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ABSTRACT: 

 

Three-dimensional data have become increasingly present in earth observation over the last decades and, more recently, with the 

development of accessible 3D sensing technologies. However, many 3D surveys are still underexploited due to the lack of accessible 

and explainable automatic classification methods. In this work, we introduce explainable machine learning for 3D data classification 

using Multiple Attributes, Scales, and Clouds under 3DMASC, a new workflow. It handles multiple clouds at once, including or not 

spectral and multiple returns attributes. Through 3DMASC, we use classical 3D data multi-scale descriptors and new ones based on 

the spatial variations of geometrical, spectral and height-based features of the local point cloud. We also introduce dual-cloud features, 

encrypting local spectral and geometrical ratios and differences, which improve the interpretation of multi-cloud surveys. 3DMASC 

thus offers new possibilities for point cloud classification, namely for the interpretation of bi-spectral lidar data. Here, we experiment 

on topo-bathymetric lidar data, which are acquired using two lasers at infrared and green wavelengths, and feature two irregular point 

clouds characterized by different samplings of vegetated and flooded areas, that 3DMASC can harvest. By exploring the contributions 

of 88 features and 30 scales – including two types of neighborhoods – we identify a core set of features and scales particularly relevant 

for coastal and riverine scenes description, and give indications on how to build an optimal predictor vector to train 3D data classifiers. 

Our findings highlight the predominance of lidar return-based attributes over classical features based on dimensionality or eigenvalues, 

and the significant contribution of spectral information to the detection of more than a dozen of land and sea covers – 

artificial/vegetated/rocky/bare ground, rocky/sandy seabed, intermediate/high vegetation, buildings, vehicles, power lines. The 

experimental results show that 3DMASC competes with state-of-the-art methods in terms of classification performances while 

demanding lower complexity and thus remaining accessible to non-specialist users. Relying on a random forest algorithm, it generalizes 

and applies quickly to large datasets, and offers the possibility to filter out misclassified points depending on their prediction 

confidence. Classification accuracies between 91% for complex scene classifications and 98% for lower-level processing are observed, 

with average prediction confidences above 90% and models relying on less than 2000 samples per class and at most 30 descriptors – 

including both features and scales. Though dual-cloud features systematically outperform their single cloud equivalents, 3DMASC 

also performs on single cloud lidar data, or structure from motion point clouds. Our contributions are made available through a self-

contained plugin in CloudCompare allowing non-specialist users to create a classifier and apply it, and an opensource labelled dataset 

of topo-bathymetric data. 

 

1. INTRODUCTION 

The introduction of Topo-bathymetric (TB) airborne LiDAR 

sensors (also called hydrographic LiDAR) to document the 

land-shallow water continuum in coastal and inland waters 

goes back less than a decade ago. These sensors aim at 

bridging the gap between high-resolution narrow aperture NIR 

airborne topographic LiDAR – generating shot densities above 

10 pts/m² - that cannot penetrate water and large aperture 

bathymetric, airborne LiDAR. Such a bathymetric LiDAR 

reaches depths over 20 m in clear waters. Still, it has reduced 

point density (~ 1 pt/m²) and spatial resolution (> 1 m) and 

implies high mobilization costs that make it unsuitable for 

topographic surveys. TB LiDAR sensors generally combine a 

NIR laser (λ=1064 nm) nearly fully absorbed by water and a 

green laser (λ=532 nm) with water penetration that depends on 

sensor and flight characteristics, water clarity, and submerged 

bottom reflectance (Guenther et al., 2000; Philpot, 2019). 

Associated TB LiDAR datasets are bi-spectral, consisting of 

one point cloud (PC) per wavelength. Their typical shot 

densities above 10 pts/m² result in submerged topographies 

being as detailed as emerging parts (see Figure 1). Shallow 

submerged parts usually represent a significant source of 

uncertainty when using only topographic LiDAR data to study 

land-water interface dynamics (Lague and Feldmann, 2020). 

Combining high-resolution data about the submerged and 

emerged surfaces offers new opportunities to map habitats in 

fluvial (Fernandez-Diaz et al., 2014; Mandlburger et al., 2015; 

McKean et al., 2009; Pan et al., 2015) or coastal (Chust et al., 

2010; Hansen et al., 2021; Launeau et al., 2018; Parrish et al., 

2016; Smeeckaert et al., 2013; Wilson et al., 2019) 

environments, improve high-resolution modeling of flood 



inundation (Lague and Feldmann, 2020; Mandlburger et al., 

2015) or track sediment transport at the land-water interface. 

Nevertheless, to fully use these datasets and leverage the 

scientific potential of extensive datasets made of billions of 

points, automatic classification of green LiDAR data directly 

at the 3D PC level is essential. 

Several methodological challenges complexify the 

development of adapted classification workflows. . First, the 

refraction of the green laser in water makes it critical to detect 

all green points below water during data production to 

subsequently perform accurate refraction correction. This 

correction requires accurately knowing the spatial extent of 

water in the scene and the local water elevation, which the NIR 

channel gives when data are available in the area. While 

relatively straightforward in coastal environments or large 

lakes as water will be at a constant elevation, it is far more 

challenging in fluvial environments for four reasons: (i) water 

elevation decreases downstream, sometimes abruptly at the 

vicinity of dams; (ii) rivers can have several active braids or 

complex hydrological connection with abandoned channels or 

lakes in adjacent floodplains; (iii) full mirror-like NIR 

reflection may occur on flat water such that the NIR PC may 

lack water surface echoes over large areas (fig. 1); (iv) 

vegetation frequently grows on the floodplain such that river 

banks and small lakes may be completely below vegetation 

making things even more complex as canopy interception 

reduces the backscattered intensity and the likelihood of 

having a water surface NIR echo and bottom green echo (fig. 

1). 

Second, the backscattered green laser energy generates two 

prominent echoes in an ideal clear water column. The first is a 

volume echo just below the water surface whose position can 

extend from the water surface to 1 m deep depending on water 

surface characteristics and clarity (Guenther et al., 2000; 

Lague and Feldmann, 2020; Philpot, 2019). The second echo 

corresponds to the bathymetry. The volume echo is of no use 

but is systematic for any shot. For a given sensor and flight 

elevation, the maximum measurable water depth highly 

depends on water clarity and bottom reflectance (Guenther et 

al., 2000; Lague and Feldmann, 2020; Philpot, 2019). For 

instance, in clear coastal waters, the Teledyne Optech Titan 

sensor can reach depth down to 10-15 m over bright sand but 

can be limited to 0.5 m over dark rocks and will typically only 

reach depths of 1-4 m in rivers owing to the reduced water 

clarity (Lague and Feldmann, 2020). Thus, it is commonplace 

in inland water surveys that deeper parts of rivers or lakes are 

locally not detected due to green laser extinction.  

Consequently, as for ground detection below a dense 

vegetation canopy, one cannot assume that a simple operation 

such as picking the lowest point over a specific area or 

extracting the last LiDAR recorded echo will systematically 

isolate the bathymetry. Similarly, because volume echoes can 

occur up to 1 m below the water surface, removing all green 

points below this depth is impossible as a large part of very 

shallow bathymetry will be discarded. There is currently no 

proposed method to automatically separate bathymetric echoes 

from volume echoes over large PC datasets in complex inland 

water environments. 

Finally, beyond the detection and separation of bathymetric 

and volume echoes of the green laser, classifying the nature of 

the land-water continuum – seabed or riverbed covers and 

above ground features – on 3D PCs is a significant challenge. 

Most of the existing approaches rely on 2D rasters such as 

digital terrain models or digital depth models classified with 

traditional algorithms like maximum likelihood, support 

vector machine, or decision trees (Letard et al., 2021; Sun and 

Shyue, 2017; Tulldahl and Wikström, 2012; Wedding et al., 

2008; Zavalas et al., 2014). Although these methods exploit 

the terrain's geometrical features, they analyze the 

topography's gridded and average features due to the 

rasterization step. Rasterization may lead to mixed pixels 

(Hsieh et al., 2001) and a smoothed-out description of the 

active sensors' 3D structure of the scene samples. As a result, 

vertically highly dense data is condensed into equally spaced 

punctual values, losing the spatial point pattern information. 

Few studies provide 3D classifications of underwater 

environments using bathymetric lidar (Hansen et al., 2021; 

Letard et al., 2022b, 2022a). Additionally, most of them 

require full-waveform information (Letard et al., 2022b, 

2022a), which is complex to process and often unavailable or 

 
Figure 1: Strengths and challenges of topo-bathymetric lidar data. Examples of (a) the coastal setting of the surroundings of Fréhel 

(France) and (b) along the Ain river (France).  Datasets are presented in the RGF93 coordinates system. 



unpublished. On the land covers, TB lidar datasets offer 

potentially new classification opportunities using the bi-

spectral backscattered intensity. Research using multispectral 

lidar to study urban environments already leverages this 

opportunity by emphasizing the exploitation of the 

backscattered signal on top of geometrical features evaluated 

in 2D or 3D (Morsy et al., 2022, 2017a; Teo and Wu, 2017). 

However, there have been, to date, no applications attempting 

to classify topo-bathymetric 3D PCs directly. 

This work presents an original framework called 3DMASC for 

3D point classification with Multiple Attributes, Multiple 

Scales, and Multiple Clouds and its application to coastal and 

fluvial TB airborne lidar datasets. 3DMASC combines proven 

classical elements of single PC semantic classification, such as 

geometric feature extraction from multi-scale spherical 

neighborhoods or k-nearest neighbors (Thomas et al., 2018) 

and a random forest machine learner (Breiman, 2001). In 

addition, it adds new features specifically engineered to 

leverage the NIR and green PCs. Our contributions consist in:  

• Designing new joint-cloud features calculated on 

two PCs using their local geometry and 

backscattered intensity. 3DMASC uses a flexible 

method to compute features from two PCs, 

potentially resulting in more than 80 different 

features; 

• Screening systematically over 80 features, both 

classical and new, to select the essential features and 

scales contributing to 3D semantic point 

classification success to develop optimal classifiers 

in terms of computational efficiency, generalization 

capability, and interpretability; 

• Demonstrating that with limited training data (< 

2000 points per class) and less than ten features and 

five scales, the classification accuracy of TB lidar 

datasets can be excellent (>0.95);  

• Providing a standalone plugin in the open source 

software Cloudcompare (CC) implementing 

3DMASC that non-specialists can use for generic 

training and classification of any 3D PC (Airborne 

lidar, Terrestrial lidar, Photogrammetric PCs) and by 

experts for fast 3D feature computations on PCs; 

• Sharing two manually labeled state-of-the-art lidar 

datasets with two different levels of detail (up to 13 

classes). 

The paper is organized as follows: the next section introduces 

the related works on the processing of 3D point clouds; our 

methodology is then introduced in section 3, and experimental 

results are shown in section 4, associated with a discussion in 

section 5.  

In this paper, we wish to provide a detailed description of 

3DMASC and insist on the explainability of the classifications 

obtained. Consequently, after presenting the implementation 

of the workflow, we present typical use cases of 3DMASC in 

TB environments, give examples of relevant settings, and 

explain the predictions, their origins, and their reliability.  

2. RELATED WORK 

In this section, we review methods producing 3D supervised 

classifications. Clustering methods and approaches relying on 

rasterized lidar data are not reviewed. Classification of 3D data 

is a challenge, as 3D data are unstructured, irregular, and 

unordered. Their characterization is made harder by the local 

density variations, and the complex objects they contain. 

Existing supervised 3D point cloud classification methods can 

be organized into two categories: handcrafted features with 

conventional classifiers and learned features with deep neural 

networks. To the best of our knowledge, no research on the 

application of 3D neural networks to TB lidar data has yet been 

published. Existing approaches rely exclusively on 

handcrafted features extracted on full-waveforms (Launeau et 

al., 2018; Letard et al., 2022b), rasters (Wedding et al., 2008), 

or PCs (Hansen et al., 2021). 

2.1 Learned features with neural networks 

Deep neural networks implement learning mechanisms 

inspired by neurobiology (Lecun et al., 2015). They rely on 

successive layers of mathematical operators involving 

weighting and use error backpropagation to optimize the 

weights of each operation. Through this process, features of 

the data progressively stand out. Neural networks thus learn 

relevant features directly from the data, and eliminate the need 

to define features and scales upstream contrary to shallow 

learning approaches.  

Within the 3D deep neural networks family, convolutional 

ones currently are among the most performant, namely 

because they natively consider spatial context between points 

in their predictions. Their development is recent, as the 

complexity of 3D convolutions computation hindered their 

application to PCs for a long time. The first deep learning 

method on unordered 3D data was PointNet, an architecture 

relying on multi-layer perceptrons published in 2017 

(CharlesR Qi et al., 2017). KPConv, introduced in 2019, was 

the first 3D CNN developed, through the implementation of a 

3D convolution operator (Thomas et al., 2019). Classifications 

exploiting this operator produce highly accurate results, 

supported by abstract, multiscale features learned by the 

networks. Other performant alternatives are developing, 

relying on graph convolutions and point convolutions, 

introduced in Pointwise CNN (Hua et al., 2018), SpiderCNN 

(Xu et al., 2018), or PCNN (Atzmon et al., 2018). They are 

however designed for mobile lidar data classification in urban 

environments and much less explored in natural environments, 

where geometries are less strictly defined. 

Since 3D deep neural networks are recent developments, their 

higher optimization and application complexity remains their 

main limitation. Very large training datasets in excess of 

thousands of samples per class are needed, and dedicated 

GPUs and CPUs are necessary to perform learning and 

inference.  

2.2 Handcrafted features and conventional classifiers 

2.2.1 Features definition 

Supervised machine learning classifiers require the definition 

of an input vector to feed to the classifier. They often consist 

in handcrafted attributes that encode features of the points and 

its context. The spatial repartition of the points in a PC and, for 

multiple return lidar, the number, ordering and characteristics 

of the echoes, depend on a combination of sensor physics and 



surface geometry. The reflected intensity is also linked to the 

albedo of the surveyed object and to the sensor. They thus act 

as proxies of the actual surface characteristics. PC 

classifications consequently exploit the geometry of the PCs 

(Hackel et al., 2016), and their spectral dynamics (Chehata et 

al., 2009) or their local dimensionality (Brodu and Lague, 

2012; Vandapel et al., 2004). For example, the eigenvectors of 

each point’s neighborhood covariance matrix are popular 

attributes to identify isolated points, lines, planes, volumes, 

contours and edges in PCs (Gross and Thoennessen, 2006). 

Using ratios of these eigenvalues allows to assess the linearity, 

planarity, sphericity, anisotropy, eigenentropy, omnivariance, 

scattering or change of curvature of the 3D shape (Chehata et 

al., 2009; Gross and Thoennessen, 2006; Pauly, 2003; West et 

al., 2004). The Principal Component Analysis of the points’ 

positions are also used to describe the shape of the local PC, 

through the analysis of their eigenvalues and the proportion of 

variance they respectively account for (Brodu and Lague, 

2012). Estimates of the local point density (Weinmann et al., 

2013) or the verticality (Demantké et al., 2012) of the PC are 

other helpful parameters to classify points. Multiples return 

characteristics associated to airborne lidar data also constitute 

information on the objects surveyed: the number of return, 

return number or ratio of both are useful to identify ground, 

buildings or vegetation (Chehata et al., 2009). Height-derived 

features such as elevation variations between points of a 

neighborhood or point distribution kurtosis, skewness are also 

used for classification purposes (Antonarakis et al., 2008; 

Chehata et al., 2009; Guan et al., 2012; Yan et al., 2015). 

Though some studies solely exploit PC geometry to identify 

3D objects (West et al., 2004), the radiometric information 

contained in lidar data can further improve PC interpretation 

where objects have similar geometries (Yan et al., 2015). 

Radiometric information is rarely used on its own (Song et al., 

2002) and often integrated as a complement to previously 

mentioned geometrical features. It is often among the most 

contributive features to improve segmentation (Dai et al., 

2018) and classification results (Im et al., 2013). The most 

popular attribute is the mean value of the backscattered 

intensity over a neighborhood or between first and last returns 

(Antonarakis et al., 2008). Combining multispectral 

radiometric measurements provides even more reliable 

information than single wavelength data (Morsy et al., 2017). 

Using multispectral LiDAR systems allows to incorporate 

intensity ratios – for example, vegetation indexes – to  

classification predictors (Chen et al., 2017; Morsy et al., 

2017b; Wichmann et al., 2015), or to compare surface 

reflectances in different optical domains (Chen et al., 2017; 

Gong et al., 2015) and even create color composites with 

different channel combinations (Wichmann et al., 2015), thus 

refining point identification. 

2.2.2 Features extraction 

Considering that 3D point clouds are unordered and have 

varying densities, descriptors are computed on the 

neighborhood of each point. The spherical neighborhood is 

the most common for PC processing, defined by its radius or 

diameter. Cylindrical neighborhoods are also exploited in 

Niemeyer et al. (2012), and cubic or cuboid ones are explored 

in Dong et al., (2017). Overall, spherical neighborhoods are 

considered the most helpful, based on the observations of 

Thomas et al. (2018) and Hermosilla et al., (2018), which 

compared the use of nearest neighbors (NN) and spherical 

searches to describe PCs. They are considered more stable than 

NN to the variations of density (Hermosilla et al., 2018), 

surface slope or orientation and point pattern that occur in PCs, 

and more efficient for handcrafted feature extraction (Thomas 

et al., 2018). Thomas et al. (2019) additionnaly state that a 

consistent spherical domain helps classifiers learn more 

meaningful representations of the local aspect of the PCs 

during training. 

Independently from the type of neighborhood implemented, 

descriptive features of 3D data can be computed at a single 

constant scale (Chehata et al., 2009) or multiple scales 

(Brodu and Lague, 2012; Hackel et al., 2017, 2016). Multiple 

scales successively applied to each point have proven to have 

greater descriptive power than a single constant scale since 

they can better capture scene elements of different sizes (e.g., 

vegetation) and the variations of object geometry with scale 

(Brodu and Lague, 2012; Hackel et al., 2017, 2016; Thomas et 

al., 2018). Considering the diversity of objects in PCs, the 

neighborhood type, the number of scales used and their values 

impact the classification of the data, and thus necessitate 

careful parameterization. Automatic optimal scale 

identification has been investigated to avoid empiric 

selection. It mainly relies on minimizing information 

redundancy – through correlation or entropy estimates – and 

maximizing relevance in terms of classification accuracy. For 

single scale classification, Niemeyer et al. (2011) advised an 

optimal scale of 7 NN in terms of classification accuracy when 

classifying urban scenes with lidar data. Rather than defining 

a fixed set of multiple scales, Demantke et al. (2011) try to 

identify automatically the most relevant scale to describe each 

point’s neighborhood by using its dimensionality. Similarly, 

Weinmann et al. (2015) select each point’s individual optimal 

scale before extracting and selecting descriptive features. 

These approaches combine the use of multiple scales across 

the PC and the computation of features at a single scale for 

each point. Dong et al. (2017) propose to select an optimal 

neighborhood type and its scale for each feature rather than 

optimizing the scale for each point, thus combining the 

advantages of different types of neighborhoods, multiple 

scales and uncorrelated features. 

2.2.3 Features selection 

Similarly to the scales exploited, the optimal feature set should 

incorporate the most information possible, while also 

limitating redundancy between attributes. Considering the 

variety of information derivable from 3D data, empirically 

selecting the attributes to integrate to a classification is not 

only time consuming, but also hazardous, as it might impair 

classification performances. Feature selection methods allow 

to automatize a great part of the feature vector construction. 

They are mainly based on the estimation of an attribute’s 

relevance relatively to the predicted variables, and on the 

minimization of correlation between relevant parameters. As 

explained in Dash and Liu, (1997), feature selection methods 

can be split into three categories. Filter-based or univariate 

methods aim at maximizing the relevance of the predictors 

used. They use relevance score functions and rankings of the 

scores to only keep a subset of the most informative features 

for classification. Popular score functions include Fisher’s 

index or Information Gain index, but adapted metrics that take 



multiple aspects of feature relevance into account also exist 

(Weinmann et al., 2013). Multivariate methods try to 

minimize feature redundancy among the relevant attributes, 

often by combining score functions with correlation 

assessments (Dong et al., 2017; Martin Weinmann et al., 

2015). Both univariate and multivariate approaches are 

independent from the classifier used, and its settings, which is 

sometimes seen as a generalization advantage (Martin 

Weinmann et al., 2015), but also do not account for inter 

feature synergies, and may evict highly correlated but still 

informative features (Guyon and Elisseeff, 2003). Wrapper 

methods and embedded feature selection consist in 

exploiting classifier ouputs to select features. They either use 

classification accuracy obtained using each feature separately 

as a score to prune the input vector (Dong et al., 2017) through 

backwards or forward selection, or rely on feature importance 

information provided by algorithms, to evict least important 

predictors and improve accuracy (Guan et al., 2012). Random 

forest-based metrics are among the most common embedded 

selection strategies.  

2.2.4 Features classification 

Many classification algorithms apply successfully to 3D PCs. 

The most common ones classify each point individually, 

without considering the relationships between the point’s label 

and its neighbor’s assigned labels. They include instance-

based techniques such as NN classification, rule-based 

predictions as applied by decision trees, probabilistic learners 

like Maximum Likelihood, max-margin learners as Support 

Vector Machines, and ensemble learning. Ensemble learning 

is the most popular among individual point classification 

strategies. It relies on bagging, wich consists in assembling 

several independent weak learners and combine them into a 

single strong learner, using a voting mechanism. Random 

Forest (RF) models implement ensemble learning. Their ease 

of use, efficiency, robustness to overfitting, generalization 

abilities and production of a feature importance metric 

(Breiman, 2001; Pal, 2007) explain their frequent use for 3D 

data classification. They have been used successfully in 

(Chehata et al., 2009; Hansen et al., 2021; Letard et al., 2022b, 

2022a) for point-based classifications of both topographic and 

TB lidar. In RF, since the decision trees are independent, one 

cannot compensate the potential weaknesses of another to 

improve the global performance of the forest. Algorithms like 

AdaBoost (Hastie et al., 2009) and XGBoost (Chen and 

Guestrin, 2016) overcome this limitation by incorporating 

boosting, which consists in training each weak learner to 

correct its predecessor’s errors, however they require more 

parameters compared to RF. 

Individual point classifiers can only consider the spatial 

context of each point by encrypting it into the feature vector. 

However, they ignore the fact that neighbor points’ labels tend 

to be linked. Some algorithms thus implement contextual 

classification which involves an estimation of the 

relationships between  3D points from a neighborhood – often 

different from the one used for feature extraction – in the 

training data. They aim at producing spatially consistent 

classifications of 3D PCs, avoiding the noisy output that 

individual point classifiers can produce, and thus tend to reach 

higher accuracies. Examples of such approaches are 

applications of Associative and Non-associative Markov 

Networks, Conditional Random Fields,and Markov Random 

Fields to 3D data. However, modelling 3D spatial relationships 

is computationally intensive and thus challenging to apply to 

large 3D datasets. These approaches also depend on the 

relationships observable in the training data, which makes 

exact inference of correlations between labels unattainable. 

3. FRAMEWORK/METHODOLOGY 

In this section, we describe the 3DMASC method, included in 

a CloudCompare plugin (Girardeau-Montaut, 2022). 

Appendix A provides details of the implementation and 

operation. 

3.1 3D features extraction 

3DMASC operates directly on unordered sets of points, 

producing a 3D classification without requiring an 

intermediate rasterization step. A PC is a set of n 3D points 

{Pk | k=1,…,n} in which each element Pk is a vector of 

coordinates (x,y,z) with associated point based features : 

intensity, multi-echo characteristics, RGB color (see 

Appendix B for a detailed list of features).  

On top of point-based features, 3DMASC uses 

neighbourhood-based features defined using a spherical 

neighbourhood or a k-nearest neighbour search (KNN). A 

maximum of four different 3D entities are involved in the 

process of neighbourhood feature extraction: 

• 1-2) two point clouds. The originality of 3DMASC lies in 

using up to two PCs to characterize the scene of interest. 

For topo-bathymetric applications, they originate from 

different wavelengths, typically 532 nm and 1064 nm. We 

refer to them as PC1 and PC2, respectively. 

• 3) A set of core points (Brodu and Lague, 2012), denoted 

PCX, that 3DMASC classifies at the end of the process. 

They may be a subset of points from PC1 or PC2 with a 

regular subsampling or other positions spread within the 

extent of PC1 and PC2. 

• 4) An optional context PC, denoted CTX, containing any 

relevant context information in its Classification attribute 

at a potentially much lower resolution than PC1 or PC2. A 

typical CTX would be previously classified ground points 

at 2 m spatial resolution. 

3.1.1 Neighbourhood selection and scales 

3DMASC mainly uses a spherical neighborhood search in the 

relevant PC – PC1 or PC2, depending on the feature to 

compute – to capture the surroundings of each core point (fig. 

2a). The neighbourhood scale is defined as the sphere 

diameter. 3DMASC use a multi-scale classifier computing 

multiple neighborhoods for each core point (fig. 2c). The user 

typically provides minimum and maximum scales and a step 

(e.g., 1 m) between successive scales. The minimum scale 

must be consistent with the PC's density to compute features 

for most core points. The largest scale is typically set by the 

size of the objects of interests. Defining the optimal set of 

scales for various  types of TB airborne LiDAR (e.g., coastal, 

fluvial…) is a challenge not yet resolved that we address in 

this work. Beyond ensuring classification success, it is also 

crucial for operational efficiency, as the feature computation 



time increases strongly with the scale and number of different 

scales. 

3DMASC also supports KNN to measure the vertical or 

horizontal distance between PC1 and PC2, or CTX (fig. 2b). 

This supplements relative position measurements between 

PC’s where diameter-based features are impossible to compute 

due to a lack of neighbors. 

3.1.2 Single cloud neighbourhood based features 

Single cloud features describe PC1 or PC2 once at a time. 

Since many criteria characterize a 3D object and can help 

identify its nature, the plugin natively encompasses 15 

different features (see Appendix B for the complete list of 

features). The broad set of features available is presented in the 

following paragraphs. 

Six dimensionality-based features aim to describe the local 

PC's general aspect and identify if the object has a linear, 

planar or spherical outlook (e.g., Brodu and Lague, 2012; 

Gross and Thoennessen, 2006; Vandapel et al., 2004). They 

rely on the eigenvalues of principal component analysis (PCA) 

of the sub-cloud within spherical neighborhoods. 3DMASC 

can directly use the 3 normalized eigenvalues or classical 

combinations resulting in sphericity, linearity and planarity 

metrics. 

Six geometry-based features inform on the shape of the PC. 

3DMASC computes and use the slope angle, the detrended 

roughness, the curvature, the anisotropy, the number of points 

at a given scale and the first-order moment, introduced for 

contour detection in Hackel et al. (2017). 

Three height-based features characterize the vertical 

structure of the local neighbourhood with respect to the 

minimum elevation zmin and maximum elevation zmax. For a 

core point with elevation z, 3DMASC computes zmax-z, z-zmin 

and the local thickness of the point cloud zmax -zmin as explained 

in (Chehata et al., 2009). 

Optional contextual features are used to place each core 

point in its spatial context and get its position relative to the 

ground, the water surface, or any specific pre-existing class, 

labelled in the CTX point cloud. They are computed with a 

KNN neighbourhood. They generalize the distance to ground 

feature used in Chehata et al. (2009) and Niemeyer et al. 

(2012). 

On top of these classical features, we propose novel 3D 

descriptors based on the application of statistical operators 

on point-based features within spherical neighbourhoods. 

Six statistical descriptors can be used: mean, mode, median, 

standard deviation, range and skewness. They are designed to 

inform on the multi-scale variations of backscattered intensity 

and multi-echo LiDAR features : return number, number of 

returns and their ratio, called echo ratio. These 4 point-based 

features combined with the 6 statistical descriptors, results in 

24 neighborhood based features at a given scale. To our 

knowledge, these types of rich multi-scale statistics were never 

used before for raw 3D PC classification. 

Similar features can be built from the 3 components of the 

RGB color information, and we evaluate at a later stage the 

benefits of this information for classification. 

3.1.3 Dual cloud features 

Dual cloud features describe the geometrical, spectral, height 

statistics or multi-echo characteristics differences between the 

neighborhood of the core point in PC1 and PC2. Spectral ratios 

have been introduced in the context of multi-spectral LiDAR 

classification (Chen et al., 2017; Morsy et al., 2017b; 

Wichmann et al., 2015), but geometrical, height statistics and 

multi-echo characteristics are new contributions. We designed 

them to leverage the bi-spectral information and improve the 

descriptions of scenes characterized by a different 3D aspect 

in PC1 and PC2. In TB LiDAR datasets, the NIR and green 

PCs are most significantly distinct above water and vegetation 

(fig. 1), but they can also be slightly different over other 

surfaces. This is due to the different surface optical 

characteristics and the NIR and green laser emitters that can 

have different angles of incidence or aperture. These may 

cause differences in the returned signal intensity, and the 3D 

position of the points. The definition of these features assumes 

that both PCs are correctly registered and that the alignment 

error is as low as possible for geometric differences to be 

related to objects characteristics and not registration errors. 

Dual-cloud features consist of mathematical operations 

between single cloud features of the same core point's 

neighborhood in PC1 and PC2. They can be feature 

differences, additions, multiplications, or divisions. Here we 

have used differences to measure dissimilarity in particular for 

elevation, geometry and multi-echo features, and divisions to 

normalize one feature by another, typically for intensity. 

Figure 2a illustrates two examples of dual cloud features: the 

mode difference of elevation that is expected to be close to zero 

on ground, but different over water; the median intensity ratio 

between the green and NIR channel that is expected to be 

distinct over different ground. A selection of dominant features 

are presented, illustrated and explained in the Results section. 

Dual cloud features also encompass a distance computation 

(vertical or horizontal) between the core points PC and another 

PC (PC1, PC2, or CTX), using KNN. 



3.2 Random Forest Classification 

3DMASC uses a Random Forest (RF) algorithm (Breiman, 

2001) to perform PC classification, i.e., predict a label y € 

{1,2,…,c} for each point Pk of the input PC, using the 

predictor vector F {Fkij | k=1,…,n; i=1,…,f; j=1,…,s}, where 

f=number of features, s=number of scales and n=number of 

core points and each Fkij ϵ ℝ. For instance, the label can 

represent the type of object sampled by P. 

Here, the feature importance is the product between the 

probability of reaching a node (i.e., the proportion of samples 

that get that node) and the Gini impurity decrease of that node. 

Feature importance is normalized, to sum up to 1. A higher 

value symbolizes a more significant influence of the feature on 

the prediction. 

RF does not handle NaN values which may be present with our 

features (depending on the scale, NaN value can occur). This 

requires specific pre-processing of the predictor vector. 

Indeed, replacing NaNs with a fixed value may imply 

irrelevant representations of the local sub-clouds and thus 

incorporate bias in the classifier training. To tackle this issue, 

3DMASC relies on the RF implementation of the cross-

plateform library OpenCV (Bradski, 2000), which 

incorporates surrogate splits to handle missing measurements. 

We use base settings and forests populated with 150 decision 

trees, having a maximum node depth of 25. We also compared 

it with the RF implementation in the python library Scikit-

learn (Pedregosa et al., 2011), and found similar results. 

To further improve the robustness of the classifiers, we also 

exploit the prediction probability output by RF and use it as a 

classification confidence indicator, as seen in (Brodu and 

Lague, 2012) and (Letard et al., 2022b). The prediction 

probability corresponds to the proportion of forest trees that 

voted for the class assigned to the point. It ranges between 0 

and 1. 

3.3 Features and scale pre-selection to control the size of 

the predictor vector 

We propose a feature selection routine (Dash and Liu, 1997) 

to improve the explainability and the efficiency – through the 

number of predictors – of the trained algorithm, as there can 

be almost 90 features per scale in TB environments.  

Although information redundancy supposedly does not impact 

RF performances, it disrupts the explainability of the feature 

importance values, since if two features bring similar 

information, their relative importance will be 

underrepresented. Thus, we keep only a set of uncorrelated 

features, by using a bivariate feature selection (Dash and Liu, 

1997; Guyon and Elisseeff, 2003), incorporating an 

assessment of the features' Information Gain (IG) (Dash and 

Liu, 1997) and the Pearson linear correlation coefficient of 

attribute pairs. The correlation threshold and the scale at which 

each feature is evaluated are user-defined, and determined 

after an empirical investigation. 

The same bivariate procedure allows the selection of scales. 

However, we also decided to promote small scales  to limit the 

computation cost of the classifier. The selection process relies 

on a majority voting procedure. Since it is impossible to 

consider a scale independently from its application to a feature, 

we retain the scales that are the most often selected when they 

are evaluated for each feature independantly. 

Considering the variety of features included in 3DMASC, 

removing correlated features and scales does not provide a 

significantly smaller set of features. Typically, around 40 

features per scale of interest remain after correlation filtering. 

The classifier obtained may thus not be easier to explain, and 

the training and application steps may be unnecessarily 

computationally heavy.  

To further reduce the dimension of the predictor vector, we 

considered a feature ranking depending on the IG. However, 

defining a fixed number of features and scales is highly task- 

and site-dependent, and filter-based selection would not 

consider internal synergies between features. Consequently, 

we use an embedded backward feature selection, relying on the 

RF feature importance, as detailed in (Aggarwal, 2014; Dash 

and Liu, 1997). This selection is performed on the uncorrelated 

set previously obtained. The optimal predictor vector is then 

 
Figure 2: Illustration of the main characteristics of 3DMASC: a) the new dual-cloud features providing a better description of the 

differences between clouds, b) the generalized contextual attributes placing each point in its spatial setting and c) the multi-scale 

neighborhoods used to describe the many aspects of 3D objects 



identified through automatic OA monitoring, using a sliding 

window and keeping the last best iteration before OAs start to 

drop. In the rest of the paper, we will refer to this step as 

classifier optimization. 

3.4 Framework implementation 

Figure 3 sums up the global framework introduced in this work 

and illustrates how the different steps explained follow each 

other when processing a PC. As detailed in Appendix A, the 

Cloudcompare 3DMASC plugin can be used at two level of 

complexity : for beginners, a complete GUI exists from feature 

computation to classifier training and class inference; for 

expert users, 3DMASC can be called through command line 

solely for fast feature computation with its parallelized C++ 

implementation, and the results subsequently used in any other 

environment such as python. Feature and scales preselection, 

as well as classifier optimization described in section 3.3 

follows this latter approach and operate through a 

complementary python script. To avoid feature preselection 

and classifier optimization for non-specialist users, a key 

objective of this work is to identify a minimal set of features 

and scales that can systematically be used for TB LiDAR 

classification. 

Figure 3: Illustration of the 3D Multi-Attributes, Multi-Scale, 

Multi-Cloud (3DMASC) classification workflow. 

4. DATASETS AND EXPERIMENT PROTOCOL 

4.1 Experimental datasets and classes  

To illustrate the use of 3DMASC for bispectral lidar data 

classification, we selected two topo-bathymetric lidar datasets, 

representing one coastal and one fluvial environment, 

respectively. These two datasets only differ in the type of 

environment they model. They were both surveyed with a 

Teledyne-Optech Titan airborne LiDAR with two 

wavelengths, 532 nm and 1064 nm (Lague and Feldmann, 

2020). The green laser points with a forward pitch of 7°, 

necessary to avoid strong surface reflection on water and has a 

beam divergence of 0.7 mrad. The NIR laser has no forward 

pitch and a beam divergence of 0.3 mrad. Consequently the 

incidence angle, surface sampling and laser spot size is never 

the same at a given location of the scene for the two lasers. The 

sensor produces high-density PCs, typically 36 pts/m² on land 

– when combining both wavelengths – and 18 pts/m² under 

water in a single pass (Lague and Feldmann, 2020). More 

details about the sensor and the acquisition conditions – typical 

aircraft altitude, speed, overlap between flight lines and 

preprocessings – are available in (Lague and Feldmann, 2020). 

The mean vertical offset between the two channels measured 

on flat horizontal surfaces is typically less than 1 cm. The 

precision evaluated as the standard deviation of point elevation 

measured on flat horizontal surfaces is around 5 cm on 

topography, and 10 cm on submerged surfaces.The first site 

lies on the French coast of the Channel, in Britanny, near the 

town of Fréhel; the second is a portion of the Ain river in 

South-Eastern France near its confluence with the Rhône river. 

The surveys were conducted in May 2021 and September 

2016, respectively. Figure 1 features the two scenes. They both 

contain natural and anthropic land covers and include a part of 

the bathymetric environment: in the first case, shallow sea 

water with laser extinction at 10.5 m; in the second case, a river 

with laser extinction at 3.5 m. The flights combined lidar 

surveys and simultaneous RGB imagery acquisitions with the 

control camera, which produced orthoimages with ground 

sampling distances of 25 cm and a registration error of about 

20 cm. As RGB imagery acquisition was not the main 

objective of the surveys, pronounced shadows exist in 

particular on the Ain survey as it happened late in the 

afternoon. 

4.2 Classes definition and 3D annotation 

We evaluate the performances of 3DMASC on two levels of 

detail: a primary classification of 5 land covers – strictly 

identical for both areas – and advanced labeling of 11 and 13 

types of objects on the Ain and Fréhel datasets, respectively. 

We chose the classes, depending on the diversity of land and 

sea covers we could observe in each area. Table 1 contains all 

the categories that we use for the primary and advanced 

classifications. Artificial ground includes roads and surfaces 

covered with concrete or tar (parking lots, dykes). Vegetated 

ground is grass or other low vegetation, such as low-growing 

heather in moors. In the Ain survey, intermediate vegetation is 

defined as bushes or shrubs with a different aspect than high 

trees and a smaller growing height. We did not use a classical 

classification based on a strict height threshold, as usually 

made in vegetation mapping applications. Our objective was 

to avoid the traditional misclassification of low branches 

attached to high trees as shrubs while they are points belonging 

to high vegetation. The definition of intermediate vegetation 

and high vegetation therefore balances 3D aspect and height 

above ground. Compared to other classes that can be 

objectively defined, our separation between intermediate and 

high vegetation is rather subjective. The lack of various types 

of vegetation in the Frehel datasets prevented us to refine the 

vegetation class. 

Primary Advanced 

Both Ain (river) Fréhel (coast) 

Ground 

Bare ground 

Sand 

Pebble/cobble 

Rock 

Artificial ground Artificial ground 

Vegetated ground Vegetated ground 

Vegetation 
Intermediate 

Vegetation 
High 

Artificial 

elements 

Buildings Buildings 

Power lines Power lines 

Vehicles Vehicles 

Bathymetry 
Water bottom 

Underwater sand 

Underwater rock 

Swimming Pools / 

Water Water column 
Water column 

Surf zone 

Table 1: List of classes defined for the experiments. 



We annotated portions of data manually using visual 

interpretation of the PCs and the RGB imagery acquired 

simultaneously using Cloudcompare (Girardeau-Montaut, 

2022) including new specificic developments for quick 

labelling of 3D point clouds. Four training and validation 

datasets – one for each level of detail of each scene – were 

created, all labeled and balanced, for the classification 

experiments. They all contain 2000 points of each label. To 

eliminate potential spatial bias due to the use of multi-scale 

spherical neighborhoods, we forced each training and 

validation point of the same label to be at least 20 m away, 

considering we used spheres with diameters up to 15 m. Figure 

4 illustrates the resulting sets of points labeled for training and 

validation. The annotated datasets are available along with the 

source codes of the plugin and of the scripts used to perform 

further analysis at the following link https://github.com/p-

leroy/lidar_platform.. 

4.3 Evaluation metrics 

We use the Overall Accuracy (OA) to quantify the correct 

proportion of global predictions. The precision estimates, for 

each label, the actual correct proportion of positive 

predictions. The recall value evaluates the part of true 

positives identified correctly. Precision thus tends to outline 

over-estimation of some classes, while recall highlights under-

estimation. The smaller the difference between both metrics, 

the better the result. The F-score combines the information 

provided by both precision and recall. 

The class-wise performances are explainable with the 

approach of Lundberg et al. (2017) by computing the Shapley 

values (Shapley, 1952). These range between 0 and 1 and 

quantify, for each point, the influence of each feature on the 

label prediction, based on game theory concepts. We 

performed this analysis using the SHAP Python library 

(Lundberg et al., 2017). Using these values as a complement 

to the variable importance measurement and a low number of 

predictors in the optimized models allows us to have a more 

robust explanation, less dependent on the randomness of 

descriptors and samples selection at each node of the decision 

trees. 

5. RESULTS  

This section first presents the overall classification results 

obtained in the fluvial and coastal environments and the impact 

of feature preselection and optimization. We then present the 

class-wise results and the dominant scales and features that 

emerge from the experiment. Finally, we explore the benefits 

of using RGB information, contextual data and the 

classification capabilities when using only green LiDAR data. 

All results presented are obtained on a validation dataset 

strictly different than the training dataset. 

5.1 Overall classification results depending on the number 

of predictors 

We use three different terminologies: Systematic Multi-Scale 

Classification (SMS) implies the computation of all features at 

all selected scales; Optimal Multi-Scale Classification (OMS) 

does not consider all features at all scales; Single Scale 

Classification uses an identical single scale for all feature 

calculations. The starting set of features contains 88 features, 

which include all possible features of 3DMASC computed on 

PC1, PC2 and their difference or ratio between both PCs (see 

Appendix B). They are calculated at 29 different scales from 1 

m to 15 m with a 0.5 m increment and for KNNs with K in 

{1;2;3;4;5;10}. The complete predictor has 2011 columns (4 

point-based features, 23 features computed at 29 scales for 3 

spherical neighborhoods – green, NIR, both – and 6 KNN-

based features). 

To determine the scale to use for feature evaluation – i.e. IG 

assessment – we analyzed the OA obtained when selecting 

features based on their IG at scales varying from 1 m to 12 m. 

This  first analysis shows that features computed at 2 m allow 

the best selection for OA (see Supplementary Material). 

Similarly, testing for the optimal correlation threshold results 

in a value of 0.85 to obtain the highest OA (see Supplementary 

Material). 

5.1.1 Impact of correlation and feature pre-selection 

It is expected that the same feature computed at two scales 

separated with a small gap will produce redundant 

information. Here we explore if all types of feature exhibit 

similar level of correlation with scale. Figure 5 presents the 

mean Pearson coefficient between features computed at scales 

separated by 1 m or 3 m for different type of single cloud or 

dual cloud attributes: geometrical, echo-based, and intensity-

based. The general tendency is for correlation to increase with 

 
Figure 4: location of the training and validation datasets in 

both experimental areas; the coast around Fréhel (left) and 

the surroundings of the Ain river (right) (RGF93). 



scale and to saturate or increase only slightly above a threshold 

scale of about 4 to 6 m. The maximum correlation level 

depends on the type of feature and environment. Dual-cloud 

geometric features are less correlated than single cloud 

features. Intensity-based features exhibit high correlation 

levels suggesting a potentially strong redundancy across 

scales. The comparison between the dual cloud geometric 

features at Fréhel for steps of 1 m and 3 m shows that the larger 

is the step between scales, the lower is the correlation. As 

expected intuitively, the step between scales should thus tend 

to increase with scale, in particular above 6 m, to limit 

information redundancy. 

These results indicate that given the high correlation of certain 

features, especially above 4-6 m, there is hardly a need for a 

large number of individual scales above this scale, in particular 

for single cloud intensity and geometric features. 

Consequently we enforce the maximum number of scales kept 

in the preselection phase to be 10, compared to the initial 29. 

Finally, figure 5 demonstrates that intra-feature scale 

correlation is site-dependant and that there are no clear 

principles ruling correlation dynamics. Consequently, 

selecting scales for features based on their correlation is 

impossible without first computing them.  

After feature preselection accounting for correlation, different 

features are eliminated depending on the site. Overall, there 

were fewer correlated features on the Ain site and more 

correlation when using a higher number of classes (and 

therefore feature samples). The number of features passing the 

selection step ranges between 36 (Fréhel, primary 

classification) and 44 (Ain, primary classifier). Height-derived 

and PCA based attributes were the most pruned types of 

features during correlation filtering. NIR and green roughness, 

linearity, planarity, sphericity and return numbers are strongly 

correlated in both areas. Measures of echo ratio were too much 

correlated in the Ain, whereas they were not in Fréhel, which 

reflects the differences between riverine and coastal TB 

surveys. 

5.1.2 Impact of predictors number and optimization: from 

systematic multi-scale to optimal multi-scale classifiers 

We explore the influence of the number of features and the 

number of scales used on the OA and present the results in 

Figure 6. The results confirm the conclusions of (Brodu and 

Lague, 2012; Thomas et al., 2018) on the superiority of multi-

scale algorithms compared to single-scale classifiers. This 

analysis also illustrates the decreasing benefit of increasing the 

number of features and scales past 20 features and 6 scales, 

even using uncorrelated entities only. Figure 6 highlights that 

adding features increases OA more than adding scales. For 

instance, adding a second scale to a single feature classifier 

systematically results in an OA surge, while harvesting 10 

features and two scales produces more accurate results than 

relying on two features and 10 scales. Due to the majority 

voting used for scale selection, the scale used for single-scale 

classification varies, explaining the variations of accuracy (see 

Figure 6, single-scale curve), and showing the dependence 

between the features’ relevance and their computation scales. 

 

 
Figure 6: Classification performances depending on the 

number of descriptive features used for different numbers 

of scales of computation used. 

 

Since, the accuracies presented are the results of applying 

the trained algorithms to data unseen during training, these 

results also showcase the stability of RF relative to 

overfitting and generalization. Even when training the model 

with hundreds of predictors, OAs remain stable (between 

90% and 97% depending on the use case) when classifying 

the distinct validation points. Furthermore, 3DMASC's 

features succeed at characterizing the nature of the objects 

lying behind the points, as accuracies converge towards 

values ranging between 90% (Fréhel, advanced) and 97% 

(Ain, primary). It is, however, delicate to determine the ideal 

number of features and scales to retain. The optimization 

procedure provides more information on the required 

number of predictors to achieve high-accuracy identification 

of the different classes. Figure 7 presents the OA dynamics 

when reducing the predictor set iteratively. Using automatic 

monitoring of the OA's significant variations, we solve the 

optimization problem for our four classifiers. Table 2 gathers 

the main characteristics of the optimal multi-scale 

classifications.  

 

 
Figure 5: Linear correlation between features computed at 

scales separated by dx=1 m or dx=3 m for different examples 

of features. SC = Single Cloud  ; DC = Dual Cloud. The 

threshold at 0.85 emerge from an empirical analysis. 



Table 2: Classification metrics for the four models. SMS = 

systematic multi-scale, OMS = optimized multi-scale. 

Confidence, F-score, Precision, and Recall are average values 

for all labels. Nb of pred. refers to the number of predictors 

The results in Table 2 and Figure 7 confirm what we observed 

in Figure 6: a small number of features and scales produces 

highly accurate classifications. The most complex classifier 

obtained incorporates 30 predictors, including 18 features and 

six different scales. Table 2 also outlines that more predictors 

are needed to correctly identify a larger number of labels: 

advanced Fréhel classification requires seven more predictors 

than primary. The optimized models obtain accuracies ranging 

between 90.7% and 97.7% and harvest more features than 

scales, confirming the superior efficiency of feature diversity 

over scale abundance. Overall, the maximal difference in OA 

between systematic multi-scale and optimal multi-scale 

classifiers is 1.5%. Models are highly simplified: on average, 

the optimization reduces the predictor vector's dimension by 

94%. However, the fully iterative procedure is necessary: 

keeping only the first features in importance at the first 

iteration does not provide good results. For example, when 

using the 14 highest-ranked predictors at the first RF 

classification of the Ain, the OA is only 22.9%.  

5.2 Class-wise results with optimal multi-scale classifier 

5.2.1 Class-wise metrics 

Figure 8 illustrates the application of the optimized classifiers 

for the advanced classification. The land-water transition is 

well identified and the main elements such as ground and 

above ground features are separated. Figure 9 sums up the 

class-wise results obtained for each experiment. The main 

classes of the Ain site obtain F-scores higher than 90%. On the 

coastal area, they are distinguished with F-scores over 85%.  

The difficulty imposed by the distinction of objects with 

similar geometries does not impact the performances severely. 

All F1-scores are higher than 80%, and average confidences 

are over 83% and 88% in primary and advanced cases, 

 
Figure 7: Overall accuracy depending on the number of 

predictors used during classifier optimization. 

Classifier 
Ain  

(5 cl) 

Ain  

(11 cl) 

Fréhel  

(5 cl) 

Fréhel 

(13 cl) 

SMS OA 97.9% 94.6% 92.8% 91,9% 

SMS nb of pred. 371 352 315 330 

OMS OA 97.7% 93.1% 91.4% 90.7% 

OMS nb of pred. 14 17 23 30 

Features 11 13 12 18 

Scales 5 6 6 6 

Confidence  0.935 0.893 0.885 0.83 

F-score  0.977 0.93 0.913 0.907 

Precision  0.977 0.933 0.915 0.915 

Recall 0.977 0.932 0.914 0.907 

 
Figure 8: Classified point clouds of both areas, with Fréhel on top and the Ain under.  



respectively. These observations suggest efficient construction 

of the classifiers, as correct predictions obtain the vote of most 

of the decisions trees.  

The identification of water is highly accurate (99%) in the Ain, 

but there is confusion in the more diverse bathymetric 

environment of Fréhel, namely between bathymetry and water. 

The surf zone is also challenging to distinguish from ground 

or rocky seabed in some areas. 

Some classes show gaps between precision and recall, 

reflecting the over-detection of buildings in rocky areas or of 

intermediate vegetation in the Ain (see Figure 8).  

5.2.2 Dominant scales analysis 

The optimized predictor vectors indicate that some features are 

particularly informative at specific scales, and conversely, 

some scales are essential for given features only. The 

optimization phase alters the systematic multi-scale character 

of the classification since the number of predictors in the 

optimized models is smaller than the product between the 

number of scales and the number of features. For example, the 

advanced classification of the Ain site has an optimal multi-

scale predictor vector exploiting 13 features at six scales, yet, 

its total size is 17. In contrast, if the optimal classification were 

a systematic multi-scale model, it would be 78. 

Table 3 sums up the specific scales retained for each 

experiment. It shows that finer scales are necessary to describe 

the Ain site: the minimal scale selected is 1.5 m, whereas it is 

double for Fréhel. All classifiers follow a similar pattern: they 

exploit small to medium scales up to about 6 m, and a much 

larger scale of about 14 m without transitioning via a medium 

value. The advanced models both reuse similar scales to their 

primary equivalents but incorporate new ones in between, 

reducing the typical sampling step of object sizes. However, 

the 11 labels classifier of the Ain is the only one discarding the 

14 m scale, thus exploiting only small to medium diameters. 

Classifier Optimal scales 

Ain, primary 1.5 – 4 – 5.5 – 14 – 10NN 

Ain, advanced 2.5 – 3.5 – 4 – 5.5 – 7.5 – 5NN 

Frehel, primary 3 – 3.5 – 5.5 – 6 – 14.5 – 1NN 

Frehel, advanced 3.5 – 4.5 – 6.5 – 7 – 14.5 – 1NN 

Table  3: Remaining scales in the four optimized multi-scales 

classifiers. kNN indicates k nearest neighbors. 

To better identify the contribution of specific scale to various 

classes in the two environments, Figure 10 shows the Shapley 

analysis for the standard classification. Dominant scales are 

drastically different between the Ain area and Fréhel. Water 

and bathymetry are dominated by features computed with 

around 6 m and 14.5 m diameter in Fréhel, whereas 1.5 m and 

10NN features are more useful in the Ain. Similarly, artificial 

elements and trees do not exploit the same sphere sizes over 

the two sites. The scales also adapt to each label. For example, 

artificial elements – containing buildings, vehicles, and power 

lines – rely less on KNN features than bathymetry in the Ain 

or ground in Frehel.  

We can also identify two groups of classes having similar scale 

contribution patterns. The first includes water and bathymetry, 

and the second includes ground and artificial elements.  

 

 
Figure 9: Precision, recall, and prediction confidence per class for the four classifiers after optimization. 

    

 
Figure 10: Mean absolute Shapley value obtained by each 

scale of the optimized predictor vector depending on the class 

considered (a scale of 0 m represents features computed with 

a KNN search. 



Vegetation of the Ain study site does not follow a similar trend 

to any other classes, but in Fréhel, its dynamics are comparable 

to those of bathymetry and water.  

5.2.3 Dominant features analysis 

To simplify, we only review dominant features of the primary 

classifications in this section. Several features stood out from 

the rest and passed both selection and optimization phases. 

They theoretically contain the essential information to 

distinguish the defined classes. Table 4 introduces and 

illustrates each of them. 

The sets of optimal predictors obtained, presented in Figure 11 

and Table 4, seem to be tailored to each site. The Shapley 

analysis, in Figure 11, corroborates this observation. Only five 

features common to both sites are identifiable: vertical 

distance of green points to their NIR neighbors (KNN), mean 

green intensity, mean echo ratio in green neighborhood, mean 

number of returns in the green neighborhood, and mean 

number of returns in NIR neighborhood. 

Two groups of labels have similar feature contribution 

patterns. Ground, bathymetry, and water on one side and 

vegetation and artificial elements on the other. The first group 

is mainly identified by multi-echo features and NIR intensity. 

The second relies primarily on dual cloud features – median 

intensity differences and distances between points of the two 

wavelengths – and NIR multi-echo attributes.  

In both cases, the TB aspect of the datasets is fully exploited: 

for the Ain, there are as many green PC features as NIR PC 

features, and for Fréhel, the optimized set includes 4 and 6 

features of the NIR and green PCs respectively. NIR PC-

derived features are more contributive to topographic objects, 

while both PCs are equally crucial for ground/seabed/water 

distinction. The experiments on Fréhel also draw more on NIR 

intensity-derived parameters than the models to process the 

Ain, in which only one green spectral parameter is involved 

with low relative importance (Figure 11). The class-wise 

feature importance analysis also shows that features do not 

have the same descriptive power in both NIR and green 

domains. The number of returns of the NIR echoes is more 

informative on the nature of the surface than its green 

equivalent. 
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Table 4: Optimal features for both sites. 



Both results show a predominance of newly introduced 

3DMASC features over classical features used in other 

studies (Chehata et al., 2009; Hackel et al., 2016; Thomas et 

al., 2018; M. Weinmann et al., 2015). 8 out of 11 for the Ain 

site and 10 out of 12 for Fréhel are attributes we propose with 

3DMASC: means, modes, or skewness values of PC 

characteristics. Geometrical and dimensionality-based 

features are scarce: only NIR PC roughness, NIR PC dip, and 

green PC sphericity pass the optimization phase. The mean 

green intensity is the only other example of classical feature 

observable (see Table 4). Intensity-based features constitute 

nearly half of the predictors of the Fréhel optimized 

classification, but are few in the Ain model. The other half of 

the Fréhel predictor set is dominated by multi-echo features of 

both wavelengths, that evict height-based features and 

geometrical features. In the Ain, they appear through the 

differences in elevation modes. Other dual cloud features stand 

out: vertical distances between green and NIR points, 

elevation mode differences, and median intensity differences 

between the two PCs (Table 4).  

Figure 11 also reveals that the new 3DMASC features 

outperform usually dominant characteristics like intensity. 

The difference in elevation modes between NIR and green 

PCs, is more relevant to identify vegetation than intensity. 

Similarly, the roughness difference between PCs 

systematically dominates single cloud NIR roughness, even 

for ground and over-ground objetcs separation. The ratio of 

median NIR and green intensities is particularly useful to 

outline vegetation and artificial elements. Dual cloud features 

are present in both OMS classifiers, illustrating how they 

complement separate single cloud attributes. Multi-echo 

features also contribute significantly to the predictions. The 

mean echo ratio helps identify ground, water, and bathymetry. 

In contrast, the mean number of returns characterizes 

vegetation and artificial elements.  

5.3 Results using other predictors 

In this section, we test 3DMASC in different settings: using a 

context PC, RGB information, and simulating the 

unavailability of the NIR wavelength. All results are summed 

up in Figure 12. They are obtained by running the complete 

framework on initial predictor vectors including contextual 

features, RGB-derived features, or green features only. The 

presence or absence in the optimal predictor set of each tested 

attribute is thus already an indication of their informative 

character. 

The contextual features used were vertical distances to a PC 

containing only ground or water surface points, for different 

scales (1, 3, 5, and 10 NN). These predictors allowed to use 

smaller scales (see Supplementary Materials) and improved 

the prediction confidence and quality of almost each class of 

the Ain, except bathymetry and artificial elements. In Fréhel, 

they mostly improved the accuracy of artificial elements, but 

tend to penalize water and vegetation. 

The reflectance in the blue domain is the only RGB derived 

attribute that passed optimization. Its mode is used in two 

models: Fréhel primary, and Fréhel advanced. This shows that 

RGB features are not crucial to detect the classes of the Ain 

but may serve to differentiate coastal land and sea covers. They 

also seem to penalize our classifier optimization framework 

when they are used but do not appear in the best models, as the 

losses in F-scores on the Ain reveal. This show that RGB 

parameters may evict somme more useful features. 

When using green laser data only, OAs range between 85% 

(Fréhel, advanced) and 94% (Ain, primary). Predictors vectors 

are dominated by multi-echo features and intensity-derived 

attributes. In Fréhel, dip and standard deviation of intensity are 

 

 
Figure 11: Mean absolute Shapley value obtained by each 

feature of the optimized predictor vector depending on 

the class considered 

 

 
Figure 12: F-score obtained for each class depending on the 

experiment. Initial = optimal classifier obtained with the 

initial set of predictors. CTX = optimal classifier obtained 

when adding contextual features. RGB = optimal classifier 

obtained with RGB features added. Green = optimal 

classifier obtained using only green features 



the only new features selected. In the Ain, point-based echo 

ratio, mean return number, proportion of the third PCA 

eigenvalue and mode and standard deviation of intensity 

appear. Overall, more scales are used per features and seven 

and eleven features are selected for Fréhel and the Ain, 

respectively. The performance decline observed mostly affects 

water and bathymetry in the Ain. Although their F-scores drop 

by 6% and 8% respectively, they remain higher than 90%, 

showing that a single bathymetric PCs already provides 

accurate detection of the water column and the riverbed. In 

Fréhel, the classification of bathymetry is even improved when 

excluding NIR data. In both settings, the distinction of 

topographic classes is less accurate when discarding NIR 

information. 

6. DISCUSSION  

Starting with a set of 88 features computed at 29 scales, we 

obtained optimized, compact classifiers exploiting at most 30 

predictors – scales and attributes – and resulting in good to 

excellent classification for up to 14 classes. In this section, we 

discuss these results with respect to existing work on PC 

classification. 

6.1 Classifier optimization and number of predictors used 

Through 3DMASC, we obtain classifications of TB scenes 

with OAs over 90%, using light classifiers that harvest a 

maximum of 30 predictors (Table 2). Average prediction 

confidence is high, and accompanied by high accuracy, 

synonym of an efficient classifier training. Low values of 

confidence can be linked with classification errors, and used to 

filter out misclassified points. Table 5 shows the results of 

applying a confidence threshold below which points are 

removed. It illustrates that there is necessarily a balance to find 

between result quality and spatial resolution of the classified 

PC, as aiming at fewer classification errors means accepting to 

affect the local density of the data.  

The optimization step seems to efficiently balance 

computational efficiency and high-quality classifications. The 

low number of predictors makes the models applicable to large 

datasets, easily explainable with Shapley values and thus 

accessible to non specialist users. These characteristics allow 

3DMASC to be an interesting alternative to current state-of-

the art methods that are 3D deep neural networks. Although 

they have not yet been applied to similar problems, their use 

on benchmark datasets demonstrate similar performances in 

terms of accuracy than those we obtain (Charles R. Qi et al., 

2017; Thomas et al., 2019). However, deep neural networks 

hyperparameters are  

CLASSIFIER 
Confidence 

threshold 
OA 

Remaining 

points (%) 

AIN  

advanced 

0.5 95% 96% 

0.6 97% 92% 

0.7 98% 87% 

0.8 98% 80% 

FREHEL 

advanced 

0.5 94% 92% 

0.6 96% 84% 

0.7 97% 76% 

0.8 97% 67% 

Table 5: Overall Accuracy depending on the confidence 

threshold applied to filter the predictions. 

harder to optimize without expert knowledge, and require 

much more intensive training in terms of labelled data and 

computing power, while our approach relies on fewer samples. 

We chose to experiment on datasets containing 2000 labelled 

points per class, but when randomly subsampling the labelled 

data, we observe that high accuracies are already possible with 

a few hundreds of ground truth points per class, as featured in 

Table 6. Neural networks are also more abstract and thus 

harder to decipher, contrary to 3DMASC thanks to feature 

importance and Shapley values. 

Samples 

per class 

Overall accuracy 

AIN FREHEL 

5 cl. 11 cl. 5 cl. 13 cl. 

1600 98% 95% 91% 91% 

1200 98% 95% 91% 91% 

800 97% 95% 91% 90% 

400 96% 95% 90% 90% 

100 94% 93% 89% 90% 

Table 6: Classification accuracy depending on the number of 

training samples used. Tests are performed using the 

complete set of 3DMASC features. 

6.2 Dominant scales 

Taking advantage of the explainability of the method, we 

identify typical characteristics of OMS classifications. First, a 

typical set of scales emerges from the experiments, 

including small and medium sphere diameters ranging 

between 1.5 m and 6 m and one larger scale around 14 m 

(Table 3). The global range of scales selected does not vary 

between primary and advanced classifiers, except for the Ain 

where we can expect that the introduction of smaller scale 

objects - vehicles, swimming pools, intermediate vegetation – 

penalizes very large scales. Advanced classifiers rather add 

scales within the core range, reducing the step between two 

options. Second, the exact optimal scales that arise are 

specific to each environment, which questions the possibility 

to identify optimal neighborhoods without analyzing their 

application context. For example, out of four experiments, 

three different optimal NN neighborhoods stand out: 10, five, 

and one (see Table 3), contrasting with the conclusions of 

Niemeyer et al. (2011) that select an optimal scale of seven NN 

for their different experiments, and with the results of Dong et 

al. (2017) who find that five NN are the most often selected 

neighborhood. Furthermore, the fact that each selected scale is 

not used for each feature tends to be consistent with the work 

of Dong et al. (2017), choosing to optimize each feature’s 

neighborhood rather than identifying a global optimal scale. 

Third, scales selection results are consistent with intra-

feature correlations we observed in Figure 5. These 

suggested that less scales were needed above 6 m than below, 

which is in line with the fact that we only obtain one large 

scale. This large scale also outlines the necessary trade off 

between classification accuracy and classification 

resolution. If we investigate the role of this much larger scale, 

we find that, though it helps to mitigate some errors linked to 

larger scale roughness in the PCs – for example confusion of 

rocks with buildings – it also smoothes out the results, blurring 

classes borders and even missing smaller objects like cars. In 

Figure 13, cars can be identified in the PC, but many of them 

are missed and labelled as ground when large scales are used. 

Limiting the range of scales to 7 m produces a result in which 



these cars are correctly detected, but the ground incorporates 

false building labels.  

Classifier 
Confidence 

threshold 
OA 

Remaining 

points (%) 

FREHEL 

advanced (Max 

scale = 7 m) 

0.5 94% 91% 

0.6 96% 84% 

0.7 97% 76% 

0.8 98% 66% 

Table 7: Overall Accuracy depending on the confidence 

threshold for a reduced set of possible scales 

Our observations thus question the relevance of large scales, 

which appear to be selected for certain point types as they pass 

the score filtering selection, but end up penalizing the global 

classifier application through several aspects. Table 7 

illustrates the confidence filtering analysis obtained on the 

Fréhel advanced classifier optimized on scales within 1 to 7 m 

only. 

It shows that, without the possibility to select larger scales, the 

classification reaches similar accuracies and confidences. 

However, they clearly affect the computation efficiency. The 

advanced Fréhel OMS classifier obtained on a scales up to 7 

m incorporates ten more features, but the computation time is 

divided by three (3450 points per second versus 1102 points 

per second). Suppressing large scales may thus improve 

classification speed, while maintaining high OAs.  

6.3 Computation time 

 1 m 4 m 7 m 10 m 

Single scale 

(s/1000pts) 
28082 7337 2109 928 

  1 – 4 m 1 – 7 m 1 – 10 m 

Multi-scale (pts/s) 4069 854 275 

   Up to 7 m Up to 15 m 

Optimised multi-scale (pts/s) 3450 1102 

Table 8: Time necessary to compute features at different scale 

sets. 

Computational efficiency is an important aspect of 3DMASC. 

The computation of the spherical neighborhoods is the main 

bottleneck of the workflow, similarly to what is observed in 

other studies (Hackel et al., 2016; M. Weinmann et al., 2015) 

and sometimes even drives the choice of the neighborhood 

type. Table 8 illustrates the time necessary to compute all 

implemented features at different single or combinated scales. 

It shows how crucial scale selection is: without optimization, 

computing scales from 1 m to 10 m is five times slower than 

between 1 and 6 m. Considering the observations made in 

section 6.2 about the performance differences between models 

using medium and large scales, the choice of the scales range 

may be significant on the practical deployment of a classifier. 

We ran these test computations on a computer equipped with 

a 24 core CPU and 128 Go of memory. The test file contained 

106 410 018 green points, 61 043 388 NIR points, and 5 700 

844 core points.  The computation can last up to 5 hours and 

45 minutes when exploiting ten scales reaching up to 10 m, 

which corresponds to a computation speed of 275 points per 

second. This computation speed could be increased by 

implementing pyramidal computation into the 3DMASC 

plugin, which consists in subsampling the data when 

increasing the neighborhood size as made in Thomas et al., 

(2018). Our implementation currently does not rely on such 

processes but rather on octrees, future development could thus 

improve this aspect. Additionnally to the selection of a scale 

range, the number of different diameters within the interval, 

and the number of features to compute for each neighborhood 

also has an impact – though less significant – on the processing 

time. Table 8 shows that the optimised descriptor set relying 

on scales up to 7 m is three times faster to compute than the 

complete set of features on scales between 1 and 7 m. 

Consequently, although predictor selection is not crucial for 

classification performance (see Table 3), it is essential to the 

practical applicability of the method. 

6.3 Class-wise results: dominant features 

Out of the maximal 12 features needed to perform basic 

classification, five are common to both experiments. These 

are multi-echo features computed on both PCs, vertical 

distance of green points to their NIR neighbors (KNN), and 

mean green intensity. They are then combined with site 

specific attributes. In Fréhel, the optimal predictor set retains 

mainly multi-echo attributes and intensity-derived 

information. In the Ain, multi-echo features and height-

derived parameters dominate. However, classical features of 

3D data interpretation such as PCA eigenvalues or 

covariance eigenvectors ratios delineating the shape of local 

PCs (Brodu and Lague, 2012; Gross and Thoennessen, 2006; 

Vandapel et al., 2004; Weinmann et al., 2013) are almost 

unused. They only become more prominent when 

complexifying the number and types of classes to detect. This 

is also certainly linked to the fact we analyze airborne lidar 

data, while these features were designed in priority to describe 

terrestrial and mobile laser scanning, that include a greater 

diversity of surface orientations. Point-based attributes are 

also completely absent of the optimized classifications. 

Newly introduced features based on statistical operators 

applied to multi-echo features or intensity values 

systematically outperform them in terms of contribution. Such 

operators had been tested on height derived values 

(Antonarakis et al., 2008; Dong et al., 2017) but never applied 

to other types of features. Yet, the use of statistical operators 

seems particularly informative and able to decuplate the 

informative power of point-based characteristics, namely 

multi-echo attributes, that never particularly stood out in 

existing PC classification literature but appear essential to the 

success of our experiments. They compensate the inability of 

 
Figure 13: Extracts of classification results obtained 

depending on the maximal scale included. 



decision trees to consider spatial relationships between points, 

by giving an insight into spatial consistence of considered 

attributes. These operators also limitate bias linked to 

intensity values, that are unavoidable to classify diverse 

environments (Song et al., 2002; Yan et al., 2015). Intensity 

median, mode, skewness or ratio values constitute half of the 

primary predictors in Fréhel, and are prominent in both 

advanced models. The statistical operators potentially 

attenuate spatially inconsistent distributions of radiometric 

information, mainly in densely vegetated areas. Standard 

deviation and skewness also mitigate the limitations of this 

measure, which varies with the acquisition conditions and does 

not constitute an absolute estimation of surface reflectance 

(Kashani et al., 2015). Overall, the features we present seem 

to better describe natural environments. We compared 

classifications of the Ain obtained with 3DMASC’s single 

cloud features and with features used in Thomas et al. (2018), 

Hackel et al. (2016) and Chehata et al. (2009). These 

approaches rely mainly on features derived from the 

covariance matrix of the core point’s neighborhoods, on 

height-based parameters, and, less frequently on echo-based 

parameters. Due to the unavailability of waveform data on our 

validation areas, we did not include waveform-derived 

attributes originally exploited in Chehata et al. (2009). We 

computed each feature set on the green PC only, and at multi-

scale spherical neighborhoods with diameters of 2, 3, 4, 5, 6, 

and 7 m. Details about the features used in each experiment are 

provided in Supplementary Materials. Overall Accuracies 

obtained on the validation set for 5 classes in the riverine area 

by each approach are summed up in Table 8. They show that 

on natural environments, using our features produces 

systematically higher results than other existing features. 

3DMASC 
Thomas et 

al. (2018) 

Hackel et 

al. (2016) 

Chehata et al. 

(2009) 

93.6% 76.7% 82.6% 84.9% 

 
Covariance- 

based 

Covariance- 

and heigh-

based 

Covariance-, 

height-, echo-, 

plane-based 

Table 8: Classification accuracies obtained with different 

types of features on the 5 classes of the Ain dataset. 

They also show that using solely covariance-based features 

produces the lowest OA on our riverine environment, while it 

generated more precise classifications of urban environments 

(Thomas et al., 2018), highlighting the need for methods 

adapted to the different types of 3D data currently in use. 

We also introduce new measures of the reflective behaviour 

in 3D PCs, that were mostly estimated through mean intensity, 

and propose new inter-channel ratios to complement existing 

multispectral attributes (Morsy et al., 2017b; Wichmann et al., 

2015). Previous studies analyzing multispectral lidar faced the 

difficulty of linking points to their equivalents in PCs of other 

wavelengths, since they are never in strictly identic positions 

due to the sensor configuration (Lague and Feldmann, 2020). 

These new ratios, along with our dual-cloud features 

compensate the limits of point matching, used in existing 

multispectral lidar analysis work (Morsy et al., 2017b) when 

they are used on datasets with correct geometrical and 

radiometric calibration (Kashani et al., 2015; Yan et al., 2012). 

Dual-cloud features systematically stand out among highly 

contributive features. Their lower inter-scale correlation 

likely contribute to their more informative character, along 

with their ability to compensate the limits of shallow learning 

classifiers, that are unable to learn features, and thus to bring 

out and use connections between features. For example, 

difference of roughness between NIR and green PC is 

particularly high for points belonging to water column, and 

much lower for the riverbed of the bottom of swimming pools, 

due to the full reflection of NIR laser on the water and 

scattering of the green light in the water column. The same 

optical phenomenon explains the higher difference of 

elevation modes between PCs in swimming pools and river. 

The inherent points position differences of TB sensors, 

illustrated in Figure 1, explain the varying vertical distances 

between green and NIR PCs in vegetated ares, and their 

systematically negative value in bathymetric zones. Similarly, 

the use of a previously classified ground PC as contextual 

feature allows to improve the labelling of points at the limit 

between ground and above ground features, namely building 

walls and lower tree branches, explaining the improvement 

observed when they are included, and the smaller scales 

needed to capture the signature of such variations. 

Using these observations, we recommend the following set 

of features to use on topo-bathymetric environments: the 

NIR and green number of returns and echo ratios, the green 

return number, the vertical distance to the 1 and 10 nearest 

neighbors of the core points in the NIR PC, the mode of the 

green and NIR intensities, the skewness of the NIR intensity, 

the ratio of median intensities, the NIR and green elevations’ 

standard deviation, the difference of elevation modes, the NIR 

roughness and the difference of roughness, the NIR dip, and 

the green PC sphericity. With these 19 features computed at 

scales between 1.5 and 14 m, we observed OAs of 98% and 

91% for 5 classes on the riverine and coastal datasets, 

respectively, and 94% and 90% on their 11 and 13 classes 

versions.  

7. CONCLUSION 

In this paper, we have introduced 3DMASC, a method for 

explainable machine learning multispectral point cloud 

classification. 3DMASC operates directly on sets of 

unordered, unstructured points and predicts a label for each, 

with a confidence index and information on the origin of the 

decision, through feature importance. It differs from previous 

point cloud classification methods in its capacity to handle 

multiple clouds simultaneously and describe the spatial and 

statistical repartition of point cloud attributes, introducing 

indirect context consideration in the model and new 

multispectral feature ratios. 3DMASC also stands out from 

state-of-the-art 3D classification methods with its 

accessibility: it is explainable using Shapley values, usable 

without dedicated GPUs, and easy to handle for thematic 

specialists such as geomorphologists, ecologists, or 

cartographers. We focus on providing an optimized approach 

in terms of computation cost, processing time, and results. We 

demonstrate the performance of the approach on two different 

airborne lidar use cases: the detection of land and sea covers 

in (1) a riverine environment and (2) a coastal area. Results 

show that the method produces highly accurate classifications 

of basic or detailed categories of points. Furthermore, models 

excel in TB environments thanks to the newly introduced 

features and require a limited number of training points (≤ 



2000 per class), scales, and attributes. We also implemented a 

feature selection framework that allows us to draw three main 

conclusions about the definition of the predictor's vector: (1) 

statistics of point-based attributes are more informative than 

classical dimensionality or geometrical features on this type of 

data, (2) multi-echo features, vertical distance between the two 

PCs and mean intensity appear to constitue an essential base 

of features to use and (3) dual cloud features are highly 

contributive to separate ground, artificial elements and 

vegetation. Our results also stress the superiority of multi-

cloud classification compared to single-cloud, especially for 

bi-spectral lidar. We release our source code through an open-

source plugin in CloudCompare (Girardeau-Montaut, 2022), 

hoping it will help applications of 3D remote sensing for earth 

observation and conservation. Although our paper illustrates 

specific use cases of the workflow on topo-bathymetric lidar 

datasets, 3DMASC can be extended to PC time series analysis, 

and 3D data interpretation in general. It may be applied to 

terrestrial laser scanning data, to SFM PCs, or even to UAV 

lidar sensors, which are still under development, enlarge the 

access to lidar surveys, but are two compact to incorporate 

dual-wavelength lidar sensors.  
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Appendix A: Cloudcompare (CC) q3DMASC plugin 

implementation and operation 

Using the q3DMASC plugin for classifier training or inference 

requires a labelled core point file and up to 3 accessory point 

clouds used to compute the features around each core point: 

PC1 (e.g., green channel), PC2 (e.g., NIR channel) and CTX 

(e.g., a point cloud with a populated classification field). For 

single point cloud classification, only one accessory point 

cloud is needed. A text file contains the description of point 

clouds, scales and features to be used for training. Upon 

training completion, a classifier file is saved and can be 

subsequently used with q3DMASC to apply the classifier to 

other point clouds. 

Here are the main characteristics of the q3DMASC plugin 

implemented in the open source software CloudCompare 

(CC): 

Accessibility: the q3DMASC plugin has been designed to be 

usable without programming language knowledge (e.g., 

Python) directly in the CC GUI. As such it makes a great 

introductory tool for non-specialists, for teaching and for quick 

tests without having to setup a complete programming 

environment. We have also modified the CC scissor tool to 

allow direct interactive labelling of 3D data, and introduced a 

tool to automatically split point clouds according to classes, 

and a new plugin for labelling data in 3D has just been released 

(QCloudLayers by Wiggins Tech). These simple tools 

associated with the neat 3D visualization of CC greatly 

facilitate the creation of labelled 3D data for training. 

Speed: (CC) written in C++ has a well proven, fast and fully 

parallelized 3D neighbourhood search essential for fast 

computation of spherical neighbourhood or KNN search. 

While not critical during the training phase as a limited number 

of samples is necessary, this is essential during application and 

production phases to compute features on several millions of 

points. 

Scalability: the q3DMASC plugin can be used in command 

line mode without GUI in order to apply the classifier in batch 

mode for large point cloud projects that would not fit in the 

computer RAM. For instance, we have been able to use it 

routinely to process projects with more than 10 billions points 

using tiling strategies. 

Non data source specific: while some features of 3DMASC 

are specific to Airborne LiDAR (e.g., multi-echo features), 

many geometric features can be used for any type of high 

resolution 3D point cloud created, for instance, from terrestrial 

LiDAR, Structure From Motion, Satellite Stereo 

Photogrammetry and multibeam sonar. There are in particular 

provision to use RGBNIR information that can be essential for 

SFM. 

Flexibility in feature creation: to generate complex single or 

dual cloud features over several scales, the user has to create a 

text file containing the description of the various point clouds, 

the scales to be used and the features to be computed. Complex 

single cloud features can be generated using the following 

formalism: 

FEAT_SC#_STAT_PC# 

in which FEAT corresponds to a predefined list of features 

(e.g., intensity, z, number of returns, sphericity, ….), SC# 

indicates the scale at which they will be calculated, STAT is a 

statistical descriptor for point-based features sampled within 

the spherical neighbourhood (mean, mode, median, std, range, 

skew), PC# indicate the point cloud to be used for calculation 

around the core point. Dual cloud features are generated with 

this formalism: 

FEAT_SC#_STAT_PC#_PC$_MATH 

In which PC$ indicates the second cloud to be used and MATH 

is a operator (minus, plus, divide, multiply). For instance the Z 

mode difference (fig. 2) between the green channel (PC1) and 

the NIR channel (PC2) calculated at all possible scales is 

written Z_SCx_MODE_PC1_PC2_MINUS. Contextual 

features are constructed using the following formalism: 

DZk_SC0_PC#_CTX#, 

In which DZk (resp. DHk) indicates the vertical (resp. 

horizontal) distance to the k nearest neighbours, PC# indicates 

the PC considered and CTX# the number in the classification 

field to consider (e.g., 2 for ground, 5 for vegetation…). For 

instance the average vertical distance to the 3 nearest ground 



points of the NIR channel (PC2) that holds a valid 

classification field is DZ3_SC0_PC2_CTX2. 

Explainability: we use a random forest algorithm that 

combines a good performance on many attributes, simplified 

feature selection, and robustness to overfitting. After training, 

the GUI version of 3DMASC outputs the overall accuracy, RF 

feature ranking and allows to manually remove features that 

are less contributing. After training completion, users can 

directly visualize feature values in 3D to understand why they 

contribute directly or not to classification success. 

For training purposes, we chose the cross-platform OpenCV 

library (Bradski, 2000) implementation of Random Forests as 

it allows classifiers created in Cloudcompare to be used in 

Python and vice-versa. The downside of the C++ 

implementation of OpenCV is that the training is not 

parallelized, and is consequently much slower than the RF 

implementation, e.g., of scikit-learn (Pedregosa et al., 2011). 

RF training is thus the main bottleneck during classifier 

creation in the CC version. Classifier application is extremely 

fast, and feature calculation becomes the main bottleneck. 

Expert users can directly train their classifier in python with 

their favourite algorithm. 

Appendix B: Complete list of features used in this study 

Point-based features and single/dual cloud features 

constructed from them in spherical neighborhood  

Name Single cloud 

features stat 

descriptors 

(532 nm or 

1064 nm) 

Dual cloud features 

(532 and 1064 nm) 

Subtraction Division 

Elevation* Std, Skew 
Mean, Median, 

Mode, Std, Skew 
- 

Intensity X Std, Skew 
Mean, Median, 

Mode 

Return number Mean - - 

Numb. of 

returns 
Mean - - 

Echo Ratio Mean - - 

R, G, B 
Mean, Mode, 

Median 
- - 

*: not used as a point based feature 

Dimensionality based features computed in spherical 

neighborhood  

Name 
Formulation 

from eigenvalues 

Dual cloud features 

(532 and 1064 nm) 

PCA1* λ1/(λ1+ λ2+ λ3) subtraction 

PCA2* λ2/(λ1+ λ2+ λ3) subtraction 

PCA3/Surf variation+ λ3/(λ1+ λ2+ λ3) subtraction 

Sphericity+ λ3/λ1 subtraction 

Linearity+ (λ1-λ2)/λ1 subtraction 

Planarity+ (λ2-λ3)/λ1 subtraction 

*: Brodu and Lague (2012); + : Weinmann et al., (2013) 

Geometry based features computed in spherical neighborhood 

Name Information 
Dual cloud features 

(532 and 1064 nm) 

Verticality* 

Varies between 0 

(horizontal) and 1 
(vertical) 

subtraction 

Detrended Roughness 

Std of distance 

between points and 

best fitting plane 

subtraction 

Curvature 

Mean curvature in 
CC= average of 

principal curvatures 

subtraction 

Nb of points - subtraction 

Anisotropy 

Ratio of distance to 
center of mass and 

radius of sphere 

subtraction 

First Order Moment* Hackel et al. (2016) subtraction 

*: Demantké et al., 2012; 

Height based metrics computed in spherical neighborhood  

Name Formulation  
Dual cloud features 

(532 and 1064 nm) 

Zrange zmax-zmin subtraction 

Zmin z- zmin subtraction 

Zmax zmax -z subtraction 

z is the core point elevation, zmax and zmin are the maximum and 

minimum elevation in the spherical neighbourhood, respectively. 

Contextual features in the NIR channel 

Name Formulation  Target class 

DZ to KNN 
Mean vertical distance to k 

nearest neighbor 

1064 nm 
ground 

DH to KNN 
Mean horizontal distance to k 

nearest neighbor 

1064 nm 

ground 
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Supplementary materials : 

Figure 1 presents the results of the experiments made to 

determine the scale to use for evaluation and the correlation 

threshold to apply during feature selection. 

 
Figure 1: Results of the experiments performed to 

determine the correlation threshold to apply for feature 

selection, and the scale at which to evaluate each feature’s 

information gain. 

Figure 2 gives more detailed information on the correlation 

between features computed at different scales.  

 
Figure 2: Linear correlation between features computed 

at scales separated by dx=1 m or dx=3 m for different 

families of feature. SC = Single Cloud  ; DC = Dual 

Cloud 

Figure 3 presents class-wise metrics obtained by the advanced 

optimal multi-scale models on both scenes. 

 
Figure 3: Classification metrics obtained by the optimal multi-

scale classifier on each class of the advanced processing of the 

riverine (Ain) and the coastal (Fréhel) point clouds. 

Figure 4 illustrates the impact of large scales on classification 

accuracy depending on the presence or absence of contextual 

features (vertical distances to a previously classified ground 

point cloud). Scales were removed iteratively per decreasing 

order. 

 
Figure 4: Classification performances depending on the 

maximal scale kept in the optimal multi-scale predictor set, 

and in the predictor set augmented with contextual 

attributes. 

 

Table 1 details the features used to compare 3DMASC to other 

approaches. The eigenvalues referred to are those obtained on 

the covariance matrix of spherical neighborhoods. For detailed 

mathematical expressions of the different attributes, please 

consult the original papers (Chehata et al., 2009; Hackel et al., 

2016; Thomas et al., 2018). 

Name 
Thomas et 

al. (2018) 

Hackel et 

al. (2016) 

Chehata et 

al. (2009) 

Sum of 

eigenvalues 
X X  

Omnivariance X X  

Eigenentropy X X  

Anisotropy  X X 

Linearity X X X 

Planarity X X X 



Sphericity X X X 

Curvature   X 

Surface 

variation 
X X  

Verticality  X  

Verticality 

based on 1st 

eigenvector 

X   

Verticality 

based on 3rd 

eigenvector 

X   

Vertical 

moment (1st 

order) 

X   

Vertical 

moment (2nd 

order) 

X   

Number of 

points 
X   

Statistical 

moments of 

eigenvectors 

(1st and 2nd 

order) 

X X  

Z range in 

neighborhood 
 X  

Difference 

with minimal 

Z in 

neighborhood 

 X X 

Difference 

with maximal 

Z in 

neighborhood 

 X  

Standard 

deviation of Z 

in 

neighborhood 

  X 

Residuals of 

the fitting of 

a plane to the 

neighborhood 

  X 

Deviation 

angle of a 

fitted plan 

normal to the 

vertical 

  X 

Variance of 

the deviation 

angles in the 

neighborhood 

  X 

Distance to 

the fitted plan 
  X 

Number of 

returns 
  X 

Normalised 

return 

number 

  X 

Table 1: description of the features used in each approach 

compared to 3DMASC on the Ain dataset. 


