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ABSTRACT: A straightforward access to enantiomerically enriched cis-3-benzyl-chromanols from (E)-3-benzylidene-

chromanones was developed through Rh-catalyzed asymmetric transfer hydrogenation. This transformation allowed the reduction 

of both the C=C and C=O bonds and the formation of two stereocenters in high yields with excellent levels of diastereo- and 

enantioselectivities (up to >99:1 dr, up to >99% ee) in a single step through a dynamic kinetic resolution process using a low cata-

lyst loading and HCO2H/DABCO as the hydrogen source.

Homoisoflavonoids are a widespread family of molecules, 

naturally occurring in plants, which possess a promising set of 

biological activities.
1
 Among those, antioxidant, anti-

inflammatory, antitumoral, antiviral, antibacterial and protec-

tive vascular actions can be cited as potential therapeutic indi-

cations.
2 

The 3-benzyl-chromanol substructure is present in 

several molecules, for example CP-105,696, which possess a 

selective and potent LTB4 receptor-inhibiting ability.
3
 LTB4 is 

a chemoattractant for granulocytes and is involved in several 

inflammatory diseases such as rheumatoid arthritis or asthma. 

An efficient and straightforward route to access 

enantiomerically enriched 3-benzyl-chromanols is thus highly 

desirable. In this context, Koch et al. reported the synthesis of 

an enantiomerically pure 3-benzyl-chromanol starting from the 

ketone precursor using a chemical resolution, after NaBH4 

reduction, esterification with t-Boc-L-tryptophan and hydroly-

sis of the resulting ester.
4
 Seo et al. later devised an asymmet-

ric synthesis of cremastranone by using an asymmetric transfer 

hydrogenation (ATH) coupled with a dynamic kinetic resolu-

tion (DKR) of a 5,6,7-substituted homoisoflavanone catalyzed 

by Noyori's ruthenium complex [RuCl(p-cymene){(S,S)-Ts-

DPEN}] or [RuCl(p-cymene){(R,R)-Ts-DPEN}], followed by 

TPAP oxidation of the resulting enantiomerically enriched 

alcohol.
5
 The ATH reaction proceeded using a 3:1 mixture of 

DBU/HCO2H as the hydrogen source, and a catalyst loading 

of 30 mol% to achieve full conversion. Subsequent oxidation 

of the alcohol with TPAP gave the desired (R) and (S)-

cremastranone without racemization, allowing confirmation of 

the absolute configuration of the natural product as (R) and 

showing that the anti-angiogenic effect of the (S)-isomer was 

superior to the natural (R)-form. 

Scheme 1. Catalytic asymmetric reduction of 3-substituted 

chromanones 

 
 

The authors used the same strategy for the total synthesis of 

several 5,7,8-trioxygenated chroman-4-ones and 

homoisoflavonoids.
6
 

In the context of our ongoing studies directed toward the 

development of efficient methods for the asymmetric reduc-

tion of functionalized ketones
7
 and in order to access a wide 

range of 3-benzyl-chromanol derivatives, we report herein the 

first rhodium-catalyzed asymmetric transfer hydrogenation of 
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3-benzylidene-chromanones that efficiently reduces both the 

C=C and C=O bonds in a single synthetic step and provides in 

good yields the targeted molecules with excellent levels of 

diastereo- and enantioselectivity through a dynamic kinetic 

resolution process (DKR).
8
 

To investigate the proposed ATH-DKR, racemic (E)-3-

benzylidene-chromanone 1a
9,10

 was subjected to the asymmet-

ric reduction using several organometallic catalysts in acetoni-

trile at 50 °C for 24 h (Table 1). 

Table 1. Catalyst screening for the ATH of 1a
a 

 

entry cat. HCO2H/Base yield of 2a
b 
(%) dr

c
 ee

d 
(%) 

1 (R,R)-A HCO2H/Et3N 84 77:23 >99 

2 (R,R)-B HCO2H/Et3N 92 92:8 95 

3 (R,R)-C HCO2H/Et3N 91 97:3 99 

4 (R,R)-B HCO2H/DBU 96 93:7 98 

5 (R,R)-C HCO2H/DBU 95 97:3 >99 

a
Conditions: 1a (0.79 mmol), cat. (0.5 mol%), 5 equiv of HCO2H/Et3N (5:2) 

or HCO2H/DBU (2:1), MeCN (1.5 mL), 50 °C. 
b
Isolated yield, complete 

conversion in all cases. 
c
Determined by 

1
H NMR of the crude product after the 

ATH reaction. 
d
ee for the cis product determined by SFC analysis. 

The HCO2H/Et3N (5:2) azeotropic mixture (5 equiv) was first 

used as the hydrogen source in the presence of 0.5 mol% of 

rhodium or ruthenium complexes (Table 1, entries 1-3). These 

conditions led to a full conversion with all the tested complex-

es. The ATH using oxo-tethered ruthenium catalyst (R,R)-A
11

 

occurred with a modest diastereomeric ratio of 77:23 in favor 

of the cis alcohol 2a, which was obtained in 84% yield and 

>99% ee (Table 1, entry 1). With the [RuCl(p-cymene){(R,R)-

Ts-DPEN}] complex (R,R)-B,
12

 a high yield (92%) and high 

levels of diastereo- and enantioinductions were observed (Ta-

ble 1, entry 2, 92:8 dr, 95% ee). We were delighted to find that 

the home made (R,R)-C
12

 containing an (R,R)-TsDPEN ligand 

tethered to the ancillary η
5
-arene ligand outperformed the 

previous catalysts by yielding a diastereomeric ratio of 97:3 

and 99% ee (Table 1, entry 3). We next chose to screen a 

variety of bases and replaced triethylamine with DBU in the 

hydrogen source mixture. The use of a HCO2H/DBU (2:1) 

combination pleasingly allowed a slight increase of the yield 

of 2a with both (R,R)-B and (R,R)-C, the latter still giving the 

best stereoselectivities (Table 1, entries 4 and 5). Based on this 

encouraging series of results, the rhodium complex (R,R)-C 

was chosen as the catalyst for this study. 

The investigations continued with the screening of the sol-

vent, the catalyst loading (S/C) and the nature of the hydrogen 

donor (Table 2). Several solvents such as CH3CN, CH2Cl2, 

THF, toluene, AcOEt, i-PrOH, and MeOH performed well 

(Table 2, entries 1-7). High yields of 84-95% were obtained in 

these solvents with diastereomeric ratios ranging from 90:10 

to 97:3 and enantioselectivities of 99% to >99% ee, with ace-

tonitrile giving the best results. 

 
Table 2. Optimization of the reaction conditionsa 

entry solvent hydrogen donor yield
b 

(%)  

dr
c
 ee

d 

(%)
 

1 CH3CN HCO2H/DBU (2:1) 95 97:3 >99 

2 CH2Cl2 HCO2H/DBU (2:1) 94 92:8 99 

3 THF HCO2H/DBU (2:1) 92 96:4 >99 

4 toluene HCO2H/DBU (2:1) 84 96:4 >99 

5 AcOEt HCO2H/DBU (2:1) 87 97:3 >99 

6 i-PrOH HCO2H/DBU (2:1) 88 90:10 >99 

7 MeOH HCO2H/DBU (2:1) 95 93:7 99 

8
e
 MeCN HCO2H/DBU (2:1) 94 96:4 >99 

9
f
 MeCN HCO2H/DBU (2:1) 43 97:3 >99 

10 MeCN HCO2NH4 49 92:8 98 

11
g
 MeCN (HCO2)2Ca 63 74:26 89 

12
h
 MeCN i-PrOH/KOH – – – 

13 MeCN HCO2H/DABCO (2:1) 96 99:1 >99 

a
Conditions: 1a (0.79 mmol), (R,R)-C (0.5 mol%), hydrogen donor (5 equiv), 

solvent (1.5 mL), 50 °C, 24 h. 
b
Isolated yield of 2a. 

c
Determined by 

1
H NMR 

of the crude product after the ATH reaction. 
d
ee for the cis product determined 

by SFC analysis. 
e
0.25 mol% of (R,R)-C were used. 

f
0.1 mol% of (R,R)-C were 

used. 
g
0.1 mL of water were added. 

h
3 equiv of i-PrOH/KOH were used. 

Next, the S/C ratio was progressively lowered (Table 2, en-

tries 8 and 9). Increasing the S/C to 400 did not affect the 

outcome of the ATH reaction. However, using a S/C of 1000 

had a detrimental effect on the yield, which dropped to 43%. 

To complete the optimization of the reaction parameters, other 

hydrogen sources were examined. Formate salts such as 

HCO2NH4 and (HCO2)2Ca led to lower yields with a signifi-

cant unfavorable impact on the stereoselectivity in the latter 

case (Table 2, entries 10-11). Whereas using potassium hy-

droxide in isopropanol failed to afford any conversion (Table 

2, entry 12), the hindered 1,4-diazabicyclo[2.2.2]octane 

(DABCO) gave excellent results allowing the 

diastereoselectivity to reach 99:1 dr while maintaining the 

enantioselectivity at >99% ee (Table 2, entry 13). From this 

survey, the optimized conditions were set as follows: (R,R)-C 

(0.5 mol%) as the precatalyst, HCO2H/DABCO (2:1) (5 equiv) 

as the hydrogen source in CH3CN solvent at 50 °C. 

Having identified an effective stereoselective method to set 

the vicinal stereocenters and being amenable to a dynamic 

kinetic resolution process (DKR), we explored the scope and 

limitations of the asymmetric reduction on a series of 3-

benzylidene-chromanone derivatives that could be utilized in 

this novel DKR transformation (Table 3). Good results were 

obtained with a wide range of arene substitution by varying 

the position (ortho, meta or para) of the methoxy group on the 

aryl ring of the benzylidene moiety, and compounds 2b-2d 

were formed in 92-95% yields, 99:1 dr and enantioselectivities 

up to >99% ee (Table 3, entries 2-4). Other 3-benzylidene-

chromanone derivatives bearing either electron-donating or 

electron-withdrawing groups were efficiently reduced to the 

corresponding cis alcohols with good yields up to 93% and 

high levels of diastereo- and enantioselectivities (Table 3, 

entries 5-10, up to 99:1 dr, up to >99% ee). 

Table 3. Substrate scope of the ATH/DKR of 1a-1n
a
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entry/ATH product 2 Yield
b
 

(%) 
dr

c
 ee

d
 

(%) 

1/2a 

 

96 99:1 >99 

2/2b 

 

95 99:1 >99 

3/2c 

 

93 99:1 >99 

4/2d 

 

92 99:1 97 

5/2e 

 

93 99:1 >99 

6/2f 
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8/2h 
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94 99:1 >99 

11/2k 

 

95 99:1 98 

12/2l 

 

77 99:1 >99 

13/2m 

 

98 >99:1 99 

14/2n 

 

69 94:6 >99 

Table 3 (contd.) 

 

entry/ATH product 2 Yield
b 

(%) 
dr

c
 ee

d 

(%)
 

15
e
/2o 

 

96 99:1 >99 

16
e
/2p 

 

91 99:1 >99 

 
X-ray crystallography of 2g. Displacement ellipsoids are shown at the 30% 

probability level. 

a
Conditions: 1a-n (0.79 mmol), (R,R)-C (0.5 mol%), 5 equiv of 

HCO2H/DABCO (2:1), MeCN (1.5 mL). 
b
Isolated yield, complete conversion 

in all cases. 
c
Determined by 

1
H NMR of the crude product after the ATH 

reaction. 
d
ee for the cis product determined by SFC analysis. 

e
The ATH reac-

tion was performed with complex (S,S)-C under otherwise identical conditions. 

 

Interestingly, a bulky substituent such as a naphthyl group 

(Table 3, entry 11) as well as a heteroaryl substituent such as a 

furyl subunit or biphenyl substituents (Table 3, entry 12 and 

13 respectively) were well-tolerated. Importantly, the reaction 

was not limited to arylchromanone derivatives and an alkenyl 

substituted chromanone was also accommodated in this trans-

formation (Table 3, entry 14). In this case, the reduction 

proved to be chemoselective of the C=C bond located next to 

the carbonyl group yielding the corresponding cis-chromanol 

in good yield (69%), good diastereoinduction (94:6 dr) and 

excellent enantiocontrol (>99% ee).  

The absolute configuration of compound 2g was unambigu-

ously determined as (R,R) by X-ray crystallographic analysis, 

and by analogy we conjectured that the remainder of the ATH 

products followed the same trend. In addition, the (S,S)-

alcohols 2o and 2p could be readily prepared as well by using 

the (S,S)-isomer of the rhodium complex C instead of the 

(R,R)-enantiomer. In both cases the reduced compounds were 

obtained with results comparable to those obtained for the 

parent alcohols 2a and 2b, respectively (Table 3, entries 15-16 

vs entries 1-2). 

The utility of the developed reaction was illustrated by its 

performance on gram-scale. Compound 1n was subjected to 

the ATH-DKR under the same reaction conditions to provide 

2n in 89% yield, 99:1 dr and >99% ee (Scheme 2). Further-

more, compound 2h was post-functionalized into 4 in 80% 

yield and no loss of dia- and enantioselectivity by protecting 

the alcohol group with a tert-butyl-di-methyl silane group 

followed by a Suzuki-Miyaura cross-coupling by using 

Pd(OAc)2, cataCXium A as ligand, K2CO3 as a base, 4-

methoxyphenylboronic acid and DMF as solvent. 
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Scheme 2. Post-functionalization and Scale-Up  

 
 

 

In summary, the practical rhodium-catalyzed asymmetric 

transfer hydrogenation of 3-benzylidene chromanones allows 

reduction of two double bonds in a single step in a stereo-

controlled manner. The unique combination of Rh(III) com-

plex developed in the group and formic acid/DABCO (2:1) as 

hydrogen source enables at low catalyst loading under mild 

conditions, the facile reductive dynamic kinetic resolution of 

 3-benzylidene chromanones to access the corresponding cis-

3-benzyl chromanols in high yields and excellent 

stereoselectivities (up to >99:1 dr, up to >99% ee). This effi-

cient and straightforward catalytic route provides access to 

synthetically useful chromanol derivatives and valuable 

chroman pharmacophores as well and tolerates a broad range 

of functionalities. 
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