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Supercritical bifurcation of a hula hoop

Frédéric Moisy∗

FAST, Bât. 502, Campus Universitaire, 91405 Orsay Cedex, France
(Dated: October 23, 2018)

The motion of a hoop hung on a spinning wire provides an illustrative and pedagogical example of a supercrit-
ical bifurcation. Above a certain angular velocity threshold Ωc, the hoop rises, making an angleθ ≃ (Ω−Ωc)

1/2

with the vertical. The equation of motion is derived in the limit of a long massless wire, and the calculated steady
states are compared to experimental measurements. This simple experiment is suitable for classroom demon-
stration, and provides an interesting alternative to the classical experiment of the bead sliding on a rotation
hoop.

I. INTRODUCTION

The rotation of rigid bodies often displays interesting insta-
bility problems. Bodies with three different inertia moments
are well known to have unstable rotation about the interme-
diate axis1, as commonly observed from acrobatic jumps or
dives. Throwing a tennis racket provides an easy illustration
of this instability of the free rotation. Such purely inertial
instability has no threshold,i.e. it can be observed for very
low rotation rates. In contrast, for axisymmetric bodies such
as hoops, disks, rockets, eggs etc., the free rotations remain
stable, but different mechanisms may also lead to instability
when external forces are present. Under some circumstances,
spectacular and unexpected instabilities may originate from
frictional forces. This is the case for the tippe-top, a popular
toy that flips over and rotates on its stem, or for the hard-
boiled egg problem, which has recently received a nice anal-
ysis2. More classically, the competition between gravity and
centrifugal forces may lead to an instability with a finite ro-
tation rate threshold3, as illustrated by the simple experiment
described in this paper.

A hoop is hung on a long wire, whose upper end is spun. At
low rotation rate, the hoop is vertical and simply spins about
its diameter. Increasing the rotation rate, the hoop progres-
sively rises and becomes horizontal, spinning about its sym-
metry axis. This situation may appear paradoxical, since the
horizontal position maximizes both kinetic and potential en-
ergy. It is similar to the conical pendulum problem1, com-
monly illustrated in the classical demonstration experiment of
the bead sliding along a vertically rotating hoop4,5,6. The pop-
ular ‘hula hoop’ game, where the wire rotation is replaced by
the hips oscillations of the player, is a common illustration of
this phenomenon. Once the hoop spins horizontally, its rota-
tion is maintained by a parametric oscillation mechanism7.

In this paper, the equation of motion is derived from the La-
grange’s equation. An alternate derivation, from the angular
momentum equation, is also presented as a good illustration
of dynamics of a rigid body. The hoop is shown to rise fol-
lowing a supercritical bifurcation for the wire rotation rateΩ
above a critical valueΩc = (2g/R)1/2, whereg is the gravita-
tional acceleration andR the hoop radius. The stable solution
θ ∼ (Ω−Ωc)

1/2 coincides with that of the conical pendulum
or the bead-on-a-hoop. The nonlinear oscillations are briefly
described by means of phase portraits, and compared to that of
the bead-on-a-hoop. Simple considerations from wire torsion

mg

L

Ο

G

P
e3

e1

N

R

Ω

θ

FIG. 1: A hoop of center of mass G, attached to a wire OP, spins
about the vertical axis OG, making a pitch angleθ with the vertical.

and air friction allow us to estimate the startup and damping
timescales. Finally some experimental measurements are re-
ported, and are shown to compare well with the exact solution.

In this experiment, the angular rotation threshold being of
order of a few rad/s, the wire can be simply spun with the
fingers. Since it only requires a wire and a hoop, this exper-
iment can be conveniently used as a classroom illustration of
spontaneous symmetry breaking and bifurcation. Although
the detail of the calculation is somewhat more subtle than that
of the classical bead-on-a-hoop problem, since it deals with
rigid body dynamics, the physics is basically the same and
does not require the much heavier apparatus of the bead-on-a-
hoop demonstration.
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II. THEORY

A. Equation of motion

We consider a thin uniform hoop, of radiusR and massm,
fixed at a point P of its periphery by a massless wire of length
L ≫ R (see figure 1). The wire is spun from its other end
O at a constant angular velocityΩ. The center of mass G is
assumed to remain at the vertical of O. Let us first consider a
torsionless wire, so that the hoop angular velocityφ̇ about the
vertical axisez instantaneously follows the imposed angular
velocityΩ.

Let us consider the rotating frame of reference of the hoop
(e1, e2, e3). We noteθ the pitch angle between the hoop plane
and the vertical axisez. We consider for simplicity a zero
roll angle aboute1 (i.e. we assume that the point P remains
the highest point of the hoop), so thatθ is the only degree of
freedom for this problem. The absolute angular velocityω of
the hoop has two contributions. The first one, of magnitudeΩ,
is imposed from O through the torsionless wire, and is about
ez = cos θ e1 + sin θ e3 (the points O and G are at rest, so
that OG is the instantaneous axis of rotation whenθ is kept
constant). The second one comes from the pitch variationθ̇,
and is about the axise2. We therefore obtain

ω =





Ωcos θ

θ̇
Ω sin θ



 . (1)

The potential energy isV = mgzG, wherezG ≃ R(1 −
cos θ) is the center of mass elevation to first order inR/L. The
kinetic energyT has two contributions: one from the rotation
1
2ω · Ĩ · ω, whereĨ is the inertia matrix of the hoop relative
to G, and one from the vertical translation of the center of
mass,12mż2G ≃ 1

2mR2θ̇2 sin2 θ. In the reference frame of the
hoop, the inertia matrix̃I has diagonal componentsI1 = I2 =
1
2mR2 andI3 = mR2. The Lagrangian functionL = T − V
then finally writes

L =
1

4
mR2

[

Ω2(1 + sin2 θ) + θ̇2(1 + 2 sin2 θ)
]

+mgR cos θ.

(2)
Writing the Lagrange’s equation for the coordinateθ, we end
up with the differential equation of motion

θ̈(1 + 2 sin2 θ)− (Ω2 − 2θ̇2) sin θ cos θ+Ω2
c sin θ = 0. (3)

whereΩc =
√

2g/R.
This equation of motion can also be obtained from the an-

gular momentum equation and Newton’s law. In the rotating
frame of reference, the angular momentum equation reads

dL

dt
+ ω×L = Γ, (4)

whereL = Ĩω is the angular momentum andΓ = GP×N is
the torque of the wire tension relative to the center of mass (the
gravitational torque vanishes). The wire tension is obtained
from Newton’s law,

mz̈G ez = N+mg. (5)

To first order inR/L, N is vertical, so its torque is simply
Γ ≃ −RN sin θ e2. UsingzG ≃ R(1− cos θ), we obtain

Γ ≃ −R
(

mg +mR(θ̇2 cos θ + θ̈ sin θ)
)

sin θ e2. (6)

Replacing into (4) and projecting one2, we finally recover the
equation of motion (3).

B. Steady states and small oscillations

We are interested in the steady states and the natural fre-
quency for small oscillations about them. To first order inθ,
equation (3) reduces to

θ̈ − Ω2 sin θ cos θ +Ω2
c sin θ = 0. (7)

It is worth noting that this linearized equation is exactly the
same as the one from the bead-in-a-hoop problem4. The dif-
ference between equations (3) and (7) originates from the ki-
netic energy of the center of mass translation, which is not
present in the bead-on-a-hoop.

In addition to the trivial solutionθeq = 0, equation (7) has
a non trivial solution forΩ ≥ Ωc,

θeq = ± cos−1

(

Ωc

Ω

)2

. (8)

Following the usual terminology, the pitch angleθeq is the
order parameter, and we introduce the reduced angular veloc-
ity ǫ = Ω/Ωc − 1 as the control parameter. The lineariza-
tion of (8) finally leads to the classical form of a supercritical
pitchfork bifurcation forǫ ≪ 1:

θeq ≃ 2
√
ǫ. (9)

Stability and natural frequency for small oscillations areob-
tained by introducing in equation (7) a small perturbation in
the form

θ(t) = θeq + δθ e(σ+iω)t, (10)

whereθeq stands for the trivial or non-trivial solution. The
trivial solution is stable forΩ < Ωc (σ = 0), with a natural
frequencyω = (Ω2

c − Ω2)1/2, and unstable forΩ > Ωc, with
a growth rate given byσ = (Ω2 − Ω2

c)
1/2 (andω = 0). The

non-trivial solution (8) is found to be always stable, with the
same natural frequency. In terms ofǫ, one can see that the
period of the oscillations,

T ∼ |ǫ|−1/2, (11)

diverges as one approaches the transition from both side. This
critical slowing down is a usual signature of supercritical
bifurcation3.

C. Nonlinear oscillations

When the oscillation amplitudes about the steady states are
not small, the nonlinear terms in (3) become important and
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FIG. 2: Orbits in the phase space(θ, θ̇/Ωc) for the hula hoop (solid
lines) compared to the bead-on-a-hoop system (dashed lines). (a):
Ω = 0.8Ωc. (b): Ω = 1.2Ωc.

may affect the dynamics of the system. The orbits in the phase
space(θ, θ̇) then provide a useful tool to characterize the non-
linear dynamics of the hula hoop, and to compare it with the
one of the bead-on-a-hoop (7). The equation of motion can be
integrated using the Painlevé invariant,

C = θ̇
∂L
∂θ̇

− L, (12)

which takes a constant value along an orbit (this invariant cor-
responds to the total energyE = T + V in the case of a
conservative system). Figure 2 shows isolines ofC for two
forcing frequencies, below (Ω/Ωc = 0.8, fig. a) and above
(Ω/Ωc = 1.2, fig. b) the transition, together with the orbits of
the bead-on-a-hoop problem (dashed lines). One can clearly
see from these phase portraits the trivial solutionθeq = 0 for
Ω/Ωc = 0.8 and the two non trivial solutions (8) separated by
a saddle point atθ = 0 for Ω/Ωc = 1.2. Note that we are only

interested in the closed orbits in the domain|θ| ≤ π/2: orbits
that crossθ = ±π/2 are not consistent with the assumption
that the point P remains the highest point of the hoop.

Around the stable fixed points, both the two systems show
nearly elliptic orbits, as expected from small harmonic oscil-
lations. Larger oscillations of the hula hoop show orbits with
sharper corners aroundθ ≃ 0, associated to larger angular
velocities|θ̇|. This discrepancy originates from the vertical
translation of the center of mass, which is responsible for an
additional pitch angle acceleration when the hoop is nearly
vertical.

D. Timescales

Two timescales are relevant for a practical experiment: the
startup timescale of rotationτs and the damping timescale of
oscillationsτd. The startup timescale may be obtained consid-
ering the wire torsion. We start from an initially vertical hoop
(θ = 0), and let now its rotation angleφ aboutez be free.
The wire communicates a torqueκ(φ − Ωt) = κ δφ to the
hoop, whereκ is the torsion constant andδφ the wire torsion.
The angular momentum equation aboutez applied to the hoop
then reads

1

2
mR2δφ̈+ κ δφ = 0, (13)

leading to a startup timescaleτs ≃ R(m/2κ)1/2 (which cor-
responds also to the period of the wire torsion oscillationsif
no damping were present).

The damping timescaleτd is relevant both for theφ oscilla-
tions due to the wire torsion, and for theθ oscillations around
the equilibrium states. It can be obtained considering the dis-
sipation with the surrounding air. With typical velocity ofor-
der m/s and hoop thicknessw of a few millimeters, we can
make use of a turbulent estimate for the drag force. Neglect-
ing θ̇ compared toφ̇, a unit lengthdl of the hoop experiences
a drag forcedf ≃ ρR2φ̇2w dl, whereρ is the air density. Inte-
grating over the hoop perimeter leads to the frictional torque

Γr ≃ −ρR4φ̇2w
Ω

|Ω| . (14)

The angular momentum equation aboutez reads

φ̈+

(

ρ0
ρ

w

R

)

φ̇2 = 0. (15)

whereρ0 is the hoop density. Takinġφ ≃ Ω andφ̈ ≃ Ω/τd,
the damping timescale finally writes

τd ≃
(

ρ0
ρ

w

R

)

Ω−1. (16)

For values of practical interest,τd is of order of a few tens
of the rotation periodΩ−1. Note here that in the case of the
real hula hoop game, the rolling friction on the player hips is
fortunately dominant, leading to a damping timescale of order
Ω−1.
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III. EXPERIMENTAL RESULTS

(a) (b)

(c) (d)

FIG. 3: Pictures of the hoop. (a) The hoop at rest. (b) and (c)θ ≃

37o. (d) θ ≃ 78o.

An experiment has been carried out using a wood hoop
(ρ0 ≃ 0.67 g.cm−3) of massm = 15.5 g, radiusR = 86 mm
and section4× 10 mm2. The expected frequency threshold is
thenΩc/2π ≃ 2.40 Hz (classical hula hoops haveΩc/2π ≃
1 Hz). A simple cotton thread, of lengthL = 0.68 m and mass
less than 3% of the hoop mass, was fixed to a constant current
motor. The startup timescale for this wire can be estimated
from the free oscillation period,τs ≃ 5 s (corresponding to a
torsion constantκ ≃ 2 × 10−6 N.m). This wire is far from
being torsionless, and during the early stage of the rotation,
torsional energy is stored into the wire. The wire progres-
sively communicates rotation to the hoop, and the fluctations
(due to a varying imposed rotation rate at its upper end, or to
pitch angle variation at the other end) are smoothed down on
a timescaleτd.

Seen from the side, the hoop rotation appears as Lissajous
ellipses, whose principal axis makes an angleθ with the ver-
tical axis. Pictures acquired from a simple CCD camera (see
figure 3) allows us to easily measure the pitch angleθ within
1o from these ellipses. The time aperture of the camera may
blur the picture, but facilitate in some case the angle measure-
ment (see for instance picture c).

The measured pitch anglesθ, shown in figure 4, are in
excellent agreement with the exact solution (8), except for
low rotation rate, where non zero angles are measured below
the expected transition. The experimental frequency thresh-
old, obtained by extrapolating the curve down toθ ≃ 0, is
Ωc/2π ≃ (2.30± 0.03) Hz, which agrees within 5% with the
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FIG. 4: Bifurcation diagram of the pitch angleθ as a function of the
normalized angular velocityΩ/Ωc. The solid line is the calculated
solution (8), withΩc adjusted to fit the experimental data.

theoretical value. The discrepancy at low rotation rate is typi-
cal of an imperfect bifurcation, where small asymmetry in the
apparatus (such as the position of the knot) slightly anticipates
the destabilization of the basic state.

An interesting observation is that, forΩ ≥ 2.6Ωc (see the
dashed line in figure 4), the bifurcated state is no stable any
more: a secondary instability appears, in the form of a slow
precession of the center of mass, with a period of about ten ro-
tation periods. This new behavior is probably an effect of the
non zero mass of the wire, and can clearly not be described in
our calculation, where the hoop center of mass is constrained
to remain aligned with the vertical axis.

Transient phenomena may also be investigated, by means
of usual video processing. An illustration is given in figure5,
showing a spatio-temporal diagram obtained by collecting the
light intensity recorded on a horizontal line passing through
the wire. In this example, the imposed frequencyΩ/2π has
been suddenly increased from 0 to 5.5 Hz≃ 2.4 Ωc/2π (first
arrow). One can see that, after a transient time of around
7 s (second arrow) during which the wire rotation propagates
down to the hoop, the amplitude increases and saturates to a
finite value.

From this diagram, the instantaneous pitch angle as well
as the instantaneous oscillation frequencyφ̇/2π may be ex-
tracted, as shown in figure 6. The frequency is obtained from
averaging over 6 successive oscillations. Due to the progres-
sive torsion of the wire, this frequency slowly approaches its
imposed value 5.5 Hz. As a consequence, the increase of
the pitch angle towards its stationary valueθeq ≃ 1.42 rad
is rather slow.

It is interesting to note that, when plotting the instantaneous
pitch angle as a function of the instantaneous frequency (see
figure 7), the bifurcation diagram of figure 4 is recovered to
a high degree of accuracy. This suggests that the pitch an-
gle follows ‘adiabatically’ the instantaneous frequency,so that
the apparent growth rate is essentially controlled by the wire
torsion more than the intrinsic dynamics of the instability(at
least far from the transition).
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FIG. 5: Spatio-temporal diagram of the light intensity recorded on
an horizontal line, showing the wire oscillation, when the frequency
Ω/2π is increased from 0 to 5.5 Hz.
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FIG. 6: Instantaneous pitch angleθ (left) and rotation frequency
φ̇/2π (right) as measured from figure 5. The origin timet0 corre-
sponds to the second arrow in that figure.

IV. DISCUSSION

This simple experiment provides an interesting alternative
to the bead-on-a-hoop4,5,6 experiment as a mechanical analog
to bifurcation and second-order phase transition in physics.
The poor attention paid to the choice of the material and the
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FIG. 7: Instantaneous pitch angleθ as a function of the instantaneous
rotation frequencẏφ/Ωc (same data as in figure 6). The solid line is
the calculated solution (8), as in figure 4. The cross indicates the
stationary solutionθeq ≃ 1.42 rad forΩ = 2.4 Ωc.

experimental conditions illustrates the robustness of thephe-
nomenon, and makes this experiment easy to work out by un-
dergraduate students. Further experiments can be performed,
e.g. studying the transient phenomena resulting from a small
perturbation. As a suggestion, restrain the point P on the ver-
tical axis whenΩ > Ωc by means of a small hook around the
wire. Releasing the hook allows us to measure the growth rate
and to characterize its divergence asǫ → 0. This method can
be hardly achieved with a bead-on-a-hoop apparatus due to its
inherent difficult access.

Another motion may compete with the bifurcation de-
scribed in this paper: the hoop can rotate as a whole about
the vertical axis, its center of mass remaining aligned with
the wire. This is the usual motion for the conical pendulum,
which also leads to a supercritical bifurcation with a threshold
simply given by the natural frequencyω0 ≃

√

g/(L+R).
The conical pendulum motion overcomes the hula hoop mo-
tion for ω0 of order ofΩc, i.e. for a wire length of order of
the hoop radius. Moving away the center of mass from the
vertical axis may allow us to observe the competition between
the two regimes, even for a longer wire.

Similar bifurcations as the result of a competition between
centrifugal force and gravity are present in a number of sit-
uations. Spinning plates provides an interesting illustration:
as for the real hula hoop, the motion here is forced by the
precession of the rigid rod rather than its rotation. The im-
posed precession frequency has to overcome the natural fre-
quency for the plate to stand up, and then the horizontal state
is maintained by a parametric oscillation mechanism7. Lasso
roping is another example, where the rigid hoop is replaced
by a deformable loop. Here again the motion is maintained by
the precession of the spoke rather than rotation. As a conse-
quence, the knot on the loop makes the spoke to rotate as well,
so that the cord has to be continuously untwisted at its other
end.

It is worth pointing out that this experiment can be car-
ried out with any rigid body, not necessarily axisymmetric.
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In this case, the angle of the equilibrium state (8) remains
unchanged, and the angular velocity threshold just becomes
Ωc =

√

mga/(I3 − I1), wherea = |GP| is the distance be-
tween the center of mass and the knot. Note however that,
for bodies with three different inertia moments, in addition to
the bifurcation described here, inertial instabilities may also
occur. Such instability involves the roll angle aboute1 as an
additional degree of freedom, and is not described by our cal-

culation.
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