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Abstract

Consider a symplectic map which possesses a normally hyperbolic in-
variant manifold of any even dimension with transverse homoclinic chan-
nels. We develop a topological shadowing argument to prove the existence
of Arnold diffusion along the invariant manifold, shadowing some itera-
tions of the inner dynamics carried by the invariant manifold and the
outer dynamics induced by the stable and unstable foliations. In doing
so, we generalise an idea of Gidea and de la Llave in [26], based on the
method of correctly aligned windows and a so-called transversality-torsion
argument. Our proof permits that the dynamics on the invariant mani-
fold satisfy only a non-uniform twist condition, and, most importantly for
applications, that the splitting of separatrices be small in certain direc-
tions and thus the associated drift in actions very slow; diffusion occurs
in the directions of the manifold having non-small splitting. Furthermore
we provide estimates for the diffusion time.

1 Introduction

Arnold diffusion, as first exposed in [1] has become a major subject of study
for nearly integrable Hamiltonian systems. This mechanism epitomises how an
integrable (“stable”) system can become unstable, with actions varying slowly
(as permitted by Nekhoroshev’s theorem) but substantially, as opposed to what
would happen for an integrable perturbation [7, 13]. A key idea has been to
focus on a normally hyperbolic invariant cylinder. The cylinder is indeed a
more robust object than individual hyperbolic invariant tori that may lie inside
the cylinder and which Arnold initially used. Another key addition to Arnold’s
mechanism is the random iteration of the dynamics carried by the cylinder and
the “outer” dynamics obtained at the limit by following unstable and stable
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leaves of the cylinder (see figure 1). Both these ideas appear in Moeckel’s
work [35]. These ideas were formalised by Delshams, de la Llave and Seara with
the invention of the scattering map which encodes the outer dynamics. This
allowed them to solve the large gap problem, when two (primary) invariant tori
are too far away for their unstable and stable manifolds to meet [14]. In these
last decades, this approach has been successfully implemented by a number
of authors, using either a geometric description [14, 16, 24, 25, 38, 39] or a
variational one [9, 10].

Another step consists in dealing with the a priori stable case, where the
normally hyperbolic cylinder appears with the perturbation itself [2, 3, 8, 10, 34].
In this article we deal with the a priori unstable case only.

One of the main difficulties lies in proving the existence of orbits shadow-
ing random iterations of the inner and outer maps. Shadowing results can be
achieved using different tools: variational methods (see, for instance, [4, 5, 6]),
modern versions of the Lambda lemma [23, 27, 37], or with topological tech-
niques such as the the correctly aligned windows method.

The advantge of the topological methods is that they require relatively lit-
tle information regarding the dynamics on the normally hyperbolic invariant
cylinder. In particular, no knowlege of invariant quasiperiodic tori is expected.
As far as the authors know, correctly aligned windows were imagined by Con-
ley and Easton [12], and the first application of the correctly aligned windows
method to Arnold diffusion problems is the paper [26]. In this paper, Gidea and
de la Llave use the method of correctly aligned windows to prove the existence
of diffusion orbits in a priori unstable Hamiltonian systems and to construct
orbits with an unbounded growth of energy for the Mather problem (that is a
geodesic flow with a time dependent potential). This second model is usually
said to be a priori chaotic. In both settings the normally hyperbolic invariant
cylinder is two-dimensional. Moreover, they assume that the induced dynamics
on the cylinder satisfies a twist property, and the twist is uniform with respect
to the perturbative parameter.

The purpose of this paper is to generalise [26] from several points of view:

• The normally hyperbolic cylinder may be of any (even) dimension.

More importantly:

• The twist property satisfied by the inner dynamics may be weak, i.e. the
twist may vanish when the perturbative parameter goes to 0.

• We may split the actions between two groups, faster actions and slower
actions, and ignore the latter. Indeed, proving “partial transversality”
of the invariant manifolds of the normally hyperbolic cylinder along the
fast ones is enough to achieve drift in these directions whereas the slow
directions can be treated as a black box, with no control of their instability
rate.

These improvements are crucial since such behaviour is exhibited naturally
in physical models, particularly in models with multiple time scales as happens
often, for instance, in Celestial Mechanics.
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Many of the known shadowing mechanisms rely on rather strong assump-
tions, both on the inner dynamics in the cylinder and on the transversality of the
associated stable and unstable invariant foliations. Often such hypotheses are
difficult to verify when multiple time scales are present. The results presented
in this paper are quite flexible and can be applied to rather general multiple
time scale settings.

In particular, consider an analytic nearly integrable Hamiltonian system with
multiple time scales such that some of the angles perform fast non-resonant rota-
tion and therefore its conjugate actions are very slow whereas some other angles
are not fast. It is well known that, in the fast directions, the transversality be-
tween the invariant manifolds is exponentially small and therefore very difficult
to analyze. At the same time, thanks to averaging theory, one can make the
dynamics in the conjugate actions much slower. The results in this paper allow
us to obtain diffusing orbits along the actions conjugated to the slow angles
even if one does not have “full transversality” of the invariant manifolds, i.e. no
transverality in the fast directions (see Theorem 2.11 below).

All the improvements achieved in the present papers are needed to construct
diffusing orbits in the 4 Body Problem along secular resonances. In the compan-
ion paper [11], the authors prove the existence of orbits of the 4 body problem
in both the planetary regime (one massive body and three bodies with small
mass) and hierarchical regime (bodies increasingly separated) such that some of
the bodies have osculating eccentricites and some mutual inclinations drifting
with no constraint. This is the first analytical result of unstable motions in an
N body problem in the planetary regime.

Secular resonances are those given by the secular angles, that is the angles
which are constant for the two body problem: the argument of the perihelion
and the longitude of the ascending node of each of the bodies. Such angles are
much slower than the mean anomalies of the bodies which perform fast rotation.
Therefore, we are exactly in the multiple time-scale setting described above. In
[11], we are able to construct diffusing orbits in the actions conjugated to the
secular angles, i.e. the osculating eccentricities and mutual inclinations of the
bodies, without having to control the dynamics on semimajor axis directions.
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2 Set-up, Assumptions, and Results

2.1 Definitions

Let M be a Cr manifold of dimension d where r ≥ 1. Let F ∈ Diff1(M), and
let Λ be a submanifold of M .

Definition 2.1. We call Λ a normally hyperbolic invariant manifold for F if
Λ is F -invariant, and there are

0 < λ− < λ+ < λ0 < 1 < µ0 < µ− < µ+ (1)

and an invariant splitting of the tangent bundle

TΛM = TM ⊕ Es ⊕ Eu

such that:

λn−‖v‖ ≤ ‖DFn(x)v‖ ≤ λn+‖v‖ for all x ∈ Λ, v ∈ Esx, n ∈ N
µn−‖v‖ ≤ ‖DFn(x)v‖ ≤ µn+‖v‖ for all x ∈ Λ, v ∈ Eux , n ∈ N

λ
|n|
0 ‖v‖ ≤ ‖DFn(x)v‖ ≤ µ|n|0 ‖v‖ for all x ∈ Λ, v ∈ TxΛ, n ∈ Z.

(2)

The results presented in this paper also apply to the case where Λ is a
manifold with boundary, and indeed the case where Λ is only locally invariant:
this means that there is a neighbourhood V of Λ such that orbits of points in Λ
stay in Λ until they leave V . In the latter case orbits may escape through the
boundary.

This definition guarantees the existence of stable and unstable invariant
manifolds W s,u(Λ) ⊂M defined as follows. The local stable manifold W s

loc(Λ) is
the set of points in a small neighbourhood of Λ whose forward iterates never leave
the neighbourhood, and tend exponentially to Λ. The local unstable manifold
Wu

loc(Λ) is the set of points in the neighbourhood whose backward iterates stay
in the neighbourhood and tend exponentially to Λ. We then define

W s(Λ) =

∞⋃
i=0

F−i (W s
loc(Λ)) , Wu(Λ) =

∞⋃
i=0

F i (Wu
loc(Λ)) .

On the stable and unstable manifolds we have the strong stable and strong
unstable foliations, the leaves of which we denote by W s,u(x) for x ∈ Λ. For
each x ∈ Λ, the leaf W s(x) of the strong stable foliation is tangent at x to
Esx, and the leaf Wu(x) of the strong unstable foliation is tangent at x to Eux .
Moreover the foliations are invariant in the sense that F i (W s(x)) = W s

(
F i(x)

)
and F i (Wu(x)) = Wu

(
F i(x)

)
for each x ∈ Λ and i ∈ Z. We thus define the

holonomy maps πs,u : W s,u(Λ)→ Λ to be projections along leaves of the strong
stable and strong unstable foliations. That is to say, if x ∈ W s(Λ) then there
is a unique x+ ∈ Λ such that x ∈ W s(x+), and so πs(x) = x+. Similarly, if
x ∈Wu(Λ) then there is a unique x− ∈ Λ such that x ∈Wu(x−), in which case
πu(x) = x−.
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Figure 1: The scattering map S takes a point x− ∈ Λ, follows the unique leaf of
the strong unstable foliation passing through x− to the point x in the homoclinic
channel Γ, and from there follows the unique leaf of the strong stable foliation
passing through x to the point x+ on Λ.

Now, suppose that x ∈ (W s(Λ) tWu(Λ))\Λ is a transverse homoclinic point
such that x ∈W s(x+)∩Wu(x−). We say that the homoclinic intersection at x
is strongly transverse if

TxW
s(x+)⊕ Tx (W s(Λ) ∩Wu(Λ)) = TxW

s(Λ),

TxW
u(x−)⊕ Tx (W s(Λ) ∩Wu(Λ)) = TxW

u(Λ).
(3)

In this case we can take a sufficiently small neighbourhood Γ of x in W s(Λ) ∩
Wu(Λ) so that (3) holds at each point of Γ, and the restrictions to Γ of the
holonomy maps are bijections onto their images. We call Γ a homoclinic channel
(see Figure 1). We can then define the scattering map as follows [15].

Definition 2.2. Let y− ∈ πu (Γ), let y = (πu|Γ)
−1

(y−), and let y+ = πs(y).
The scattering map S : πu(Γ)→ πs(Γ) is defined by

S = πs ◦ (πu)
−1

: y− 7−→ y+.

Suppose now that the smoothness r of M and F is at least 2, suppose the
normally hyperbolic invariant manifold Λ is a Cr submanifold ofM , and suppose
instead of condition (1) we have the stronger condition

0 < λ− < λ+ < λr0 < 1 < µr0 < µ− < µ+ (4)

on the hyperbolicity parameters. This large spectral gap condition implies Cr−1

regularity of the strong stable and strong unstable foliations [32], which in turn
implies that the scattering map S is Cr−1 [15].
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Remark 2.3. In general, the scattering map is not globally defined. The ho-
moclinic intersection of invariant manifolds can give rise to very complicated
domains of definition of the scattering map, and the general case is that there
are many branches Sα of the map defined on sets Uj ⊂ Λ. The sets Uj may or
may not overlap, and the scattering map may have singularities on ∂Uj. While
the results of this paper apply to the general case, we simply write S : U → Λ to
denote the scattering map to avoid awkward notation.

Suppose the map F depends smoothly on a small parameter ε. We point
out that all objects defined thus far may vary with ε, but, to simplify notation,
we do not explicitly write ε as a subscript or argument. Indeed, as ε varies,
the perturbed (ε > 0) normally hyperbolic invariant manifold can be written as
a graph over the unperturbed (ε = 0) manifold as a result of Fenichel theory,
and so we can continue to use the coordinates from the original unperturbed
manifold [20, 21, 22].

Suppose the scattering map S is defined relative to a homoclinic channel
Γ for all sufficiently small ε > 0. We allow for the possibility that the angle
between W s,u(Λ) along the homoclinic channel Γ goes to 0 as ε → 0. Denote
by α(v1, v2) the angle between two vectors v1, v2 in the direction that yields the
smallest result (i.e. α(v1, v2) ∈ [0, π]). For x ∈ Γ, let

αΓ(x) = inf α(v+, v−)

where the infimum is over all v+ ∈ TxW s(Λ)⊥ and v− ∈ TxWu(Λ)⊥ such that
‖v±‖ = 1.

Definition 2.4. For σ ≥ 0, we say that the angle of the splitting along Γ is of
order εσ if there is a positive constant C (independent of ε) such that

αΓ(x) ≥ Cεσ

for all x ∈ Γ.

Suppose now that the normally hyperbolic invariant manifold Λ is diffeo-
morphic to Tn × [0, 1]n, and denote by (q, p) ∈ Tn × [0, 1]n smooth coordinates
on Λ. Suppose the maps F , and thus f := F |Λ, depend on the small parameter
ε.

Definition 2.5. We say that f : Λ→ Λ is a near-integrable twist map if there
is some k ∈ N such that

f :

{
q̄ = q + g(p) +O(εk)

p̄ = p+O(εk)
(5)

where
detDg(p) 6= 0

for all p ∈ [0, 1]n, and where the higher order terms are uniformly bounded in
the C1 topology. If the higher order terms are 0 then f is an integrable twist
map.
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Remark 2.6. The assumption that detDg(p) 6= 0 is sometimes referred to as
a local twist property; see for example Section 4, Chapter 23 of [31]. Note that
we do not require convexity.

It follows from the definition that if f : Λ → Λ is a near-integrable twist
map, then there exist twist parameters T+ > T̃− > 0 such that

T̃−‖v‖ ≤ ‖Dg(p)v‖ ≤ T+‖v‖ (6)

for all p ∈ [0, 1]n and all v ∈ Rn. We can always choose T+ to be independent

of ε. Our formulation of the problem allows the parameter T̃− to depend on ε:
there is τ ∈ N0 and a strictly positive constant T− (independent of ε) such that

T̃− = ετT−.

Definition 2.7. Suppose f : Λ→ Λ is a near-integrable twist map. Denote by
T+ > T̃− = ετT− > 0 the twist parameters. We say that f satisfies:

• A uniform twist condition if τ = 0;

• A non-uniform twist condition (of order ετ ) if τ > 0, and the order εk of
the error terms in the definition of the near-integrable twist map f is such
that k > τ .

In the coordinates (q, p), we may define a foliation of Λ, the leaves of which
are given by

L(p∗) = {(q, p) ∈ Λ : p = p∗} . (7)

If f : Λ → Λ is a near-integrable twist map in the sense of Definition 2.5, then
each leaf of the foliation is almost invariant under f , up to terms of order εk,
where k is as in Definition 2.5.

Suppose we have a scattering map S defined on an open set U in Λ, and
suppose the large spectral gap condition (4) holds, so S is C1.

Definition 2.8. We say that the scattering map S is transverse to leaves along
leaves (with respect to the leaves (7) of the foliation of Λ) if for all p∗0 ∈ [0, 1]n

there is c > 0 (which may depend on ε) and p∗1 ∈ [0, 1]n such that for any
p∗ ∈ [0, 1]n satisfying

‖p∗ − p∗1‖ < c (8)

we have
S (L(p∗0) ∩ U) ∩ L(p∗) 6= ∅

and S (L(p∗0) ∩ U) is transverse to L(p∗) at some point where they intersect. In
this case we say that the angle of transversality is of order ευ if there are positive
constants C, c∗ (independent of ε) such that

inf α(v0, v) ≥ Cευ, c = ευc∗

where the infimum is taken over all v0 ∈ TxS (L(p∗0) ∩ U) and v ∈ TxL(p∗) such
that ‖v0‖ = ‖v‖ = 1, for some x ∈ S (L(p∗0) ∩ U) ∩ L(p∗), as well as for each
p∗0 ∈ [0, 1]n and each p∗ ∈ [0, 1]n satisfying (8).
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2.2 Statement of Theorem 2.9

Let M be a Cr manifold of dimension 2(m + n) where r ≥ 4 and m,n ∈
N. Suppose F ∈ Diff4(M) has a normally hyperbolic invariant manifold Λ ⊂
M of dimension 2n satisfying the large spectral gap condition (4). Suppose
dimW s(Λ) = dimWu(Λ) = m+ 2n. Suppose F depends on a small parameter
ε. We make the following further assumptions.

[A1] The stable and unstable manifolds W s,u(Λ) have a strongly transverse
homoclinic intersection along a homoclinic channel Γ, and so we have an
open set U ⊆ Λ and a scattering map S : U → Λ. The angle of the splitting
along Γ is of order εσ.

[A2] The inner map f = F |Λ is a near-integrable twist map with error terms of
order εk satisfying a non-uniform (or uniform) twist condition of order ετ .

[A3] The scattering map S is transverse to leaves along leaves (with respect to
the leaves (7) of the foliation of Λ), and the angle of transversality is of
order ευ.

Theorem 2.9. Fix η > 0, let ε > 0 be sufficiently small, and suppose

k ≥ 2 (ρ+ τ) + 1 (9)

where
ρ = max{2σ, 2υ, τ}. (10)

Choose {p∗j}∞j=1 ⊂ [0, 1]n such that

S (Lj ∩ U) ∩ Lj+1 6= ∅,

and S (Lj ∩ U) is transverse to Lj+1, where Lj = L(p∗j ). Suppose the distance
between Lj and Lj+1 is of order ευ for each j. Then there are {zi}∞i=1 ⊂M and
ni ∈ N such that

zi+1 = Fni(zi)

and
d(zi,Li) < η.

Moreover, the time to move a distance of order 1 in the p-direction is bounded
from below by a term of order

ε−ρ−τ−υ. (11)

Remark 2.10. Note that we do not assume symplecticity of the map F . We
do, however, assume some properties displayed by symplectic maps; for example,
the even dimension of the phase space and of the stable and unstable manifolds.
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2.3 Statement of Theorem 2.11

Let M be a Cr manifold of dimension 2(m + n) where r ≥ 4 and m,n ∈ N.
Let Σ = T`1 × [0, 1]`2 for some `1, `2 ∈ N0, and denote by (θ, ξ) ∈ T`1 × [0, 1]`2

coordinates on Σ. Write M̃ = M × Σ. Suppose Ψ ∈ Diff4
(
M̃
)

such that

Ψ(z, θ, ξ) = (G(z, θ, ξ), φ(z, θ, ξ))

where z ∈ M , G ∈ C4
(
M̃,M

)
, and φ ∈ C4

(
M̃,Σ

)
. Suppose Ψ depends on a

small parameter ε. We make the following assumptions on Ψ.

[B1] There is some L ∈ N such that

G(z, θ, ξ) = G̃(z; ξ) +O
(
εL
)

where the higher order terms are uniformly bounded in the C4 topology,
and for each ξ ∈ [0, 1]`2 the map

G̃(·; ξ) : z ∈M 7−→ G̃(z; ξ) ∈M

satisfies the assumptions [A1-3] of Theorem 2.9.

[B2] Moreover, the map φ has the form

φ :

{
θ̄ = φ1(z, θ, ξ)

ξ̄ = φ2(z, θ, ξ) = ξ +O
(
εL
)

where the higher order terms are uniformly bounded in the C4 topology.

Results from [15] imply that Ψ has a normally hyperbolic invariant manifold

Λ̃ that is O
(
εL
)

close in the C4 topology to Λ×Σ where Λ ⊂M is the normally

hyperbolic invariant manifold of G̃(·; ξ). Moreover there is an open set Ũ ⊂ Λ̃

and a scattering map S̃ : Ũ → Λ̃ such that the z-component of S̃(z, θ, ξ) isO
(
εL
)

close in the C3 topology to S (z; ξ) where S (·; ξ) : U → Λ is the scattering map

corresponding to G̃(·; ξ).
We use the coordinates (q, p, θ, ξ) on Λ̃ where (q, p) are the coordinates on

Λ and (θ, ξ) are the coordinates on Σ. Notice that the sets

L̃ (p∗, ξ∗) =
{

(q, p, θ, ξ) ∈ Λ̃ : p = p∗, ξ = ξ∗
}

= L (p∗)× T`1 × {ξ∗}

for p∗ ∈ [0, 1]n and ξ∗ ∈ [0, 1]`2 define the leaves of a foliation of Λ̃, where L(p∗)
are the leaves of the foliation of Λ defined by (7).

Theorem 2.11. Fix η > 0 and K ∈ N and let ε > 0 be sufficiently small.
Choose N ∈ N satisfying

N ≤ 1

εK
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and p∗1, . . . , p
∗
N ∈ [0, 1]n as in Theorem 2.9, and choose ξ∗1 ∈ Int

(
[0, 1]`2

)
such

that
S (Lj ∩ U ; ξ∗1) ∩ Lj+1 6= ∅

and S (Lj ∩ U ; ξ∗1) is transverse to Lj+1, where Lj = L(p∗j ). Suppose the dis-
tance between Lj and Lj+1 is of order ευ for each j, and L > 0 is sufficiently

large. Then there are ξ∗2 , . . . , ξ
∗
N ∈ [0, 1]`2 such that, with L̃j = L̃

(
p∗j , ξ

∗
j

)
, there

are w1, . . . , wN ∈ M̃ and ni ∈ N such that the ξ component of w1 is ξ∗1 ,

wi+1 = Ψni(wi),

and
d
(
wi, L̃i

)
< η

where ρ, σ, τ are as in the statement of Theorem 2.9. Moreover, the time to
move a distance of order 1 in the p-direction is of order

ε−ρ−τ−υ. (12)

Remark 2.12. Note that the transition chain obtained in Theorem 2.11 is only
of finite length, while the one obtained in Theorem 2.9 may be infinite.

Remark 2.13. The parameter L in assumption [B1] can be thought of, in
terms of applications, as the order of averaging. In celestial mechanics models,
for example, there are often fast angles (denoted here by θ) that can be averaged
out of the Hamiltonian function up to terms of order εL for any L ≥ 0. As
such, the conjugate momenta (denoted here by ξ) are constant up to terms of
order εL. In this way, the parameter L can typically be chosen in applications
to be as large as is required.

Theorem 2.11 provides a shadowing argument along the invariant manifolds
of a normally hyperbolic invariant cylincer relying on long sequences of almost
invariant leaves of a foliation. Often in Arnold diffusion results, one wants only
to fix the initial and final points and not the whole sequence of leaves. Such
statement in the following corollary which is a direct consequence of the assumed
hypotheses and Theorem 2.11.

Corollary 2.14. Fix η > 0, constants ρ, τ and υ satisfying (9) and p∗ini, p
∗
fin ∈

[0, 1]n. Then, for any L ≥ 1 large enough and ε > 0 small enough there exists
ξ∗1 ∈ Int

(
[0, 1]`2

)
, N ∈ N and {p∗k}Nk=1 such that

• p∗1 = p∗ini, p
∗
N = p∗fin,

• S (Lj ∩ U ; ξ∗1) ∩ Lj+1 6= ∅ and S (Lj ∩ U ; ξ∗1) is transverse to Lj+1, where
Lj = L(p∗j )

• The distance between Lj and Lj+1 is of order ευ for each j.

10



Moreover, there are ξ∗2 , . . . , ξ
∗
N ∈ [0, 1]`2 , w1, . . . , wN ∈ M̃ such that the ξ com-

ponent of w1 is ξ∗1 and natural numbers and ni ∈ N satisfying and

n1 ≤ n2 ≤ . . . ≤ nN . ε−ρ−τ−υ.

such that
wi+1 = Ψni(wi), and d

(
wi, L̃i

)
< η

where L̃j = L̃
(
p∗j , ξ

∗
j

)
.

2.4 Heuristic Description of the Proof of Theorems 2.9
and 2.11

The key idea of the proof is the construction of a sequence of correctly aligned
windows in a neighbourhood of the normally hyperbolic invariant cylinder and
homoclinic channel. A window is a product of two rectangles, with each bound-
ary component identified as belonging either to an entry set or to an exit set.
Whether a boundary component belongs to the entry set or the exit set is a free
choice; indeed, one can even choose the entry set to be empty, and the exit set
to be the entire topological boundary of the window, or vice versa. Informally,
two windows W1 and W2 are correctly aligned under a map f if f(W1) and W2

fully overlap in such a way that the image of the exit set of W1 under f does
not intersect W2, and the entry set of W2 does not intersect f(W1). The crux of
this idea is that, if we have a (finite, infinite, or even doubly infinite) sequence of
windows {Wn} such that Wn is correctly aligned with Wn+1 under f for each n,
then there is a trajectory {xn} of f passing through this sequence of windows,
in the sense that f(xn) = xn+1 and xn ∈ Wn for each n (see Section 3 for the
formal definition and references).

The strategy of the proof, therefore, is to construct explicitly such a sequence
of correctly aligned windows. This requires a suitable coordinate system in a
neighbourhood of the normally hyperbolic manifold Λ (see Section 4.1) in which
the map takes a particular form that allows us to see the twist condition. First
we show how to construct a “short sequence” of correctly aligned windows (see
Section 5.1), beginning in a neighbourhood of a point xn in the homoclinic
channel, approaching a point y ∈ Λ along the stable manifold W s(Λ), moving
around Λ for a (potentially large, depending on the order of the twist condition)
number of iterates, and departing along the unstable manifold Wu(Λ) towards
another point xn+1 in the homoclinic channel. This part of the construction
uses only normal hyperbolicity and the twist condition [A2].

The next step is to show that, given two such short sequences of correctly
aligned windows, we can combine them at a homoclinic point xn to obtain
longer sequences (see Section 5.2). The difficulty here is that the windows at
the homoclinic point xn are expressed in different coordinates: one system of
coordinates is obtained by iterating the coordinates near Λ forward along the
unstable manifold Wu(Λ), and the other by iterating the coordinates near Λ
backward along the stable manifold W s(Λ). In order to guarantee that the
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windows near xn are correctly aligned, we need to obtain estimates on the
coordinate transformation between these two systems. This step uses: [A1], the
transversality of the stable and unstable manifolds at the homoclinic point xn;
and [A3], the transversality of images under the scattering map of leaves of the
foliation of Λ.

The final part of the proof of Theorem 2.9 consists in choosing the aspect
ratios (i.e. the size of the constituent rectangles) of each window in the sequence
in order to guarantee that the sequence can be continued indefinitely. This is
done in Section 5.3.

In order to prove Theorem 2.11, we show that under conditions [B1] and [B2],
the conditions [A1-3] of Theorem 2.9 are satisfied by a truncated version of the
map. This allows us to consider the sequence of windows Wn in M constructed
in the proof of Theorem 2.9; we then extend these windows to the extended
phase space M̃ = M ×Σ by taking the product of Wn with two new rectangles
Θn,Ξn where Θn × Ξn ⊂ Σ. In the Θn,Ξn directions, we choose the exit set
to be empty and the entry set to be the entire topological boundary, and we
just increase the size of the rectangles Θn,Ξn at each step. This guarantees the
correct alignment of the windows Wn ×Θn × Ξn at each step under iterates of
the truncated map. Finally we show that the error terms of the full map do not
spoil the correct alignment; this is true for finite sequences of windows, and it
is not clear that it can be extended to infinite sequences.

The structure of the paper is as follows. In Section 3 we define windows, and
what it means for them to be correctly aligned, and we state several necessary
theorems regarding correct alignment. In Section 4 we establish a suitable
system of coordinates in a neighbourhood of Λ, we show how it can be iterated
along the stable and unstable manifolds to a homoclinic point, and we obtain
estimates on the map in these coordinates. In Section 5 we prove Theorem 2.9,
and finally Theorem 2.11 is proved in Section 6.

3 Correctly Aligned Windows

We follow the exposition in [26] (itself based on [28, 29, 30, 40]; see also the
appendix of [27]), which elaborates on ideas introduced in [17, 18, 19].

3.1 Definitions and Main Ideas

Let M be a manifold of dimension m. A window is a subset of M that is a
product of C0 rectangles.

Definition 3.1. Let m1,m2 ∈ N0 such that m1 +m2 = m.

• A set W ⊂ M is an (m1,m2) window if there is an open neighbourhood

V of W in M , an open neighbourhood V̂ of [0, 1]m1 × [0, 1]m2 in Rm, and

a homeomorphism χ : V̂ → V such that

W = χ ([0, 1]m1 × [0, 1]m2) .

12



• Moreover there is a choice of entry set

W+ = χ ([0, 1]m1 × ∂[0, 1]m2) (13)

and exit set
W− = χ (∂[0, 1]m1 × [0, 1]m2) . (14)

Remark 3.2. We say that there is a choice of entry and exit sets as we could
equally have chosen (14) to be the entry set and (13) to be the exit set. In
practice, every time we define a window we explicitly state our choice of its
entry and exit sets, but we use the definitions (13) and (14) for the purposes of
this exposition.

Definition 3.3. For j = 1, 2 let Wj ⊂M be an (m1,m2) window with parametri-

sation χj : V̂j → Vj, and let f ∈ C0(M,M) such that f (V1) ⊆ V2. Let

f̂ = χ−1
2 ◦ f ◦ χ1 : V̂1 −→ V̂2.

Then W1 is correctly aligned with W2 under f if there is a homotopy

H : [0, 1]× V̂1 −→ V̂2

such that:

1. We have
H(0, ·) = f̂ ,

H
(
[0, 1], χ−1

1

(
W−1

))
∩ χ−1

2 (W2) = ∅,

H
(
[0, 1], χ−1

1 (W1)
)
∩ χ−1

2

(
W+

2

)
= ∅.

2. If m1 = 0 then f(W1) ⊂ Int(W2). If m1 > 0 then there is y ∈ [0, 1]m2

such that the map Ay : [0, 1]m1 −→ Rm1 defined by

Ay(x) = π1 (H(1, (x, y)))

satisfies

Ay (∂[0, 1]m1) ⊂ Rm1 \ [0, 1]m1 , deg (Ay, 0) 6= 0

where π1 : Rm1 × Rm2 → Rm1 is the canonical projection onto the first
component, and deg (Ay, 0) is the Brouwer degree of the map Ay at 0.

In part 2 of the definition, whenever m1 > 0, if instead we have that there
is a linear map A : Rm1 → Rm1 such that H(1, (x, y)) = (Ax, 0) for all x ∈
[0, 1]m1 , y ∈ [0, 1]m2 , and A (∂[0, 1]m1) ⊂ Rm1 \ [0, 1]m1 , then we say that W1 is
linearly correctly aligned with W2 under f .

Remark 3.4. Observe that the property of two windows being linearly correctly
aligned is stronger than simply being correctly aligned, in the sense that linearly
correct alignment implies correct alignment (see Proposition 2 of [26]). This
becomes useful when we consider products of windows (see Section 3.2).
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The following result (Corollary 12 of [40]), whimsically characterised as the
property that ‘one can see through a sequence of correctly aligned windows’, is
the main point of this technique.

Theorem 3.5. Let {Wi}i∈Z be a collection of (m1,m2) windows in M , and
{fi}i∈Z ⊂ C0(M,M) a collection of continuous mappings such that Wi is cor-
rectly aligned with Wi+1 under fi for each i ∈ Z. Then we can find {zi}i∈Z ⊂M
such that

zi ∈Wi, fi(zi) = zi+1

for all i ∈ Z.

The property of two windows being correctly aligned under a map is stable
under perturbation in the sense of the next result (Theorem 13 of [40]).

Theorem 3.6. Suppose W1,W2 ⊂ M are (m1,m2) windows such that W1 is
correctly aligned with W2 under a map f ∈ C0(M,M). Then there is an open
neighbourhood U of f in C0(M,M) with respect to the compact-open topology
such that W1 is correctly aligned with W2 under f̃ for all f̃ ∈ U .

3.2 Products of Windows

Suppose Mj is a manifold of dimension kj for j = 1, 2, and suppose the manifold

M = M1 ×M2 (15)

is equipped with the product topology. For j = 1, 2 let Wj ⊂Mj be an (mj , nj)

window with parametrisation χj : V̂j → Vj where mj , nj ∈ N0 such that kj =
mj + nj . Suppose moreover

W+
j = χj ([0, 1]mj × ∂[0, 1]nj ) , W−j = χj (∂[0, 1]mj × [0, 1]nj ) .

Now, the sets V̂ = V̂1 × V̂2 ⊂ Rk1 × Rk2 and V = V1 × V2 ⊂M are open in the
product topology, and W = W1 ×W2 ⊂ V . Define χ : V̂ → V by

χ(x, y) = (χ1(x), χ2(y))

where x ∈ V̂1, y ∈ V̂2. Define the entry and exit sets of W to be{
W+ =

(
W+

1 ×W2

)
∪
(
W1 ×W+

2

)
W− =

(
W−1 ×W2

)
∪
(
W1 ×W−2

)
.

(16)

It can thus be seen that W is an (m1+m2, n1+n2) window in M with parametri-

sation χ : V̂ → V . In this case we say that W is the product of the windows
W1,W2, and we write W = W1 ×W2.

Suppose now that f ∈ C0(M,M), and for (x, y) ∈M1 ×M2 we write

f(x, y) = (f1(x, y), f2(x, y))

where fj(x, y) ∈Mj . The following result was proved in [26].
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Theorem 3.7. Let W = W1 × W2, W̃ = W̃1 × W̃2 be (m1 + m2, n1 + n2)
windows in M = M1 ×M2. Suppose

(i) W1 is linearly correctly aligned with W̃1 under f1(·, y) for each y ∈ M2;
and

(ii) W2 is linearly correctly aligned with W̃2 under f2(x, ·) for each x ∈M1.

Then W is correctly aligned with W̃ under f .

Remark 3.8. In general, the manifolds M in our work have the structure (15)
only locally. However this is enough to apply Theorem 3.7, since two windows
being correctly aligned under a map is a local property.

4 Coordinates and Estimates

4.1 A Suitable System of Coordinates

Suppose we are in the setting of Theorem 2.9, so M is a Cr manifold of dime-
sion 2(m+ n), and F ∈ Diffr(M) has a normally hyperbolic invariant manifold
Λ ' Tn × [0, 1]n in M satisfying [A1-3]. In order to construct correctly aligned
windows, we need estimates for the map in a neighbourhood of the invari-
ant manifolds W s,u(Λ). This requires an appropriate system of coordinates in
which the twist property of the inner map F |Λ is apparent; Fenichel coordinates
(described below; see [33]) provide a starting point for the coordinate transfor-
mation. However, when we express the map F in Fenichel coordinates, there
are error terms that complicate the estimates. We therefore seek a further co-
ordinate transformation in which these error terms can be ignored. There is an
analogue of the Hartman-Grobman Theorem for normally hyperbolic invariant
manifolds, which says that there is a neighbourhood of Λ in which F is topo-
logically conjugate to its so-called normal map [36]. These coordinates would
be ideal for obtaining local estimates in a neighbourhood of the cylinder (as in
Section 5.1), but later we need to analyse how the images of this coordinate
chart fit together at a homoclinic point if we iterate it backwards (resp. for-
wards) along the stable (resp. unstable) manifold of Λ (see Section 5.2). This
analysis requires a continuous second derivative; since the coordinates provided
by [36] are purely topological, we instead follow Section 5.1 of [26] to construct
a suitable system of coordinates that are as smooth as required.

Denote by (q, p) the coordinates on Λ. Assuming Λ is a Cr submanifold of
M , and the spectral gap is of size r we can introduce, as in [33], Cr−1 coordinates
(s, u, q, p) in a neighbourhood U0 of Λ, where s, u belong to a neighbourhood of
the origin in Rm such that:

• W s
loc(Λ) = {u = 0};

• Wu
loc(Λ) = {s = 0};

• W s
loc(q0, p0) = {u = 0, (q, p) = (q0, p0)}; and
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• Wu
loc(q0, p0) = {s = 0, (q, p) = (q0, p0)}.

In these coordinates the map F takes the form

F :


(q̄, p̄) = f(q, p) +Nc(s, u, q, p)

s̄ = As(q, p) s+Ns(s, u, q, p)

ū = Au(q, p)u+Nu(s, u, q, p)

where f = F |Λ, As(q, p) = DF (q, p)|Es , Au(q, p) = DF (q, p)|Eu , and

Nc(0, u, q, p) = 0 = Nc(s, 0, q, p), Ns(0, u, q, p) = 0 = Nu(s, 0, q, p).

In this paper we study the dynamics only in a small neighbourhood of the
invariant manifolds W s,u(Λ). Therefore we can replace F by a map F̃a defined
as follows. Choose a function ψ ∈ C∞(R) such that ψ(x) = 1 if |x| ≤ 1 and
ψ(x) = 0 if |x| ≥ 2, and let ψa(x) = ψ(ax). We then define the map

F̃a :


(q̄, p̄) = f(q, p) + ψa

(
s2 + u2

)
Nc(s, u, q, p)

s̄ = As(q, p)s+ ψa
(
s2 + u2

)
Ns(s, u, q, p)

ū = Au(q, p)u+ ψa
(
s2 + u2

)
Nu(s, u, q, p).

(17)

Note that the map F̃a is only Cr−1, since the coordinates (s, u, q, p) are Cr−1.
Moreover the normally hyperbolic invariant manifold Λ is a Cr−1 submanifold,
and the spectral gap remains of size r. The map F̃a agrees with F whenever
s2 + u2 ≤ a−1. Furthermore the error terms of F̃a are uniformly small in C0,
and can be made as small as necessary by increasing a. We thus guarantee, by
choosing a large enough, that the map F̃a is globally defined on Tn×[0, 1]n×R2m,
since we have effectively set the error terms equal to 0 outside the domain of
definition of Nc, Ns, Nu. Fix some sufficiently large a once and for all, and define
Φ = F̃a.

Since Φ is defined globally, the local unstable manifold Wu
loc(Λ) extends to

a global unstable manifold W̃u(Λ) =
⋃∞
n=0 Φn (Wu

loc (Λ)). On W̃u(Λ) we have

the strong unstable foliation, each leaf W̃u(q, p) of which is uniquely determined
by a point (q, p) ∈ Λ in the usual way (see Section 2.1 for definitions). Since

W̃u (Λ) = {s = 0}, the variables (u, q, p) define coordinates on W̃u (Λ). Now, it

follows from (17) that the stable manifold Ws = W s
(
W̃u (Λ)

)
of the unstable

manifold W̃u (Λ) is the entire phase space Λ×R2m. MoreoverWs admits a Cr−2

foliation by the leaves Ws(u, q, p) = W s(0, u, q, p). Notice that the restriction

of Φ to W̃u (Λ) is

Φ|
W̃u(Λ)

:

{
(q̄, p̄) = f(q, p)

ū = Au(q, p)u+ ψa
(
u2
)
Nu(0, u, q, p).

We can now take a coordinate s′ on eachWs(u, q, p) so that (s′, u, q, p) are Cr−2
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coordinates in a neighbourhood of Λ, and

Φ :


(q̄, p̄) = f(q, p)

s̄′ = As(q, p)s
′ + Ñs(s

′, u, q, p)

ū = Au(q, p)u+ ψa
(
u2
)
Nu(0, u, q, p)

(18)

where Ñs is globally small, and Ñs(0, u, q, p) = 0. Since F agrees with Φ in
a neighbourhood of Λ, it also takes the form (18) in (s′, u, q, p) coordinates.
From now on we drop the prime notation and write (s, u, q, p) for this system
of coordinates.

We have thus constructed Cr−2 coordinates in a neighbourhood of Λ in
which there are no error terms in the central directions, and the error terms in
the hyperbolic directions are small: let δs, δu > 0 such that

sup
(s,u,q,p)

∥∥∥Ñs(s, u, q, p)∥∥∥ ≤ δs‖s‖, sup
(u,q,p)

∥∥ψa (u2
)
Nu(0, u, q, p)

∥∥ ≤ δu‖u‖
where we denote by ‖x‖ = maxi=1,...,m |xi| the maximum norm. Since a is
sufficiently large, δs, δu are sufficiently small. Due to the normal hyperbolicity
estimates (2), we find that

λ̃−‖s‖ ≤
∥∥∥As(q, p)s+ Ñs(s, u, q, p)

∥∥∥ ≤ λ̃+‖s‖

µ̃−‖u‖ ≤
∥∥∥Au(q, p)u+ ψa

(
u2
)
N(0, u, q, p)

∥∥∥ ≤ µ̃+‖u‖

where λ̃± = λ±± δs and µ̃± = µ±± δu. Since δs,u are sufficiently small, we still
have

0 < λ̃− < λ̃+ < λr0 < 1 < µr0 < µ̃− < µ̃+.

In this way we can use the linear estimates (2) for the nonlinear map F in the
hyperbolic directions. We now drop the tilde notation, and simply write λ±, µ±
for these adjusted hyperbolicity parameters. The following section deals with
estimates in the central directions.

Remark 4.1. Since the coordinates (s, u, q, p) are Cr−2, and since we require
the coordinate transformation near a homoclinic point (see Section 5.2) to have
two continuous derivatives, we take r ≥ 4 in the statement of Theorem 2.9.

We also require a system of coordinates near the homoclinic channel. Denote
by U the neighbourhood of Λ in which we have the (s, u, q, p) coordinates, by

Û the neighbourhood of Tn × [0, 1]n × {0} in Tn × [0, 1]n × R2m to which the

(s, u, q, p) variables belong, and by h : U → Û the C2 coordinate transforma-
tion constructed above. Let x ∈ Γ ⊂ (W s(Λ) tWu(Λ)) \ Λ be a transverse
homoclinic point. Then there are N± ∈ N such that

FN+(x) ∈W s
loc(Λ) ∩ U , F−N−(x) ∈Wu

loc(Λ) ∩ U .
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Choose a neighbourhood V of x in M such that FN+(V ) ⊂ U and F−N−(V ) ⊂
U . We define two coordinate systems (s+, u+, q+, p+) and (s−, u−, q−, p−) on

V via the diffeomorphisms h± : V → Û defined by

h+ = Φ−N+ ◦ h ◦ FN+ , h− = ΦN− ◦ h ◦ F−N− .

From (s+, u+, q+, p+) coordinates to (s, u, q, p) coordinates, the map FN+ acts
as ΦN+ , in the sense that

h ◦ FN+ ◦
(
h+
)−1

= ΦN+ .

Similarly from (s−, u−, q−, p−) coordinates to (s, u, q, p) coordinates, the map
F−N− acts as Φ−N− , in the sense that

h ◦ F−N− ◦
(
h−
)−1

= Φ−N− .

4.2 Estimates on the Shearing of a Window by the Twist
Map

Recall the inner map f = F |Λ is given by (5), and we assume moreover the twist
condition (6), where T̃− = ετT− for some τ ∈ N0. We use the maximum norm:

‖x‖ = max
i=1,...,n

|xi|. (19)

Fix R > 0 with the following property. For any p0, p ∈ [0, 1]n we can write

g(p) = g(p0) +Dg(p0)(p− p0) +R∗(p
0, p)

where R∗
(
p0, p

)
is a remainder term of order O

(∥∥p− p0
∥∥2
)

. Then the constant

R is chosen so that ∥∥R∗ (p0, p
)∥∥ ≤ R ∥∥p− p0

∥∥2
(20)

for all p0, p ∈ [0, 1]n.
Define a window W = [Q× P ] ⊂ Λ where

Q = [a, a+ γ]n ⊂ Tn, P = [b, b+ δ]n ⊂ [0, 1]n.

Choose the exit set W− to be, say,

W− = Q× ∂P.

The following estimates apply equally if the exit set is chosen to be in the
q-direction.

For each j = 1, . . . , n define

B0
j = [b, b+δ]j−1×{b}×[b, b+δ]n−j , B1

j = [b, b+δ]j−1×{b+δ}×[b, b+δ]n−j

and let
E0
j = Q×B0

j , E1
j = Q×B1

j
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be the corresponding components of the exit set, in the sense that

W− =

n⋃
j=1

(
E0
j ∪ E1

j

)
.

Suppose now that N ∈ Z, and suppose we take an iterate fN (W ) of W . Define

∆N
j = min

(q0,p0)∈E0
j

min
(q1,p1)∈E1

j

∥∥π ◦ fN (q1, p1)− π ◦ fN (q0, p0)
∥∥

and
ΩN = max

(q0,p0),(q1,p1)∈W

∥∥π ◦ fN (q1, p1)− π ◦ fN (q0, p0)
∥∥

where π : Tn × [0, 1]n → Tn is the canonical projection. The following lemma
gives lower and upper bounds on the shearing of the window W under fN .

Lemma 4.2. There is a positive constant C such that

∆N
j ≥ ετ |N |T−δ − |N |Rδ2 − γ − C|N |2εk (21)

and
ΩN ≤ γ + |N |T+δ + C|N |2εk (22)

where ετ is the order of the twist condition, εk is the order of the error terms
in the definition (5) of f , and the positive constant R is defined by (20).

Proof. We establish (21) for the case j = 1 as the remaining cases are analogous.
Fix q0, q1 ∈ Q and p0

∗, p
1
∗ ∈ [b, b+ δ]n−1. Define

p0 = (b, p0
∗), p1 = (b+ δ, p1

∗)

Notice that
‖p1 − p0‖ = δ.

Write
(q̄j , p̄j) = fN (qj , pj)

for j = 0, 1 so that

q̄j = qj +Ng(pj) +O
(
N2εk

)
, p̄j = pj +O(Nεk).

Let C be a uniform upper bound on the terms of order εk. Then we have∥∥q̄1 − q̄0
∥∥ ≥ |N |∥∥g(p1)− g(p0)

∥∥− ∥∥q1 − q0
∥∥− C|N |2εk

≥ |N |
∥∥Dg(p0)(p1 − p0) +R∗(p

0, p1)
∥∥− γ − C|N |2εk

≥ ετ |N |T−δ − |N |Rδ2 − γ − C|N |2εk.

In order to prove (22), fix (qj , pj) ∈ W and let (q̄j , p̄j) = fN (qj , pj) for
j = 0, 1. Then∥∥q̄1 − q̄0

∥∥ ≤ ∥∥q1 − q0
∥∥+ |N |

∥∥g(p1)− g(p0)
∥∥+ C|N |2εk

≤ γ + |N |T+δ + C|N |2εk.
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5 Proof of Theorem 2.9

Denote by L1, . . . ,LN a sequence of leaves of the foliation of Λ with transverse
homoclinic connections, as in the statement of Theorem 2.9. Let xi ∈ Γ be a
point in the homoclinic channel such that πs(xi) ∈ Li and πu(xi) ∈ Li+1. The
proof of Theorem 2.9 is divided into 3 parts. In the first part of the proof, we
show how to construct a short chain of correctly aligned windows beginning at
the homoclinic point xi, moving near to Li, and ending at the homoclinic point
xi+1. In the second part of the proof we show that we can continue the sequence
of windows across a transverse homoclinic intersection in order to glue together
two short sequences. In the final part of the proof, it is shown that we can
consistently choose the aspect ratios of the windows in a way that allows us to
continue the sequence indefinitely.

5.1 Construction of a Short Sequence of Correctly Aligned
Windows

Throughout the proof we use the coordinates (s, u, q, p) constructed in Section
4.1 near the normally hyperbolic invariant manifold Λ, as well as the coordinates
(s+, u+, q+, p+) and (s−, u−, q−, p−), defined in Section 4.1, near the homoclinic
channel Γ.

This part of the proof is performed in 3 steps. In the first step, we construct
a window Wi in (s+, u+, q+, p+) coordinates centred at xi ∈ Γ, and a window

W̃i in (s, u, q, p) coordinates centred at fNi(ysi ) where ysi = πs(xi) such that Wi

is correctly aligned with W̃i under FNi for some Ni ∈ N. In the second step,
we construct a window Ŵi in (s, u, q, p) coordinates centred at fNi+Ki(ysi ) such

that W̃i is correctly aligned with Ŵi under FKi for some Ki ∈ N. In the third
step, we construct a window W ′i in (s−, u−, q−, p−) coordinates, centred at the

transverse homoclinic point xi+1 ∈ Γ such that Ŵi is correctly aligned with W ′i
under FMi for some Mi ∈ N.

In each step, the windows are defined as a product of two constituent win-
dows. We ensure that the windows we construct are correctly aligned by ensur-
ing that the constituent windows are linearly correctly aligned (see Definition
3.3 and Theorem 3.7). In the hyperbolic directions (i.e. the s, u variables) we
simply use the normal hyperbolicity estimates (2). In the centre directions (i.e.
the q, p variables) we use the shearing estimates provided by Lemma 4.2. More-
over at each step we state the entry and exit sets of the constituent windows,
in which case the entry and exit sets of the product of these windows is given
by (16).

Finally, let us define the centre of a window W in (s, u, q, p) coordinates.
Suppose we define a window

W = [S × U ]× [Q× P ]

where S,U,Q, P is a rectangle in s, u, q, p respectively, and suppose the rectan-
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gles have size

|S| = max
s1,s2∈S

‖s1 − s2‖ = α, |U | = max
u1,u2∈U

‖u1 − u2‖ = β,

|Q| = max
q1,q2∈Q

‖q1 − q2‖ = γ, |P | = max
p1,p2∈P

‖p1 − p2‖ = δ,

where the maximum norm ‖.‖ is defined by (19). The centre of W is the point

c0 = (s0, u0, q0, p0)

such that

S =
[
s0

1 −
α

2
, s0

1 +
α

2

]
× · · · ×

[
s0
m −

α

2
, s0
m +

α

2

]
,

U =

[
u0

1 −
β

2
, u0

1 +
β

2

]
× · · · ×

[
u0
m −

β

2
, u0
m +

β

2

]
,

Q =
[
q0
1 −

γ

2
, q0

1 +
γ

2

]
× · · · ×

[
q0
n −

γ

2
, q0
n +

γ

2

]
,

P =

[
p0

1 −
δ

2
, p0

1 +
δ

2

]
× · · · ×

[
p0
n −

δ

2
, p0
n +

δ

2

]
.

5.1.1 Step 1

Define a window Wi, centred at the homoclinic point xi ∈ Γ and given in
(s+, u+, q+, p+) coordinates by

Wi = [Si × Ui]× [Qi × Pi]

where Si, Ui, Qi, Pi are rectangles in s+, u+, q+, p+ respectively, with sizes

|Si| = αi, |Ui| = βi, |Qi| = γi, |Pi| = δi.

We choose the exit sets to be

[Si × Ui]− = Si × ∂Ui, [Qi × Pi]− = Qi × ∂Pi.

Now choose Ni ∈ N such that FNi(xi) ∈W s
loc(Λ)∩U where U is the neighbour-

hood of Λ in which (q, p, s, u) coordinates are defined. Let

νi = dW s(Λ)(xi, y
s
i ),

where dW s(Λ) is the distance measured along the stable manifold, and ysi =
πs(xi). Then

νiλ
Ni
− ≤ dW s(Λ)(F

Ni(xi), F
Ni(ysi )) ≤ νiλ

Ni
+

and moreover by (2) and Lemma 4.2:

• In the s-direction, Wi is contracted by FNi to a size between αiλ
Ni
− and

αiλ
Ni
+ ;
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• In the u-direction, Wi is expanded by FNi to a size between βiµ
Ni
− and

βiµ
Ni
+ ;

• In the q-direction, Wi is sheared by the twist map to a size at most γi +
NiT+δi + CNiε

k; and

• In the p-direction, the change is ±CNiεk.

(a) (b)

Figure 2: Step 1. The dashed edges represent exit sets.

Define a window W̃i centred at fNi(ysi ) ∈ Λ and given in (s, u, q, p) coordi-
nates by

W̃i =
[
S̃i × Ũi

]
×
[
Q̃i × P̃i

]
where S̃i, Ũi, Q̃i, P̃i are rectangles in s, u, q, p respectively, and where we choose
the exit sets to be[

S̃i × Ũi
]−

= S̃i × ∂Ũi,
[
Q̃i × P̃i

]−
= Q̃i × ∂P̃i.

If we choose the sizes of the constituent rectangles to be∣∣∣S̃i∣∣∣ = α̃i,
∣∣∣Ũi∣∣∣ = β̃i,

∣∣∣Q̃i∣∣∣ = γ̃i,
∣∣∣P̃i∣∣∣ = δ̃i

where

α̃i > (αi + 2νi)λ
Ni
+ , (23)

β̃i < βiµ
Ni
− , (24)

γ̃i > γi +NiT+δi + CN2
i ε
k, (25)

δ̃i < δi − CNiεk, (26)
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then Wi is correctly aligned with W̃i under FNi by Theorem 3.7. In Section
5.3 we explain how to choose αi, βi, γi, δi and Ni so that inequalities (23), (24),
(25), (26) are solvable.

Remark 5.1. The reason νi carries a factor of 2 in (23) is the following. Since
the hyperbolic rectangle of FNi (Wi) lies to one side of {s = 0} (see Figure 2 (a))
we must choose α̃i so that α̃i

2 is greater than the distance from {s = 0} to the

outermost point on FNi (Wi) in the s-direction, which is at most λNi
+

(
αi

2 + νi
)
.

5.1.2 Step 2

Take a forward iterate FKi

(
W̃i

)
of W̃i that brings the centre fNi (ysi ) of W̃i to

fNi+Ki (ysi ). Define a window Ŵi centred at fNi+Ki (ysi ), and given in (s, u, q, p)
coordinates by

Ŵi =
[
Ŝi × Ûi

]
×
[
Q̂i × P̂i

]
where Ŝi, Ûi, Q̂i, P̂i are rectangles in s, u, q, p respectively, and where we choose
the exit sets to be[

Ŝi × Ûi
]−

= Ŝi × ∂Ûi,
[
Q̂i × P̂i

]−
= ∂Q̂i × P̂i.

(a) (b)

Figure 3: Step 2. The dashed edges represent exit sets.

Notice that the exit set of Ŵi is not in the same direction as the exit set of
W̃i. Under the iteration FKi , the window W̃i is deformed, by (2) and Lemma
4.2, as follows:

• In the s-direction, W̃i is contracted by FKi to a size between α̃iλ
Ki
− and

α̃iλ
Ki
+ ;
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• In the u-direction, W̃i is expanded by FKi to a size between β̃iµ
Ki
− and

β̃iµ
Ki
+ ;

• In the q-direction, W̃i is sheared by the twist map to a size at least
ετKiT−δ̃i −KiRδ̃

2
i − γ̃i − CKiε

k; and

• In the p-direction, the change is ±CKiε
k.

If we choose the sizes of the constituent rectangles of Ŵi to be∣∣∣Ŝi∣∣∣ = α̂i,
∣∣∣Ûi∣∣∣ = β̂i,

∣∣∣Q̂i∣∣∣ = γ̂i,
∣∣∣P̂i∣∣∣ = δ̂i

where

α̂i > α̃iλ
Ki
+ , (27)

β̂i < β̃iµ
Ki
− , (28)

γ̂i < ετKiT−δ̃i −KiRδ̃
2
i − γ̃i − CK2

i ε
k, (29)

δ̂i > δ̃i + CKiε
k, (30)

then W̃i is correctly aligned with Ŵi under FKi by Theorem 3.7. In Section
5.3 we explain how to choose α̃i, β̃i, γ̃i, δ̃i and Ki so that inequalities (27), (28),
(29), (30) are solvable.

5.1.3 Step 3

Let xi+1 ∈ Γ be a point in the homoclinic channel for which there are yui ∈ Li
and ysi+1 ∈ Li+1 such that πu(xi+1) = yui and πs(xi+1) = ysi+1. Define a window
W ′i centred at xi+1 and given in (s−, u−, q−, p−) coordinates by

W ′i = [S′i × U ′i ]× [Q′i × P ′i ]

where we choose the exit sets to be

[S′i × U ′i ]
−

= S′i × ∂U ′i , [Q′i × P ′i ]
−

= ∂Q′i × P ′i .

Suppose we choose the sizes of the constituent rectangles of W ′i to be

|S′i| = α′i, |U ′i | = β′i, |Q′i| = γ′i, |P ′i | = δ′i.

We take an iterate FMi

(
Ŵi

)
of Ŵi for someMi ∈ N, and require that FMi

(
Ŵi

)
is correctly aligned with W ′i under FMi . Observe that this is equivalent to W ′i
being correctly aligned with Ŵi under F−Mi , but with the roles of entry and
exit sets in the definition of correctly aligned windows reversed.

We can write yui = (qui , p
u
i ) and fNi+Ki(ysi ) = (qsi , p

s
i ). Let

ω′i = ‖qsi − qui ‖ , ν′i = dWu(Λ)(xi+1, y
u
i ) (31)
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(a) (b)

Figure 4: Step 3. The dashed edges represent exit sets.

where dWu(Λ) is the distance measured along the unstable manifold. Then

ν′iµ
−Mi
+ ≤ dWu(Λ)(F

−Mi(xi+1), F−Mi(yui )) ≤ ν′iµ
−Mi
− ,

and moreover, by (2) and Lemma 4.2:

• In the s-direction, W ′i is expanded by F−Mi to a size between α′iλ
−Mi
+ and

α′iλ
−Mi
− ;

• In the u-direction, W ′i is contracted by F−Mi to a size between β′iµ
−Mi
+

and β′iµ
−Mi
− ;

• In the q-direction, W ′i is sheared by the twist map to a size at most
γ′i +MiT+δ

′
i + CMiε

k; and

• In the p-direction, the change is ±CMiε
k.

If we choose α′i, β
′
i, γ
′
i, δ
′
i such that

α′iλ
−Mi
+ > α̂i, (32)

(β′i + 2ν′i)µ
−Mi
− < β̂i, (33)

γ′i +MiT+δ
′
i + CM2

i ε
k + 2ω′i < γ̂i, (34)

δ′i − CMiε
k > δ̂i, (35)

then Ŵi is correctly aligned with W ′i under FMi by Theorem 3.7. In Section

5.3 we explain how to choose α̂i, β̂i, γ̂i, δ̂i and Mi so that inequalities (32), (33),
(34), (35) are solvable.

Remark 5.2. With regards to the factor of 2 carried both by ν′i in (33) and by
ω′i in (34), compare Remark 5.1 with Figure 4.
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5.2 Continuing the Sequence Across a Transverse Homo-
clinic Intersection

So far, we have shown how to construct short sequences of windowsWi, W̃i, Ŵi,W
′
i

beginning at the transverse homoclinic point xi, passing near Li, and ending at
another transverse homoclinic point xi+1. We now want to show that this short

sequence can be connected to the next short sequence Wi+1, W̃i+1, Ŵi+1,W
′
i+1,

which amounts to proving that W ′i is correctly aligned with Wi+1 under the
identity mapping. Both of these windows are centred at xi+1, but the difficulty
is that W ′i is defined in the (s−, u−, q−, p−) coordinates obtained by carrying
the (s, u, q, p) coordinates from a neighbourhood of Li out along Wu(Λ) to a
neighbourhood of xi+1, whereas Wi+1 is defined in the (s+, u+, q+, p+) coordi-
nates obtained by carrying the (s, u, q, p) coordinates from a neighbourhood of
Li+1 back along W s(Λ) to a neighbourhood of xi+1.

Define the window Wi+1 centred at xi+1 and given in (s+, u+, q+, p+) coor-
dinates by

Wi+1 = [Si+1 × Ui+1]× [Qi+1 × Pi+1]

where the exit sets are

[Si+1 × Ui+1]
−

= Si+1 × ∂Ui+1, [Qi+1 × Pi+1]
−

= Qi+1 × ∂Pi+1

and where the sizes of the constituent rectangles are

|Si+1| = αi+1, |Ui+1| = βi+1, |Qi+1| = γi+1, |Pi+1| = δi+1.

The following lemma gives conditions under which W ′i is correctly aligned with
Wi+1 under the identity mapping.

Lemma 5.3. There are nonnegative constants Cj for j = 1, . . . , 8 where C4, C7 >
0 and a constant R′ > 0 such that, if

αi+1 > C1ε
σα′i + C2β

′
i +R′ζ2

i , (36)

βi+1 <− C3α
′
i + C4ε

σβ′i −R′ζ2
i , (37)

γi+1 > C5γ
′
i + C6ε

υδ′i +R′ζ2
i , (38)

δi+1 < C7ε
υγ′i − C8δ

′
i −R′ζ2

i , (39)

where
ζi = max {α′i, β′i, γ′i, δ′i} (40)

then W ′i is correctly aligned with Wi+1 under the identity mapping.

Proof. Recall we assume that the stable and unstable manifolds W s,u (Λ) have
equal dimension m+ 2n, where we denote by m the dimension of the s, u vari-
ables, and by n the dimension of the q, p variables. By [A1], the angle between
s− and u+ at xi+1 is of order εσ, as is the angle between u− and s+. Moreover,
by [A3], the angle between q− and q+ at xi+1 is of order ευ, as is the angle
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between p− and p+. It follows that there is a well-defined coordinate transfor-
mation φ : (s−, u−, q−, p−) 7→ (s+, u+, q+, p+) in a neighbourhood of xi+1, and
the linearisation of φ at xi+1 is of the form

Dφ(xi+1) =

(
A 0
0 B

)
(41)

where

A =

(
εσA1 A2

A3 εσA4

)
, B =

(
B1 ευB2

ευB3 B4

)
. (42)

Here each matrix Aj is of dimension m × m, each matrix Bj is of dimension
n× n, and A1, A4, B2, B3 are invertible.

Recall the maximum norm ‖.‖ is defined by (19). Fix R′ > 0 with the
following property. We can write

φ(x) = φ(xi+1) +Dφ(xi+1) +R′∗(x) (43)

where R′∗(x) is a remainder term of order O
(
‖x− xi+1‖2

)
. Then the constant

R′ is chosen so that
‖R′∗(x)‖ ≤ R′ ‖x− xi+1‖2 (44)

for all x in some neighbourhood of xi+1. Notice moreover that, since W ′i is
centred at xi+1, we have

‖x− xi+1‖ ≤
ζi
2

(45)

for all x ∈W ′i , where ζi is defined by (40).
There are a′i, b

′
i ∈ Rm and c′i, d

′
i ∈ Rn such that

S′i =
[
a′i,1, a

′
i,1 + α′i

]
× · · · ×

[
a′i,m, a

′
i,m + α′i

]
,

U ′i =
[
b′i,1, b

′
i,1 + β′i

]
× · · · ×

[
b′i,m, b

′
i,m + β′i

]
,

Q′i =
[
c′i,1, c

′
i,1 + γ′i

]
× · · · ×

[
c′i,n, c

′
i,n + γ′i

]
,

P ′i =
[
d′i,1, d

′
i,1 + δ′i

]
× · · · ×

[
d′i,n, d

′
i,n + δ′i

]
.

For each j = 1, . . . ,m define

Ihj,0 =
[
b′i,1, b

′
i,1 + β′i

]
× · · · ×

{
b′i,j
}
× · · · ×

[
b′i,m, b

′
i,m + β′i

]
,

Ihj,1 =
[
b′i,1, b

′
i,1 + β′i

]
× · · · ×

{
b′i,j + β′i

}
× · · · ×

[
b′i,m, b

′
i,m + β′i

]
,

and for each k = 1, . . . , n define

Ick,0 =
[
c′i,1, c

′
i,1 + γ′i

]
× · · · ×

{
c′i,k
}
× · · · ×

[
c′i,n, c

′
i,n + γ′i

]
,

Ick,1 =
[
c′i,1, c

′
i,1 + γ′i

]
× · · · ×

{
c′i,k + γ′i

}
× · · · ×

[
c′i,n, c

′
i,n + γ′i

]
.

We then let

Ehj,0 = S′i × Ihj,0 ×Q′i × P ′i , Ehj,1 = S′i × Ihj,1 ×Q′i × P ′i
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be the corresponding components of the exit set of W ′i in the hyperbolic direc-
tions, and let

Eck,0 = S′i × U ′i × Ick,0 × P ′i , Eck,1 = S′i × U ′i × Ick,1 × P ′i

be the corresponding components of the exit set of W ′i in the cylindrical direc-
tions. For each κ ∈ {s, u, q, p} denote by Πκ : (s, u, q, p) 7→ κ the projection
onto the κ coordinate. Define

∆h
j = min

z0∈Eh
j,0

min
z1∈Eh

j,1

‖Πu ◦ φ (z1)−Πu ◦ φ (z0)‖ , (46)

Ωhj = max
z0∈Eh

j,0

max
z1∈Eh

j,1

‖Πs ◦ φ (z1)−Πs ◦ φ (z0)‖ , (47)

∆c
k = min

z0∈Ec
k,0

min
z1∈Ec

k,1

‖Πp ◦ φ (z1)−Πp ◦ φ (z0)‖ , (48)

Ωck = max
z0∈Ec

k,0

max
z1∈Ec

k,1

‖Πq ◦ φ (z1)−Πq ◦ φ (z0)‖ . (49)

If we choose

αi+1 > Ωhj , βi+1 < ∆h
j , γi+1 > Ωck, δi+1 < ∆c

k (50)

for each j = 1, . . . ,m and each k = 1, . . . , n then W ′i is correctly aligned with
Wi+1 under the map φ (see Figure 5). Therefore, in what follows, we search for
upper bounds for each Ωhj ,Ω

c
k and lower bounds for each ∆h

j ,∆
c
k. In fact, we

compute bounds for Ωh1 ,Ω
c
1 and ∆h

1 ,∆
c
1 as the estimates for other values of j, k

are analogous.
For j = 0, 1 let shj ∈ S′i, qhj ∈ Q′i, phj ∈ P ′i , and

u∗j ∈
[
b′i,2, b

′
i,2 + β′i

]
× · · · ×

[
b′i,m, b

′
i,m + β′i

]
.

Define uh0 =
(
b′i,1, u

∗
0

)
, uh1 =

(
b′i,1 + β′i, u

∗
1

)
, and zhj =

(
shj , u

h
j , q

h
j , p

h
j

)
for j = 0, 1.

Observe that all points in Eh1,j are of the form zhj . Moreover, notice that∥∥uh1 − uh0∥∥ = β′i. (51)

Due to (41) and (42), the hyperbolic part of Dφ (xi+1)
(
zh1 − zh0

)
is(

εσA1 A2

A3 εσA4

)(
sh1 − sh0
uh1 − uh0

)
=

(
εσA1

(
sh1 − sh0

)
+A2

(
uh1 − uh0

)
A3

(
sh1 − sh0

)
+ εσA4

(
uh1 − uh0

)) . (52)

It follows from (43), (44), (45), (51), and (52) that∥∥Πs ◦ φ
(
zh1
)
−Πs ◦ φ

(
zh0
)∥∥ ≤ ∥∥Πs

(
Dφ (xi+1)

(
zh1 − zh0

))∥∥
+R′

(∥∥zh1 − xi+1

∥∥2
+
∥∥zh0 − xi+1

∥∥2
)

≤
∥∥εσA1

(
sh1 − sh0

)
+A2

(
uh1 − uh0

)∥∥+
1

2
R′ζ2

i

≤C1ε
σα′i + C2β

′
i +R′ζ2

i
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(a) (b)

Figure 5: The figure illustrates how the window W ′i is transformed under the
linearisation Dφ (xi+1) of the change of coordinates φ : (s−, u−, q−, p−) 7→
(s+, u+, q+, p+) at the homoclinic point xi+1. In (a), we see how the hyper-
bolic rectangle is transformed assuming [A1], i.e. that there is an angle of order
εσ between the stable and unstable manifolds at the homoclinic point xi+1. In
(b), we see how the inner (cylindrical) rectangle is transformed assuming [A3],
i.e. that the angle between the image of a leaf Li of the foliation under the
scattering map and another leaf Li+1 is of order ευ. Note that the rectangles
are not centred at the origin. The dashed edges of the rectangles represent the
exit sets.
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and∥∥Πu ◦ φ
(
zh1
)
−Πu ◦ φ

(
zh0
)∥∥ ≥ ∥∥Πu

(
Dφ (xi+1)

(
zh1 − zh0

))∥∥
−R′

(∥∥zh1 − xi+1

∥∥2
+
∥∥zh0 − xi+1

∥∥2
)

≥
∥∥A3

(
sh1 − sh0

)
+ εσA4

(
uh1 − uh0

)∥∥− 1

2
R′ζ2

i

≥ −
∥∥A3

(
sh1 − sh0

)∥∥+ εσ
∥∥A4

(
uh1 − uh0

)∥∥−R′ζ2
i

≥ − C3α
′
i + C4ε

σβ′i −R′ζ2
i

where ζi is defined by (40), where Cj is the matrix norm of Aj for j = 1, 2, 3, and
where C4 > 0 is such that ‖A4v‖ ≥ C4 ‖v‖ for all v ∈ Rm. That we can choose
such a strictly positive C4 follows from the invertibility of A4. Combining the
previous inequalities with (46), (47), and (50) yields (36) and (37).

Now, for j = 0, 1, let scj ∈ S′i, ucj ∈ U ′i , pcj ∈ P ′i , and

q∗j ∈
[
c′i,2, c

′
i,2 + γ′i

]
× · · · ×

[
c′i,n, c

′
i,n + γ′i

]
.

Define qc0 =
(
c′i,1, q

∗
0

)
, qc1 =

(
c′i,1 + γ′i, q

∗
1

)
, and zcj =

(
scj , u

c
j , q

c
j , p

c
j

)
for j = 0, 1.

Then all points in Ec1,j are of the form zcj , and furthermore

‖qc1 − qc0‖ = γ′i (53)

Due to (41) and (42), the cylindrical part of Dφ (xi+1) (zc1 − zc0) is(
B1 ευB2

ευB3 B4

)(
qc1 − qc0
pc1 − pc0

)
=

(
B1 (qc1 − qc0) + ευB2 (pc1 − pc0)
ευB3 (qc1 − qc0) +B4 (pc1 − pc0)

)
. (54)

It follows from (43), (44), (45), (53), and (54) that

‖Πq ◦ φ (zc1)−Πq ◦ φ (zc0)‖ ≤ ‖Πq (Dφ (xi+1) (zc1 − zc0))‖

+R′
(
‖zc1 − xi+1‖2 + ‖zc0 − xi+1‖2

)
≤‖B1 (qc1 − qc0) + ευB2 (pc1 − pc0)‖+

1

2
R′ζ2

i

≤C5γ
′
i + C6ε

υδ′i +R′ζ2
i

and

‖Πp ◦ φ (zc1)−Πp ◦ φ (zc0)‖ ≥ ‖Πp (Dφ (xi+1) (zc1 − zc0))‖

−R′
(
‖zc1 − xi+1‖2 + ‖zc0 − xi+1‖2

)
≥ ‖ευB3 (qc1 − qc0) +B4 (pc1 − pc0)‖ − 1

2
R′ζ2

i

≥ ευ ‖B3 (qc1 − qc0)‖ − ‖B4 (pc1 − pc0)‖ −R′ζ2
i

≥ C7ε
υγ′i − C8δ

′
i −R′ζ2

i
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where ζi is defined by (40), where Cj is the matrix norm of Bj for j = 5, 6, 8,
and where C7 > 0 is such that ‖B3v‖ ≥ C7 ‖v‖ for all v ∈ Rn. As above, the
reason that we can choose C7 to be strictly positive is due to the invertibility of
B3. The previous inequalities combined with (48), (49), and (50) give (38) and
(39).

5.3 Construction of Long Sequences of Correctly Aligned
Windows

In this section we show how to choose the aspect ratios of the windows at
each step (see Table 1 for a summary) so that the process can be continued
indefinitely, completing the proof of Theorem 2.9.

Fix η > 0 as in the statement of Theorem 2.9. Let us first show how to choose
α′i, β

′
i, γ
′
i, δ
′
i so that the inequalities of Lemma 5.3 are solvable; in particular, we

require the right-hand side of inequalities (37) and (39) to be positive. Define
κ = max {σ, υ} and suppose we choose

α′i = ε2κα∗, β′i = γ′i = εκζ∗, δ′i = ε2κδ∗

where 

0 < ζ∗ <
1

R′
min {C4, C7} ,

0 < α∗ < min

{
ζ∗,

C4

C3
ζ∗

(
1− R′

C4
ζ∗

)}
,

0 < δ∗ < min

{
ζ∗,

C7

C8
ζ∗

(
1− R′

C7
ζ∗

)}
.

It follows that β′i = γ′i = ζi, where ζi is defined by (40), and so the right-hand
side of (37) is

−C3α
′
i + C4ε

σβ′i −R′ (β′i)
2 ≥ ε2κ

(
C4β∗ − C3α∗ −R′β2

∗
)
> 0.

Similarly, the right-hand side of (39) is

C7ε
υγ′i − C8δ

′
i −R′ (γ′i)

2 ≥ ε2κ
(
C7γ∗ − C8δ∗ −R′γ2

∗
)
> 0.

Therefore we can choose βi+1, δi+1 > 0 of order O
(
ε2κ
)
, and αi+1, γi+1 > 0

of order O (εκ) (or larger, but not smaller) so that inequalities (36), (37), (38),
(39) are satisfied. Moreover, we choose

αi+1, βi+1, δi+1 < η.

Notice that βi+1, δi+1 can be chosen as small as we like.
The next major constraint when choosing the aspect ratios is that γ̂i must

be chosen in (29) to be of order O(1), and we must be able to choose it as close
to 1 as we like, for the following reason. By assumption, there is a point z ∈ Li
such that S(z) ∈ Li+1, and S (U ∩ Li) is transverse to Li+1 at S(z), where
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“ ” ˜ ˆ ′

α 1 1 ε2κ ε2κ

β ε2κ ε2κ 1 εκ

γ εκ εκ 1 εκ

δ ε2κ ερ ε2κ ε2κ

Table 1: The order of the size of each rectangle at each step in the proof.
In addition, we choose the iterates Ni,Mi = O(1) and Ki = O(ε−ρ−τ ) to be
sufficiently large.

S : U ⊆ Λ → Λ is a branch of the scattering map. It is essential that z ∈ Ŵi,
and so we must be able to choose Ŵi as wide as necessary in the q-direction.
This requirement can be seen mathematically in (34): if γ̂i does not dominate
MiT+δ

′
i + CM2

i ε
k + 2ω′i, then γ′i cannot be chosen to be positive.

Suppose we have δ̃i = ερδ∗ where ρ, δ∗ are to be determined. It follows from
(26) that δ̃i = O

(
ε2κ
)
, and so

ρ ≥ 2κ. (55)

Moreover, the first two terms on the right-hand side of (29) are

Kiε
ρ+τδ∗

(
T− −Rδ∗ερ−τ

)
. (56)

Since we require that this is positive, we must have

ρ ≥ τ (57)

and δ∗ <
T−
R . It follows from (55) and (57) that the value ρ = max{2σ, 2υ, τ}

defined in (10) suffices.
Now, for the right-hand side of (29) to be positive we require that (56)

dominates γ̃i + CK2
i ε
k, which is true whenever Ki = O (ε−ρ−τ ) is sufficiently

large, where we have used (9). Due to (9), the inequality (30) is also solvable

for δ̂i = O(ε2κ). Therefore we can again choose δ′i > 0 in (35) to be of order
O
(
ε2κ
)
. Since we can choose δ̃i to be as small as we like (due to (26)), we

can subsequently choose each δ̂i, δ
′
i in (30), (35) respectively to be as small as

required.
If we choose Mi = O(1), then (35) is solvable. Let us explain how to find γ̂i

satisfying (34). If we define T = R/Z, then ω′i ≤ 1
2 , where ω′i is defined in (31).

We may assume, by slightly shifting yui if necessary (to some point ỹui such that
S (ỹui ) lies in a sufficiently small O(η)-neighbourhood of Li+1), that ω′i <

1
2 .

Notice that, by increasing Ki and shrinking γ̃i if necessary, we can choose γ̂i to
be as close to 1 as required. In this way we can find some positive γ′i = O(1) so
that the left-hand side of (34) is less than 1. Therefore (34) is solvable, and we
can choose γ′i = O (εκ).
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Suppose we choose Ni = O(1). Then, by (23), α̃i is of order 1. Since
Ki = O (ε−ρ−τ ) and since λ+ ∈ (0, 1), we can choose α̂i to be of order ε2κ in
(27). Since Mi = O(1), we can in turn choose α′i to be of order ε2κ due to (32).
Moreover, shrinking α̂i in (27) allows us to shrink α′i in (32) if necessary.

Now, since βi is of order O
(
ε2κ
)
, so too is β̃i due to (24). Due to (28), since

Ki = O (ε−ρ−τ ) and since µ− > 1, we can choose β̂i of order 1. Finally, choosing

Mi = O(1) large enough, we can ensure that β̂i − 2ν′iµ
−Mi
− > 0 so that (33) is

solvable by a positive choice of β′i = O (εκ).
We have thus shown that these choices can be made consistently. Combining

this construction with Theorem 3.5 implies the existence of a trajectory {zi}
as in Theorem 2.9. Since we choose Mi, Ni to be of order O(1), Ki of order
O (ε−ρ−τ ), the time taken to move from a neighbourhood of xi to a neighbour-
hood of xi+1 is

Ni +Ki +Mi = O
(
ε−ρ−τ

)
.

In order to move a distance of order 1 in the p-direction, we must choose N
consecutive leaves of the foliation connected by the scattering map where N =
O(ε−υ), and so the time is of order ε−ρ−τ−υ. This concludes the proof of
Theorem 2.9.

6 Proof of Theorem 2.11

Let the notation be as in the statement of Theorem 2.11, and fix η > 0. Denote
by Σ̂ = R`1 × [0, 1]`2 the universal cover of Σ. Suppose we have lifted the

dynamics to the covering space M̂ = M × Σ̂ of M̃ . For convenience, we do not
change the notation of the lifted mappings. Fix p∗1, . . . , p

∗
N ∈ [0, 1]n and ξ∗1 ∈

Int
(
[0, 1]`2

)
as in the statement of Theorem 2.11. Let F = G̃(·; ξ∗1) ∈ Diff4(M).

By [B1], F satisfies the assumptions of Theorem 2.9. Therefore, by the proof of

Theorem 2.9, there are windows W̃1, . . . , W̃N ⊂M and nj ∈ N such that

d (z,Lj) <
η

2

for all z ∈ W̃j , and W̃j is correctly aligned with W̃j+1 under Fnj . For conve-
nience we drop the tilde notation and write simply Wj . By Theorem 3.6, there
is a neighbourhood V of F in Diff4(M) such that Wj is correctly aligned with

Wj+1 under F̃nj for each j = 1, . . . , N − 1 and each F̃ ∈ V. Moreover, our
assumptions on F imply that there is a K > 0 such that the neighbourhood V
is of order εK , in the sense that there is some R > 0 independent of ε such that
the ball of radius RεK centred at F in Diff4(M) is contained in V. Therefore
there is some a∗ > 0 (that may depend on ε) such that if we define

Ξ∗ =
[
ξ∗1,1 − a∗, ξ∗1,1 + a∗

]
× · · · ×

[
ξ∗1,`2 − a

∗, ξ∗1,`2 + a∗
]
⊂ Int

(
[0, 1]`2

)
,

where ξ∗1 =
(
ξ∗1,1, . . . , ξ

∗
1,`2,

)
, then G̃(·; ξ) ∈ V for all ξ ∈ Ξ∗. Moreover, if we

choose L ∈ N large enough, we may assume that G(·, θ, ξ) = G̃(·; ξ)+O(εL) ∈ V
for all θ ∈ R`1 , ξ ∈ Ξ∗.
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For each j = 2, . . . , N let

Ωj =

j−1∑
k=1

nk.

Since L ∈ N is sufficiently large, we can find positive constants Cj (independent
of ε) such that, if we let Ξ1 = {ξ∗1}, and

Ξj =
[
ξ∗1,1 − CjΩjεL, ξ∗1,1 + CjΩjε

L
]
× · · · ×

[
ξ∗1,`2 − CjΩjε

L, ξ∗1,`2 + CjΩjε
L
]

for j = 2, . . . , N , then
Ξj ⊂ Ξ∗

for each j = 1, . . . , N , and the ξ component of Ψnj (z, θ, ξ) lies in Int (Ξj+1) for
each z ∈Wj , θ ∈ R`1 , ξ ∈ Ξj .

Choose any ζ±1 ∈ R such that ζ−1 < ζ+
1 , and consider the rectangle

Θ1 =
[
ζ−1 , ζ

+
1

]`1 ⊂ R`1 .

For each j = 2, . . . , N we can find ζ±j ∈ R such that ζ−j < ζ+
j , and such that if

Θj =
[
ζ−j , ζ

+
j

]`1
,

then the θ component of Ψnj (z, θ, ξ) lies in Int(Θj+1) for each z ∈ Wj , θ ∈
Θj , ξ ∈ [0, 1]`2 .

Now, for each j = 1, . . . , N choose the entry and exit sets of the rectangles
Θj ,Ξj to be

Θ+
j = ∂Θj , Θ−j = ∅, Ξ+

j = ∂Ξj , Ξ−j = ∅.

Define
Wj = Wj ×Θj × Ξj ⊂ M̂

where the entry and exit setsW±j are given by the product formula (16). Clearly
the sets Wj are windows. By construction, Wj is correctly aligned with Wj+1

under Ψnj for each j = 1, . . . , N since the error terms are small (by assumption
[B1]), and

d
(

(z, θ, ξ), L̃j
)
< η (58)

for each (z, θ, ξ) ∈ Wj if L is sufficiently large, where L̃j = L̃(p∗j , ξ
∗
j ) with

p∗1, . . . , p
∗
N and ξ∗1 as chosen earlier, and for some ξ∗2 , . . . , ξ

∗
N ∈ [0, 1]`2 . Therefore,

combining (58) and Theorem 3.5, we see that there are w1, . . . , wN ∈ M̂ such
that

wj+1 = Ψnj (wj)

and
d
(
wj , L̃j

)
< η.

Moreover the time estimate (12) follows from the time estimate (11).
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