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Supercritical bifurcation of a hula hoop
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FAST, Bat. 502, Campus Universitaire, 91405 Orsay Cedeande
(Dated: October 23, 2018)

The motion of a hoop hung on a spinning wire provides an ilaiste and pedagogical example of a supercrit-
ical bifurcation. Above a certain angular velocity threlsh@., the hoop rises, making an angle~ (Q—Qc)l/2
with the vertical. The equation of motion is derived in thaitiof a long massless wire, and the calculated steady
states are compared to experimental measurements. Thpesixperiment is suitable for classroom demon-
stration, and provides an interesting alternative to tlassital experiment of the bead sliding on a rotation
hoop.

I. INTRODUCTION

The rotation of rigid bodies often displays interestingans
bility problems. Bodies with three different inertia monen
are well known to have unstable rotation about the interme-
diate axi8, as commonly observed from acrobatic jumps or
dives. Throwing a tennis racket provides an easy illusimati
of this instability of the free rotation. Such purely inetti
instability has no threshold,e. it can be observed for very
low rotation rates. In contrast, for axisymmetric bodieshsu
as hoops, disks, rockets, eggs etc., the free rotationsimema
stable, but different mechanisms may also lead to instgbili
when external forces are present. Under some circumstances
spectacular and unexpected instabilities may originaim fr
frictional forces. This is the case for the tippe-top, a dapu
toy that flips over and rotates on its stem, or for the hard-
boiled egg problem, which has recently received a nice anal-
ysi#. More classically, the competition between gravity and
centrifugal forces may lead to an instability with a finite ro
tation rate threshoE as illustrated by the simple experiment
described in this paper.

A hoop is hung on a long wire, whose upper end is spun. At
low rotation rate, the hoop is vertical and simply spins a@bou
its diameter. Increasing the rotation rate, the hoop pagre
sively rises and becomes horizontal, spinning about its-symFIG. 1: A hoop of center of mass G, attached to a wire OP, spins
metry axis. This situation may appear paradoxical, sinee thabout the vertical axis OG, making a pitch an@heith the vertical.
horizontal position maximizes both kinetic and pgtential e
ergy. It is similar to the conical pendulum problgntom-
monly illustrated in the classical demonstraﬁ% experitod
the bead sliding along a vertically rotating h IB The pop-
ular ‘hula hoop’ game, where the wire rotation is replaced by S ) ]
the hips oscillations of the player, is a common illustratig ~ @nd air friction allow us to estimate the startup and damping
this phenomenon. Once the hoop spins horizontally, its rotatimescales. Finally some experimental measurements are re
tion is maintained by a parametric oscillation mechaffism ported, and are shown to compare well with the exact solution

In this paper, the equation of motion is derived from the La-
grange’s equation. An alternate derivation, from the amgul In this experiment, the angular rotation threshold being of
momentum equation, is also presented as a good illustratioorder of a few rad/s, the wire can be simply spun with the
of dynamics of a rigid body. The hoop is shown to rise fol- fingers. Since it only requires a wire and a hoop, this exper-
lowing a supercritical bifurcation for the wire rotatiorted) iment can be conveniently used as a classroom illustrafion o
above a critical valu€, = (2g/R)"/?, whereg is the gravita-  spontaneous symmetry breaking and bifurcation. Although
tional acceleration anf the hoop radius. The stable solution the detail of the calculation is somewhat more subtle thah th
6 ~ (2 — Q.)'/? coincides with that of the conical pendulum of the classical bead-on-a-hoop problem, since it deals wit
or the bead-on-a-hoop. The nonlinear oscillations ardlrie rigid body dynamics, the physics is basically the same and
described by means of phase portraits, and compared tofthat does not require the much heavier apparatus of the bead-on-a
the bead-on-a-hoop. Simple considerations from wiredorsi hoop demonstration.
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Il. THEORY To first order inR/L, N is vertical, so its torque is simply
I' ~ —RNsinf es. Usingzg ~ R(1 — cosf), we obtain
A. Equation of motion . .
'~-R (mg + mR(6?% cos § + O sin 9)) sinfes. (6)
We consider a thin uniform hoop, of radii&sand massn,
fixed at a point P of its periphery by a massless wire of lengt
L > R (see figureﬂl). The wire is spun from its other end
O at a constant angular velocity. The center of mass G is
assumed to remain at the vertical of O. Let us first consider a
torsionless wire, so that the hoop angular velogigbout the

vertical axise, instantaneously follows the imposed angular ) .
velocity 0. We are interested in the steady states and the natural fre-

Let us consider the rotating frame of reference of the hoofiU€ncy for small oscillations about them. To first ordeé|n
(e1,e2,e3). We noted the pitch angle between the hoop plane equation|(3) reduces to
and the vertical axie,. We consider for simplicity a zero §— 02sinfcosd+ O2sinf = 0. @)
roll angle aboutk; (i.e. we assume that the point P remains ¢
the highest point of the hoop), so titats the only degree of It is worth noting that this linearized equation js exactig t
freedom for this problem. The absolute angular velogityf ~ same as the one from the bead-in-a-hoop prolhleFhe dif-
the hoop has two contributions. The first one, of magnitade ference between equatiof (3) afid (7) originates from the ki
is imposed from O through the torsionless wire, and is abouhetic energy of the center of mass translation, which is not
e. = cosfle; + sinfes (the points O and G are at rest, so present in the bead-on-a-hoop.
that OG is the instantaneous axis of rotation wheis kept In addition to the trivial solutior., = 0, equation [[7) has
constant). The second one comes from the pitch vari#jon a non trivial solution fo2 > ..,
and is about the axis,. We therefore obtain

H?eplacing intoﬂ4) and projecting @3, we finally recover the
equation of motion([(3).

B. Steady statesand small oscillations

Q 2
Qcosb fcq = £cos™? (60) . (8)
w=|6 : (1)
Qsin 6 Following the usual terminology, the pitch andlg, is the

order parameter, and we introduce the reduced angular-veloc
ity e = Q/Q. — 1 as the control parameter. The lineariza-
tion of @) finally leads to the classical form of a supercati
pitchfork bifurcation fore < 1:

The potential energy i¥ = mgzg, wherezg ~ R(1 —
cos 0) is the center of mass elevation to first ordeRINL. The
kinetic energyl” has two contributions: one from the rotation
%w - I - w, wherel is the inertia matrix of the hoop relative
to G, and one from the vertical translation of the center of Ocq ~ 2V/e. 9)
massimzZ ~ +mR26*sin® 0. In the reference frame of the

hoop, the inertia matriX has diagonal components = I, =
smR? andI; = mR?. The Lagrangian functiof =T — V/
then finally writes

Stability and natural frequency for small oscillations abbe
tained by introducing in equatiovﬂ(?) a small perturbation i
the form

1 , 0(t) = Ooq + 60 7Tt (10)
L =-mR?|Q?(1 +sin? 0) + 6%(1 + 2sin* 0) | +mgR cos 6. () 4
4 ) whered., stands for the trivial or non-trivial solution. The

Writing the Lagrange’s equation for the coordinéteve end ~ trivial solution is ;tabIeQ ff’/? < (0 = 0), with a natural
up with the differential equation of motion frequencyw = (Q; — ©2°)/%, and unstable fof2 > ., with
} . a growth rate given by = (Q? — Q2)'/2 (andw = 0). The
6(1 4 2sin®0) — (2% — 26%)sinf cosf + Q2sinf = 0. (3)  non-trivial solution [[B) is found to be always stable, witiet
same natural frequency. In terms qfone can see that the

whereQ). = \/2g/R. . period of the oscillations,
This equation of motion can also be obtained from the an-
gular momentum equation and Newton'’s law. In the rotating T ~ |e| 712, (11)

frame of reference, the angular momentum equation reads N )
diverges as one approaches the transition from both sids. Th

dL +wxL =T (4 critical slgying down is a usual signature of supercritical
dt ’ bifurcatiort,

whereL = [w is the angular momentum aiitl= GP xN is
the torque of the wire tension relative to the center of mides (
gravitational torque vanishes). The wire tension is olgdin
from Newton'’s law,

C. Nonlinear oscillations

When the oscillation amplitudes about the steady states are
mzZge, = N+ mg. (5) not small, the nonlinear terms iIEI (3) become important and
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(@ interested in the closed orbits in the dom@h< m/2: orbits
that crosg) = +7/2 are not consistent with the assumption
that the point P remains the highest point of the hoop.

Around the stable fixed points, both the two systems show
nearly elliptic orbits, as expected from small harmonicilesc
lations. Larger oscillations of the hula hoop show orbitthwi
sharper corners arourtd ~ 0, associated to larger angular
velocities|f|. This discrepancy originates from the vertical
translation of the center of mass, which is responsible for a
additional pitch angle acceleration when the hoop is nearly
vertical.

0/Qc

D. Timescales

Two timescales are relevant for a practical experiment; the
startup timescale of rotation and the damping timescale of
oscillationsry. The startup timescale may be obtained consid-
ering the wire torsion. We start from an initially verticaldp
(¢ = 0), and let now its rotation angleé aboute, be free.
The wire communicates a torqug¢ — Qt) = kd¢ to the
hoop, wheres is the torsion constant ard@ the wire torsion.
The angular momentum equation abeutipplied to the hoop
then reads

(b)

8/Qc

%mR%ds +Kkdp =0, (13)

leading to a startup timescate ~ R(m/2x)'/? (which cor-
responds also to the period of the wire torsion oscillatibns
no damping were present).

The damping timescalg, is relevant both for thé oscilla-
tions due to the wire torsion, and for thescillations around
the equilibrium states. It can be obtained considering tee d
sipation with the surrounding air. With typical velocity oif-

0 (rad) der m/s and hoop thickness of a few millimeters, we can
make use of a turbulent estimate for the drag force. Neglect-

FIG. 2: Orbits in the phase spa# 6/52.) for the hula hoop (solid  iNg § compared tab, a unit lengthdl of the hoop experiences
lines) compared to the bead-on-a-hoop system (dashed.liggs @ drag forcelf ~ pR*¢?w dl, wherep is the air density. Inte-

Q= 0.8Q.. (b): Q = 1.2Q.. grating over the hoop perimeter leads to the frictional tierq
may affect the dynamics of the system. The orbits in the phase T, ~ —pR‘$*w & (14)
spaced, §) then provide a useful tool to characterize the non- €2

linear dynamics of the hula hoop, and to compare it with therpo angular momentum equation abeuteads
one of the bead-on-a-hodﬂ) (7). The equation of motion can be

integrated using the Painleveé invariant, i+ (@g) =0 (15)
oL p R
C=60—=—r, (12) _ , L .
00 wherep, is the hoop density. Taking ~ Q and¢ ~ Q /74,

which takes a constant value along an orbit (this invariant ¢ the damping timescale finally writes

responds to the total enerdy = T + V in the case of a pow\
conservative system). Figuﬂa 2 shows isolineg’dfor two Td = ( )
forcing frequencies, belowX/Q}. = 0.8, fig. a) and above
(Q/Q. = 1.2, fig. b) the transition, together with the orbits of For values of practical interest, is of order of a few tens
the bead-on-a-hoop problem (dashed lines). One can cleartyf the rotation period2~!. Note here that in the case of the
see from these phase portraits the trivial solutign= 0 for  real hula hoop game, the rolling friction on the player hips i
Q/Q. = 0.8 and the two non trivial solutionﬂ(S) separated byfortunately dominant, leading to a damping timescale oéord
a saddle point & = 0 for /€. = 1.2. Note thatwe areonly Q1.

(16)
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FIG. 4: Bifurcation diagram of the pitch angeas a function of the
normalized angular velocitf2/Q.. The solid line is the calculated
solution @), withQ. adjusted to fit the experimental data.

theoretical value. The discrepancy at low rotation ratgps-t
cal of an imperfect bifurcation, where small asymmetry ia th
apparatus (such as the position of the knot) slightly guaigs
the destabilization of the basic state.

An interesting observation is that, for > 2.6(). (see the
dashed line in figurﬂ 4), the bifurcated state is no stable any
more: a secondary instability appears, in the form of a slow
FIG. 3: Pictures of the hoop. (a) The hoop at rest. (b) and (s)  precession of the center of mass, with a period of about ten ro
37°.(d) 0 ~ 78°. tation periods. This new behavior is probably an effect ef th

non zero mass of the wire, and can clearly not be described in

An experiment has been carried out using a wood hoo@Ur calqulati_on, whgre the hoo.p center of mass is constlaine
(po =~ 0.67 g.cn3) of massm = 15.5 g, radiusR = 86 mm  t0 remain aligned with the vertical axis.
and sectiorl x 10 mm?. The expected frequency threshold is ~ Transient phenomena may also be investigated, by means
then(Q./27 ~ 2.40 Hz (classical hula hoops hag&. /27 ~ of usual video processing. An illustration is given in figﬁ:e
1 Hz). A simple cotton thread, of lengih= 0.68 mand mass Showing a spatio-temporal diagram obtained by collectirgg t
less than 3% of the hoop mass, was fixed to a constant currelight intensity recorded on a horizontal line passing tiyiou
motor. The startup timescale for this wire can be estimatedhe wire. In this example, the imposed frequesizi2m has
from the free oscillation period;, ~ 5 s (correspondingto a been suddenly increased from 0 to 5.5H2.4 Q. /2 (first
torsion constant ~ 2 x 10~¢ N.m). This wire is far from arrow). One can see that, after a transient time of around
being torsionless, and during the early stage of the ratatio 7 S (second arrow) during which the wire rotation propagates
torsional energy is stored into the wire. The wire progres-dOWﬂ to the hoop, the amplitude increases and saturates to a
sively communicates rotation to the hoop, and the fluctationfinite value.

(due to a varying imposed rotation rate at its upper end, or to From this diagram, the instantaneous pitch angle as well
pitch angle variation at the other end) are smoothed down oas the instantaneous oscillation frequeggy2r may be ex-
a timescale,. tracted, as shown in figuﬂa 6. The frequency is obtained from

Seen from the side, the hoop rotation appears as Lissajo@yeraging over 6 successive oscillations. Due to the psegre
ellipses, whose principal axis makes an argylgith the ver-  sive torsion of the wire, this frequency slowly approachss i
tical axis. Pictures acquired from a simple CCD camera (seénposed value 5.5 Hz. As a consequence, the increase of
figure[:p'@) allows us to easily measure the pitch arfighethin the pitch angle towards its stationary valfig ~ 1.42 rad
1° from these ellipses. The time aperture of the camera maig rather slow.
blur the picture, but facilitate in some case the angle neasu  Itis interesting to note that, when plotting the instantarse
ment (see for instance picture c). pitch angle as a function of the instantaneous frequeney (se

The measured pitch anglés shown in figure[|4, are in figure[’f), the bifurcation diagram of figuﬂs 4 is recovered to
excellent agreement with the exact squtitEh (8), except fom high degree of accuracy. This suggests that the pitch an-
low rotation rate, where non zero angles are measured belogle follows ‘adiabatically’ the instantaneous frequersoythat
the expected transition. The experimental frequency thres the apparent growth rate is essentially controlled by the wi
old, obtained by extrapolating the curve downéta~ 0, is  torsion more than the intrinsic dynamics of the instabi{ay
0./2m ~ (2.30 £ 0.03) Hz, which agrees within 5% with the least far from the transition).
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FIG. 5: Spatio-temporal diagram of the light intensity netsd on
an horizontal line, showing the wire oscillation, when theguency

Q/2m is increased from 0 to 5.5 Hz.
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FIG. 6: Instantaneous pitch angle(left) and rotation frequency
¢/2m (right) as measured from figuf¢ 5. The origin timecorre-

sponds to the second arrow in that figure.

IV. DISCUSSION
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FIG. 7: Instantaneous pitch angles a function of the instantaneous
rotation frequency)/Q. (same data as in figuﬂe 6). The solid line is
the calculated solutiorﬁ(S), as in figuﬂe 4. The cross indicdhe
stationary solutioeq ~ 1.42 rad forQ = 2.4 Q..

experimental conditions illustrates the robustness ofpthe
nomenon, and makes this experiment easy to work out by un-
dergraduate students. Further experiments can be perdorme
e.g. studying the transient phenomena resulting from a small
perturbation. As a suggestion, restrain the point P on the ve
tical axis wherf2 > Q. by means of a small hook around the
wire. Releasing the hook allows us to measure the growth rate
and to characterize its divergencecas> 0. This method can

be hardly achieved with a bead-on-a-hoop apparatus due to it
inherent difficult access.

Another motion may compete with the bifurcation de-
scribed in this paper: the hoop can rotate as a whole about
the vertical axis, its center of mass remaining aligned with
the wire. This is the usual motion for the conical pendulum,
which also leads to a supercritical bifurcation with a thied
simply given by the natural frequencyy ~ +/g/(L + R).

The conical pendulum motion overcomes the hula hoop mo-
tion for wy of order of(Q2., i.e. for a wire length of order of
the hoop radius. Moving away the center of mass from the
vertical axis may allow us to observe the competition betwee
the two regimes, even for a longer wire.

Similar bifurcations as the result of a competition between
centrifugal force and gravity are present in a number of sit-
uations. Spinning plates provides an interesting illugtra
as for the real hula hoop, the motion here is forced by the
precession of the rigid rod rather than its rotation. The im-
posed precession frequency has to overcome the natural fre-
guency for the plate to stand up, and then the h({)dizontad stat
is maintained by a parametric oscillation mechanislrasso
roping is another example, where the rigid hoop is replaced
by a deformable loop. Here again the motion is maintained by
the precession of the spoke rather than rotation. As a conse-
guence, the knot on the loop makes the spoke to rotate as well,

This simp]e experﬁfnt provides an interesting altermativ SO that the cord has to be Continuously untwisted at its other

to the bead-on-a-ho

experiment as a mechanical analog €nd.
to bifurcation and second-order phase transition in pisysic

It is worth pointing out that this experiment can be car-

The poor attention paid to the choice of the material and theied out with any rigid body, not necessarily axisymmetric.



In this case, the angle of the equilibrium st{}e (8) remaingulation.
unchanged, and the angular velocity threshold just becomes

0. = /mga/(Is — I), wherea = |GP] is the distance be-

tween the center of mass and the knot. Note however that,

for bodies with three different inertia moments, in additto

the bifurcation described here, inertial instabilitiesynadso
occur. Such instability involves the roll angle abeytas an This work has benefited from fruitful discussions with

additional degree of freedom, and is not described by our caM. Rabaud and B. Perrin.
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