal domain, we seek to
approximate here the solution g, f ,m, e over H

1
(Ω; I). For a concise presentation of the discretisation

of Eq (2.1), let’s denote by u := (g, f ,m, e)
T

and the right-hand side operator by G : (H1(Ω; I))
4
→ R

4
.

Thus, our dynamics re-casts as: 
∂u
∂t
= G(u),

u(x, 0) = u0 ,
∂u
∂n

∣∣∣∣∣
∂Ω

= 0.

(3.1)

For the spatial discretisation, we use the finite element method (FEM). Thus, as usual, we multiply the
equation by a test function v ∈ D(Ω) (the usual space of test functions, which coincides with C

∞

0
(Ω) as

family of functions only) and integrate over Ω. Therefore, in weak formulation, our problem re-casts
as follows:

find u ∈ (H1(Ω; I))4 such that:

∫
Ω

∂u
∂t

v dx =

∫
Ω

G(u)v dx, ∀v ∈ C
∞

0
(Ω)

u(x, 0) = u0 ,
∂u
∂n

∣∣∣∣∣
∂Ω

= 0,

(3.2)

where n is the usual normal to Ω. Thus, explicitly, the first equation in (3.2) becomes∫
Ω

∂g
∂t

vg dx =−
∫
Ω

Dg∇g · ∇vg dx −
∫
Ω

λgg vg dx +
∫
Ω

W( f ,m)vg dx

+

∫
∂Ω

Dg

∂g
∂n

vg dS , (3.3a)

∫
Ω

∂ f
∂t

v f dx =−
∫
Ω

D f∇ f · ∇v f dx +
∫
Ω

∇ · ( f A f

[
g, f ,m, e

]
)v f dx −

∫
Ω

λ f f v f dx

+

∫
Ω

p f (g) f (1 − ρ(u))v f dx +
∫
∂Ω

D f

∂ f
∂n

v f dS , (3.3b)

∫
Ω

∂m
∂t

vm dx = −
∫
Ω

Dm∇m · ∇vm dx +
∫
Ω

∇ · (mAm

[
g, f ,m, e

]
)vm dx
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−

∫
Ω

λmmvm dx+
∫
Ω

pm(g)m(1 − ρ(u))vm dx+
∫
∂Ω

Dm

∂m
∂n

vm dS (3.3c)

∫
Ω

∂e
∂t

ve dx = −
∫
Ω

e
(
α f f + αmm

)
ve dx +

∫
Ω

epe(1 − ρ(u))ve dx. (3.3d)

Thus, since for each component ui of u, i = 1, . . . , 4, a representation in terms of P2−basis functions
{ψτ(·)}τ=0,l corresponding to the rectangular grid (consisting of l+1 uniformly distributed nodes) is given
as ũ(x, t) =

∑l
τ=0 cui

τ (t)ψ
τ
(x), we therefore obtain

∂ui(x, t)
∂t

=

l∑
τ=0

∂cui
τ (t)
∂t

ψ
τ
(x). (3.4)

For the time discretization, we use a standard backward Euler scheme, and thus from Eq (3.2) we
obtain 

∫
Ω

u
N+1
−u

N

∆t v dx =
∫
Ω

G
(
u

N+1
)

v dx, ∀v ∈ D(Ω)

u(x, 0) = u0 ,

∂u
N+1

∂n
= 0,

(3.5)

where u
N

is the approximation of u(N∆t), with the uniform time discretisation step ∆t := T
Nmax

, with N =
0, . . . ,Nmax representing the time indices. Further, in order to finally write our discretised dynamics in
the standard form of a linear system of equations, we first proceed with taking the L2−scalar product
with respect to each basis function ψ j , j = 0, . . . , l, in both sides of equations in (3.3), and then we
apply the time discretisation outlined in (3.5). This results in a linear system associated with the fully
discretised model, as detailed in Appendix 4.

3.2. Numerical simulations

Numerical implementation. For the numerical simulations, we consider the finite element method
implemented in FEniCS, an open-source computing platform. In particular, here we use a triangular
mesh with P2 elements (i.e., on every single side (edge) of the triangles in the mesh the solution is
approximated by a quadratic that is sampled at the following three points: the two vertices and the
middle point); for precise details, see [52]. For the details of the weak form discretisation, see sub-
section 3.1 and Appendix C. For the time-marching using the backward Euler, see Appendix D. We
run the simulations on a time interval [0,T ] with T = 100 and a step size ∆t = 0.2.
Finally, the parameter values used for the numerical simulations are listed in Table 1, together with
their description. We assume homogeneous Neumann boundary conditions on all sides of the spatial
domain Ω.
Initial conditions. To properly model the healing of a wound (i.e., a decrease in the normal density
of cells due to a cut in the tissue), we choose the following initial conditions on a square domain
Ω = [−1, 1]

2
:

g(x, 0) = 0.1, (3.6)
f (x, 0) = 0.4

[(
0.5 + 0.5 tanh(20x1− 3)

)
+
(
0.5 + 0.5 tanh(−20x1− 3)

)]
, (3.7)
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m(x, 0) = 0.1
[(

0.5 + 0.5 tanh(20x1− 3)
)
+
(
0.5 + 0.5 tanh(−20x1− 3)

)]
, (3.8)

e(x, 0) = 1.0
[(

0.5 + 0.5 tanh(20x1− 3)
)
+
(
0.5 + 0.5 tanh(−20x1− 3)

)]
, (3.9)

where x = (x1 , x2). Thus the wound is assumed to be parallel to the x2-axis; see also Figure 2.

Table 1. Summary of dimensionless model parameters, together with the baseline values
used for the numerical simulations corresponding to limit local models.

Parameter Value Description Reference
Dg 0.0035 Diffusion coeff. for growth-factor population [53]
D f 0.0008 Diffusion coeff. for fibroblast population [53]
Dm 0.0008 Diffusion coeff. for macrophage population [53]
λg 0.2 Decay rate of growth-factor population Estimated
λ f 0.025 Apoptotic rate of fibroblast population Estimated
λm 0.025 Apoptotic rate of macrophages population Estimated
p f

g
0.2 Secretion rate of growth-factor by fibroblasts Estimated

pm
g

0.2 Secretion rate of growth-factor by macrophages Estimated
p f (g) 5.0g Proliferation rate of fibroblasts population de-

pending on the growth factor
Estimated

pm(g) 5.0g Proliferation rate of macrophages population
depending on the density of the growth factor

Estimated

α f 0.015 Degradation rate of ECM by fibroblasts [53]
αm 0.015 Degradation rate of ECM by macrophages [53]
pe( f ) 5.0 f Remodelling rate of ECM population Estimated
wg 1 Fraction of physical space occupied by growth

factor
[54]

w f 1 Fraction of physical space occupied by fibrob-
lasts

[54]

wm 1 Fraction of physical space occupied by
macrophages

[54]

we 1 Fraction of physical space occupied by ECM [54]
Smax

f f
0.2 Maximum strength of fibroblast-fibroblast ad-

hesive junction
Estimated

Smax
f m

0.1 Maximum strength of fibroblast-macrophages
adhesive junction

[51]

Smax
m f

0.1 Maximum strength of macrophages-fibroblast
adhesive junction

[51]

Smax
mm

0.2 Maximum strength of macrophages-
macrophages adhesive junction

Estimated

Smax
f e

0.1 Maximum strength of fibroblast-ECM adhesive
junction

[51]

Smax
me

1.0 Maximum strength of macrophages-ECM ad-
hesive junction

[51]

µ f 0.08 Haptotactic rate of the fibroblasts Estimated
µm 0.08 Haptotactic rate of the macrophages Estimated
R 0.1 Sensing radius for the non-local interaction [51]
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Note that in Appendix F we show also numerical simulations for the baseline parameters when
we choose different initial conditions: a circular initial wound (see Eq (4.13d) and first column in
Figure A3) and a linear but irregular initial wound (see Eq (4.12d) and first column in Figure A4).

Figure 2. Initial conditions (see Eqs (3.6)–(3.9)) for: (a) growth factor, g; (b) fibroblasts, f ;
(c) macrophages, m and (d) ECM, e. We consider a square domain Ω = [−1, 1]

2
.

3.2.1. Numerical simulations for the local models: Gaussian kernel
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Figure 3. Numerical simulations of the local model (2.17), obtained as a limit from the non-
local model with a Gaussian kernel. The rows correspond to the spatial distribution of growth
factor (g), fibroblast ( f ), macrophages (m), and ECM (e) at times t = 2, t = 20, t = 100 and
t = 200 (shown on the columns). The parameter values are listed in Table 1.
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We start the numerical simulations by focusing first on local models, and in particular on Eq (2.17).
Here, the motility of cells is only due to diffusion as the cellular flux vanishes locally (see the detailed
calculations in Appendix 4). Figure 3 shows the spatio-temporal evolution of growth factor g (first
row), fibroblasts f (second row), macrophages m (third row), and ECM e (fourth row) at three different
time points: t = 2, t = 20, t = 100 and t = 200.

We see in Figure 3 that due to diffusion, there is an invasion of fibroblasts and macrophages into the
wound between their initial states (t = 0, see Figure 2) and time t = 2, which helps also remodel the
ECM. Note that at time t = 20, the fibroblast and macrophages have completely invaded the wound
and now started decaying. For the parameter values used here (and listed in Table 1), the ECM returns
to its maximum level, while the fibroblast and macrophage tissue levels decay compared to their initial
baseline level (at t = 0).

3.2.2. Numerical simulations for the local models: cone-shaped kernel
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Figure 4. Numerical simulations of the local model (2.22) with Sme = 0 obtained as a limit
from the non-local model Case I with a cone-shaped kernel. The rows correspond to the
spatial distribution of growth factor (g), fibroblasts ( f ), macrophages (m), and ECM (e) at
times points t = 2, t = 20, and t = 100 (shown on the columns). The parameter values are
listed in Table 1.
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No macrophage-ECM adhesion (Case I: Sme = 0). First, we investigate numerically the behaviour
of the local model (2.22) under the assumption that the macrophages cannot adhere to the extracellular
matrix (ECM), i.e., case I above with Sme = 0. As before, in Figure 4, we plot the spatio-temporal
evolution of growth factor g (first row), fibroblasts f (second row), macrophages m (third row), and
ECM e (fourth row). In contrast to Figure 3 where the fibroblasts were smoothly invading the wound
area, in Figure 4, we see that at t = 2, the fibroblasts invade the wound area in oscillatory waves.
Then, at t = 20, there is a very large density of fibroblasts built-up in the middle of the wound
(max( f ) ≈ 0.5) and a slightly lower fibroblast density at the wound edges. This very high peak of
fibroblasts then starts decreasing and at t = 100, the wound is almost healed and the fibroblasts are
almost homogeneously spread over the whole tissue at very low densities. For the parameter values
used here (and listed in Table 1), the ECM returns to its maximum level, while the fibroblast tissue
level decays compared to its initial baseline level (at t = 0).
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Figure 5. Numerical simulations of the local model (2.22), obtained as a limit from the
non-local model in Case II (Sme > 0), with a cone-shaped kernel. The rows correspond to
the spatial distribution of growth factor (g), fibroblast ( f ), macrophages (m), and ECM (e) at
time points t = 2, t = 20, and t = 100. The parameter values are listed in Table 1.

Including macrophage-ECM adhesion (Case II: Sme > 0). Next, we investigate numerically the case
where macrophages could adhere to the ECM. In contrast to the previous figure (i.e., Figure 4), we
see in Figure 5 that at t = 2, there is an invasion of macrophages into the wound (in an oscillatory
manner) as a result of cell-ECM adhesion, which helps remodel also the ECM. Another interesting
macrophage behaviour can be observed at time t = 20, when there are fewer macrophages inside the
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wound (slightly darker colour) compared to the edge of the wound and the rest of the tissue (see row 3
column 2 of Figure 5). This is in contrast to Figures 3 and 4. For the parameter values used here (and
listed in Table 1), the ECM in the wound region remodels faster and it reaches its maximum level at
t = 100. This is in contrast to Figures 4 and 3, where ECM remodelling is slightly slower.

Finally, in Figure 6, we compare the solutions of these two hypotheses (i.e., Figure 4 with Sme = 0, and
Figure 5 with Sme > 0) at the spatial point x2 = 0 and times t = 2, 20, 40, 100. It is clear that the ECM
remodels faster when macrophages are allowed to adhere to the ECM.

Time-evolution of fibroblasts & macrophages: comparison between different local models. To see
more clearly the differences between various local models in terms of fibroblasts and macrophages,
in Figure 7 we plot the densities of these two cell populations in the center of the wound (i.e., at
point x1 = 0; blue curve) and just outside the wound (i.e., at point x1 = 0.5; red curve) for time
t ∈ {0, 50}. Here we show cell dynamics for: (a),(b) local model (2.17); (c),(d) local model (2.22) for
case I (Sme = 0); (e),(f) local model (2.22) for case II (Sme > 0). In Figure 7(a),(b) we observe a similar
dynamics for fibroblasts and macrophages: for t > 5 there are more cells in the wound region compared
to surrounding tissue. This is in contrast to Figure 7(c),(d) where the fibroblasts population invades
very quickly the wound (t > 3) and reaches high levels very quickly, while the macrophage population
in the wound region does not exceed that of the surrounding tissue until about t ∈ {5, 10}. Finally, in
Figure 7(e),(f), the fibroblast population in the wound region exceeds that of the surrounding tissues
as early as t > 4, and it reaches its maximum peak around t = 25. The macrophage population in the
wound region exceeds the level of macrophages in the surrounding tissue at t = 3, but then quickly
decreases below the level of macrophages in the surrounding tissue around t = 15.

Figure 6. 2-D plots comparing the solutions of the local models obtained via the localization
of cone-shaped kernel for Cases I and II. We show the spatial distribution of variables at: (a)
t = 2; (b) t = 20; (c) t = 40 and (d) t = 100. The parameter values are listed in Table 1.
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Figure 7. The evolution of fibroblasts (left column) and macrophages (right column) inside
the wound (at x1 = 0) and in the neighbouring tissue (at x1 = 0.5) for the local models. Here
we compare the effect of various kernels on the localised models: (a),(b) Gaussian kernel;
(c),(d) cone-shaped kernel (Case I: Sme = 0); and (e),(f) cone-shaped kernel (Case II: Sme > 0),
from t = 0 to t = 50. The parameter values are listed in Table 1.

3.2.3. Numerical simulations for the non-local models

Next, we investigate numerically the non-local model (2.1), while focusing again mostly on Case
II (where macrophages-ECM adhesion is present). For the parameter values used here (and listed in
Table 1), the ECM returns to its maximum level, while the fibroblasts level decays compared to its
initial baseline level (at t = 0).

Figure 8 shows the spatio-temporal evolution of growth factor g (first row), fibroblasts f (second
row), macrophages m (third row), and ECM e (fourth row) for the non-local model with cone-shaped
kernel, when macrophage-ECM adhesion is allowed (Case II). We see here that as early as t > 2,
fibroblasts and macrophages invade the wound as a result of cell diffusion and adhesion, which helps
also remodel the ECM. At time t = 20 there are many more fibroblasts inside the wound compared to
wound margins where there are low numbers of fibroblasts.
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Figure 8. Numerical simulations of the non-local model (2.1) with the cone-shaped kernel
(2.6), for case II (macrophage-ECM adhesion present). The rows correspond to the spatial
distribution of growth factors (g), fibroblasts ( f ), macrophages (m), and ECM (e) at times
t = 2, t = 20, and t = 100 (on the columns). The parameter values are listed in Table 1.

In Figure 9 we compare cases I (Sme = 0) and II (Sme > 0) for the non-local model (2.1) with (a)–(d)
a cone-shaped kernel, and (a’)–(d’) a Gaussian kernel. We see that there are no significant differences
between cases I. and II. Only at t = 100 we can observe a slightly faster ECM remodelling for case
I compared to case II (although this difference is barely noticeable, probably because Sme is not large
enough). Moreover, there are no differences between the results obtained with cone-shaped kernel (top
panels) and those obtained with the Gaussian kernel (bottom panels).

To confirm this similarity in the results, in Figure 10 we show a log-log plot of the L2 norm of
the difference between the solution obtained with the Gaussian kernel and the solution obtained the
cone-shaped kernel (for Case II: Sme > 0) at each time step, i.e., from t = 0 to t = 100. In this figure,
we see that L2 norm of the difference in the solutions is mostly between 10−7 − 10−6, confirming that
the two solutions are equal when approximated to 6 decimal places.

Because of these similarities in the solutions obtained with Gaussian and cone-shaped kernels,
throughout the rest of this study we consider only cone-shaped kernels.

3.2.4. Local vs non-local models

Next, we highlight some differences between the local model (2.22) and non-local model (2.1),
when we fix all parameters. To this end, we focus only on Case II (macrophage-ECM adhesion present)
and on cone-shaped kernels.

In Figure 11(a) we see that as early as t = 2 fibroblasts and macrophages invade the wound region
via random movement (diffusion) and directed movement (haptotaxis), and this invasion is charac-
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Figure 9. 2-D plots comparing the solution of the non-local model (2.1) with the cone-
shaped kernel (sub-panels (a)–(d)), and the Gaussian kernel (sub-panels (a’)–(d’)) for Case I
(Sme = 0) and Case II (Sme > 0). We show the spatial distribution of variables at: (a) t = 2;
(b) t = 20; (c) t = 40 and (d) t = 100. The parameter values are listed in Table 1.

terised by oscillations in ECM and fibroblasts densities at the wound margin. These oscillations seem
to have slightly higher amplitudes for the local model compared to the non-local one. As time in-
creases, these oscillations die out and the ECM repairs. However, there is an interesting difference
between the local and non-local models:

• At t = 40: for the local model (2.22) the ECM is still very low at the initial wound point (x1 = 0),
while for the non-local model (2.1) the ECM has much higher densities at x1 = 0.
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Figure 10. Log-log representation of the L2 norm of the difference between the solution
of the non-local model (2.1) with Gaussian kernel, and the solution of the same non-local
model with cone-shaped kernel. Here we focus only on Case II (macrophage-ECM adhesion
present). The L2 norm is calculated at every time point: t = 0 to t = 100.

• At t = 100: for the local model the ECM has almost remodelled completely (especially at x1 = 0),
while for the non-local model the ECM is still remodelling and filling up the wound.

We suspect that this faster ECM remodelling (and wound healing) observed with the local model is the
result of higher oscillation amplitudes in the ECM densities at the wound margins (particularly evident
at t = 40).

Figure 11. 2-D plots comparing the solution of the local model to the non-local model for
case II (i.e., where macrophage-ECM adhesion is present) using the cone-shaped kernel at
the time (a) t = 2; (b) t = 20; (c) t = 40 and (d) t = 100. The parameter values are listed in
Table 1.

Note that in addition to the above numerical investigation of the impact of cell sensing radius (R = 0
for local case, R = 0.1 for non-local case) on the healing of the wound, in Appendix G we have included
also a set of simulations showing model dynamics for R = 0.08, R = 0.1 (baseline, investigated also
above), and R = 0.13.
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3.3. Assumption of no cell death due to overcrowding

All simulations in the previous section showed normal wound healing. To highlight one possible
biological mechanism that could lead to abnormal wound healing characterised by raised scars (as
seen in hypertrophic or keloid scars), in the following we investigate numerically the hypothetical case
where cells do not die due to overcrowding. In fact, in [55] it was observed experimentally that the
fibroblasts in the center of the keloid lesion had reduced doubling time and also lower death rates,
and thus reached higher cell densities compared to the saturated-like densities of normal fibroblasts.
Because of these observed higher fibroblasts densities with reduced death rates, in the following we
replace the classical logistic proliferation terms appearing in Eqs (2.1b) and (2.1c) with the following
truncated-logistic terms that ignore cell death at higher densities (see also Appendix 4):

p f f (1 − ρ(u))+ and pmm(1 − ρ(u))+. (3.10)

Figures 12–14 show model dynamics for this particular case in the context of local and non-local
interactions.
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Figure 12. Numerical simulations of the local model (2.22) case II, with a cone-shaped ker-
nel, for the hypothetical case where cells do not die because of overcrowding (see Eq (3.10)).
The rows correspond to the spatial distribution of the growth factor (g), fibroblasts ( f ),
macrophages (m), and ECM (e), at times t = 2, t = 20, and t = 100. The parameter val-
ues are listed in Table 1.

• In Figure 12, we show the dynamics of the local model (2.22) (for case II: Sme > 0), with these
new proliferation rates when we localize the cone-shaped kernel. We note that the dynamics is
similar to the dynamics in Figure 5: a normal wound healing.
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• In Figure 13, we show the dynamics of the non-local model (2.1) (for case II: Sme > 0) with cone-
shaped kernel. In contrast to Figure 12, here we consider also ec > 0 describing the possibility
of cells moving down ECM gradients in the first stages of the wound healing. We see that the
concentration of the growth factor and the density of fibroblasts grow significantly at t = 100,
eventually leading to the blow-up of the numerical code. The growth in the fibroblasts population
is not matched by a similar growth in macrophages; this could be an indirect result of the non-
linear interactions and the asymmetry in the fibroblasts-ECM and macrophage-ECM interactions
(where only fibroblasts are assumed to contribute to ECM remodelling).

Since the non-local model (2.1) with cone-shaped kernel, truncated logistic cell growth and ec > 0 in
the adhesion function leads to very high fibroblasts densities (as seen in Figure 13), next we investigate
whether this fibroblasts dynamics holds also for a Gaussian kernel. In Figure 14 we see that while
the non-local model with Gaussian kernel exhibits the same overgrowth of fibroblasts (for the same
parameter values as in Figure 13), the corresponding local model does not show fibroblasts overgrowth.
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Figure 13. Numerical simulations of the non-local model (2.1) with truncated logistic term
for both cells and the ECM. We consider case II with a cone-shaped kernel. The rows cor-
respond to the spatial distribution of growth factor (g), fibroblast ( f ), macrophages (m), and
ECM (e) at time points t = 2, t = 20, and t = 100. The parameter values are listed in Table 1
with the following adjustments: µ f = µm = 10.0, p f (g) = 20g, λ f = 0.0000025, and ec = 0.9.

3.4. Primary vs. secondary wound healing

As mentioned in the Introduction section 1,wound healing can occur by primary intention (when
the wound heals as the wound margins are coming together; as it is the case of surgical incisions, skin
grafts, or flap closures) or by secondary intention (when the wound is very large and it heals from the
bottom up as the granulation tissue is formed and fills in the wound) [56]. In Figure 8, we observed
wound healing by secondary intention, as the ECM was remodelled from the bottom up. In contrast,
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Figure 14. 2-D plots comparing the solution of the local model to the non-local model for
case II (i.e., macrophage-ECM adhesion is present: Sme > 0) using a Gaussian kernel and
a truncated logistic term for both cells and the ECM (a) t = 2; (b) t = 20; (c) t = 40 and
(d) t = 100. The parameter values are listed in Table 1 with the following adjustments:
µ f = µm = 10.0, p f (g) = 20g, λ f = 0.0000025, and ec = 0.9

in Figure 15 we show wound healing by primary intention as the wound closes from the sides; see the
ECM progression from t = 2 to t = 20 and finally t = 100. To obtain this dynamics, we reduced the
diffusion rate of fibroblasts.

4. Summary and discussion

In this study, we developed a new mathematical model to describe some simple interactions between
fibroblasts, macrophages, ECM and a growth factor in the context of wound healing. Due to the non-
local aspects of the cell-cell and cell-ECM interactions (which are the result of various factors, from
adhesive forces [45, 46, 51, 53] to non-conventional cell protrusions that allow long-distance cell-cell
interactions [23, 24]), we started with a non-local model that considers a non-local flux generated by
these bio-mechanical attractive/adhesive/repulsive interactions. However, since the spatial range over
which cells perceive other neighbouring cells is not always very clear, we also considered localised
versions of the original non-local model by assuming that cell perception radius (R) approaches zero.
We showed that the type of kernel that describes the non-local interactions has a significant impact on
the resulting local models.

More precisely, Gaussian kernels led to local reaction-diffusion models, while cone-shaped kernels
led to local reaction-advection-diffusion models. In addition, since the published literature is not very
clear about the adhesion of macrophages to ECM, throughout this study we investigated numerically
two possible cases: (I.) no macrophage-ECM adhesion (Sme = 0); and (II.) macrophage-ECM adhesion
present (Sme > 0). Finally, since the wound starts to heal with the formation of the fibrin mesh that
acts as an early ECM, to describe the initial movement of cells into the wound we chose two different
adhesion functions.
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Figure 15. Numerical simulations of the non-local model (2.1) with the classical logistic
term for both cells and the ECM. We consider case II with a cone-shaped kernel. The rows
correspond to the spatial distribution of growth factor (g), fibroblast ( f ), macrophages (m),
and ECM at times points t = 2, t = 20, and t = 100, corresponding to the columns respec-
tively. The parameter values are listed in Table 1 with D f = 0.000008.

Numerical simulations were performed for all models (local and non-local, with/without
macrophage-ECM adhesive interactions), to illustrate some of the behaviours exhibited by these sys-
tems. The results showed that ECM remodelling depends on the type of kernels considered and on the
local vs. non-local adhesive interactions. More precisely, the results showed that ECM remodelling
is slower in the non-local models compared to the local models, ECM remodelling is slower in the
presence of macrophage-ECM adhesion compared to when macrophage-ECM is not present in both
the local and non-local models. The results also showed that a reduction in the diffusion of fibroblasts
in the non-local model may lead to wound healing by primary intention (see Figure 15), while a higher
fibroblast diffusion is associated with healing by secondary intention (see Figure 8).

Another interesting result is the abnormal healing observed in the non-local model (Figures 13 and
14) due to the uncontrolled proliferation of fibroblasts and production of growth factor, in a specific
situation: when (i) cells do not die due to overcrowding, and (ii) cells move down-gradient at the
beginning of the healing process, onto the fibrin mesh that fills in the wound (process modelled by
the introduction of an ECM threshold ec > 0). Since the fibroblasts density is above the threshold
f = 1 throughout a spatial region that exceeds the original wound region, we can say that this case
corresponds to keloid scar formation.

Also interesting is the transient oscillatory invasive patterns of fibroblasts into the wound gap (see
row 2 column 1 of Figures 4 and 5). We note that oscillations of cell density fluctuations have been
observed in experiments on epithelial tissues [57], where they have been suggested to be the result of
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cell-cell adhesion.

To conclude, we emphasise that all these results are purely theoretical, showing the possible model
behaviours as we vary randomly the non-dimensional parameters. Comparison with experimental data
is necessary to quantitatively investigate biologically-relevant normal and abnormal wound healing
patterns. Nevertheless, the simulation results in this study can describe qualitatively many of the
observed normal and abnormal wound healing processes: from the spatial collective oscillators in the
cell density (Figures 4 and 5) observed experimentally in the proliferation stage as the wound tissue
heals [57] (note also that some clinical studies refer to the proliferation stage as the granulation tissue
formation stage due to the granular appearance of the tissue [58], that can also lead to an oscillatory
wave-like appearance of the tissue); to the higher ECM densities sometimes observed temporary at
the site of the wound (see Figures A3 and A4 in Appendix F) which then subside in the absence
of immune cells [59] as the tissue heals normally; the higher fibroblast densities (see Figure 13)
observed in abnormal wound healing that gives rise to hypertrophic or keloid scars; the healing by
primary intention (Figure 15) or by secondary intention (Figure 8). While the general shapes of
these numerically-simulated wounds can be qualitatively compared with the shapes of actual clinical
wounds, we cannot claim that our simple mathematical model (that does not consider, for example,
the heterogeneity of macrophages or fibroblasts inside the normal/abnormal wounds [60,61]) captures
accurately all aspects involved in a clinical wound healing.

Future work. First, as mentioned above, we need to estimate model parameters using real 2D
experimental data (using inverse problem approaches, as in [62]). In addition, we also need to estimate
from the data the right kernels (for the spatial ranges of the non-local interactions), the cell-cell and
cell-ECM adhesion functions, and proliferation laws. However, at this moment, we do not have such
detailed immunological and bio-mechanical data (and we could not find it in the published literature).

Second, this theoretical study generated a few more theoretical questions that will be investigated
in the future. More precisely, the numerical simulations in Figure 3 (last two columns) suggested
that the solution likely approaches some spatially homogeneous steady states with various magnitudes.
Hence, it is normal to investigate the existence and linear stability of such solutions characterised by the
spatially-uniform spread of cell/molecule densities across all domain, to gain a better understanding of
the parameters (and biological mechanisms) that are behind the various behaviours. Such an analysis
would also allow us to possibly identify the biological mechanisms that could contribute to abnormal
wound healing (via instability of the analytically-identified spatially-homogeneous states and stability
of the spatially-heterogeneous states). Moreover, some numerical simulations (not shown here) showed
numerical instabilities in the solutions, followed by numerical blow-up. This is an expected outcome
for advection-dominated models discretised using FEM. In the future is important to stabilise these
numerical schemes to ensure more accurate results (especially if we want to compare with experimental
data).

Third but not last, we will investigate the well-posedness of local and non-local models introduced
in this study, which will also ensure the local regularity of the solutions. This analysis will complement
the current numerical investigation, to elucidate the mechanisms behind the numerically-simulated
abnormal wound healing behaviour (characterised by excessive growth in the densities of some model
components; see Figure 13).

Mathematical Biosciences and Engineering Volume 20, Issue x, xxx–xxx.



27

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

RE and OA acknowledge funding from the French Agence Nationale de la Recherche (ANR) grant
number ANR-21-CE45-0025-01; SPAB and SU acknowledge funding from the Luxembourg National
Research Fund (FNR) grant number INTER/ANR/21/16399490; G.R. acknowledges funding from the
ANR grant number ANR-21-CE45-0025-03.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. R. F. Diegelmann, R. F. Evans, Wound healing: an overview of acute, fibrotic and delayed healing,
Front. Biosci., 9 (2004), 283–289. https://doi.org/10.2741/1184

2. D. Zuo, D. He, H. Yang, K. H. Stephane Avril, A thermodynamic framework for unified contin-
uum models for the healing of damaged soft biological tissue, J. Mech. Phys. Solids, 158 (2022),
104662. https://doi.org/10.1016/j.jmps.2021.104662

3. S. Enoch, D. J. Leaper, Basic science of wound healing, Surgery, 23 (2005), 37–42.
https://doi.org/10.1383/surg.23.2.37.60352

4. G. Gurtner, V. W. Wong, Wound Healing: Normal and Abnormal, Philadelphia, PA, (2014), 13–
19.

5. G. C. Limandjaja, L. J. van den Broek, T. Waaijman, M. Breetveld, S. Monstrey, R. J. Scheper, et
al., Reconstructed human keloid models show heterogeneity within keloid scars, Arch. Dermatol.
Res., 310 (2018), 815–826. https://doi.org/10.1007/s00403-018-1873-1

6. G. C. Limandjaja, F. B. Niessen, R. J. Scheper, S. Gibbs, Hypertrophic scars and keloids:
Overview of the evidence and practical guide for differentiating between these abnormal scars,
Exp. Dermatol., 30 (2021), 146–161. https://doi.org/10.1111/exd.14121

7. S. GibbsPakyari, S. GibbsFarrokhi, M. K. Maharlooei, A. Ghahary, Critical role of transforming
growth factor beta in different phases of wound healing, Adv. Wound Care, 2 (2013), 215–224.
https://doi.org/10.1089/wound.2012.0406

8. S. Sanjabi, L. A. Zenewicz, M. Kamanaka, R. A. Flavell, Anti-inflammatory and pro-inflammatory
roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity, Curr. Opin. Pharmacol., 250
(2009), 447–53. https://doi.org/10.1016/j.coph.2009.04.008

9. E. Comellas, T. C. Gasser, T. C. Bellomo, S. Oller, A homeostatic-driven turnover remod-
elling constitutive model for healing in soft tissues, J. R. Soc. Interface, 13 (2016), 20151081.
https://doi.org/10.1098/rsif.2015.1081

Mathematical Biosciences and Engineering Volume 20, Issue x, xxx–xxx.



28

10. M. Pakyari, A. Farrokhi, M. K. Maharlooei, A. Ghahary, Critical role of transforming growth
factor beta in different phases of wound healing, Adv. Wound Care, 2 (2013), 215–224.
https://doi.org/10.1089/wound.2012.0406

11. J. A. Flegg, J. A. Menon, P. K. Maini, D. L. S. McElwain, On the mathematical modeling of
wound healing angiogenesis in skin as a reaction-transport process, Front. Physiol., 6 (2015), 1–
17. https://doi.org/10.3389/fphys.2015.00262

12. R. Eftimie, G. Rolin, O. Adebayo, S. Urcun, F. Chouly, S. P. A. Bordas, Modelling keloid dynam-
ics: a brief review and new mathematical perspectives, Submitted, 2023.

13. J. A. Sherratt, J. D. Murray, Models of epidermal wound healing, Proc. R. Soc. London, Ser. B,
241 (1990), 29–36. https://doi.org/10.1098/rspb.1990.0061

14. G. J. Pettet, H. M. Byrne, D. L. S. McElwain, J. Norbury, A model of wound-healing angiogenesis
in soft tissue, Math. Biosci., 136 (1996), 35–63. https://doi.org/10.1016/0025-5564(96)00044-2

15. G. Pettet, M. A. J. Chaplain, D. L. S. McElwain, H. M. Byrne, On the role of an-
giogenesis in wound healing, Proc. R. Soc. London, Ser. B, 263 (1996), 1487–1493.
https://doi.org/10.1098/rspb.1996.0217

16. E. A. Gaffney, K. Pugh, P. K. Maini, F. Arnold, Investigating a simple model of cutaneous wound
healing angiogenesis, J. Math. Biol., 45 (2002), 337–374. https://doi.org/10.1007/s002850200161

17. R. C. Schugart, A. Friedman, R. Zhao, C. K. Sen, Wound angiogenesis as a function of
tissue oxygen tension: A mathematical model, Proc. Natl. Acad. Sci., 105 (2008), 26–28.
https://doi.org/10.1073/pnas.0711642105

18. M. Byrne, M. A. J. Chaplain, D. L. Evans, I. Hopkinson, Mathematical modelling of angiogen-
esis in wound healing:comparison of theory and experiment, J. Theor. Med., 2 (2000), 175–197.
https://doi.org/10.1080/10273660008833045

19. J. A. Flegg, H. M. Byrne, D. L. S. McElwain, Mathematical model of hyperbaric oxy-
gen therapy applied to chronic diabetic wounds, Bull. Math. Biol., 72 (2010), 1867–1891.
https://doi.org/10.1007/s11538-010-9514-7

20. B. D. Cumming, D. L. S. McElwain, Z. Upton, A mathematical model of wound healing and
subsequent scarring, J. R. Soc. Interface, 7 (2010), 19–34. https://doi.org/10.1098/rsif.2008.0536

21. D. Zuo, S. Avril, H. Yang, S. J. Mousavi, K. Hackl, Y. He, 3D numerical simulation of soft tissue
wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced dam-
age mechanics, J. R. Soc. Interface, 17 (2020), 20190708. https://doi.org/10.1098/rsif.2019.0708

22. Y. Kim, M. A. Stolarska, H. G. Othmer, A hybrid model for tumor spheroid growth in vitro I:
Theoretical development and early results, Math. Models Methods Appl. Sci., 17 (2007), 1773–
1798. https://doi.org/10.1142/S0218202507002479

23. S. Caviglia, E. A. Ober, Non-conventional protrusions: the diversity of cell inter-
actions at short and long distance, Curr. Opin. Cell Biol., 54 (2018), 106–113.
https://doi.org/10.1016/j.ceb.2018.05.013

24. D. S. Eom, Airinemes: thin cellular protrusions mediate long-distance signalling guided by
macrophages, Open Biol., 10 (2020), 200039. https://doi.org/10.1098/rsob.200039

Mathematical Biosciences and Engineering Volume 20, Issue x, xxx–xxx.



29
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Appendix

A. Reduction of the non-local terms

Gaussian kernel: Let T1 ,T2 represent the components of the term under the integral sign in
Eq (2.16) namely:

Ti :=

R∫
−R

R∫
−R

y
2

i

2πσ2
√

y2

1
+ y2

2

exp

−y
2

1
+ y

2

2

2σ2

 dy1dy2 , i = 1, 2.

Thus, for T1 we have

T1 =
R∫
−R
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|y1 |√
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︸            ︷︷            ︸
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dy1dy2
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−R

|y1 |
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��2 ·
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0

y1

�2πσ
2 dy1dy2

=
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−R

R
2

2πσ2 dy2 =
R

3

πσ
2

(4.1)

Following identical steps (as for T1) and changing the order of integration, we obtain that the same
upper bound holds true also for T2 .
Therefore limR→0 T1,2(R) = 0, and the non-local fluxes disappear when we localise the integrals with
Gaussian kernels.

Cone-shaped kernel: Substituting Eq (2.6) in Eq (2.20) gives the following local approximation of
the non-local term:

A(.)[g, f ,m, e] =
1
R

R∫
0

r

2π∫
0

n(θ)K(r)G(u(x, t)) dθdr

+
1
R
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0

r
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0

n(θ)K(r)⟨∇uG(u(x, t))∇u(x, t), rn(θ)⟩ dθ dr

=
1
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r
3
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r
R
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+
π

R
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R∫
0

r
2 3
πR2

(
1 −

r
R

)
dr

=
1
4
∇uG(u(x, t))∇u(x, t)
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B. Cell growth: logistic vs. truncated logistic

Because experimental studies [55] have shown that keloid fibroblasts have lower death rates and
reach higher densities (and implicitly cell death due to overcrowding was reduced), we decided to
investigate the impact of replacing a classical logistic cell growth with a truncated logistic growth (see
Eq (3.10)). In Figure A1 we show that the solution of a simple logistic growth equation (d f /dt =
p f f (1 − ρ(u)), dm/dt = pmm(1 − ρ(u))) is the same as the solution of a truncated logistic growth
(d f /dt = p f f (1−ρ(u))+, dm/dt = pmm(1−ρ(u))+) if the initial condition is below the carrying capacity
(as are usually our conditions). Note that an initial condition above the carrying capacity does not lead
to a reduction in cell population size (since there is no cell death due to overcrowding). Therefore, in
the situation where the spatial flux leads to local cell population overcrowding, the truncated logistic
does not reduce the size of that population (while no further population is added).

Figure A1. Solution of ODE equations for temporal cell growth: d f /dt = p f f (1 − ρ(u))
(red continuous curve) and d f /dt = p f f (1 − ρ(u))+ (blue dashed curve), for different initial
conditions.

C. FEM discretization of non-local and local models

Using the backward (Implicit) Euler method as in Eq (3.5) for the time discretization, we have:
find {c

g

τ
}lτ=1, {c
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τ
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− c
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(x)ψ j(x), ∀ j ∈ {1, . . . , l}, (4.2a)
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Next, we formulate a barycentral approximation for the non-local terms A
N

f ,m
(x). We show only Case

II. (macrophage-ECM adhesion present: S me > 0), since Case I. (no macrophage-ECM adhesion) is
obtained for S me = 0.
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HereA(x) := {T ∈ T : ∥x − q(T )∥2 < R} is the barycentral approximation, while q : T 7→ R gives the
barycenter coordinates of triangles T ∈ T i.e.,

q(T ) := barycenter(T ), ∀T ∈ T
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C1. FEM discretisation for local model (2.17) – reduced from the non-local model with Gaussian
Kernel

The weak form of our coupled dynamics shown in Eq (2.17) can now be restated in terms of the
basis functions [63] as follows:
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Here, S κ = S max
κ ϑ , κ ∈ { f f , f m,m f ,mm, f e,me} represents the strength of cell-cell and cell-ECM

interactions discretized in time and space.
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represents their gradients, where
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and S
κ

g
= ∂

∂gS κ = S
κ

e
= ∂
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ε2 , κ ∈ { f f , f m,m f ,mm, f e,me} ≡ {1, 2, 3, 4, 5, 6}. Also, we denote

by ϵ the overcrowding term 1 − ρ(u) discretized in time and space, i.e.,
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C2. FEM discretisation for local model (2.22) – reduced from non-local model with cone-shaped
kernel

Below, we show the FEM discretisation for the local models. However, since Case I (no
macrophage-ECM adhesion: S me = 0) is just a simplification of Case II (that includes macrophage-
ECM adhesion), in the following, we present only the FEM discretisation for Case II (S me > 0).

The weak form of system (2.22) (obtained via Taylor-series expansion of the non-local model with
the cone-shaped kernel (2.6)) is given as follows in terms of basis functions:
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g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− wg

( l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)∇S

1

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

 l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)


2

S
1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

)
ψo(x)

− w f

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

( l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)∇S

1

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)
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+ 2S
1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)ψo(x)

− wm

( l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

l∑
τ=0

c
m,N

τ
ψ

τ
(x)∇S

1

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)dx

− we

( l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)∇S

1

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x))

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

)
ψo(x)dx

− wg

(
S f f

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)∇S f f ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) + S f m

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x)S f m ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)+

( l∑
τ=0

c
m,N

τ
∇ψ

τ
(x)∇S

2

g ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ S
2

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− wg

( l∑
τ=0

c
m,N

τ
ψa(x)

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

2

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x)S

2

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

2

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)dx

− w f

( l∑
τ=0

c
m,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)∇S

2

g ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)
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+

l∑
τ=0

c
m,N

τ
ψ

τ
(x) S

2

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

2

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− wm

( l∑
τ=0

c
m,N

τ
ψ

τ
(x)(

l∑
τ=0

c
m,N

τ
ψ

τ
(x)∇S

2

g ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ 2S g
2

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− we

( l∑
τ=0

c
m,N

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇ S

2

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x) S g

2

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

2

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

+

( l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)∇ S

5

g
· ∇

l∑
τ=0

c
g,N

τ
ψ

τ
(x)

+ S
5

g

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− wg

( l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x),

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

5

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ S
5

g

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)+

S
5

g

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− w f

( l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)∇S

5

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ S
5

g

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ S
5

g

l∑
τ=0

c
e,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

2

e
ϵ +

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

5

e

ϵ + S f eϵ − weS f e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) · ∇ψo(x)
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+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

( l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

2

eϵ − weS f f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

− weS f m

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x) +

l∑
τ=0

c
m,N

τ
ψ

τ
(x)S

2

e
ϵ +

l∑
τ=0

c
e,N

τ
ψ

τ
(x) S

5

e
ϵ + S f e ϵ

− weS f e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

)
∂

∂n

l∑
τ=0

c
e,N

τ
ψ

τ
(x)ψo(x)

−

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

(
S f m ϵ − wmS f m

l∑
τ=0

c
m,N

τ
ψ

τ
(x) − wmS f f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

− wmS f e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) · ∇ψo(x)

+

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

(
S f mϵ − wmS f m

l∑
τ=0

c
m,N

τ
ψ

τ
(x) − wmS f f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

− wmS f e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
e,N

τ

∂

∂n
ψ

τ
(x)ψo(x)

− λ f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x) +

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x) ϵψo(x)

+ D f

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

∂

∂n

l∑
τ=0

c
f

τ
ψ

τ
(x)ψo(x), ∀ o ∈ {1, . . . , l}, (4.9b)

l∑
τ=0

c
m,N+1

τ
− c

m,N

τ

∆t
ψ

τ
(x)ψh(x) =−Dm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) · ∇ψh(x)

+
1
8
µm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

((
Sm f ϵ − w f Smm

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

− w f Sm f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x) − w f Sme

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ϵS

4

g
− wgSmm

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x) − wgSm f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)ϵS

3

g
+ S

6

g

l∑
τ=0

c
e,N

τ
ψ

τ
(x)ϵ − wgSme

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

(
Smm ϵ − wmSm f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x) − wmS f f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

− wmSme

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) +

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x) ϵ S

4

e
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− weSmm

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x) − weSm f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x) +

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ϵ S

3

e

+ S
6

e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)ϵ − weSme

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

)) l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)ψh(x)

+ µm

1
2

( ∇Sm f ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

 l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

(
∇Sm f ·

l∑
τ=0

c
g,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sm f

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− 2w f

(
∇Sm f ·

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sm f

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

(
∇Sm f ·

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sm f

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

(
∇Sm f ·

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sm f

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− w f Smm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇Smm ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) +

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇Sme ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sme

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

+ S
4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)
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− wg

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
g,N

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+ 2S
4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− w f

( l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

(
Smm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇Smm ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x) + Sm f

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)Sm f ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

+

( l∑
τ=0

c
f ,N

τ
ψ

τ
(x)∇S

3

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+ S
3

g

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

)
ψh(x)
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− wg

( l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

3

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)S

3

g

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
g,N

τ
ψ

τ
(x)S

3

g

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
gN+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− w f

(  l∑
τ=0

c
f ,N

τ
ψ

τ
(x)


2

∇S
3

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)+

2
l∑

τ=0

c
f ,N

τ
ψ

τ
(x)S

3

g

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x))

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

( l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

3

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)S

3

g

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)S

3

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

( l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇S

3

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

3

g

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)S

3

g

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇S

6

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+ S
6

g

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

( l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

6

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+ S
6

g

l∑
τ=0

c
g,N

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+S
6

g

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)
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− w f

( l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)∇S

6

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+ S
6

g

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)+

S
6

g

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

( l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

6

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+ S
6

g

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)+

S
6

g

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

(  l∑
τ=0

c
e,N

τ
ψ

τ
(x)


2

∇S
6

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)+

2S
6

g

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

( l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇Sme ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+ Sme

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

+ ∇Smm ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

(
Smm

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇Smm ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− w f

(
Smm

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)∇Smm ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

(
Smm

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)
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+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇Smm ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)−

2wm

(
Smm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇Smm ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

(
Sm f

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)∇Sm f ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

( l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇Sme ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

+ Sme

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

+

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

4

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+ S
4

e

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

4

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x) S

4

e

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
g,N

τ
ψ

τ
(x)S

4

e

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− w f

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)∇S

4

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)S

4

e

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)S

4

e

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

(  l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)


2

∇S
4

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)+
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2
l∑

τ=0

c
m,N+1

τ
ψ

τ
(x)S

4

e

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)dx

− we

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇S

4

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x) S

4

e

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

4

e

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇Smm ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+ Smm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

(
Sm f

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)∇Sm f ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

+

( l∑
τ=0

c
f ,N

τ
ψ

τ
(x)∇S

3

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+ S
3

e

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

( l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

3

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x) S

3

e

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)+

l∑
τ=0

c
g,N

τ
ψ

τ
(x)S

3

e

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− w f

(  l∑
τ=0

c
f ,N

τ
ψ

τ
(x)


2

∇S
3

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)+

2
l∑

τ=0

c
f ,N

τ
ψ

τ
(x)S

3

e

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)∇S

3

e
·

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)
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∂
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D. Time-marching in FEniCS

We re-write Eq (3.5) in the standard form F
(
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; v

)
= 0, where
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Substituting Eq (3.4) into Eq (4.10) we have:
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Below is an algorithmic form of the FEniCS procedure at each time step for nonlinear F [64]:
set some stopping time T
t = ∆t
while t ≤ T do

evaluate J (i.e, the Jacobian matrix of F)
solve F = 0 using a nonlinear solver that relies on the Jacobian of F (i.e.,
Newton’s method)
t ←− t + ∆t (update time)
zprev ←− z (update solution).

end while

E. Mesh Refinement Analysis: A justification for the choice of mesh size

In deciding the choice of mesh dimension for our simulations, a mesh refinement analysis was
carried out using the fine mesh 256 × 256 as our exact solution while mesh sizes 4 × 4, 8 × 8, 16 ×
16, 32 × 32, 64 × 64, and 128 × 128 represented our approximate solutions. Figure A2 is a plot of the
L2 errors obtained against the different mesh sizes. The errors observed using mesh sizes 32 × 32 are
insignificant compared to those of mesh sizes 4 × 4 and 8 × 8. For this reason, we decided to use a
mesh size of 32 × 32 for all simulations presented in this study.

F. Simulation results for two new initial conditions

Next we show the simulation results obtained for non-local model Case II with cone-shaped with
two new initial conditions: one describing a linear but irregular cut in the tissue, as given by Eq (4.12d),

g(x, 0) =0.1, (4.12a)
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Figure A2. L2 error of the fibroblast solution against mesh grid sizes {2i × 2i : i = 2, . . . , 5},
calculated with respect to the solution at 128 × 128.

f (x, 0) =0.4
[(

0.5 + 0.5 tanh(20x1− 9)
)
+
(
0.5 + 0.5 tanh(−20x1− 9)

)]
, (4.12b)

m(x, 0) =0.1
[(

0.5 + 0.5 tanh(20x1− 9)
)
+
(
0.5 + 0.5 tanh(−20x1− 9)

)]
, (4.12c)

e(x, 0) =1.0
[
(0.5 + 0.5 tanh(20x1 − 9)) + 0.5 + 0.5 tanh(−20x1 − 9)

+ 0.5 − ((0.2 + 0.2 tanh(20x1− 3)) − 0.2) − 0.2 tanh(−20(x1− 0.2) − 2)
− 0.1 − (0.2 + 0.2 tanh(20x1− 0.03) − 0.1) + (0.2 − 0.2 tanh(−20x1− 0.001))−3] . (4.12d)

and the other describing a circular wound, as given by Eq (4.13d),

g(x, 0) = 0.1, (4.13a)

f (x, 0) = 0.4
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2

1
+ x

2

2

0.04

 . (4.13d)

In Figures A3 and A4, we see that at time t = 100 both of the wounds heal normally as the ECM
approaches its maximum level while the fibroblast and macrophage tissue level approach their baseline
level. However, unlike the healing in the previous figures (for the original initial conditions), here we
see that just before the final healing, the ECM is increased in the wound region (above the density of
the ECM in the surrounding tissue) and then decreases towards the density of the surrounding tissue.
We note that such a transient behaviour could have been possible also for the simulations performed
with the original initial conditions. However, since we did not show the solutions at every single time
step, such a detailed behaviour was lost before and was randomly revealed through Figures A3 and A4.
This suggest that a more thorough analytical and numerical investigation of transient model dynamics
is necessary to understand the behaviour of these non-local mathematical models.
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Figure A3. Initial Conditions: circular wound (see Eq (4.13d)).Simulations of the non-local
model (2.1) with classical logistic term for both cells and ECM. We consider case II with
a cone-shaped kernel. The rows correspond to the spatial distribution of growth factor (g),
fibroblast ( f ), macrophages (m), and ECM (e) at time points t = 0, t = 2, t = 20, and t = 100.
The parameter values are listed in Table 1.
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Figure A4. Initial Conditions: irregular linear cut (see Eq (4.12d)). Simulations of the non-
local model (2.1) with classical logistic term for both cells and ECM. We consider case II
with a cone-shaped kernel. The rows correspond to the spatial distribution of growth factor
(g), fibroblast ( f ), macrophages (m), and ECM (e), at time points t = 0, t = 2, t = 20, and
t = 100. The parameter values are listed in Table 1.
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G. Sensitivity test for the sensing radius

Since there are some small differences between the non-local models and the corresponding local
models (obtained in the limit R → 0), in the following we perform a numerical sensitivity test for
the shape of the solutions as we vary the cells sensing radius R. In Figure A5 we show a series of
space-slice of these solutions for R = 0.08, R = 0.1, and R = 0.13, at times t = 2, 20, 40, and 100. We
see that increasing the sensing radius, leads to a faster remodeling of the ECM and a faster decay of
fibroblasts, macrophages, and the growth factor.

(a) t=2 (c) t=40(b) t=20 (d) t=100
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Figure A5. Sensitivity of the non-local model (2.1) with classical logistic term for both cells
and ECM to the cells’ sensing radius R. We consider case II with a cone-shaped kernel. The
columns correspond to the spatial distribution (along x axis, and at y = 0) for the growth
factor (g), fibroblast ( f ), macrophages (m), and ECM (e), at time points t = 2, t = 20, t = 40,
and t = 100. The parameter values are listed in Table 1.
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