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Abstract. This paper is a survey of the connections between three-
valued logics and rough sets from the point of view of incomplete infor-
mation management. Based on the fact that many three-valued logics
can be put under a unique algebraic umbrella, we show how to translate
three-valued conjunctions and implications into operations on ill-known
sets such as rough sets. We then show that while such translations may
provide mathematically elegant algebraic settings for rough sets, the in-
terpretability of these connectives in terms of an original set approxi-
mated via an equivalence relation is very limited, thus casting doubts
on the practical relevance of truth-functional logical renderings of rough
sets.

1 Introduction

Rough sets have often been studied under a three-valued logic framework and
different authors have tried to connect rough sets to different logics: �Lukasiewicz
[9, 11], Nelson [58, 59], Gödel, Gaines-Rescher three-valued logics [49, 41]. De-
spite the formal correctness of these approaches, little attention has been devoted
to the interpretation of these logics in the rough set context. Moreover, a com-
prehensive study on the three-valued connectives that can be defined on rough
sets is needed and, as we will see, it can be accomplished starting from known
results in three-valued logics.

Three-valued logics are apparently simple; they are straightforward general-
izations of Boolean logic based on the most simple bipolar scale {0, 12 , 1} where
1 (resp. 0) has a positive (resp. negative) flavor, and 1

2 is neutral. Further, they
are widely used in several applied contexts such as logic programming [43], elec-
tronic circuits [67], databases [27], and, of course, rough sets. However, there
have been several different meanings attached to the third value, some having
an epistemic nature. There is not a clear result on the definition of its connec-
tives in connection with this meaning. Here is a list of these interpretations of
the third truth-value, different from true and false : Possible (due to �Lukasiewicz
[17]), Unknown (Kleene [52]), Undefined (also Kleene), Half-true (in fuzzy logic
[48]), Borderline (in logics of vagueness, like in Shapiro [66]), Inconsistent (that
is both true and false, as in paraconsistent logics or the logic of paradox by Priest
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[63]), or yet Irrelevant as in relevance logics [2] or the logic of conditionals [38].
Sometimes, two of these notions are simultaneously used as Inconsistent and
Unknown in Belnap four-valued logic [14].

Three-valued logics go along with three-valued sets having central elements
and peripheral ones [46]. However the meaning of such central and peripheral
elements depends on the meaning of the third truth-value. It depends on whether
it has an epistemic flavor or not; a peripheral element can be understood in one
of the following ways:

1. either as an untypical element of a non-classical set,
2. or as an element that cannot be definitely classified as belonging or not to a

crisp set due to incomplete information,
3. or as an element that cannot be definitely classified as belonging or not to a

crisp set due to conflicting information,
4. or as an element for which membership or non membership makes no sense,

due to irrelevance or the dubious existence of such an element.

Case 2 is the one we are concerned with in this paper. Then the three truth-
values refer to the epistemic status of otherwise Boolean propositions (provably
true, provably false or unknown [39]). This is typically the case of ill-known or
interval sets [72], where the central elements are elements that certainly belong to
some ill-known set, the third truth-value is assimilated to {0, 1} and understood
as the hesitancy between membership and non-membership. They are special
cases of interval-valued fuzzy sets [77] or twofold fuzzy sets [37]. One of the
causes of a set being ill-known can be the lack of precision on the value of some
of the attributes that describe it (for instance, a set of single persons is ill-known
if the marital status of some of the persons is ill-known).

A rough set, viewed as a pair of nested approximations is a typical example
of ill-known set, where the lack of knowledge comes from an equivalence rela-
tion between possibly indistinguishable elements, this indistinguishability being
due to the use of a language that is not expressive enough (incomplete set of
attributes or attributes that are too coarsely defined). This situation contrasts
with the case of sets that are ill-known due to the lack of knowledge of attribute
values; see Couso and Dubois [28] when the two causes of partial ignorance
appear simultaneously.

In recent papers [23–26], we have studied various three-valued logics of partial
knowledge, where the third truth-value means unknown. It has been shown that
a large class of three-valued logics (including �Lukasiewicz L3) is compatible with
this understanding of the third truth-value, but their translations into a very
elementary modal logic indicate that such three-valued logics cannot account for
partial ignorance jointly affecting several Boolean variables: only states of partial
ignorance that can be described independently for each variable can be accounted
for in a three-valued logic. This is the price paid for truth-functionality.

In this paper, we examine the situation of three-valued logics of rough sets.
While the aforementioned limitation is still valid (since rough sets do not be-
have truth-functionally in general), there is an additional constraint in this
case. Namely, the approximation pairs are generated by an equivalence relation,



Three-Valued Logics, Uncertainty Management and Rough Sets 3

which creates additional interpretive difficulties for truth-functional definitions of
conjunction and disjunction [22]. In this paper, we consider the situation of more
general three-valued connectives in connection with rough sets.

In the following, we review some results on three-valued logics, in particular we
give a list of reasonable connectives on three values that can apply to ill-known
sets. Then, these connectives are translated into the language of nested pairs or
orthopairs of sets, showing that, from a formal point of view, this translation is
correct. On the other hand, some considerations from the interpretation stand-
point are put forward casting some doubts on this truth-functional approach
to ill-known sets and rough sets. Especially, in the case of rough sets, it seems
impossible to interpret combinations of rough sets in terms of pure combinations
of the underlying ill-known sets (approximated via an equivalence relation). Fi-
nally, we discuss some modal and three-valued logics of rough sets in connection
with a recent translation of three-valued logics into a fragment of the KD logic.

2 Aggregation Functions on Three Valued Logics

We denote by 3 the set {0, 12 , 1} with the usual order: 0 < 1
2 < 1. Due to

the total order assumption, we can define the idempotent and commutative
Kleene conjunction and disjunction, that is, the minimum, denoted by ⊓ and
the maximum denoted by ⊔: x ⊓ y = y ⊓ x = x if and only if x ≤ y if and only
if x ⊔ y = y ⊔ x = y. Moreover, Gödel implication is definable by residuation:

x ⊓ y ≤ z if and only if x ≤ y →G z.

It is such that y →G z = 1 if y ≤ z and z otherwise. Finally, the intuitionistic
negation is obtainable by Gödel implication as ∼x = x →G 0. We now report
some results [25] about three-valued logics: a list of possible connectives, the
logical systems they generate and the links among them.

2.1 Connectives

A maximal family of sensible conjunctions and implications on 3 is now recalled,
based on some intuitive properties, in the scope of modeling incomplete infor-
mation. Then, negation and disjunction can be derived respectively as a → 0
and by De Morgan properties.

Definition 2.1. A conjunction on 3 is a binary mapping ∗: 3× 3 �→ 3 that is
monotonically increasing in the wide sense, and extends the connective AND in
Boolean logic:

(C1) If x ≤ y then x ∗ z ≤ y ∗ z;
(C2) If x ≤ y then z ∗ x ≤ z ∗ y;
(C3) 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 and 1 ∗ 1 = 1.
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Bearing in mind our focus on the epistemic understanding of the third truth-
value as unknown, condition C3 is clearly natural if we notice that, in conse-
quence to this interpretive assumption, 1 must mean ”certainly true” and 0
“certainly false”, which justifies this requirement of coincidence with Boolean
conjunction for truth-values different from 1/2.

Due to (C3), the monotonicity properties (C1-C2) imply 1
2 ∗ 0 = 0 ∗ 1

2 = 0. It
goes along with the fact that a conjunction is false whenever one of the conjuncts
is false, regardless of whether the truth-value of the other conjunct is known or
not. If we consider all the possible cases, there are 14 conjunctions satisfying
Definition 2.1. Among them, only six are commutative and only five associative.
These five conjunctions are already known in the literature and precisely, they
have been studied in the following logics: Sette [65], Sobociński [68], �Lukasiewicz
[17], Kleene [52], Bochvar [15]. The complete list is given in Table 1.

Table 1. All conjunctions on 3 according to Definition 2.1

∗ 0 1

2
1

0 0 0 0
1

2
0

1 0 1

n. 1

2
∗ 1

2
1 ∗ 1

2

1

2
∗ 1

1 1 1 1 Sette

2 1

2
1 1 quasi conjunction/Sobociński

3 1

2
1 1

2

4 1

2

1

2
1

5 1

2

1

2

1

2
min/interval conjunction/Kleene

6 0 0 1

7 0 0 1

2

8 0 0 0 Bochvar external

9 0 1

2
0

10 0 1

2
1

11 0 1

2

1

2
�Lukasiewicz

12 0 1 0

13 0 1 1

2

14 0 1 1

Besides Definition 2.1 other possible definitions of conjunction can be found
in the literature:

– conjunction of conditional events due to Walker [71]. The required proper-
ties are the coincidence with Boolean conjunction on Boolean values {0, 1},
idempotence and commutativity. Only nine conjunctions satisfy these
axioms, among them Sobociński’s (it is also Adams quasi-conjunction of con-
ditionals [1]) and the two Kleene ones. The other six are all non-monotonic
and only one is associative. Moreover, three of them are such that 1

2 ∗ 0 = 1.
All these facts cast some doubts on the interpretability of these six conjunc-
tions on 3 outside the setting of conditional events.
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– t-norms, uninorms [54, 29]. A uninorm is a binary operator which is asso-
ciative, commutative, non-decreasing in each component and with a neutral
element e : ∀x, e∗x = x. A t-norm is a uninorm such that e = 1. Among con-
junctions on 3 we have only two t-norms: Gödel and �Lukasiewicz and only
one more uninorm: Sobociński. They already appear in the above Table 1.

– t-operators [54]: an associative, commutative binary operators such that 0 ∗
0 = 0, 1∗1 = 1 and satisfying 1-smoothness: xi∗xj−1 ≤ xi∗xj and if xi∗xj =
xk then {xi−1 ∗ xj , xi ∗ xj−1} ⊆ {xk, xk−1}. Besides Kleene and �Lukasiewicz
conjunctions and disjunctions, on three values we get one more operator: the
median med(x, y, 1

2 ), which, however, does not generalize Boolean logic.

In the case of implication, we can give a general definition, which extends
Boolean logic and supposes monotonicity (decreasing in the first argument, in-
creasing in the second).

Definition 2.2. An implication on 3 is a binary mapping →: 3× 3 �→ 3 such
that:

(I1) If x ≤ y then y → z ≤ x → z;
(I2) If x ≤ y then z → x ≤ z → y;
(I3) 0 → 0 = 1 → 1 = 1 and 1 → 0 = 0.

From the above definition we derive x → 1 = 1, 0 → 1 = 1 and 1
2 → 1

2 ≥
{1 → 1

2 ,
1
2 → 0}. There are 14 implications satisfying this definition, listed in

Table 2.

Table 2. All implications according to Definition 2.2

→ 0 1

2
1

0 1 1 1
1

2
1

1 0 1

n. 1

2
→ 1

2
1 → 1

2

1

2
→ 0

1 0 0 0

2 1

2
0 0 Sobociński

3 1

2
0 1

2

4 1

2

1

2
0 Jaśkowski

5 1

2

1

2

1

2
(strong) Kleene

6 1 1 0 Sette

7 1 1 1

2

8 1 1 1

9 1 1

2
1 Nelson

10 1 1

2
0 Gödel

11 1 1

2

1

2
�Lukasiewicz

12 1 0 1 Bochvar external

13 1 0 1

2

14 1 0 0 Gaines–Rescher

Nine of them are known and have been studied. Besides those implications
named after the five logics mentioned above, there are also those named after
Jaśkowski [50], Gödel [47], Nelson [55], Gaines-Rescher [44].
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Finally, there are only three possible negations that extend the Boolean nega-
tion, namely, if 0′ = 1 and 1′ = 0:

1. ∼ 1
2 = 0. It corresponds to an intuitionistic negation, since it satisfies the law

of contradiction, and not the excluded middle. It is of the form a →i 0 for
implications 1, 2, 4, 6, 10, 14.

2. ¬1
2 = 1

2 . It is an involutive negation. It is of the form a →i 0 for implications
3, 5, 7, 11, 13.

3. − 1
2 = 1. It is called a paraconsistent negation, since it satisfies the law of

excluded middle, and not the one of contradiction. It is of the form a →i 0
for implications 8, 9, 12.

2.2 Logical Systems

As mentioned, some of these connectives have already been studied and they are
at the basis of known logical formalisms. Here is a (possibly not exhaustive) list:

– �Lukasiewicz logic (→11, ∗11,+11,¬), where the disjunction +11 definable by
de Morgan properties as a +11 b := ¬(¬a ∗11 ¬b) is the truncated sum. We
also recall that the interpretation given by �Lukasiewicz for the third value is
possible whereas, nowadays, �Lukasiewicz logic is mainly used in many valued
logics where the third value has a gradual truth meaning.

– Sobociński logic (→2, ∗2,+2,¬) where +2 can be defined as a+2b := ¬a →2 b
and designated values are 1, 1

2 . In this case, the third value means irrelevant
and it has been used in the context of relevance logics [2] and conditional
events [38]. We recall that conjunction ∗2 is a discrete uninorm with 1

2 as
neutral element and implication →2 its residuum [7].

– Gödel (intuitionistic) logic (→10, ∗5(min),max,∼) on three values, also known
as logic of here-and-there in logic programming [62].

– Jaśkowski logic (→4, ∗5(min),max,¬) has been studied by several authors in
the field of paraconsistent logic [32, 2, 4]. The designated values are 1

2 and
1 and the interpretation of the third value means inconsistent, paradoxical,
that is, both true and false.

– Bochvar logic (→12, ∗8,+8, ♭) where x +8 y is 1 if at least one of a and b is
equal to 1 and 0 in all other cases. Third value 1

2 stands for meaningless.
– Sette paraconsistent logic (→6, ∗1,−) where x +1 y takes the value 0 if x =

y = 0 and 1 otherwise and designated values are 1
2 and 1. We note that

Sette conjunction (n.1) and implication (n.6) correspond to the collapse of
the truth-values 1 and 1

2 . The author does not give a clear semantic to the
third value and he introduces the logic as a “not absolutely inconsistent”
formal system.

– Nelson logic (→9, ∗5,max,¬,−) where − is a paraconsistent negation and
→9 Nelson implication. It is the logic of constructible falsity, and in this sense
it is dual to intuitionistic logic. On five values it is also known as equilibrium
logic in the context of logic programming [62].
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The reader is referred to the work of Avron [5] for a reconstruction of some of
the above three-valued logics (said to be “natural”) where the third truth-value
is understood as unknown or contradictory, based on the inferential standpoint.

Fig. 1. Outline of all the relations among connectives

2.3 Connections among Logics

Some relations among the above systems are known. For instance, Sette logic has
been obtained in [32] from �Lukasiewicz logic in order to demonstrate a relation-
ship between many-valued and paraconsistent logics; likewise, it can be proved
that Jaśkowski and Sobociński logics are equivalent [5]. However, other connec-
tions can be put forward by a systematic study. As a result we can prove that
all these systems and more generally, all the 14 conjunctions and implications
are inter-definable. More precisely, we consider the following transformations of
a binary operator ⊙ on 3 [35, 36]:

a[A(⊙)]b = b⊙ a (exchange) (1a)

a[V(⊙)]b = ¬b⊙ ¬a (contraposition) (1b)

a[S(⊙)]b = ¬(a⊙ ¬b) (material implication) (1c)

a[I(⊙)]b =

{

0 ∄s, a⊙ s ≤ b ;

sup{s : a⊙ s ≤ b}, otherwise.
(residuation) (1d)
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We also define relations among implications through some formulae which are
tautologies in Boolean logic:

a →new b = (a → b) ∧ (¬b → ¬a); (2a)

a →new b = b ∨ (a → b); (2b)

a →new b = a → (a → b); (2c)

a →new b = (a → b) ∨ (¬b → ¬a); (2d)

a →new b = ¬a ∨ (a → b) (2e)

In the graph of Figure 1, a representation of all these relationships is given: every
circle represents a group of conjunctions/implications related via transformations
defined in equations (1), whereas groups are linked by transformations defined
in equations (2). These transformations are instrumental to get the following
results [23, 25]:

Proposition 2.1. Let 3 be the three-element set with the usual order 0 < 1
2 < 1

or equivalently, 3 = (3,∧,∨), with 3 the set of three elements without the order
structure. All the 14 conjunctions and implications can be defined in any of the
following systems:

– (3,¬,→10) = (3,∧,¬,→10) (Gödel implication plus the involutive negation);
– (3,→i) = (3,∧,∨,→i) where i ∈ I = {3, 5, 7, 11, 13}, allowing residuation.

Further, we can also consider a set with three elements without a predefined order
(and so without min, max and residuation) and obtain the following proposition.

Proposition 2.2. We denote by 3 the set of three elements without any struc-
ture. All the 14 conjunctions and implications can be defined in any of the fol-
lowing systems:

– (3,→11, 0) where →11 is �Lukasiewicz implication;
– (3,→9,¬) where →9 is Nelson implication;
– (3,→5,∼, 0) where →5 is Kleene implication and ∼ the intuitionistic nega-

tion.
– (3,→5,−, 0) where →5 is Kleene implication and − the paraconsistent nega-

tion.

In the two arrays of Table 3 we report how to obtain all the conjunctions and
implications starting from the �Lukasiewicz implication→L=→11 and 0; of course
¬a = a →L 0. We denote by ⊙ �Lukasiewicz conjunction; moreover, ∇a is an
abbreviation for ¬a →L a, ∆(a) stands for a ⊙ a = ¬(a →L ¬a), and finally
J(a) is short for ¬a ∗1 ¬(¬a ∗1 a) = ∇(¬a ∧ ¬∇(¬a ∧ a)). Clearly ∼ a = ¬∇a
and −a = ¬∆a.

So, the differences among three-valued logics are just apparent. All of them
can be interpreted as a fragment of the same logic, such as �Lukasiewicz logic, or
sometimes a variant thereof with the same expressive power (like Nelson’s logic).
According to the purpose and to the desired interpretation, we can then choose
the proper fragment and connectives.
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Table 3. All connectives expressed using �Lukasiewicz logic operators

n a ∗n b

1 ∇(a ∧ b)

2 ∇(a ∧ b) ∧ (a ∨ b) Sobociński

3 ∇(a ∧ b) ∧ a

4 ∇(a ∧ b) ∧ b

5 a ∧ b (strong) Kleene

6 ¬J(a)⊙ J(¬b)

7 ¬b⊙ (¬b⊙ a)

8 [¬b⊙ (¬b⊙ a)] ∧ [¬a⊙ (¬a⊙ ¬b)] Bochvar external

9 a⊙ (a⊙ ¬b)

10 b ∧ [(¬J(a)⊙ J(¬b)) ∨ (J(¬a)⊙¬J(b))]

11 a⊙ b = ¬(¬a →L b)

12 J(¬a)⊙ ¬J(b)

13 a ∧ [(¬J(a)⊙ J(¬b)) ∨ (J(¬a)⊙ ¬J(b))]

14 (¬J(a)⊙ J(¬b)) ∨ (J(¬a)⊙ ¬J(b))

n a →n b

1 ∆(¬a) ∨∆(b)

2 (b ∨ (a →1 b)) ∧ (¬a ∨ (¬b →1 ¬a)) Sobociński

3 ¬a ∨ [(b ∨ (a →1 b)) ∧ (¬a ∨ (¬b →1 ¬a))]

4 b ∨ (∆(¬a) ∨∆(b)) Jaśkowski

5 ¬a ∨ (∆(¬a) ∨∆(b)) (strong) Kleene

6 J(b) →L J(a) Sette

7 ¬b →L (¬b →L ¬a)

8 a →L (a →L b)) ∨ (¬b →L (¬b →L ¬a))

9 a →L (a →L b) Nelson

10 ¬∆((α →L β) →L β)) Gödel

12 J(¬a) →L J(¬b) Bochvar external

13 ¬a ∨ [(J(¬a) →L J(¬b)) ∧ (J(b) →L J(a))]

14 (J(¬a) →L J(¬b)) ∧ (J(b) →L J(a)) Gaines–Rescher

2.4 Connectives on Nested Pairs and Orthopairs of Sets

Let f : X �→ 3 be a three-valued function that may be viewed as a special kind
of fuzzy set. Then, from each f , we can induce three (Boolean) subsets forming
a partition of the universe X :

A1 := {x : f(x) = 1} The truth domain;

A0 := {x : f(x) = 0} The falsity domain;

A1
2
:= {x : f(x) = 1

2} The neutral domain.

Formally, we can see any three-valued set f as a pair (A1, A0) of classical
sets satisfying the property A1 ∩ A0 = ∅, i.e., A1 and A0 are disjoint sets and
(A1, A0) is called an orthopair [21]. Conversely, given a pair of disjoint sets, we
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Table 4. Conjunctions on orthopairs

n (A1, A0) ∗ (B1, B0)

1 (Ac

0 ∩Bc

0, A0 ∪B0)

2 ((A1 ∪B1) ∩Ac

0 ∩ Bc

0, A0 ∪B0)

3 (A1 ∩Bc

0, A0 ∪B0)

4 (Ac

0 ∩B1, A0 ∪B0)

5 (A1 ∩B1, A0 ∪B0)

6 (Ac

0 ∩B1, A0 ∪Bc

1)

7 (A1 ∩B1, A0 ∪Bc

1)

8 (A1 ∩B1, A
c

1 ∪Bc

1)

9 (A1 ∩B1, A
c

1 ∪B0)

10 (Ac

0 ∩B1, (A
c

1 ∩Bc

1) ∪A0 ∪B0)

11 (A1 ∩B1, (A
c

1 ∩Bc

1) ∪A0 ∪B0)

12 (A1 ∩Bc

0, A
c

1 ∪B0)

13 (A1 ∩ Bc

0, (A
c

1 ∩Bc

1) ∪A0 ∪ B0)

14 ((A1 ∪B1) ∩Ac

0 ∩Bc

0, (A
c

1 ∩ Bc

1) ∪ A0 ∪B0)

can define a three-valued sets in an obvious way: f(x) = 1 if x ∈ A1; f(x) = 0 if
x ∈ A0 and f(x) = 1

2 otherwise. So, we have a bijection between the collection
of three-valued sets F 1

2
(X) := {f |f : X �→ 3} and the collection of orthopairs

of X , O(X) := {(A1, A0)|A1, A0 ∈ X ;A1 ∩ A0 = ∅}.
We note that from (A1, A0), another subset A

∗ := Ac
0 of the universe can be

defined as the negation of the falsity domain. In other words, renaming A1 as
A∗, an alternative representation of three-valued sets is obtained by means of
pairs of nested subsets (A∗, A

∗) of X , where A∗ ⊆ A∗, which can be viewed as
upper and lower approximations of some unknown set. We denote by N (X) the
collection of nested pairs of subsets of X .

These constructions are known in the fuzzy set field: orthopairs can be viewed
as special cases of so-called “intuitionistic fuzzy sets”1 of Atanassov [3], and the
nested version can be generalized to interval-valued fuzzy sets. They can be
equipped with isomorphic structures [31].

Due to the bijection outlined above, we are able to translate all the operations
from F(X) to O(X), and in particular all the 14 implications and conjunctions
defined above. They are listed in Tables 4 and 6. Note that the operations are
often easier to understand using nested pairs as seen on Tables 5 and 7.

The three negations, respectively the involutive, intuitionistic and paracon-
sistent ones, take the following forms:

¬(A1, A0) = (A0, A1);

∼(A1, A0) = (A0, A
c
0);

−(A1, A0) = (Ac
1, A1).

1 Where the word intuitionistic does not have the usual meaning [34].
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Table 5. Conjunctions on nested pairs

n (A∗, A
∗) ∗ (B∗, B

∗)

1 (A∗ ∩B∗, A∗ ∩B∗)

2 ((A∗ ∪B∗) ∩A∗ ∩B∗, A∗ ∩B∗)

3 (A∗ ∩B∗, A∗ ∩B∗)

4 (A∗ ∩B∗, A
∗ ∩B∗)

5 (A∗ ∩B∗, A
∗ ∩B∗)

6 (A∗ ∩B∗, A
∗ ∩B∗)

7 (A∗ ∩B∗, A
∗ ∩B∗)

8 (A∗ ∩B∗, A∗ ∩B∗)

9 (A∗ ∩B∗, A∗ ∩B∗)

10 (A∗ ∩B∗, (A∗ ∪B∗) ∩A∗ ∩B∗)

11 (A∗ ∩B∗, (A∗ ∪B∗) ∩A∗ ∩B∗)

12 (A∗ ∩B∗, A∗ ∩B∗)

13 (A∗ ∩B∗, (A∗ ∪B∗) ∩A∗ ∩B∗)

14 ((A∗ ∪B∗) ∩A∗ ∩B∗, (A∗ ∪B∗) ∩A∗ ∩B∗)

So, in the case of orthopairs, the definition of connectives is just a matter of
translation from Tables 1 and 2. However, if these orthopairs are viewed as ill-
known sets some difficulties with truth-functionality occur. In the case of rough
sets, we encounter even more difficulties, as we are going to explain.

3 Three-Valued Connectives on Ill-Known Sets

Ill-known sets are sets whose boundaries are ill-known, namely it is not known
whether some elements belong to them or not. The neutral region is then an
uncertainty region. A typical situation where ill-known sets are obtained is as
follows [37, 28]. Consider X as a set of objects and f a feature (or attribute)
mapping : X → V where V is the domain of the corresponding attribute. So,
∀x ∈ X , f(x) is the attribute value of object x.

Suppose we want to describe the set of objects that satisfy a property rep-
resented by a subset C ⊂ V of values. For instance X is a set of persons, f is
the height, and C means taller than 1.70 m. The set of persons that satisfy the
criterion C is defined by f−1(C) ⊂ X .

Suppose for some reason f(x) is not always known precisely. Let a one-to-many
mapping F : X → ℘(V ) represent an imprecise observation of the attribute f .
Namely, for each object x ∈ X , all that is known about the attribute value f(x)
is that it belongs to the non-empty set F (x) ⊆ V . For instance, the heights of
some persons x are ill-known, and are described by the sets F (x) of (mutually
exclusive) heights. Because of the incompleteness of the information, the subset
A = f−1(C) ⊆ X of objects that satisfy the criterion C is an “ill-known set”
[37]. Let us first recall the following definition:

Definition 3.1. ([30]) Let X and V be two arbitrary sets and let F : X → ℘(V )
be a multi-valued mapping with non-empty images. Let C ⊆ V be an arbitrary
subset of V . The upper inverse of C is defined as F ∗(C) = {x ∈ X : F (x)∩C �=
∅}. The lower inverse of C is defined as F∗(C) = {x ∈ X : F (x) ⊆ C}.
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Table 6. Implications on orthopairs, where A → B = Ac ∪B

n (A1, A0) ⇒ (B1, B0)

1 (Ac

0 → B1, (A
c

0 → B1)
c) Sette

2 (Ac

0 → B1, [(A1 → B1) ∩ (Ac

0 → Bc

0)]
c) Sobociński

3 (Ac

0 → B1, (A1 → B1)
c)

4 (Ac

0 → B1, (A
c

0 → Bc

0)
c) Jaśkowski

5 (Ac

0 → B1, (A1 → Bc

0)
c) Kleene

6 (Ac

0 → Bc

0, (A
c

0 → Bc

0)
c)

7 (Ac

0 → Bc

0, (A1 → Bc

0)
c)

8 (A1 → Bc

0, (A1 → Bc

0)
c) Bochvar

9 (A1 → B1, (A1 → Bc

0)
c) Nelson

10 ((A1 → B1) ∩ (Ac

0 → Bc

0), (A
c

0 → Bc

0)
c) Gödel

11 ((A1 → B1) ∩ (Ac

0 → Bc

0), (A1 → Bc

0)
c) �Lukasiewicz

12 (A1 → B1, (A1 → B1)
c)

13 ((A1 → B1) ∩ (Ac

0 → Bc

0), (A1 → B1)
c)

14 ((A1 → B1) ∩ (Ac

0 → Bc

0), [(A1 → B1) ∩ (Ac

0 → Bc

0)]
c) Gaines-Rescher

According to this definition, A = f−1(C) can be approximated from above and
from below, respectively, by upper and lower inverses of C via F :

– A∗ = F ∗(C) is the set of objects that possibly belong to A = f−1(C).
– A∗ = F∗(C) is the set of objects that surely belong to A = f−1(C).

The interval [A∗, A
∗] = {B,A∗ ⊆ B ⊆ A∗} in the Boolean algebra, called an

interval set by Yao [73], contains the ill-known set A. Alternatively, we can
consider orthopairs (A1, A0) such that [A∗, A

∗] = {B : A1 ⊆ B,A0 ∩B = ∅}.
If pairs of sets represent constraints on ill-known sets, we would like to com-

pute the knowledge we may have on the result of combining two ill-known sets
A and B by means of a three-valued connective merging their approximations
(A1, A0) and (B1, B0). What is aimed at is, for any Boolean connective c, to find
the orthopair (c(A,B)1, c(A,B)0) representing our knowledge about c(A,B) in
the form c3((A1, A0), (B1, B0)) where c3 is a three-valued extension of c.

Consider 1
2 as the set {0, 1} (understood as an interval such that 0 < 1), the

other “intervals” being the singletons {0} and {1}. We can define connectives
on ill-known sets by extending the Boolean connectives to such three-valued
sets understood as interval-valued sets. Indeed this comes down to the following
computations [33, 53]:

– For conjunction : {0} ∧ {0, 1} = {0 ∧ 0, 0 ∧ 1} = {0};
{1} ∧ {0, 1} = {1 ∧ 0, 1 ∧ 1} = {0, 1}, etc.

– For disjunction : {0} ∨ {0, 1} = {0 ∨ 0, 0 ∨ 1} = {0, 1};
{1} ∨ {0, 1} = {1 ∨ 0, 1 ∨ 1} = {1}, etc.

– For negation: ¬{0, 1} = {¬0,¬1} = {0, 1}.

The set 3 of non-empty intervals on {0, 1}, equipped with the interval exten-
sion of classical connectives is isomorphic to a three-valued Kleene algebra.
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Table 7. Implications on nested pairs, where A → B = Ac ∪B

n (A∗, A
∗) ⇒ (B∗, B

∗)

1 (A∗ → B∗, A
∗ → B∗) Sette

2 (A∗ → B∗, (A∗ → B∗) ∩ (A∗ → B∗)) Sobociński

3 (A∗ → B∗, A∗ → B∗)

4 (A∗ → B∗, A
∗ → B∗) Jaśkowski

5 (A∗ → B∗, A∗ → B∗) Kleene

6 (A∗ → B∗, A∗ → B∗)

7 (A∗ → B∗, A∗ → B∗)

8 (A∗ → B∗, A∗ → B∗) Bochvar

9 (A∗ → B∗, A∗ → B∗) Nelson

10 ((A∗ → B∗) ∩ (A∗ → B∗), A∗ → B∗) Gödel

11 ((A∗ → B∗) ∩ (A∗ → B∗), A∗ → B∗) �Lukasiewicz

12 (A∗ → B∗, A∗ → B∗)

13 ((A∗ → B∗) ∩ (A∗ → B∗), A∗ → B∗)

14 ((A∗ → B∗) ∩ (A∗ → B∗), (A∗ → B∗) ∩ (A∗ → B∗)) Gaines-Rescher

However, using such connectives of Kleene logic to compute a combination of
ill-known sets only captures an approximation of the actual result. For instance,
even if A is ill-known, A ∩ Ac = ∅ ((∅, X) in terms of orthopairs). However, if
(A1, A0) are constraints on some unknown set A, the orthopair approximation
of Ac is (A0, A1), but, applying the Kleene conjunction (A1, A0) ∩5 (A0, A1) =
(A1 ∩ A0, A1 ∪ A0) is an imperfect approximation of the expected result (∅, X)
since the former is equal to (∅, A1 ∪A0).

So we should get (A1, A0) ∩ (A0, A1) = (∅, X) using an appropriate conjunc-
tion. This result can be obtained using conjunctions ∩i, i > 5 by checking Table
4 (or Table 5 in terms of nested pairs). But then note that while one expects
(A1, A0) ∩ (A1, A0) = (A1, A0) this is what is obtained on Table 4 (or Table 5
in terms of nested pairs) only for ∩i, i = 2, 3, 4, 5. So none of the 14 reasonable
conjunctions can provide the expected results.

In conclusion, the use of three-valued connectives to reason about ill-known
sets looks hopeless: it is not the same to reason truth-functionally on objects
made of pairs of sets, and to exploit pairs of sets viewed as constraints on a ill-
known set A ∈ {B : A1 ⊆ B,A0 ∩B = ∅} : the former is a coarse approximation
of the latter. Note that the same kind of critique applies to interval-valued fuzzy
sets where it is often proposed interval extensions of basic connectives [33, 40]
to handle uncertainty about gradual membership.

4 Three-Valued Connectives on Rough Sets

A rough set clearly defines a three-valued set, since it can be viewed as an
upper and a lower approximation of a set. It was tempting to search for an
algebra of rough sets from the three-valued logic literature. The problem of
defining a three-valued logic (and especially an implication) for rough sets has
been addressed by several authors. �Lukasiewicz and Gödel implications have
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been introduced in rough sets by Pagliani [59] and for abstract versions of rough
approximations in [18]. Pagliani also studied rough sets from the standpoint of
Nelson algebras [58] and used Nelson implication. �Lukasiewicz logic was also
considered as the proper setting for rough sets by Banerjee [9] and Iturrioz [49].
On the other hand, the Gaines-Rescher implication is the one adopted in [11] and
Kleene implication in [22]. I. Düntsch in [41] introduced a propositional logic for
rough set whose algebraic counterpart are double Stone algebras. The objects of
this logic are nested pairs of the form (A∗, A

∗) and the implication considered
is the Gödel one. For a general overview of algebraic structures related to rough
sets we refer to [10].

A different and new approach is presented in [6], where the non-deterministic
behaviour of rough sets is brought directly into a logical calculus. Indeed, the
semantics of the implication is given by the non-deterministic matrix of Table 8.

Table 8. Non-deterministic implication

→ 0 1

2
1

0 1 1 1
1

2

1

2
{ 1

2
, 1} 1

1 0 1

2
1

Clearly, as the authors point out, the two “determinazations” of this situation
correspond to Kleene and �Lukasiewicz implication. Of course, the problem of
non-determinism still remains, it is just shifted on a different level. And while this
approach may look “less truth-functional” than the usual ones, its completeness
with respect to the calculus of rough sets is unclear.

In this section we study the compatibility between the calculus of rough sets
and three-valued connectives. We show that formally, it is possible to express
three-valued logic connectives in terms of combinations of rough sets. But our
results make it clear that the practical significance of these mathematical results
is questionable.

4.1 Some Basics of Rough Sets

In constrast with the scenario for ill-known sets, the starting point of rough sets
is usually a set of data about some objects gathered in a so-called Information
Table (see for instance [61]).

Definition 4.1. An Information Table is a structure K(X) = 〈X, A, val, f〉
where:

– the universe X is a non empty set of objects;
– A is a non empty set of attributes;
– val is the set of all possible values that can be observed for all attributes;
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– f (called the information map) is a mapping X×A → val which associates to
any pair object x ∈ X and attribute a ∈ A, the value f(x, a) ∈ val assumed
by a for the object x.

On an Information Table, we define an Indiscernibility relation among objects
as

xRy iff ∀a ∈ A f(x, a) = f(y, a)

The indiscernibility relation is an equivalence relation (reflexive, symmetric,
transitive) that partitions the universe into equivalence classes:

[x]R = {y : xRy}

In the following, we abstract from the notion of Information Table and suppose
that an (equivalence) relation is available on a set of objects.

Definition 4.2. An approximation space is a pair (X,R) with X a set of objects
and R an equivalence relation on X.

On any approximation space, it is possible to define the lower and upper ap-
proximation of a given set.

Definition 4.3. Let (X,R) be an approximation space. The lower approxima-
tion of A ⊆ X is

lR(A) := {x ∈ X |[x]R ⊆ A}

and the upper approximation of A is

uR(A) := {x ∈ X |[x]R ∩ A �= ∅} ⊇ lR(A)

A rough set is the lower-upper pair r(A) := (lR(A), uR(A)) or equivalently the
lower-exterior pair re(A) := (lR(A), eR(A)) := (lR(A), u

c
R(A)).

A set A is said to be exact iff lR(A) = A or equivalently A = uR(A). We denote
by RS(X) the collection of all lower-upper approximations on X and by RSe(X)
the set of lower-exterior approximations. The lower and upper approximations
satisfy some interesting and useful properties. We list here some of them which
will be useful later on.

Lemma 4.1. Let (X,R) be an approximation space, and A,B ⊆ X. Then, the
following properties hold.

1. lR(A ∩B) = lR(A) ∩ lR(B); lR(A ∪B) ⊇ lR(A) ∪ lR(B)
2. uR(A ∪B) = uR(A) ∪ uR(B); uR(A ∩B) ⊆ uR(A) ∩ uR(B)
3. If one of A,B is exact then lR(A) ∪ lR(B) = lR(A ∪ B) and uR(A ∩ B) =

uR(A) ∩ uR(B);
4. lR(A) ⊆ A ⊆ uR(A);
5. lR(lR(A)) = lR(A), uR(uR(A)) = uR(A);
6. lRA = uc

R(A
c).
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Property 3 does not hold for two non-exact sets, that is lR(A)∪lR(B) �= lR(A∪B)
and uR(A∩B) �= uR(A)∩uR(B) in this case. Otherwise stated, l, u are not truth-
functional operators [74]; we can say we miss truth-functionality at the “internal
level”.

On the other hand, what we can try to do is to define truth-functional opera-
tors on rough sets viewed as upper-lower pairs (A∗, A

∗) ∈ RS(X), irrespective of
the original underlying set. Then we say we have truth-functionality at the “ex-
ternal level”. As we will see, this is feasible. Indeed, the lower-upper pair is clearly
a nested pair and thus we can carry to this subcase the considerations on opera-
tions of the previous section. However, rough sets form a proper subset of nested
pairs in the sense that every rough set induces a nested pair of sets in X , gener-
ated by a subset H of X through operators lR, uR, as (lR(H), uR(H)) ∈ RS(X)
but not vice versa [16]. Noticeably, no singleton {x} can appear as an equivalence
class in the boundary of a rough set, since either x ∈ H and {x}R ⊂ lR(H) or
x �∈ H and {x}R ⊂ uR(H)c.

So a truth-functional operation on orthopairs cannot be simply applied to
rough sets. It must be shown that the operation is meaningful, that is:

– closed on the collection of all rough sets RS(X) (or equivalently RSe(X))

– related to a well-defined combination of the underlying (Boolean) approxi-
mated sets.

As we will see, in this process, some interpretability problems of the connec-
tives arise.

4.2 Rough Sets and External Truth-Functionality

Since RS(X) ⊂ N (X), the question is whether, once we restrict to RS(X), the
implications definable on N (X) are closed on RS(X). In other words:

If ⊙ is a three-valued binary operation on pairs (A∗, A
∗), (B∗, B

∗) ∈ RS(X),
and A∗ = lR(A), A

∗ = uR(A), B∗ = lR(B), B∗ = uR(B) for some A,B ⊂ X ,
does there exist an operation · on 2X such that
(lR(A · B), uR(A · B)) = (A∗, A

∗)⊙ (B∗, B
∗)?

The answer is not straightforward, since first of all not all nested pairs (A,B) can
be generated by a subset H of the universe as (lR(H), uR(H)), as pointed out
before. Moreover it must be clear that the relation R, used to build the partition
and then to compute the approximation, is fixed in the above statement.

Let us start from already known results for basic operations [22]. First of all
the negation of a set. This case is simple, indeed we have in terms of orthopairs:

r(Ac) = (lR(A
c), uR(A

c)) = (uc
R(A), l

c
R(A)) = rc(A)

Thus, the approximation of Ac can be obtained by the approximation of A in a
truth-functional way.
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In case of intersection r(A∩B) and union r(A∪B), corresponding to the min
conjunction 5 in Table 4 and the dual disjunction, consider Kleene conjunction
and disjunction. Namely, we ask if there exist two sets C,D ⊆ X such that

r(C) = r(A) ⊓ r(B) := (lR(A) ∩ lR(B), uR(A) ∩ uR(B)) (3a)

r(D) = r(A) ⊔ r(B) := (lR(A) ∪ lR(B), uR(A) ∪ uR(B)) (3b)

At least three solutions were proposed in the literature. Bonikowski in [16]
showed that the set C can be built according to the following procedure:

1. If uR(A) ∩ uR(B) = ∅ then C = ∅, else uR(A) ∩ uR(B) is of the form
[x1] ∪ . . . ∪ [xk], where [xi] are equivalence classes of R.

2. Choose yi ∈ [xi] for all i such that [xi] �⊆ lR(A) ∩ lR(B) (in the boundary)
and build Y = {yi : yi ∈ [xi] �⊆ lR(A) ∩ lR(B)}

3. Finally, C = [lR(A) ∩ lR(B)] ∪ Y (disjoint union).

Note that lR(C) = lR(A ∩ B), since no equivalence class [xi] in the boundary
can be a singleton {yi}, any yi ∈ Y is an element of a larger equivalence class,
and so, lR(Y ) = ∅. The set D for disjunction in (3) is computed with the same
procedure applied to Ac and Bc.

In [45] we can find another definition of internal intersection and union

A ∩1 B = A ∩ [lR(B) ∪ (B ∩ uR(A)
c) ∪ (uR(B) ∩ lR(A)

c ∩ A) ∪ (lR(A) ∩B)]

A ∪1 B = A ∪ [lR(B) ∪ (B ∩ uR(A)
c) ∪ (uR(B) ∩ lR(A)

c ∩ A) ∪ (lR(A) ∩B)]

and again, r(A ∩1 B) = r(A) ⊓ r(B), r(A ∪1 B) = r(A) ⊔ r(B). Finally, in [11],
the following alternative solution has been proposed.

A ∩2 B = (A ∩B) ∪ ((A ∩ uR(B)) ∩ (uR(A ∩B)c))

A ∪2 B = (A ∪B) ∩ ((A ∪ lR(B)) ∪ (lR(A ∪B)c))

Note that A∩1B and A∩2B can be written as [lR(A)∩ lR(B)]∪Y ′, where Y ′ is
the union of proper subsets Yi of equivalence classes [xi] not in the intersection
of the lower images. So, they are very close to one of the possible solutions of
Bonikowski’s procedure. Moreover, any solution has this form.

Proposition 4.1. Any set C whose upper and lower approximations are respec-
tively the intersections of the upper and of the lower approximation of A and B
is of the form [lR(A) ∩ lR(B)] ∪ Y ′, where Y ′ = ∪n

i=1Yi and ∅ �= Yi ⊂ [xi], ∀i =
1, . . . , n.

Proof. Indeed, if Y ′ does not contain at least one element of each equivalence
class outside the intersection of the lower approximations and inside the inter-
section of their upper approximations, then the upper approximation of C is
not the intersection of the upper approximations of A and B. If Y ′ contains
one equivalence class outside the intersection of lower approximations and inside
their union, then its lower approximation is larger than the intersection of lower
approximations of A and B.
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Now, we want to extend these definability results to all other three-valued op-
erations introduced in the previous Section 2. Let us start from the negations
whose proof is straightforward.

Proposition 4.2

¬(lR(A), uR(A)) = (uc
R(A), l

c
R(A)) = r(Ac);

∼(lR(A), uR(A)) = (uc
R(A), u

c
R(A)) = r(lR(A

c));

−(lR(A), uR(A)) = (uR(A
c), uR(A

c)) = r(uR(A
c)).

Now, as far as implications are concerned, some of them have already been
studied in literature and it has been shown that they are closed on rough sets.
These results are summarized in the following proposition.

Proposition 4.3

r(A) ⇒5 r(B) = r((A → B) ∩ ((A → lR(B)) ∪ (lR(A → B)c)));

r(A) ⇒9 r(B) = r(lR(A) → B);

r(A) ⇒10 r(B) = r((uR(A) → B) ∪ [lR(A) → uc
R(B)]c);

r(A) ⇒11 r(B) = r((lR(A) → B) ∩ (A → uR(B)));

r(A) ⇒14 r(B) = r(((uR(A) → uR(B)) ∩ (lR(A) → lR(B))).

Proof. The cases 5,10,11, respectively Kleene, Gödel and �Lukasiewicz implica-
tions, are proved in [22]. The Nelson (case 9) implication immediately follows by
its definition (and see also [59]). Finally, the Gaines-Rescher implication 14 has
been studied in [11], where it is defined as

r(A) ⇒ r(B) = (¬�r(A) ∪�r(B)) ∩ (¬♦r(A) ∪ ♦r(B)), (4)

with �r(H) = (lR(H), lR(H)) and ♦r(H) = (uR(H), uR(H)). So, first of all,
let us note that equation 4 is equivalent to the one in Table 7, as can be easily
proven. Then, from the definition in [11], we have r(A) ⇒14 r(B) = [r(lcR(A)) ⊔
r(lR(B))] ⊓ [r(uc

R(A)) ⊔ r(uR(B))] from which we arrive at the thesis.

In order to study the other implications and conjunctions, the following result
concerning the application of the transformations (1) can be given.

Proposition 4.4. Let ⊙ be a closed operation on R(X). Then, also a[A(⊙)]b,
a[V(⊙)]b, a[S(⊙)]b are closed on R(X).

Proof. The case of A(⊙) is trivial since it is the same operation as ⊙ with
different arguments. Operations V(⊙) and S(⊙) are a composition of ⊙ and
involutive negation ¬ which is closed by proposition 4.2. So, we will have that
r(X)[V(⊙)]r(Y ) = r(Y c)⊙ r(Xc) and r(X)[S(⊙)]r(Y ) = ¬[r(X) ⊙ r(Y c)].

By the above propositions, we immediately get that also other implications
and conjunctions are well defined, since as shown in [23, 25] they can be obtained
by equation system (1) from the above implications in Proposition 4.3.
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Corollary 4.1. Conjunctions 7, 9, 10, 11, 13, 14 are closed on R(X) and the fol-
lowing hold:

r(A) ∗7 r(B) = r(A ∩ lR(B));

r(A) ∗9 r(B) = r(lR(A) ∩B);

r(A) ∗10 r(B) = r([lR(A) ∪ lR(B)] ∩ uR(A) ∩B);

r(A) ∗11 r(B) = r([lR(A) ∪ lR(B)] ∩ A ∩B);

r(A) ∗13 r(B) = r([lR(A) ∪ lR(B)] ∩ A ∩ uR(B));

r(A) ∗14 r(B) = r((lR(A) ∪ lR(B)) ∩ uR(A) ∩ uR(B)).

Further, implications 7, 13 are closed on R(X) and we have:

r(A) ⇒7 r(B) = r(A → uR(B));

r(A) ⇒13 r(B) = r(A → lR(B) ∪ [lcR(A) → uc
R(B)]c).

We now prove that all the remaining implications and conjunctions are closed
on RS(X).

Proposition 4.5

r(A) ⇒1 r(B) = r(uR(A) → lR(B));

r(A) ⇒2 r(B) = r([A → lR(B)] ∩ [uR(A) → B]);

r(A) ⇒3 r(B) = r(A → lR(B));

r(A) ⇒6 r(B) = r(uR(A) → uR(B));

r(A) ⇒8 r(B) = r(lR(A) → uR(B)).

Proof. Only ⇒2 deserves some explanation, the others being trivial. By Ta-
ble 6, we get (lR(A), uR(A)) ⇒2 (lR(B), uR(B)) = (uc

R(A) ∪ lR(B), (uR(B) ∪
uc
R(A))∩(l

c
R(A)∪lR(B))), which can be re-written as ((uc

R(A)∪lR(B))∩(uc
R(A)∪

lR(B)), (uR(B) ∪ uc
R(A)) ∩ (lcR(A) ∪ lR(B))). Applying equations (3), we obtain

[r(Ac) ⊔ r(lR(B))] ⊓ [r(lR(A
c)) ⊔ r(B)] and by Lemma 4.1 we have the thesis.

Based on the implications in Proposition 4.5, it is possible to construct other
conjunctions and implications (see [23, 25]). So, due to Proposition 4.4 the fol-
lowing corollary holds.

Corollary 4.2. Conjunctions 1, 2, 3, 4, 6, 8, 12 are closed on R(X) and the fol-
lowing hold:

r(A) ∗1 r(B) = r(uR(A) ∩ uR(B));

r(A) ∗2 r(B) = r([A ∩ uR(B)] ∪ [uR(A) ∩B]);

r(A) ∗3 r(B) = r(A ∩ uR(B));

r(A) ∗4 r(B) = r(uR(A) ∩B);

r(A) ∗6 r(B) = r(uR(A) ∩ lR(B));

r(A) ∗8 r(B) = r(lR(A) ∩ lR(B));

r(A) ∗12 r(B) = r(lR(A) ∩ uR(B)).
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Implications 4, 12 are closed on R(X) and the following hold:

r(A) ⇒4 r(B) = r(uR(A) → B);

r(A) ⇒12 r(B) = r(lR(A) → lR(B)).

The above results show that the original question of finding subsets of X that
underlie all 14 three-valued conjunctions and implications applied to upper and
lower approximations of sets in the sense of rough sets can be answered in the
affirmative. However the reader may observe that the definition of such subsets,
the approximations of which are constructed by such connectives, always involve
lower and/or upper approximations of the two underlying sets to be combined.

4.3 The Interpretability of External Truth-Functional Operations

on Rough Sets

In [22], we started an investigation on the significance of existing truth-functional
three-valued logics of ill-known sets described by pairs of disjoint (or pairs of
nested) subsets. This work strongly suggested that while, from a mathematical
standpoint, such three-valued logics are consistent with a rough set view, their
interpretation with respect to reasoning about the original data tables is ques-
tionable. The operators analyzed in that work were Kleene conjunction and dis-
junction (min/max) on three values and three different implications: �Lukasiewicz,
Gödel and Kleene. However, the concerns already raised for these known con-
nectives seem to carry over to all the 28 three-valued connectives recalled in this
paper, as the results obtained here in the previous section indicate.

Let us consider two sets of items A,B defined in extension, the approximations
r(A) and r(B) of which we want to aggregate with one of the three-valued
connectives laid bare in this paper, say ⊙. Concerning the existence of a set
C such that r(C) = r(A) ⊙ r(B), we have seen that such an underlying set C
always exists. However, C does not depend exclusively on A and B but strongly
depends on the partition chosen (that is on the equivalence relation R of the
approximation space and finally on the set of attributes of an Information Table)
because it depends on the lower and/or upper approximations of A and B as
well. Moreover, even inside the same partition, several choices of C are possible.

This difficulty is due, in some sense, to the presence of two languages: the
fine-grained one needed to distinguish elements of X and the (more restricted)
one based on the attributes of the information table, that only allows to describe
approximations of any subset of such elements. Combining approximations of ill-
known sets A and B truth-functionally yields well-behaved pairs of nested sets,
but the corresponding internal combination of A and B that makes the external
truth-functional combination meaningful is problematic.

Indeed, in the setting of rough sets, A and B are known in extension (they
are in some sense the actual entities referred to) whereas, using the coarser at-
tribute language instrumental to describe them, their intensions are available
only through their approximations. So, the intension depends on the coarse lan-
guage: the more (less) numerous the attributes, the finer (coarser) the descrip-
tion. Results in the previous section show that the set C = A · B displayed in
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the previous section for the 14 conjunctions and the 14 implications such that
r(A) ⊙ r(B) = r(A · B) laid bare in this paper always depends on the partition
induced by R and so on the attributes defining the coarser language. Changing
the coarser language (i.e., attributes in the Information Table) will alter the set
A · B but not A,B. So, while we can interpret the external truth-functionality
of operations on approximation pairs as providing approximation pairs of defin-
able combinations of subsets of X , these subsets are definable only if the coarser
language is fixed (in fact they need both languages, since A · B is potentially
a Boolean set-theoretic combination of A,B, lR(A), lR(B), uR(A), uR(B)). As a
consequence, we lose the interpretability of the results since these inner com-
binations are not intrinsic to A and B, and depend on the indistinguishability
relation.

5 Rough Sets: From Modal Logic to Three-Valued Logics

Apart from many-valued logics, a natural logical rendering of rough sets is
through modal logics. This possibility has been addressed by several authors tak-
ing into account different variants of rough sets [57, 42, 69, 70, 11, 75, 76, 8, 51].
This section provides some hints toward relating the three-valued and the modal
logic views of rough sets, in connection with recent works translating three-valued
logics into fragments of the modal logic KD.

5.1 The Standard Modal Approach to Rough Sets

We now recall a modal logic for handling approximations of sets generated by
an equivalence relation [56].

Its language LM is the usual one of propositional logic plus necessity � and
possibility ♦. That is, we have a set of propositional variables V = {a, b, c, . . .}
and the connectives ∧,′ ,�. As usual, disjunction α ∨ β stands for (α′ ∧ β′)′,
implication α → β stands for α′ ∨ β, tautology ⊤ for α ∨ α′ and ♦α = (�α′)′.
Well formed formulae are built in the standard way.

The axioms are those of propositional logic plus the axioms to characterize
the modal connectives.

1. φ → (ψ → φ)
2. (ψ → (φ → µ)) → ((ψ → φ) → (ψ → µ))
3. (φ′ → ψ′) → (ψ → φ)

(K) �(α → β) → (�α → �β)
(T) �α → α
(5) ♦α → �♦α

Finally, rules are modus ponens and necessitation: If ⊢ α then ⊢ �α. The above
system is called S5, and its semantics is in terms of equivalence relations [20]. It
is thus the natural logical setting for rough sets [56].

The semantics is given through a model M = (X,R, v), where (X,R) is an
approximation space and v is a mapping from formulae to 2X . In standard modal
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logic terminology, X is the set of possible worlds, R the accessibility relation and
v(α) represents the set of possible worlds where α holds. The interpretation v is
recursively defined on propositional connectives as usual as:

v(α′) = v(α)c

v(α1 ∧ α2) = v(α1) ∩ v(α2)

v(α1 ∨ α2) = v(α1) ∪ v(α2)

and modal operators are mapped to lower and upper approximations:

v(�α) = LR(v(α)) = {x ∈ X : [x]R ⊆ v(α)} = {x ∈ X : ∀w, xRw, w ∈ v(α)}

v(♦α) = UR(v(α))={x ∈ X : [x]R ∩ v(α) �= ∅} = {x ∈ X : ∃w, xRw, w ∈ v(α)}

Note that, in the S5 approach, one can represent sets (“objective” formulae α)
and their lower (�α) and upper (♦α) approximations.

This approach can easily be extended to rough set models based on a relation
that is not necessarily an equivalence one [75, 76]. Indeed, it is well known in
modal logic [20] that, once fixed the basic axioms 1-3 and (K), then to any
additional modal axiom according to Table 9 corresponds a specific property of
the accessibility relation.

Table 9. Correspondence between modal axioms and relation properties

Name Axiom Property

T �α → α Reflexive
4 �α → ��(α) Transitive
5 ♦α → �(♦(α)) Euclidean
D �α → ♦α Serial
B α → �♦α Symmetric

Another extension of the basic approach is the logic DAL [42], meant to deal
with approximation spaces with more than one equivalence relation (X,Ri).
Each relation represents a different attribute, for instance “having the same
number of circles”, “having the same number of crosses”.

5.2 The Three-Valued Modal Approach

A different approach is given by the so-called Pre-Rough Logic (PRL) and its
corresponding algebra called pre-rough algebra [11], which is based on a 3-valued
logic. Atoms of the logic are three-valued entities, which represent nested approx-
imation pairs. They can be obtained from the S5 logic of the previous section by
considering a weaker notion of logical equivalence in S5. Namely, Banerjee and
Chakraborty speak of rough equivalence of two propositional formulae α and β
whenever �α is semantically equivalent to �β and ♦α is semantically equiva-
lent to ♦β. They consider the result of quotienting the language with the rough
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equivalence relation, and each equivalence class corresponds to an approxima-
tion pair, which becomes a formula of the pre-rough logic PRL. Note that by
doing so, the underlying set, the approximations of which are given by modal
formulae, is lost: we can no longer distinguish between propositional formulae
that are roughly equivalent.

For the sake of clarity, we denote by µ, ν, ρ the formulae of PRL. Primitive
connectives of the logic are negation, intersection and necessity, respectively
denoted by ¬,∧,�, from which we derive the disjunction ∨ through de Morgan
properties, the dual modality �µ = ¬�¬µ and the implication as µ → ν =
(¬�µ ∨�ν) ∧ (¬�µ ∨ �ν). The axioms of the logic are:

RL1 µ → µ
RL2 ¬¬µ ↔ µ
RL3 µ ∧ ν → µ
RL4 µ ∧ ν → ν ∧ µ
RL5 µ ∧ (ν ∨ ρ) ↔ (µ ∧ ν) ∨ (µ ∧ ρ)
RL6 �µ → µ
RL7 �(µ ∧ ν) ↔ �µ ∧�ν
RL8 �µ → ��µ
RL9 ��µ → �µ
RL10 �(µ ∨ ν) ↔ �µ ∨�ν

A sequent calculus for this logic is provided by Sen and Chakraborty [64].
The semantics is three-valued, and some connectives are based on Kleene

logic, using ternary valuations t such that [11]

t(¬µ) = ¬t(µ) (Kleene negation) (5)

t(µ ∧ ν) = t(µ) ⊓ t(ν) (Kleene conjunction) (6)

t(�µ) = ¬ − t(µ) (using the paraconsistent negation −) (7)

t(µ → ν) = (t(¬�µ) ∪ t(�ν)) ∩ (t(¬�µ) ∪ t(�ν)) (8)

In connection with the S5-based rough set logic of the previous section, a non-
modal formula µ in PRL corresponds to an approximation pair (A(µ)∗, A(µ)

∗)
over possible worlds in X (Boolean interpretations), both A(µ)∗ and A(µ)∗ being
exact sets of such valuations (formulae α such that v(�α) = v(♦α), whenever
v(α) = A(µ)∗ or A(µ)∗). The operator � corresponds to extracting the core
A(µ)∗ of the three-valued set over X induced by µ. In terms of fuzzy sets, �µ
corresponds to the core of µ and �µ correspond to its support. It can thus be
easily seen that

– t(�µ) is two-valued and �µ corresponds to the (exact) approximation pair
(A(µ)∗, A(µ)∗);

– t(�µ) is two-valued and �µ corresponds to the (exact) approximation pair
(A(µ)∗, A(µ)∗)

– t(µ → ν) is two-valued: it is Gaines-Rescher implication expressing the
double inclusion of upper and lower approximations A(µ)∗ ⊆ B(ν)∗ and
A(µ)∗ ⊆ B(ν)∗.
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In view of the above semantical considerations, RL6-RL10 are expected. RL6
and RL9 correspond to S5 axioms T, and 5 respectively, while RL7 and RL8 are
valid in S5. However, due to RL10, � and � are deviant modalities, that are not
trivial because the logic is 3-valued [19].

The connection between S5 and PRL is maintained by noticing that an ap-
proximation pair (A(µ)∗, A(µ)

∗) underlies a crisp set A of X that is approxi-
mated by this pair. In order to maintain this view throughout all the formulae
in PRL, Banerjee and Chakraborty make it clear what is the set approximated
by for instance (C(µ∧ ν)∗, C(µ∧ ν)∗) when A and B are the sets approximated
by (A(µ)∗, A(µ)

∗) and (B(ν)∗, B(ν)∗). They do it by introducing the intersec-
tion A∩2B already discussed in Subsection 4.2, and that does not depend solely
on A and B.

The fact that in the PRL syntax, we no longer explicitly refer to the approx-
imated set and maintain truth-functionality for evaluating formulae expressing
approximation pairs is thus paid by the fact that it is no longer possible to in-
trinsically define the approximated set referred to by a compound PRL formula
in terms of the approximated sets of its elementary sub-formulae. On the other
hand, while the S5 setting avoids this pitfall, one may find it unrealistic to repre-
sent at the same time the approximated pairs with the approximated set in the
language, as the point made by rough set theory is that sets are only described
in intension through the available attributes, while their precise extension is out
of reach. In this sense, while S5 seems to precisely capture the formal setting of
rough sets, the PRL logic looks more faithful to the way rough sets can be used
in practice, that is, it refers to the situation where we know the approximations,
but neither the underlying set nor the equivalence relation. Unfortunately, the
PRL rendering of rough set theory, and logical combinations of upper and lower
approximations, in terms of a three-valued logic looks like an approximation as
well.

Interestingly, connections between PRL and major three-valued logics have
been laid bare:

– In [11] it is shown that the algebra of PRL (a bounded lattice structure
(L, 0, 1) equipped with Kleene connectives (⊔,¬,⊓) the modality � and
Gaines-Rescher implication →14, is equivalent to semi-simple Nelson alge-
bras, that is, a bounded lattice structure (L, 0, 1) equipped with Kleene con-
nectives, the paraconsistent negation − and Nelson implication →9. Indeed
they notice that −µ = ¬�µ and µ →9 ν = ¬�µ⊔ν. Conversely, �µ = ¬−µ
and µ →14 ν = ¬ − (µ →9 ν).

– It has been proved in [9], that PRL is equivalent to three-valued �Lukasiewicz
logic. Especially, Banerjee points out that the �Lukasiewicz implication can
be written as (�¬µ ⊔ ν) ⊓ (¬µ ⊔ �ν). Conversely, PRL connectives ∧,∨,♦
are defined as usual µ ⊔ ν = ((µ →11 ν) →11 ν), µ ⊓ ν = ¬(¬µ ⊔ ¬ν) and
�µ = ¬(µ →11 ¬µ).

But these findings are not surprising at all given the results in [25] whereby
from Kleene connectives plus paraconsistent negation, one can reconstruct all
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28 monotonic three-valued conjunctions and implications that extend Boolean
ones (as per the last item of Proposition 2.2).

5.3 From Three-Valued Rough Set Logic to Modal Logic

We have seen two different modal approaches concerning rough sets: a Boolean
one based on S5 and a many-valued one, the PRL logic, the latter being based on
a clustering of roughly equivalent formulae of the former. Conversely, Banerjee
[9] proves that PRL is embeddable in S5 in the sense that PRL formulae can be
expressed as S5 formulae via a translation operation (·)τ such that ⊢PRL µ iff
⊢S5 µτ .

Namely, the PRL negation ¬ becomes the classical negation ′, the PRL ne-
cessity operator � becomes the classical one �, and

(µ ⊓ ν)τ = (µτ ∧ ντ ) ∨ (µτ ∧ ♦ντ ∧ (♦(µτ ∧ ντ )). (9)

The latter encodes the set supposedly upper and lower approximated by the in-
tersection of upper and lower approximations of two sets, already met in previous
sections as ∩2. This translation can only yield a fragment of S5.

There is another way of capturing the semantics of three-valued logics in a
modal setting, whenever the third truth-value stands for unknown [24, 26]. It is
enough to use a fragment of KD (or of S5) called MEL [12]. In particular, we
can translate three-valued �Lukasiewicz logic L3 into MEL, while preserving L3
theorems. Since PRL is equivalent to L3, it is interesting to translate PRL into
MEL as well.

The language MEL [12, 13] is a very limited fragment of the modal logic S5.
It uses a sublanguage L� of S5 defined by encapsulating propositional formulae
from a modality-free propositional language L (using the same notations as in
Subsection 5.1):

L� = �α : α ∈ L|¬φ|φ ∧ ψ|φ ∨ ψ|φ → ψ.

Note that L� ∩ L = ∅ and L� ⊂ LM (the set of all modal formulae, including
nested ones). MEL is equipped with the following axioms:

1. φ → (ψ → φ).
2. (ψ → (φ → µ)) → ((ψ → φ) → (ψ → µ)).
3. (φ′ → ψ′) → (ψ → φ)

(K) �(p → q) → (�p → �q).
(D) �α → ♦α.
(N) if ⊢PL α then �α.

and the inference rule is modus ponens. As usual, the possible modality ♦ is
defined as ♦α ≡ (�α′)′. The first three axioms are those of PL and the other
those of modal logic KD. Axiom (N) is inspired from the necessitation rule that
cannot be written in MEL. The following axioms (M) and (C) are implied by
the above system:

(M)�(α ∧ β) → (�α ∧�β);
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(C) (�α ∧�β) → �(α ∧ β).

MEL is the subjective fragment of KD (or S5) without modality nesting.
The MEL semantics is very simple [12]. Let Ω be the set of L interpretations:

{ω : V → {0, 1}}. The set of models of α is [α] = {ω : ω |= α}. A (meta)-
interpretation of L� is a non-empty set E ⊆ Ω of interpretations of L interpreted
as an epistemic state. We define satisfiability as follows:

– E |= �α if E ⊆ [α] (α is certainly true in the epistemic state E)

– E |= φ ∧ ψ if E |= φ and E |= ψ;

– E |= φ′ if E |= φ is false.

MEL is sound and complete with respect to this semantics [13].
We remark that in this framework, uncertainty modeling is Boolean but pos-

sibilistic. The satisfiability E |= �α can be written as N([α]) = 1 in the sense
of a necessity measure computed with the possibility distribution given by the
characteristic function of E. Axioms (M) and (C) lay bare the connection with
possibility theory [39], as they state the equivalence between (�α ∧ �β) and
�(α ∧ β).

We can justify the choice of this minimal modal formalism. It is the most
simple logic to reason on incomplete propositional information. We only need to
express that a proposition in PL is certainly true, certainly false or unknown as
well as all the logical combinations of these assertions.

In [24, 26] we have proposed to translate three-valued logics of incomplete
information into MEL, provided that the third truth-value refers to the idea of
unknown Boolean truth-value. Let a be a Boolean variable and t(a) indicate the
knowledge we have about a, that is:

– 1 certainly true, the Boolean value of a is 1;

– 0 certainly false, the Boolean value of a is 0;

– 1
2 unknown, the Boolean value of a is 0 or 1.

For the sake of clarity, we have used different symbols 0,1, 12 for epistemic truth-
values with respect to ontic ones 0, 1. Under this understanding of the three
epistemic truth-values, we can naturally translate three-valued truth-assigments
to atomic propositions as follows:

T (t(a) = 1) = �a

T (t(a) = 0) = �a′

T (t(a) = 1
2 ) = ♦a ∧ ♦a′

T (t(a) ≥ 1
2 ) = ♦a

T (t(a) ≤ 1
2 ) = ♦a′
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Now, we want to map three-valued formulae to MEL formulae. Compound
formulae are managed recursively. In the case of �Lukasiewicz logic, we have:

T (t(α ⊓ β) ≥ i) = T (t(α) ≥ i) ∧ T (t(β) ≥ i), i ≥ 1
2

T (t(α ⊔ β) ≥ i) = T (t(α) ≥ i) ∨ T (t(β) ≥ i), i ≥ 1
2

T (t(¬α) = 1) = T (t(α) = 0) = (T (t(α) ≥ 1
2 ))

′

T (t(¬α) ≥ 1
2 ) = T (t(α) ≤ 1

2 ) = (T (t(α) = 1))′

T (t(α →L β) = 1) = [T (t(α) = 1) → T (t(β) = 1)]

∧ [T (t(α) ≥ 1
2 ) → T (t(β) ≥ 1

2 )]

T (t(α →L β) ≥ 1
2 ) = T (t(α) = 1) → T (t(β) ≥ 1

2 )

Note that even if we use the same symbols for connectives in L3 and MEL, we are
moving from three-valued variables (formulae) to Boolean ones. In particular, in
the case of atoms, we have

T (t(a →L b) ≥ 1
2 ) = (�a)′ ∨ ♦b = �a → ♦b

and

T (t(a →L b) = 1) = ((�a)′ ∨�b) ∧ ((♦a)′ ∨ ♦b) = �a′ ∨�b ∨ ((�a)′ ∧ ♦b))

= (�a → �b) ∧ (♦a → ♦b).

It can be easily shown that by this translation, only a fragment of MEL can be
captured by �Lukasiewicz logic. Namely, LL

�
= �a|�a′|φ′|φ ∨ ψ|φ ∧ ψ. That is,

we can only have modalities in front of literals.
Finally, we note that this translation makes sense; that is tautologies are

preserved by the translation and we can reason in three-valued logic inside MEL.
More formally, the following two theorems hold [24, 26]:

Theorem 5.1. If α is an axiom of �Lukasiewicz (but also, Gödel, Nelson) logic,
then T (t(α)) is a tautology in MEL.

Theorem 5.2. Let α be a formula in �Lukasiewicz (but also, Nelson) logic L3

and BL a knowledge base in this logic. Then, BL ⊢ α in L3 iff T (BL) ⊢ T (t(α) =
1) in MEL.

Due to the equivalence between L3 and PRL, we can also translate PRL into
MEL. Let us start from the connectives: ∨,∧,¬ are the same as in �Lukasiewicz
logic, the only difference is the necessity which is not a primitive operator in L3
but can be derived as follows:

T (t(�µ)) = 1) = T (t(�µ) ≥ 1
2 )) = T (t(¬(µ →L ¬µ)) = 1) = T (t(µ) = 1)

which on atoms corresponds to T (t(�a) = 1)) = T (t(�a)) ≥ 1
2 )) = �a.

Consequently, PRL implication (i.e., Gaines-Rescher →14) becomes in MEL:

T (t(µ →14 ν) = 1) = T (t(µ →14 ν) ≥ 1
2 ) = (�µ → �ν) ∧ (♦µ → ♦ν)
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which, as expected corresponds to the translation of any residuated implication
into MEL.

Due to the above results, in particular Theorem 5.1, it is also possible to see
that most PRL axioms translate into MEL tautologies.

Corollary 5.1. If φ is an axiom of PRL logic (but for RL8 and RL9), then
T (t(φ) = 1) is a tautology in MEL.

Axioms RL8 and RL9, which involve nested modalities, are not directly express-
ible in MEL logic. However, in PRL, ��µ and ��µ are equivalent to �µ so that
they do not need to be translated.

It is interesting to comment on the difference between the two translations of
PRL into S5 and into MEL:

– The translation of PRL into MEL yields the L3-fragment of MEL, and we
know from [24, 26] that the two logics are equivalent. In particular, the MEL
translation does not involve at all the logical rendering of the approximated
set underlying the pair (�α,�α) in PRL. The lack of expressiveness of PRL
with respect to S5 for rough sets is highlighted by the small fragment of S5
attained by the exact translation of PRL into MEL.

– The translation of PRL into S5 highlights a possible logical expression of
the set approximated by the combination of approximation pairs, but this
expression involves modalities, and does not refer to a set expressible in the
pure propositional language L contained in the one of S5 (see equation (9)).
So, even if this translation reaches a language richer than MEL, it carries
over to the logical level the semantic difficulty of applying a truth-functional
view on approximation pairs, as pointed out in the previous section.

6 Conclusion

The main lesson of this paper is that there is a gap between rough sets and
three-valued calculi of approximation pairs regardless of the chosen rich enough
algebraic setting, since there are several equivalent ones in three-valued logics.
Whether we use �Lukasiewicz 3-valued MV algebra, Nelson semi-simple algebras
or the pre-rough setting, we can only imperfectly capture the modal logic of
rough sets, that is, S5, even if the three-valued approaches can be embedded in
the modal setting.

Our exploration of the 28 basic implications and conjunctions acting on or-
thopairs of sets show that there is no way to find binary connectives on orthopairs
that would correspond exactly to the approximation pair enclosing some appro-
priate Boolean combination of the two sets approximated by each orthopair.
This Boolean combination either does not exist, or must involve the chosen
equivalence relation in some way, and then it is not even unique. This result is
a generalisation of Bonikowski [16] old finding, systematized to all reasonable
three-valued conjunctions, disjunctions and implications. It also echoes early re-
marks on the impossibility of representing rough sets by three-valued fuzzy sets
put forward by Pawlak himself [60] and more recently by Yao [74].
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Among the perspectives of this paper, one may point out the potential of
the MEL language for representing and reasoning about information tables with
missing values. Information tables are often encoded in a logical format using
languages such as Datalog. In the case of missing values, the L3 fragment of MEL
with modalities in front of literals could typically represent information about
objects in intension, as an alternative to the use of Kleene logic proposed very
early by Codd [27]. It would be of interest to reconsider proposals for defining
rough sets under incomplete information in the light of this modal translation
of three-valued logics.
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50. Jaśkowski, S.: Propositional calculus for contradictory deductive systems. Studia

Logica 24, 143–160 (1969)
51. Khan, M.A., Banerjee, M.: A logic for complete information systems. In: Sossai,

C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 829–840. Springer,
Heidelberg (2009)

52. Kleene, S.C.: Introduction to Metamathematics. North–Holland Pub. Co., Ams-
terdam (1952)
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