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Lorem ipsum dolor sit amet, consectetur 
adipiscing elit, sed do eiusmod tempor 
incididunt ut labore et dolore magna aliqua. 
Ut enim ad minim veniam, quis nostrud 
exercitation ullamco laboris nisi ut aliquip ex 
ea commodo consequat. Duis aute irure 
dolor in reprehenderit in voluptate velit esse 
cillum dolore eu fugiat nulla pariatur. 
Excepteur sint occaecat cupidatat non 
proident, sunt in culpa qui officia deserunt 
mollit anim id est laborum. x4
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Figure 1: Scenario of text selection, from left to right. The �rst two steps are common to the two techniques: (a) direct pointing
over a word, (b) �ne tuning the highlight. Upper line steps for the VO technique: (c1) setting the rotor menu on “Text selection”,
(d1) setting the sub-menu to “Word”, (e1) moving the selection handle to the desired position. Lower line steps for the �GeT
technique: (c2) touching the middle �nger with the thumb, (d2) moving the ending handle to the desired position.
ABSTRACT
We present �GeT, a novel multimodal eyes-free text selection tech-
nique. �GeT combines touch interaction with microgestures. �GeT
is especially suited for People with Visual Impairments (PVI) by
expanding the input bandwidth of touchscreen devices, thus short-
ening the interaction paths for routine tasks. To do so, �GeT ex-
tends touch interaction (left/right and up/down �icks) using two
simple microgestures: thumb touching either the index or the mid-
dle �nger. For text selection, the multimodal technique allows us
to directly modify the positioning of the two selection handles and
the granularity of text selection. Two user studies, one with 9 PVI
and one with 8 blindfolded sighted people, compared �GeT with a
baseline common technique (VoiceOver like on iPhone). Despite a

large variability in performance, the two user studies showed that
�GeT is globally faster and yields fewer errors than VoiceOver. A
detailed analysis of the interaction trajectories highlights the dif-
ferent strategies adopted by the participants. Beyond text selection,
this research shows the potential of combining touch interaction
and microgestures for improving the accessibility of touchscreen
devices for PVI.
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1 INTRODUCTION
At least 253 million people live with moderate to severe visual
impairment worldwide [2], to whom we will refer in this article
as PVI (i.e., People with Visual Impairments). PVI rely more and
more on touchscreen devices for everyday tasks [1, 19, 27] such as
reading, social interaction, outdoor navigation, object recognition,
etc. Improving accessibility of touchscreen devices for PVI is thus
very important [27, 36].

Current touchscreen devices rely on accessibility tools, (Android
TalkBack and iOS VoiceOver1), commonly named as “screen read-
ers”. Previous work showed that they are still perfectible [3, 11].
Screen readers “read” the screen’s content (2D) as a list of items (1D
auditory feedback). Although PVI can access 2D digital content and
interact with it, each item must be checked one at a time – which
increases the time and number of interactions required to perform
a particular action. As current accessibility tools are tedious to use
with the touch modality alone, we explore how thumb-to-�nger
(TTF) microgestures (�G) can be combined with touch inputs in
order to simplify the interaction for PVI in routine tasks. TTF mi-
crogestures are small, single hand movements made with the thumb
on other �ngers of the same hand and Faisandaz et al. [14] showed
that PVI can perform TTF �G in combination with touch inputs.

In this paper, we focus on the task of text selection, after having
consulted fourteen PVI We present �GeT, a technique that enriches
touch interaction using quasi-modes triggered by TTF �G (i.e.,
thumb touching either the index or the middle �nger) in a task
of eyes-free text selection. The two input modalities, i.e., touch
and TTF �G, are combined in a complementary way and the tem-
poral aspect of the combination is parallel, as de�ned by Serrano
et al. [37]. For text selection, the resulting multimodal technique
allows users to directly modify the location of the two selection
handles (using TTF �G) and the granularity of text selection (using
left/right/up/down touch swipes). We conducted two user stud-
ies, one with 9 PVI and one with 8 blindfolded sighted people to
compare �GeT with a VoiceOver-like (VO) technique as a baseline.
Despite a large variability in performance, the two user studies
showed that �GeT is globally faster for PVI and similar to VO in
terms of text selection time. It also yields fewer errors than VO for
both population. A detailed analysis of the interaction trajectories
highlights the di�erent strategies adopted by the participants. This
study shows how TTF �G can e�ectively be used by PVI to augment
touch inputs, shorten interaction and ultimately simplify routine
tasks such as text selection that usually require navigating menus
to change parameters.

2 RELATEDWORK
Our work builds on previous research on enhancing touch inter-
action and on �Gesture interaction to address a rarely considered
problem: increasing the bandwidth of touch screen interaction for
accessibility purposes.

2.1 Enhancing the touch modality
Approaches to enhancing touch interaction involve adding one or
more modalities as an additional dimension to a touch input to
trigger di�erent commands [22]. Also called "touch overloading",
1Talkback for Android and VoiceOver for iOS

approaches on current touchscreen devices commonly use time (e.g,
dwell, hold), repetition (e.g., double tap) and/or multiple contacts
(e.g., pinch) as additional dimensions to augment the touchmodality.
Some approaches leverage the screen capabilities to capture shear
forces [21], various levels of pressure on the surface [17, 20, 33],
unimanual [18, 29] or bimanual [5] multitouch to trigger di�erent
commands. Other approaches are based on the identi�cation of
the part of the �nger (e.g., knuckle, tip, nail) touching the surface,
each triggering di�erent commands [22, 31]. Rhythmic patterns
were also studied [15]. These approaches either involve complex
interactions to perform and learn, or rely on vision to be used
seamlessly. Needless to say, drawing-based input requires spatial
accuracy [26] and pressure-based input also needs visual feedback
such as gauges to be controlled precisely [20, 39]. Hence, these
approaches lack accessibility for PVI.

For PVI, we nevertheless note that Kane et al. [24] explored
multitouch and bimanuality to design techniques helping users to
navigate the screen faster and understand spatial layout. The “Edge
projection” technique, speci�cally, projects the items on screen
onto the x- and y-axes on the left and lower edge. Users can then
�nd the required item along the edges, then drag both �ngers to the
interior of the screen to �nd the actual location of the item. This
technique adds an extra step in the interaction for each input and is
not usable in mobile situations. Indeed, this technique requires both
hands to be available at all times and is intended for fairly large
touchscreens placed on a �at surface. Li et al. [30] used the device’s
gyroscope to leverage kinesthetic and proprioceptive abilities of
users to recall distinct spatial locations in front of them. However,
this technique requires mid-air movements that are not discrete for
public use and can induce fatigue (“gorilla-arm e�ect” [23]).

Some approaches speci�cally tailored for PVI rely on tangible
overlays to provide tactile cues [12]. They can be “read” via tactile
perception and thus convey spatial information more easily. Exam-
ples include interactive raised-line maps [7], tangible widgets (e.g.,
slider, menu) to be placed on top of touchscreen devices [25] and
tactile overlays with horizontal lines to aid reading long texts such
as books [13]. However these approaches can be expensive and
cumbersome [25, 35]. As each application has a di�erent layout,
these approaches would require the use of many custom overlays.
Besides, once produced, these tangible add-ons are static. They
prevent dynamical content updates (e.g., zooming on a map).

Finally, for PVI, voice can be used to enhance touch interaction.
Indeed, voice is frequently used by PVI, notably for textual inputs
or punctual discrete commands such as opening an application.
Previous research has shown that touch input combined with voice
can improve interaction on touchscreen. For instance, Zhao et al.
[45] studied the complementary usage of input touch and voice
to edit text and correct errors and have showed that the multi-
modal technique greatly improves the text editing and correcting
performance compared to the touch-only modality. But the com-
plementary use of touch and voice relies on a visual context for
touch, which makes them unusable by PVI. In addition PVI can be
reluctant to talk to their device in public spaces [34], or feel they
lack control [4, 10, 44]. That is why, we focus on a new modality
with promising characteristics to enrich touch interaction while
remaining accessible for PVI: microgestures (�Gestures, �G).

https://support.google.com/accessibility/android/answer/6007100
https://support.apple.com/en-gb/HT211899
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2.2 �Gestures for PVI
Wolf et al. describe �Gestures (�G) as small motions executed with
the hands and �ngers [41, 42]. Chan et al. de�ne single-hand �G
as �nger gestures performed by one hand on itself [9]. �G can
be performed eyes-free [14, 41] and are cognitively undemanding
[14, 32, 38, 42], making them particularly suited for PVI [14].

Chan et al. did an elicitation study of 1632 �G, inwhich the thumb
was used 88% of the time: these in particular are what we call thumb-
to-�nger (TTF) �G (i.e., the thumb touching another �nger). TTF
�G de�ne a promising modality to complement touch and increase
expressivity. For instance, a touchscreen device allowing only for
simple and double taps, combined with only two TTF �G (e.g., the
thumb touching the index or the middle �nger), could provide 6
types of tap (i.e., simple tap and double tap without the thumb
touching any �nger, same with the thumb touching the index, and
same with the thumb touching the middle �nger). Thus, several
studies used TTF �G to increase touch input expressivity [5, 40, 43]
and motivate our work on combining TTF �G and touch for PVI.

But for PVI, work on TTF �G is scarce. Boldu et al. developed a
head-mounted camera to assist PVI in grocery shopping [6]. The in-
teractionwas triggeredwith a TTF �G performed on a ringmounted
on the index. They argued that the TTF �G was the “optimal input
gesture” in their context, because it is hand-free and can be per-
formed with minimal e�ort alongside other tasks. Faisandaz et al.
[14] conducted a study to evaluate and compare the usability and
comfort of 33 TTF �G to be used in conjunction with touch modal-
ity in an eyes-free situation. They found that the absence of vision,
combined with the constrained position of the hand, hampers ac-
curacy when performing TTF �G. Consequently, they put forward
a set of 8 TTF �G that can be used while the index is touching a
surface. They further demonstrated 3 TTF �G in a map-based appli-
cation to 7 PVI. All participants found this multimodal technique
usable and comfortable and were really interested in the interaction
possibilities TTF �G could bring. That is why, we study both quan-
titatively and qualitatively an interaction technique combining 2
TTF �G from this set of 8 TTF �G [14] and touch interaction in a
“daily-life” task, without vision.

3 TECHNIQUES
We chose the "daily-life" task of text selection after conducting a
1h long focus group with 14 PVI recruited in a special education
center. After introducing TTF �G and context, we made 3 groups
and discussed their phone usage (tasks, app, issues) (10 min). We
asked them how they would use TTF �G with their phone (10
min), and had them discuss these ideas altogether (10 min). We
�nished with an open discussion. We also conducted four 1h-long
interviews: 3 about general phone usage (with a VO expert and 2
novice), 1 about text manipulation (with a VO expert). Participants
of the focus group and interviews were aged from 24 to 58. These
participants found that TTF �G could be useful for games and soft-
ware applications to switch options and parameters. Implicitly, they
suggested that the multimodal approach could be promising for
simultaneous tasks. They also mentioned how the current acces-
sibility tools and their menus force them into linear interactions,
which they found long and tedious, to the point that most of them
refuse to use common features of their phone, such as text edition,

copying and pasting. For this reason, we chose to focus on a text
selection technique without linear menu navigation. Text selection
consists of setting the boundaries of a selection �eld, delimited by
two markers (i.e., selection handles). Before describing the designed
technique, �GeT, that combines TTF �G and touch, we �rst recall
how text selection is performed with current accessibility tools. In
our study, we considered the iOS VoiceOver accessibility tool as
the baseline technique.

3.1 Baseline technique: VoiceOver-VO
We use the default con�guration of the iOS VoiceOver (VO) ac-
cessibility tool, which can be customized in the iOS accessibility
settings. VO uses discrete touch inputs to navigate a radial menu
with contextual commands (called a rotor, Figure 1-c1), via quick
clockwise (CW) and counterclockwise (CCW) rotating gestures
with two �ngers. There are 8 items in the rotor. Each item of the
rotor is a persistent mode. In the following, we refer to the 1st
item as being the “North” one, and count up clockwise. To select a
portion of text, users must �rst highlight an entity (e.g., a character,
a word, a sentence, in grey highlight IPSUM in the following ex-
ample) either through a drag on the screen, highlighting the entity
being hovered, or by performing a 1-�nger swipe left/right (also
called �ick), moving the highlight over to the previous (or next)
entity. Placing the rotor in the 3rd (Character), 4th (Word) or 5th
(Sentence) position changes the entity type being highlighted. By
default, words are highlighted.

The anchor (i.e., leftmost selection marker, in blue ↓) is placed
�rst, its position being set at the beginning of the highlighted en-
tity (i.e., left of its �rst character). The anchor cannot be moved
otherwise. To select text, users then move the selection handle (i.e.,
rightmost selection marker, in blue ↑) initially placed at the anchor
position. To move the selection handle, the rotor must be placed
on the 8th (“Text selection”) position. In this mode, the handle is
moved leftwards or rightwards using 1-�nger swipe left/right. The
granularity at which the handle is moved can be changed using
1-�nger swipe up/down, circling through 5 sub-modes (Figure 1-d1):
“character” (CbC), “word” (WbW), “sentence” (SbS), “paragraph” or
“select all”. The granularity is initially set to “word”. Each change (ro-
tor, sub-modes, updated selection) triggers an audio feedback that
reads the menu item or the last entity that was highlighted/selected.
Everything comprised between the anchor and the selection han-
dle is considered selected (in yellow highlight IPSUM ). To help
the users, we added a double tap gesture, which triggers an audio
feedback that reads the current selection if any, or simply stops the
current audio feedback.

• Highlight - LOREM IPSUM ET DOLOR SIC AMET
• Selection - LOREM ↓↑IPSUM ET DOLOR SIC AMET
• {Input}
• Selection - LOREM ↓ IPSUM ↑ ET DOLOR SIC AMET

3.2 Designed multimodal technique: �GeT
�GeT is a text selection technique that combines �G and touch to
augment the input bandwidth. The design rational is to use the
index and middle �ngers as metaphors of text selection handles.
When contacting and keeping their thumb pressed on the index or
the middle �nger, users respectively “grab” the selection leftmost
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or rightmost handle (respectively called First and Last handles, in
blue in the previous example ↓↑). These “grabbing” gestures (called
�TAP hereafter) trigger quasi-modes (i.e., a mode only active if the
trigger action is maintained) in which one can edit the position of
the respective handle. Once either of the handles is grabbed, users
can move them with three levels of granularity: 1) character level
(CbC), through short horizontal swipes which trajectory length
is less than 150px; 2) word level (WbW), through long horizontal
swipes which trajectory length is more than 150 px; 3) sentence
level (SbS), through vertical swipes. Similar to VO, users perform the
initial placement of the handles by highlighting an entity through
a drag on the screen, placing both handles at the beginning of
the word being hovered. Prior to any selection (i.e., no handle
was yet grabbed and moved), swipes can be used to adjust the
initial placement of the handles. If a selection has been started, drag
gestures and swipe gestures on screen with no grabbed handles,
have no e�ect. To reset the selection and start a new one, users
must perform a tap on the pinky �ngernail. Similar to VO, each
change (quasi-mode, updated selection) triggers an audio feedback
and a double tap gesture (to listen the current selection if any or to
stop the current audio feedback) has been implemented.

The accompanying video �gure shows examples of text selection
using VO and �GeT.

3.3 Theoretical comparison of �GeT and VO
We hypothesize that navigating menus using VO degrades usability
and user experience, as it lengthens completion time, complicates
the interaction path, and more generally interrupts the task at hand.
We speci�cally designed �GeT to avoid interruption due to menu
navigation by having all selection tools readily available. However,
it is not easy to �nd representative PVI as they are often di�cult to
reach through standard means of participant recruitment. Thus we
�rst validated our approach from a theoretical perspective: we mod-
eled the tasks with the Storyboard Empirical Modeling tool (StEM)
[16], an extension of the Finger-Level Model (FLM) [28] itself based
on the Keystroke-Level Model (KLM) [8]. StEM allows us to predict
completion times, which we use to compare optimal interaction
trajectories using both techniques (�GeT and VO). Figure 2 shows
an optimal interaction trajectory for each task. We consider optimal
the interaction trajectory using the least number of inputs for a
given starting point. There are several optima: an optimum is cal-
culated for a given starting point. In �gure 2, for �GeT, all handles
are placed at the beginning of the �rst word containing part of
the target, and for VO, all handles are placed at the beginning of
the target itself (including inside a word since VO allows a precise
initial placement of the handles). We use the following set of StEM
operators with times provided by the tool for each modeled task: 1)
T (tapping), pressing an on-screen target without knowledge of the
starting �nger position; 2) R (rotation), rotating an on-screen object
with two �ngers; 3) F (�icking or swiping), a ballistic linear move-
ment in one of the cardinal directions (up, down, left, right). We
also call them swipes in our paper. However, in order to compare
the two techniques, we made three assumptions. First, StEM only
applies to touch interaction, thus we added a fourth operator (�T)
which represents a thumb tap on either the index or middle �nger.
We have assumed that it is similar to a regular tap (T) in terms

Task Target & handles 
starting point ↓↑ µGeT VO Delta

(µGeT – VO)
VO menu 

action ratio
µGeT

time (s)
VO 

time (s)
Delta 

time (s)

T1) Mid-word
µGeT: ↓↑Forty

VO: F↓↑orty

µ𝑇𝑚𝑖𝑑 𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑠ℎ𝑜𝑟𝑡←

µ𝑇𝑖𝑛𝑑 𝐹𝑠ℎ𝑜𝑟𝑡→

(starting from rotor’s 3rd position)

𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘 𝑭↓ 𝐹→ 𝐹→ 𝐹→
8 - 14

- 6 actions
4/14
29% 4.2 6.2 -2.0

T2a) 2-words-
and-half ↓↑Two Three Four

µ𝑇𝑚𝑖𝑑

𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑠ℎ𝑜𝑟𝑡←

(starting from rotor’s 4th position)

𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘

𝐹→ 𝐹→ 𝐹→𝑭↑𝐹←

9 - 18
- 9 actions

5/18
28% 4.9 8.0 -3.1

T2b) 2-words-
and-half

µGeT: ↓↑Three Four Five

VO: Th↓↑ree Four Five

µ𝑇𝑚𝑖𝑑 𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→

µ𝑇𝑖𝑛𝑑 𝐹𝑠ℎ𝑜𝑟𝑡→ 𝐹𝑠ℎ𝑜𝑟𝑡→

(starting from rotor’s 3rd position)

𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘 𝐹→ 𝐹→ 𝐹→
12 - 12

+0 actions
3/12
25% 6.4 5.3 +1.1

T3) Four-words
↓↑Nine Ten Eleven 

Twelve

µ𝑇𝑚𝑖𝑑 𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→

𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→

(starting from rotor’s 4th position)

𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘 𝑹𝒄𝒄𝒘

𝐹→ 𝐹→ 𝐹→ 𝐹→

9 - 16
-9 actions

4/16
25% 5.1 7.1 -2.0

T4) One 
sentence

↓↑One Two […] 

Thirty.
µ𝑇𝑚𝑖𝑑 𝐹↓

(starting from rotor’s 4th position)

𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘 𝑭↓ 𝐹→
3 - 12

-9 actions
5/12
42% 1.6 5.3 -3.8

T5a) 2-half-
sentences

↓↑three Twenty four […] 

Thirty. Thirty one Thirty two

µ𝑇𝑚𝑖𝑑 𝐹↓

𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→ 𝐹𝑙𝑜𝑛𝑔→

(starting from rotor’s 4th position)

𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘

𝑭↓𝑭↓𝐹→ 𝑭↑ 𝐹→ 𝐹→ 𝐹→ 𝐹→

11 - 24
-13 actions

7/24
29% 6.0 10.6 -4.7

T5b) 2-half-
sentences

↓↑eight Twenty nine Thirty. 

Thirty one […] Thirty seven
µ𝑇𝑚𝑖𝑑 𝐹↓ (𝐹𝑙𝑜𝑛𝑔→ x 13)

(starting from rotor’s 4th position)

𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘𝑹𝒄𝒄𝒘

𝑭↓ 𝐹→ 𝑭↑ (𝐹→ x 13)

29 - 40
-11 actions

6/40
15% 15.9 17.7 -1.8

Figure 2: StEM modelling of optimal interaction trajectories
using �GeT and VO for each task, and corresponding pre-
dicted time. Inputs use for navigating menus using VO are
in orange.

of time. We modeled �T in sequence, whereas they could be per-
formed in parallel. Second, the gesture to navigate the rotor menu
using VO is di�erent from the rotation gesture (R) described in the
StEM. The rotation gesture in StEM is a precise input intended to
control a parameter (e.g., the rotation angle of an object) whereas
in our situation, it is a “ballistic rotation” that does not need to be
�nely controlled or targeted. We therefore considered this gesture
as equivalent to a �ick (F) gesture in terms of time. Third, �GeT
involves two types of horizontal swipes: short and long. A linear
movement with a length of less than 150 pixels is considered as a
short swipe. As neither StEM nor FLM can discern between the two,
we counted the time of long �icks as twice that of regular �icks.

To sum up, we used the following operator times: 669ms for T
(since no precise screen location is required, we used the maximum
amplitude to derive the operator time); 669ms for �T; 216ms for
F and Fshort; 432ms for Flong; and 216ms for R.

As both VO and �GeT use sequences of ballistic �ick and rotation
gestures, which start and end their movement in the air, rotations
(or �icks) will necessarily be modelled as TR (or TF). In order to
simplify the reading of �gure 2, we simply use R for TR and F for
TF. However, we take both operator times into account.

As theoretical results suggest potential bene�ts, we proceeded
with an experimental study.

4 EXPERIMENT DESIGN
The study investigates, for a task of text selection in eyes-free
situation, whether �GeT is faster, requires less inputs, and ranks
better compared to the VO baseline technique.

4.1 Participants
9 PVI and 8 sighted volunteers (6 participants self-identi�ed as
women: 4 PVI, 2 sighted) aged from 24 to 58 (Mean 33, SD 9.1)
participated in this experiment. In the following sections, we refer
to these participants as P1 to P9 for the PVI and P10 to P17 for the
sighted participants (SP). All the participants were right-handed
and blind-folded during the experiment. None of the participants
reported any mental or perceptual impairments other than visual.
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All of them use a touchscreen device daily; 8 PVI among 9 own an
iOS device and have used VoiceOver before. None of the SP had
ever used VoiceOver. No participant had experience with TTF �G.

4.2 Apparatus
The experiment was conducted on a 10.1” tablet (Huawei MediaPad
T5 Lite, 24*15,5 cm), laid �at on a table in front of them. Input
capabilities were provided through both the tablet (touch inputs)
and custom-made rings worn on the right hand (�Gesture inputs).
The tablet ran a full-screen blank web-page which relayed all touch
events, via websockets, to a laptop. Rings weremade using an elastic
fabric to accommodate various �nger sizes and embed patched
squares of conductive fabric and yarn. Each conductive surface
played the role of a capacitive touch sensor connected to an Arduino
board. They were 2cm⇥2cm large to cover the middle phalanx of
the index and middle �ngers, and the nail of the little �nger. The
Arduino board relayed press and release contacts on each sensor to
the laptop via a wired serial connection. On the laptop, a Python
written software ran the experiment, received and processed data
from both the rings and the tablet, and displayed a window on the
laptop allowing the experimenter to monitor the progress. We used
an absolute mapping between the tablet screen and the text area on
which tasks were performed. In our experiment, we implemented
�GeT as well as a VoiceOver like technique, allowing more control
over the experimental logs.

4.3 Experimental procedure
We manipulated participants’ hands to show the gestures required
in the experiment then we had them go through a tutorial. When
they felt ready, they were instructed to select a section of a text as
quickly and accurately as possible in a tablet sized view displaying
three sentences of pseudo-text over a span of thirteen lines. To only
evaluate the selection process and not the memorization of the text,
we used numbers from one to sixty two, written in order in full
letters (i.e., “One Two Three [...] Sixty Sixty one Sixty two.”). Each
word is counted separately (i.e., “twenty one” counts as two words).
The resulting pseudo-text was divided into three sentences: “One”
to “Thirty”, “Thirty one” to “Fifty four”, “Fifty �ve” to “Sixty two”).

Each participant completed a block of �ve text selection tasks
per technique. The order of the techniques was counter-balanced
across participants. Each task involved a di�erent target type. Be-
tween the �rst and second block, target types were the same but
at di�erent locations in the text, so no two tasks were identical.
These target types were inspired from a previous study on text
selection [17], and were meant to cover a variety of situations. Tar-
get types were: 1) 4-words, selecting four consecutive words; 2)
sentence, selecting one sentence; 3) 2-words-and-half, selecting
two words and the following three characters, or selecting the last
three characters of a word and the following two words 4) 2-half-
sentences, selecting the last four words of a sentence then thirteen
words, or selecting the last thirteen words of a sentence then the
�rst four words of the next one; 5)mid-word, selecting 3 charac-
ters in the middle of a word of 5 or 6 characters. The goal behind
this panel of tasks was not to represent real-world behaviors, but
rather to assess the usability of both techniques in more or less
demanding contexts. The target type order was always the same:

from “easy” to “hard” (the same order in which the target types
are listed above). We purposefully chose to gradually increase the
di�culty to ease the learning process of our participants and keep
the duration of a session under an hour. The target was read aloud
by the experimenter at the beginning of each trial. Participants
could ask the experimenter to repeat the target as many times as
necessary during the trial. A trial ended when the participant told
the experimenter s.he completed the selection. If the target was
not selected or was partially selected, the trial was counted as an
error. The experimenter started the next trial upon request of the
participant. Participants could take a break whenever they wanted
in between trials. Once a block has been completed, participants
answered a raw Nasa-TLX (perceived workload) and a UMUX-LITE
(general usability) questionnaires about the technique used in the
block. Once the second block has been completed and the ques-
tionnaires answered, participants were asked which technique they
preferred and why. The experimenter concluded the experiment
by collecting open comments and answering any questions. On
average, the experiment lasted one hour.

5 RESULTS
To compare VO and �GeT e�ciency, we primarily focus on se-
lection time which spans between the end of the text selection-
handles placement phase and the end of the trial. Additionally, we
also compare move time (which spans between the �rst touch or
�Gesture input recorded and the beginning of the selection phase),
number of input actions per trial, errors, cognitive load, user
experience and user preference.

Since sighted people (SP) completed 2 more tasks than people
with visual impairment (PVI), we report their results separately. We
report medians and Interquartile Ranges (IQR) for continuous data
(i.e., selection time, move time, number of inputs), use Wilcoxon
signed-rank tests as they are not normally distributed, and report
the rank biserial correlation (A ) e�ect size. For non-continuous data
(i.e., cognitive load, user experience), we report means and Standard
Deviations (SD). We use Mann-Whitney U tests and report the rank
biserial correlation (A ) e�ect size. We use a Two proportion z-tests
for binary data (i.e., number of errors). We also studied in detail
all the interaction trajectories. We report a summary of strategies
we observed as well as potential explanation for the behaviors that
stand out. We use Two proportion z-tests for this purpose.

In total, 9 PVI ⇥ 3 tasks = 27 trials, and 8 SP ⇥ 5 tasks = 40
trials were completed per interaction technique. We removed one
trial from the SP results (P11, condition VO, task "sentence") as the
participant wrongly thought to have completed the trial, but did
not select anything.

5.1 Quantitative analysis
Figure 3 summaries the selection time andmove time analysis.

5.1.1 PVI. For PVI, the median selection time is shorter for �GeT
(11 seconds, IQR 22.5) than for VO (21.6s, IQR 22.7). A Wilcoxon
test show a signi�cant di�erence between the two techniques for
PVI (p = 0.014, r=0.534). Selection times vary greatly between
each task type (�gure 5). For PVI, a Wilcoxon test shows signi�cant
di�erences in selection time between the two techniques for the
“four-words” (p=0.027, r=0.822) and “sentence” (p=0.012, r=0.911)
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Data Vision status IT Median (s) IQR Test Effect size

Selection time

PVI
µGeT 11.0 22.5 Wilcoxon signed-rank

p = 0.014* r = 0.534
VO 21.6 22.7

Sighted people
µGeT 21.7 22.3 Wilcoxon signed-rank

p = 0.548 r = 0.113
VO 20.5 15.2

Move time

PVI
µGeT 29.2 34.6 Wilcoxon signed-rank

p = 0.162 r = 0.312
VO 42.0 58.7

Sighted people
µGeT 21.0 18.5 Wilcoxon signed-rank

p = 0.239 r = 0.265
VO 31.9 20.0

# inputs per trial

PVI
µGeT 8 6.5 Wilcoxon signed-rank

p = 0.012* r = 0.555
VO 14 10

Sighted people
µGeT 11 12 Wilcoxon signed-rank

p = 0.24 r = 0.265
VO 12 4.8

# errors

PVI
µGeT 0 (total) / Two proportion z-test

p = 0.004* /
VO 7 (total) /

Sighted people
µGeT 1 (total) / Two proportion z-test 

p = 0.545 /
VO 2 (total) /

Figure 3: Summary of the results regarding Selection time,
Move time, Number of inputs and Number of errors, for both
populations (PVI and SP), by interaction technique.

Data Vision status IT Median IQR Test Effect size

Mental demand
PVI

µGeT 3 2 Mann-Whitney U
p= 0.653 r=0.116

VO 3 3

Sighted people
µGeT 6 1.5 Mann-Whitney U

p= 0.825 r=0.078
VO 6 1.25

Physical demand
PVI

µGeT 1 1 Mann-Whitney U
p= 0.083 r=0.457

VO 2 0

Sighted people
µGeT 2 2.5 Mann-Whitney U

p= 0.870 r=0.062
VO 2 2.25

Temporal demand
PVI

µGeT 2 1 Mann-Whitney U
p= 0.778 r=0.086

VO 2 2

Sighted people
µGeT 3.5 1.5 Mann-Whitney U

p= 0.703 r=0.125
VO 3.5 1.25

Performance
PVI

µGeT 5 2 Mann-Whitney U
p= 0.745 r=0.099

VO 5 3

Sighted people
µGeT 6 1.25 Mann-Whitney U

p= 0.867 r=0.062
VO 6 0.5

Effort
PVI

µGeT 2 2 Mann-Whitney U
= 0.855 r=0.062

VO 2 1

Sighted
µGeT 5 2 Mann-Whitney U

p= 1 r=0.016
VO 5 1.25

Frustration
PVI

µGeT 1 2 Mann-Whitney U
p= 0.660 r=0.124

VO 1 1

Sighted
µGeT 4 3 Mann-Whitney U

p= 0.704 r=0.126
VO 4 3.25

Usefulness
PVI

µGeT 7 1 Mann-Whitney U
p= 0.164 r=0.370

VO 6 2

Sighted
µGeT 5.5 1 Mann-Whitney U

p= 0.234 r=0.344
VO 5 0.5

Ease of use
PVI

µGeT 6 2 Mann-Whitney U
p= 0.238 r=0.321

VO 7 1

Sighted
µGeT 6 2 Mann-Whitney U

p= 0.357 r=0.281
VO 5.5 1.25

Preferred technique
PVI µGeT / VO 5 (56%)/ 4 (44%) (N=9) / /

Sighted µGeT / VO 4 (50%) / 4 (50%) (N=8) / /

Figure 4: Summary of the results regarding the two question-
naires (raw Nasa-TLX and UMUX-Lite), for both populations
(PVI and SP), by interaction technique.

tasks in favor of �GeT (�gure 5). The medianmove time is shorter
for �GeT than for VO (29.2s �GeT vs. 42s VO) (21s �GeT vs. 31.9s
VO for SP). This observation holds when broken down for each
task type (�gure 5). However, Wilcoxon tests show no signi�cant
di�erence. The median number of inputs is lower for �GeT than
for VO (8 �GeT vs. 14 VO) (�gure 3). A Wilcoxon test shows a
signi�cant di�erence between both techniques (p=0.012, r=0.555)
(�gure 3). When broken down by task type, tests show a signi�-
cant di�erence for “four-words” (p=0.024, r=0.866) and “sentence”
(p=0.028, r=0.844) tasks in favor of �GeT. Regarding the number
of errors, only 7 out of the 54 PVI trials resulted in text selec-
tions that did not match the target, all of them with VO. A Two
proportion z-test shows a signi�cant di�erence (p=0.004) between
the two techniques. We measured the perceived cognitive load
for each technique using a raw Nasa-TLX questionnaire and the
user experience using a UMUX-Lite questionnaire. Figure 4 shows
the mean subjective scores per technique and SD for each of the 6

items of the Nasa-TLX questionnaire (i.e., mental demand, physical
demand, temporal demand, overall performance, global e�ort, frus-
tration level) and the 2 items of the UMUX-Lite questionnaire (i.e.,
usefulness and usability). For each item of the two questionnaires,
Mann-Whitney U tests show no signi�cant di�erence between both
techniques. Finally, user preference did not reveal any di�erence,
both techniques were equally liked (�gure 4).

5.1.2 Sighted. For SP, the median selection time is shorter for
VO (20s, IQR 15.1) than for �GeT (21.7s, IQR 22.3) A Wilcoxon test
does not show a signi�cant di�erence between the two techniques
for SP (p = 0.548). A Wilcoxon test shows signi�cant di�erences
in selection time between the two techniques for the “mid-word”
tasks (p=0.008, r= 1), in favor of VO (�gure 5). The medianmove
time is shorter for �GeT than for VO (21s �GeT vs. 31.9s VO). This
observation holds when broken down for each task type (�gure
5). However, Wilcoxon tests show no signi�cant di�erence. The
median number of inputs is lower for �GeT than for VO (11 �GeT
vs. 12 VO) (�gure 3). A Wilcoxon test shows no signi�cant di�er-
ence between both techniques (p=0.582) (�gure 3). When broken
down by task type, tests show a signi�cant di�erence for “mid-
word” (p=0.022, r=1) task in favor of VO. Regarding the number
of errors, 3 out of the 79 trials were erroneous: 2 with VO and 1
with �GeT. A two proportion z-test shows no signi�cant di�erence
(p=0.545) between the two techniques. We measured the perceived
cognitive load for each technique using a raw Nasa-TLX question-
naire and the user experience using a UMUX-Lite questionnaire.
Figure 4 shows the mean subjective scores per technique and SD
for each of the 6 items of the Nasa-TLX questionnaire (i.e., mental
demand, physical demand, temporal demand, overall performance,
global e�ort, frustration level) and the 2 items of the UMUX-Lite
questionnaire (i.e., usefulness and usability). For each item of the
two questionnaires, Mann-Whitney U tests show no signi�cant dif-
ference between both techniques. Finally, user preference did not
reveal any di�erence, both techniques were equally liked (�gure 4).

5.2 Analysis of the interaction trajectories
To better understand the di�erences in performance between the
two techniques, we used Thematic analysis to derive types of be-
havior (patterns) in all the interaction trajectories that made par-
ticipants deviate from the optimal trajectories. We recall that an
optimal trajectory is using the least number of inputs for a given
starting point, as de�ned in Section 3.3. One author did the parsing
and analysis. There are 3 main types: disorientation, inertia and
mistake. Figure 6 summarizes the classi�cation of all trials.

Disorientation groups behaviors that delay the selection task
because users take extra steps to understand the state of the system.
Observed behaviors are:

• Users triggering time consuming audio feedback to read the
current text selection.

• Users pausing or hesitating (from 3 to 15 seconds) between
inputs.

• Users repeatedly moving a selection handle back and forth
to understand the text locally.

• Users trying to cross over selection handles, which by de-
sign is not possible for both techniques. Since there is no
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mid-word
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2-word-and-half

sentence

4-words

µGeT


VoiceOver

time (seconds) time (seconds)

0 20 40 60 80 0 20 40 60 80 100 120

move time

selection time

People with Visual Impairment (PVI) Sighted People (SP)

Figure 5: Median move and selection times with IQR, organized by task type and technique (PVI on the left, SP on the right).

Data Vision status IT Count % of occurrence Test

Optimal trajectories
PVI

µGeT 12 44% Two proportion z-test
p= 0.048VO 5 19%

Sighted
µGeT 10 25% Two proportion z-test

p= 0.080VO 4 10%

Disorientation:
Supplementary audio 

feedback

PVI
µGeT 3 11% Two proportion z-test

p=0.329VO 1 4%

Sighted
µGeT 19 48% Two proportion z-test

p= 0.003VO 3 8%

Disorientation:
Pauses (> 3s)

PVI
µGeT 16 59% Two proportion z-test

p= 0.398VO 19 70%

Sighted
µGeT 34 85% Two proportion z-test

p= 0.020VO 24 62%

Disorientation:
Back & forth in text

PVI
µGeT 6 22% Two proportion z-test

p= 0.049VO 1 4%

Sighted
µGeT 10 25% Two proportion z-test

p= 0.013VO 2 5%

Disorientation:
Trying to cross handles 

over

PVI
µGeT 0 0%

/
VO /

Sighted
µGeT 4 10%

/
VO /

Inertia: 
Navigating VO menus in 

the longest direction

PVI
µGeT /

/
VO 14 52%

Sighted
µGeT /

/
VO 17 44%

Inertia: Performing a 
valid sequence of 

selection inputs in a sub-
optimal mode

PVI
µGeT 1 4% Two proportion z-test

p= 0.049VO 6 22%

Sighted
µGeT 2 5% Two proportion z-test

p= 0.398VO 4 10%

Mistake:
Spoiling the current 

selection

PVI
µGeT 4 15% Two proportion z-test

p= 0.036VO 0 0%

Sighted
µGeT 8 20% Two proportion z-test

p= 0.003VO 0 0%

Mistake:
Confuse interactions

PVI
µGeT 9 (small. gran.) / 2 (menu/sub) 33% / 7% Two proportion z-test

p= 0.121 (small. graVO 4 (smaller granularity only) 15%

Sighted
µGeT 15 (smaller granularity only) 38% Two proportion z-test

p= 0.048VO 7 (smaller granularity only) 18%

Mistake:
Overshoot selection or 

item menu

PVI
µGeT 3 (text only) 11% Two proportion z-test

p= 0.276VO 6 (menu only) 22%

Sighted
µGet 12 (text only) 30% Two proportion z-test

p= 0.001 (text)VO 1 (text) / 3 (menu) 3% / 8%

Figure 6: Summary of the results regarding the interaction
trajectories, for both populations (PVI and SP), by interaction
technique.

audio feedback for this speci�c case, users could spend some
time trying to actively understand what is happening, before
moving on.

Inertia groups behaviors that delay the selection task because
users adopt a sub-optimal strategy. Observed behaviors are:

• Users navigating VO menus, which wrap-around, in the
“wrong” direction (e.g., going from 1st to 8th rotor item clock-
wise, instead of counter-clockwise).

• Users performing a valid sequence of selection inputs in a
sub-optimal mode (e.g., selecting a sentence word-by-word
instead of using the sentence selection mode).

Mistake groups behaviors that largely hinder the selection task
and impose extra correction steps to achieve the task. Observed
behaviors are:

• Users spoiling their current selection by (un)selecting a large
portion of text, forcing to redo �ner granularity selections.

• Users confusing interactions (e.g., performing one TTF in-
stead of the other, moving the rotor menu instead of the
sub-menu).

• Users overshooting their selection or item menu.

These errors are not mutually exclusive: several of them can be
made during a trial or even at the same time.

6 DISCUSSION
In the following, we discuss the results for people with visual im-
pairment (PVI) and sighted people (SP) separately.

PVI - overall performances. Overall, PVI performed better with
�GeT than with VO (�gure 3). When looking at interaction trajec-
tories, 12 out of 27 (44%) are optimal with �GeT, and only 5 out
of 27 (19%) with VO (signi�cant di�erence, p=0.048). With �GeT,
sub-optimal trajectories are mostly due to mistakes (use of a smaller
granularity – 9/27, 33%) and disorientation (back and forth - 6/27,
22%). With VO, they are mostly due to mistakes (menu overshot
– 6/27, 22%), and inertia (use of sub-optimal levels of granularity
– 6/27, 22%). Pauses are very common in both techniques (�GeT:
16/27, 59%; VO: 19/27, 70%). Our results also show that PVI per-
formed the text selections with a sub-optimal granularity 22% of the
time with VO (compared to only 4% with �GeT) (p=0.045), which
exponentially lengthened the selection time (e.g., P2 took 19.5s to
select a sentence word by word). While in proportion, PVI seem to
make less sub-optimal actions with VO than with �GeT (12 with
VO, 26 with �GeT), they still are faster with �GeT. For PVI, it could
suggest that: 1) sub-optimal actions are less costly in �GeT than in
VO; and/or 2) sub-optimal behaviors are easier to correct or have
less inertia with �GeT than with VO.

SP - overall performances. Overall, SP performed similarly with
both techniques (�gure 3). When looking at interaction trajectories,
10 out of 40 (25%) are optimal with �GeT, and only 4 out of 39 (10%)
with VO (no signi�cant di�erence, p=0.08). With �GeT, sub-optimal
trajectories are mostly due to disorientation (supplementary audio
feedback – 19/40, 48%, back and forth – 10/40, 25%), and due to mis-
takes (use of a smaller granularity – 15/40, 38%, selection overshot
– 12/40, 20%). With VO, they are mostly due to mistakes (use of a
smaller granularity – 7/39 trials, 18%). No other behaviors happened
more than 10% of the time with VO. Pauses are very common in
both techniques, but higher with �GeT (�GeT: 34/40, 85%; VO: 24/39,
62%; signi�cant di�erence p=0.02) While in proportion, SP seem
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to make much less sub-optimal actions with VO than with �GeT
(17 with VO, 66 with �GeT), they still perform equivalently with
both techniques in terms of selection time. Probable explanations
exposed for PVI could therefore hold as well for SP.

Task performances. PVI performed better with �GeT in the “4-
words” and “sentence” tasks, and similarly in the “2-words-half”
tasks, while SP performed similarly with both techniques for all
tasks, except the “mid-word” tasks, where they perform better
with VO. Except for the “sentence” task, our observations di�ers
from expected theoretical predictions. StEM models only account
for motor actions, meaning that it models “expert” users, which
by nature is not the case in our experiment. However, we could
have expected similar ranking between both techniques. Therefore,
di�erences we see could reveal the di�erence in cognitive work
that participants have to go through to complete their tasks. For
instance, tasks “4-words” and “sentence” do not require changing
levels of granularity and approach ecological tasks. In both cases,
we could hypothesize cognitive work to be low hence matching the
motor predictions. For the other tasks, the mental demand could
have eroded away the small expected motor di�erences.

Paradigm di�erences. If we look at pauses and number of inputs,
results reveal a major di�erence between both techniques. VO yields
more inputs but seem to require less thinking time, as opposed to
�GeT.We hypothesize that the VOmenu acts as a guide and provides
an explicit and structured way to interact with the system: menu
items can be only be navigated linearly, the choices of what to do
next is reduced to 4 options (i.e., previous item, next item, (de)select
next entity), and audio feedback explicitly states the new mode.
On the contrary, �GeT relies on memory, like keyboard shortcuts:
commands are accessible at all times but users need to to know the
mapping between actions and commands This paradigm di�erence
may become exacerbated as the complexity of the task increases.

For VO, we detected inertia behavior in menus (i.e., cycling
through the “wrong” way): 14/27 trials (52%) for PVI, 17/40 trials
(44%) for SP (no signi�cant di�erence, p=0.52). While it increased
the number of inputs it did not substantially increase selection time.
They are likely due to a lack of familiarity with the technique, thus
resulting in a random choice of direction for both populations.

For PVI, time per input is signi�cantly shorter (Wilcoxon test
p=0.020, r=0.867) for the “easiest” tasks (“4-words”, 0.95s IQR 0.79)
than for the “hardest” tasks (“2-words-half”, 2.13s IQR 0.62) with
�GeT, which is not the case with VO where all three task types have
similar Time per input.

PVI and SP di�erences. With �GeT, SP asked signi�cantly more
supplementary audio feedback than PVI (19/40 trials, 48% for SP
compared to 3/27 trials, 11% for PVI, p=0.0016). SP also paused
signi�cantly more with �GeT than with VO. SP also overshot more
with �GeT (12/40 trials, 30% for �GeT compared to 1/40, 3% for VO,
p=0.001). SP had more sub-optimal strategies in �GeT compared
to PVI (0.84 sub-optimal actions per trial on average to 0.44 for
PVI) but less in VO (0.44 per trial to 0.96 for PVI). Related to the
previous point, this could show that SP are simply less familiar
with eyes-free interaction and therefore rely more on structured
audio feedback such as that provided by VO. In �Get, since such

structured feedback is not provided, they have to pause more often
and rely on their mental model of the system.

7 CONCLUSION
Touchmodality remains the primarymeans of interaction for tablets
and smartphones but still presents usability challenges for peo-
ple with visual impairment (PVI). This paper focuses on the use
of microgestures (�G) as a secondary input modality to enhance
touchscreen interaction bandwidth in eyes-free situations. We pro-
posed �GeT, a multimodal eyes-free text selection technique, that
combines touch interaction with thumb-to-�nger �G. We theoret-
ically and experimentally compared �GeT to the iOS VoiceOver
(VO) accessibility tool. Our results show that �GeT outperforms
VO in terms of selection speed for PVI. Interestingly, selection
time is equivalent with both techniques for sighted people. With
�Get, sighted people performed more actions, required more au-
dio feedback and paused more than PVI to complete the task. We
hypothesize that this is due to the di�erence in familiarity with
audio-based interaction without the visual channel. Moreover, our
results show that �GeT outperforms VO in terms of number of
inputs of the optimal interaction trajectories. However, participants
often deviate from these optimal trajectories. A detailed analysis
of the trajectories showed that �GeT is more likely to produce sub-
optimal actions that lengthen the interaction trajectory, causing
errors and confusion. However, these sub-optimal actions individ-
ually have a small impact on the selection time because they can
be quickly corrected. On the contrary, VO is less likely to produce
sub-optimal actions, but the errors are more di�cult to correct, re-
sulting in more failures. We put forward the following explanation:
VO, similar to graphical menus, provides a structural guide that
reduces the need to remember the commands but that lengthens
the interaction. �GeT is similar to keyboard shortcuts: users must
know the commands beforehand and remember them to use them
e�ciently. But all commands are directly accessible at all times,
which encourages users to change their course of action. We ex-
pect that with more expertise, both populations would get closer to
the modeled optimal interaction trajectories. We therefore plan to
further investigate this e�ect of expertise with our technique �GeT.
We also plan to test other tasks suggested by our participants, such
as common copying and pasting tasks, and tasks in the context of
games.
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