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Abstract. Industrial cyber-physical systems are critical infrastructures
vulnerable to cyber-attacks. Anomaly and intrusion detection are widely
used approaches to enhance the security of these systems. Existing de-
tection methods can be categorized into two families. The first family
detects only known attacks. The second family overcomes this limitation
but often has a high false positive rate and a long detection time. This
paper investigates the second family using side-channel leakages, par-
ticularly sound, for high-accuracy detection of intrusions and anomalies
in various industrial systems. Despite sound signal’s advantages, such
as low-cost equipment, minimal computational requirements, and non-
invasive measurement. Current sound-based anomaly detection (SAD)
methods face challenges such as sensitivity to background noise, un-
balanced sound data, computational costs, and detection accuracy. To
tackle these issues, we introduce robot-arm sound dataset (RASD) and
present a real-time sound-based anomaly detection for industrial systems
(SADIS) approach that uses a simple and efficient method to fingerprint
expected sound data with reduced dimensions. It employs an autoen-
coder (AE) for data classification and utilizes the Mahalanobis distance
(MD) as an anomaly-scoring function, enhancing detection performance.
Our experiments demonstrate that the SADIS approach achieves an av-
erage attack detection rate of over 96%, with a detection time of less
than 1 second and low computational costs.

Keywords: Industrial systems, anomaly detection, side-channel leak-
age, sound, Autoencoder, Mahalanobis distance, real-time

1 Introduction

Industrial cyber-physical systems (ICPS) face increased vulnerability to cyber-
physical attacks due to growing interconnectivity between physical and cyber
systems [21,31]. Attacks on these systems can cause collateral damage, as illus-
trated by the Stuxnet cyberattack [19], emphasising the need for robust secu-
rity, including anomaly and intrusion detection. Anomaly, encompassing devia-
tions from normal behaviour, poses challenges in detection due to its unknown.
Anomaly and intrusion detection systems (IDS) are security measures for de-
tecting unexpected behaviour, with signature-based intrusion detection systems
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(SIDS) identifying known attacks [11] and anomaly-based intrusion detection
systems (AIDS) effectively detecting deviations from normal, including zero-day
attacks [13]. Current IDS struggle to accurately detect deviations in the physi-
cal system of ICPS, resulting in delayed responses and false alarms that risk the
manufacturing process. This paper investigates AIDS using side-channel leak-
ages, particularly sound, for high-accuracy detection of intrusions and anomalies
in various industrial systems. Therefore, sound-based anomaly detection (SAD)
proves to be a practical and widely applicable method in domains such as public
video surveillance [8], speech analysis and recognition [5], healthcare [32], pre-
dictive maintenance of industrial [10]. To our knowledge, SAD has not yet been
applied to detect cyber-physical attacks.

Existing SAD methods face challenges such as sensitivity to background
noise, unbalanced sound data and domain shift challenges. Addressing these
issues is crucial for enhancing detection performance and adaptability across
diverse environments [20, 30]. While many SAD methods are performed offline,
real-time detection provides early anomaly detection. In the literature, two real-
time approaches exist: continuous online training and detection and offline train-
ing with online detection. This work concentrates on the latter approach. Con-
sidering the common challenges in anomaly detection, the SAD issues, and rec-
ommendations [29] and challenges [1], developing real-time SAD for industrial
systems requires collecting high-quality sound data, utilizing low-latency pre-
processing, ensuring accurate and fast detection, adapting to domain shifts, and
compatibility with various systems.

This paper introduces a real-time SADIS approach for detecting cyber-physical
attacks in ICPS. It addresses the challenges of existing methods, including com-
putational costs, detection accuracy, and noise robustness. The SADIS approach
efficiently extracts relevant features from sound data using dimension reduction
via time-average spectrum (TAS) or principal component analysis (PCA). Ad-
ditionally, the SADIS employs an autoencoder (AE) for data classification and
utilizes the Mahalanobis distance (MD) as an anomaly-scoring function, en-
hancing detection performance. Moreover, the main contributions of this work
are twofold.

1. First, we have generated a sound dataset, robot arm sound dataset (RASD),
to address unbalanced sound data challenges1.

2. Secondly, we have developed the SADIS approach, assessing its robustness
using the RASD dataset and enhancing its adaptability through validation
on diverse industrial systems.

The paper is structured as follows: Section 2 discusses related studies, Section
3 introduces deep learning concepts and the autoencoder model background,
Section 4 presents the SADIS approach, Section 5 details the experimentation
setup and results evaluation, and Section 6 concludes with the strengths and
limitations of the SADIS approach.

1 https://github.com/a23houss/sadis_experimentation_code

https://github.com/a23houss/sadis_experimentation_code
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2 Related work

This section presents related studies to real-time anomaly detection of industrial
systems using side channels. The comparison of related work is summarized in
Table 1. This work compares the SADIS approach to existing methods, evalu-
ating side-channel leakage, real-time performance, parameter sensitivity, robust-
ness against noise, and overall effectiveness in detecting cyber-physical attacks.

Table 1. Comparison of related works in anomaly detection for industrial systems.
The ’-’ symbol indicates that the research question was not addressed in the study,
while the ✓ symbol indicates that the study investigated the research question

Articles Side-channel Real-time Parameter Robustness Comparison with
leakage performance sensitivity against noise existing approach

Baseline [16] sound - - - -

IDNN [27] sound - - - ✓
Pu et al. [23] power ✓ ✓ - -

U-net [28] sound - - - ✓
Bayram et al. [3] sound ✓ - ✓ ✓
Bai et al. [2] power ✓ - ✓ ✓
SADIS sound ✓ ✓ ✓ ✓

2.1 Anomaly detection based on power fingerprinting

Pu et al. [23] proposed a low-cost method that collects power traces and performs
real-time malware detection using support vector machine (SVM) classifier. The
authors study the parameters sensitivity. However, they do not address robust-
ness against noise and don’t compare their approach with existing methods. Bai
et al. [2] designed a power-based intrusion detection system (PIDS) that uses the
physically-induced dependency between a robot’s movement and the concurrent
power consumption to detect replay attacks. They use power data and focus
on real-time detection and robustness against noise. They also compare their
approach with existing methods, but don’t study parameter sensitivity.

2.2 Sound-based anomly detection (SAD)

Sound-based Anomaly Detection (SAD) proves highly effective in critical in-
frastructure, enhancing safety, security, quality control, predictive maintenance,
and cost reduction. Low-cost equipment like microphones simplifies sound data
capture. Several recent studies, such as Koizumi et al. [16], Suefusa et al. [27],
and van der et al. [28], propose adequate methods for monitoring industrial
machines with SAD. Koizumi et al. [16] introduced an unsupervised approach
within the detection and classification of acoustic scenes and events (DCASE) 2

challenge, primarily providing a baseline for malfunctioning industrial machine
investigation and inspection (MIMII) dataset evaluation. In contrast, Suefusa et

2 https://dcase.community/challenge2020/task-unsupervised-detection-of-
anomalous-sounds
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al. [27] used an interpolation deep neural network (IDNN)-based SAD approach
and compared it to existing SAD methods, including Koizumi et al.’s baseline.
Additionally, Van der Vel den et al. [28] proposed the fully connected U-net
for sound-based anomaly detection, conducting comparisons with existing SAD
methods, encompassing Koizumi et al.’s baseline [15] and Suefusa et al.’s [27]
work. However, these studies primarily conducted offline experiments and did not
explore parameter sensitivity and robustness against noise. Additionally, sound
data is suitable for real-time processing with lower computational costs, enabling
early anomaly detection, as suggested by Bayram et al. [3]. Notably, while related
SAD studies focus on predictive maintenance, we emphasise real-time SAD for
cyber-physical attack detection through side-channel leakage. Both applications
identify normal/abnormal machine sounds but serve different purposes: predic-
tive maintenance SAD prevents failures by spotting malfunctions. In contrast,
cyber-physical attack detection SAD rapidly identifies abnormal sounds tied to
attacks, including zero-day attacks.

3 Preliminaries

This section introduces deep learning concepts, the autoencoder model back-
ground and anomalies scoring function Mahalanobis distance (MD).

3.1 Deep learning for anomaly detection

Deep learning, a subset of machine learning, outperforms anomaly detection for
complex data through layered neural networks [7]. Like the human brain, deep
neural networks are powerful non-linear models with input, hidden, and output
layers [4]. This paper employs an unsupervised algorithm, using reconstruction-
based methods for detecting unknown attacks and addressing unbalanced data.

Autoencoder for anomaly detection The reconstruction error of an au-
toencoder is used to identify anomalies. A higher reconstruction error indicates
a higher likelihood that the input data is an anomaly. The SADIS approach uses
a deep autoencoder to detect abnormalities in industrial sounds in real-time. A
deep autoencoder is simply an autoencoder with multiple hidden layers [33].

Background of autoencoder An autoencoder (AE) is a neural network
designed to reconstruct input data with high similarity using an encoder function
ϕ and a decoder function φ, incorporating a non-linear activation function f . The
encoder maps the original data x from the input layer to a lower-dimensional
latent space (z) at the hidden layer as follows:

ϕ : Rn −→ Rd

x 7−→ z = ϕΘ(x) = f(Wx+ b);
(1)

where d < n, and n is the dimension of the input data x. Θ = {W, b} represents
the encoder network parameters, with W as the weight and b as the bias. The
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decoder function is defined as follows:

φ : Rd −→ Rn

z 7−→ x̂ = φΘ′ (z) = f(W
′
z + b

′
)

(2)

Where x̂ is the reconstructed data. Θ
′
= {W ′

, b
′} represents the decoder network

parameters, with W
′
as the weight and b

′
as the bias.

Non-linear activations (e.g., sigmoid, ReLU, Tanh) are used to introduce
non-linearity and capture complex relationships between the input and output
data [26]. SADIS uses ReLU (Rectified Linear Unit) in encoding and decoding,
known for efficient and selective neuron activation. Mathematically, ReLU is
defined as follows:

ReLU(y) = max(0, y) (3)

Where y ∈ R. During training, the autoencoder learns the encoder and decoder
functions through backpropagation to minimize the reconstruction error, typi-
cally quantified by the mean squared error (MSE) loss function [6].

L(x, x̂) = 1

n

∑
||x− x̂||2; (4)

where ||.|| is a commonly choosen l2-norm. Stochastic Gradient Descent (SGD)
or Adam optimize Θ and Θ′ iteratively, reducing loss and enhancing input re-
construction. Objective: find optimal encoder network and decoder network pa-
rameters for minimal loss during training.

3.2 Anomalies scoring function

Anomaly detection relies on scoring functions to differentiate normal from ab-
normal data. Commonly, the reconstruction error (MSE), denoted as e (Equa-
tion (4)), compute the difference between input x with reconstruction x̂. Recent
research highlights the efficiency of MD as an alternative [9,14], measuring sim-
ilarity between vector e and distribution ∆. The MD is defined as:

MD(e,∆) =
√

(e− µ∆)TV −1
∆ (x− µ∆). (5)

The MD is computed with Equation (5), where e is an observation vector, µ∆

and V −1
∆ are respectively mean value and inverse covariance matrix of a distri-

bution. The SADIS approach efficiently detects anomalies using MD as a scoring
function.

4 The SADIS approach

This section presents SADIS, the proposed real-time SAD approach. This ap-
proach addresses the limitations faced by existing methods in detecting anoma-
lies in ICPS, including high computational costs, low detection accuracy, and



6 Awaleh et al.

poor robustness to noisy data and domain-shifted conditions. The SADIS ap-
proach employs a preprocessing method to extract relevant features from sound
data by reducing dimensions using the methods of the time-average spectrum
(TAS) or principal component analysis (PCA). Additionally, the SADIS ap-
proach employs an unsupervised neural network model, the autoencoder (AE),
as a classifier. It uses an anomaly scoring function based on reconstruction loss
and MD to set the optimal boundary between normal and abnormal data.

4.1 Overview of SADIS appraoch

As depicted in Figure 1, SADIS is trained on normal sound data using unsu-
pervised learning during the training phase. The training sound data are pre-
processed using the equations (7),(8), (9) defined in section 4.2. Then, the pre-
processed sound data are fitted to the autoencoder model, which learns relevant
features and minimizes reconstruction error using the equation (4) defined in 3.1.
The distributtion of normal reconstruction errors sets the threshold for anomaly
detection by using equations (5). In online detection 4.4, incoming sound data is
preprocessed and compared to the threshold to classify it as abnormal or normal.
SADIS is unique in its feature-extracting preprocessing, autoencoder’s efficiency,
and accurate anomaly scoring for raw sound signals regardless of duration.

Normal sound
dataset

Windowed signal
Sequencing

spectrograms of the
windowed signal

STFTSliding Window Reduced spectrum
signal

Dimensionality
reduction

TAS or PCA
Autoencoder

Model
 Distribution of normal

reconstruction error (Delta)
and threshold setting

New input
sound data  Windowed signal

Sliding Window Sequencing
spectrograms of the

windowed signal

STFT Reduced spectrum
signal

Dimensionality
reduction

TAS or PCA

Reconstruction
error computation

(e)

Mahalanobis
distance

between(Delta) and
(e)

>Threshold

Abnormal sound  Normal sound 

Yes No

Preprocessing and feature extraction

Preprocessing and feature extraction

Model Training 

Anomaly scoring and classification 

Training phase (offline)

Detection phase (online)

Fig. 1. Overview of the proposed real-time SADIS approach

4.2 Preprocessing step

The sound dataset, denoted by X, comprises N audio signals represented by raw
audio signals xi:

X = {x1, x2, . . . , xN}. (6)

Each audio signal xi is composed of n time series samples. In anomaly detec-
tion, preprocessing involves dimensionality reduction and feature extraction to
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enhance classification algorithms’ performance and efficiency. In this paper, a
sliding window method is used during the initial data preprocessing phase to
detect deviant points by capturing sequential dependencies.

Sliding Window The sliding window algorithm (SW) is an effective pre-
processing technique for real-time anomaly detection in time series data. After
applying the sliding window algorithm to each audio signal xi ∈ X, it can be
represented as:

SW (xi) = W = {w1, . . . , wl}; (7)

where wj = [j · (k− t), (j + 1) · (k− t) + t] contains k samples of the raw signal,
k corresponds to the window length, and t is the overlap size between windows.
The value of l depends on the time window-length k and its overlap t and is such
that l < n. This windowed representation enhances anomaly detection by pre-
serving temporal dependencies and identifying patterns. This paper explores the
impact of window length on the performance of the SADIS approach in terms
of detection rate and time.

Feature extraction The spectrogram, obtained by applying the short-time
Fourier transform (STFT) to the audio signal waveform, is a time-frequency
representation widely used as a feature in various studies [3, 16]. The audio sig-
nal is divided into overlapping windows, and the STFT is computed for each
window to extract its spectrogram. This results in a sequence of spectrograms,
each represented by a two-dimensional array of size m×n∗, where m represents
frequency components and n∗ represents the number of features. Thus, the win-
dowed audio signal W can be represented as a sequence of spectrograms given
by:

STFT (W ) = {s1, . . . , sl}; (8)

where sj is the spectrogram obtained from the j-th window. The windowed sig-
nal W has a total size of l · (m,n∗), where l represents the number of windows.

Reduction of dimensions To enhance SAD in industrial systems and re-
duce dimensions and noise, SADIS employs either TAS or PCA as dimensionality
reduction techniques.

Time-Average spectrum (TAS) computes the average of each spectro-
gram [22] along the spectrogram matrix’s m-dimension to minimize machine
operation noise. This technique computes the average of each spectrogram along
the spectrogram matrix’s m-dimensional as shown by the equation:

sTAS
j =

1

m

m∑
i=1

si,j . (9)

Here, si,j corresponds to each spectrogram of the windowed signal, and sTAS
j

is the resulting time-averaged spectrogram, which is a vector of size n∗. By
applying the TAS method for each spectrogram of the windowed signal W , we
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concatenate all the averaged spectrograms into a matrix of dimension (l, n∗)
represented by: STAS = [sTAS

1 , sTAS
2 , . . . , sTAS

l ].

Principal component analysis PCA identifies the principal components
of the dataset by finding eigenvectors of its covariance matrix and projects the
data onto a lower-dimensional space. PCA reduces each windowed signal’s spec-
trogram sj into a smaller vector denoted as sPCA. By applying PCA to each
spectrogram in the windowed signal, we obtain the following matrix: SPCA =
[sPCA

1 , sPCA
2 , . . . , sPCA

l ]. The resulting signal SPCA is a matrix of dimension
(l, n∗), similar to the TAS reduction method described earlier.

The preprocessed signal, denoted as S, results from signal windowing, spec-
trogram extraction, and dimensionality reduction (TAS or PCA). S is used as the
input for the anomaly detection algorithm, representing 128-dimensional spec-
trograms. We assess their impact on detection rate and time by varying window
length and reduction methods (TAS or PCA). Through experiments, we demon-
strate the significance of preprocessing methods in obtaining input data with
reduced dimensions capturing relevant features of raw audio data.

4.3 Offline training phase

SADIS is trained with only normal sound data during the training phase due to
its unsupervised learning. The training sound data are preprocessed using the
predefined equations in 4.2. The autoencoder is trained and learns latency and
relevancy features of training data while minimising the reconstruction error by
using the MSE function defined in equation (4). Let Si denotes the i-th input
signal data, while Ŝi signifies the i-th reconstructed signal data generated by the
autoencoder The computed reconstruction errors e during training are defined
as follows:

ei = MSE(Si, Ŝi). (10)

From these errors ei, we define a distribution ∆ of normal reconstruction error
as follows:

∆ =


e0
e1
...

entr

 . (11)

where ntr denotes the size of training data. The defined distribution of normal
reconstruction errors ∆ sets the threshold and scores anomalies by using the MD
defined in equation (5).

Thresholding The variability and complexity of anomalies make it diffi-
cult to set a threshold σ for anomaly detection. This study uses preprocessed
normal sound data not used in training to determine the threshold. The trained
auto-encoder reconstructs these data as Ŝj

σ
and computes the reconstruction
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error eσi using the MSE equation (4). The resulting error set Eσ is then formed
as Eσ = {eσ0 , . . . , eσnσ

}, where nσ represents the size of normal sound data used
for threshold setting. Using equation (5), SADIS calculates the MD between
each eσi and a precomputed distribution ∆ (defined in equation 11), yielding
a list of distance values Dσ represented as Dσ = {dσ0 , . . . , dσnσ

}. After multiple
threshold evaluations, the Gamma distribution percentile is employed. In line
with the baseline systems in the DCASE challenge [15, 16], this approach fits a
gamma distribution to Dσ scores and utilizes the inverse of the 90th percentile
of the cumulative distribution function as the decision threshold σ. After offline
training, the trained autoencoder model and the distribution of normal recon-
struction errors ∆ and the threshold σ are saved. This paper does not evaluate
training time, as it occurs offline and involves a substantial amount of normal
sound data.

4.4 Online detection phase

New sound data xnew is preprocessed using the equations from 4.2. The re-
sulting preprocessed sound data Snew is given as input to the trained model.
Its reconstruction error enew is computed as the mean squared error (MSE) be-
tween Stest and the reconstructed data (Ŝnew). Additionally, the distance metric
(MD) between enew and the previously computed distribution ∆ is calculated
using Equation (5). If this distance value surpasses the threshold σ, the new
sound data is classified as abnormal; otherwise, it is considered normal.

5 The SADIS experimentation and results

This paper addresses anomaly detection in industrial robot arms, critical compo-
nents in production chains. Timely detection of anomalies is crucial for ensuring
safety and security in the complex operations of robot arms and the evolving
smart manufacturing technology [25].

5.1 Experimental setup

Hardware and software specifications The computational resources em-
ployed in this research for generating the model and conducting experiments
consist of an AMD EPYC 7552 48-Core Processor CPU and Nvidia Tesla T4
for GPU. However, extensive computational power wasn’t necessary for conduct-
ing our experiments. To extract the spectrograms features, we use the Librosa
library,while the deep autoencoder models are implemented and applied using
Keras/TensorFlow.
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5.2 Dataset

We conduct experiments on one sound public dataset MIMII and our collected
sound dataset from a robot arm called RASD.

MIMII dataset The MIMII dataset [24] is widely used in SAD research for
identifying malfunctions in industrial machinery. It consists of recordings from
four machine types (valves, pumps, fans, and slide rails). Each 10-second record-
ing contains both operational machine sounds and ambient noise, serving as a
benchmark to assess our approach and compare it with existing methods.

Robot arm sound dataset (RASD): our sound dataset We have cre-
ated an experimental platform to assess the efficacy of our methodology, gen-
erating a novel dataset of industrial robotic arm sounds using the TinkerKit
Braccio, operated by an Arduino Uno. This robot arm is a real-industrial pro-
duction chain, with six axes controlled by servo motors and versatile configu-
rations for different tasks3. The dataset stands out for its diverse real attack
vectors and reproducibility, ensuring authentic sound data generation. Our ex-
perimental platform setup and the sound dataset are described in the following
paragraphs.

Normal sound behavior of RASD The robot arm moves a valuable part
safely and precisely from point A to point B. Normal sound data is generated
as the arm follows a predetermined trajectory at a calibrated speed, reflecting
typical operation in manufacturing settings. This behavior represents a typical
operation of a robot arm in real-world manufacturing settings. The recorded
normal sound data accurately reflects the scenario of a functioning robot arm.

Anomalous sound generation and vectors description Generating anoma-
lous sound data is challenging and costly due to the rarity of abnormal patterns
in real life [3,10]. To address this, attack vectors from literature are used to create
cycles of abnormal behavior for the robot arm, focusing on modifying speed pa-
rameters and trajectory angles [18]. Speed modification attacks, similar to those
in Stuxnet [12,19], can be hard to detect as they resemble normal behavior. By
altering speed and trajectory angles, malicious actors can disrupt robotic arm
operations, leading to accidents, production errors, and compromised quality.
Though these attack vectors do not cover all possible abnormal behaviors, they
represent primary types of attacks in the context of robotic arms. The abnormal
sounds were created using different anomaly vectors. Anomaly Vector 1 involves
a slight speed increase in the base axis, resembling normal behavior with low risk
of damage. Anomaly Vector 2 has a higher acceleration in both the base axis and
gripper axis, posing material risks like piece falls and affecting machine longevity.
Anomaly Vector 3 entails a speed increase across all axes, posing significant risks
to facility safety, accelerating wear on the piece, and reducing machine longevity.

3 For more details: https://store.arduino.cc/products/tinkerkit-braccio-robot
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RASD structure and size The RASD dataset contains over 4260 normal
recordings and over 1900 anomalous recordings. Each recording has a duration
of 23 seconds, and the signals are sampled at a frequency of 48KHz.

5.3 Evaluation criteria

Area under ROC curve The receiver operator characteristic (ROC) curve
visually assesses binary classification performance by plotting true positive rate
(TPR) against false positive rate (FPR). A higher AUC value indicates better
differentiation between normal and abnormal data within models [17].

Detection time computation Real-time anomaly detection prioritizes the
time taken to detect anomalies as a crucial metric. To compute detection time
(DT) accurately according to section 4.4, we track the execution times of each
step, including preprocessing time (PT), model time (MT), as well as compu-
tation of error reconstruction and Mahalanobis distance (tscore). Therefore, the
detection time (DT) can be expressed as the sum of these three-time intervals
as follows:

DT = PT +MT + tscore. (12)

Reducing detection time ensures efficient real-time anomaly detection.

5.4 Results: the SADIS detection performance

This section evaluates the SADIS detection performance using TAS or PCA re-
duction methods. We assess its effectiveness on the MIMII dataset and analyze
its robustness using RASD. The AUC value serves as the detection rate metric
stated in 5.3.

The SADIS evaluation on MIMII dataset This experiment compares
the SADIS approach with existing SAD methods, presented in section 2, using
the MIMII dataset. The results show the average detection rate of TAS and PCA
reduction techniques, measured by AUC values. Table 2 provides a summary of
the comparison. Prior preliminary tests are conducted to select an optimal win-
dow length for the MIMII dataset. The results of this experiment show that

Table 2. The SADIS evaluation on MIMII dataset (AUC values (%)

Machine Type Baseline [16] Unet [28] IDNN [27] SADIS

Fan 66 80 71 92

Pump 73 85 75 77

Slider 85 90 90 91

Valve 66 84 90 85

the SADIS approach outperforms existing methods in two machine types (fan
and slider) and is comparable in the remaining two. These results indicate its
potential for anomaly detection across various industrial systems. These findings
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also highlight the adaptability of the SADIS approach to different conditions and
equipment used for sound data collection.

Robustness of the SADIS approach In both offline training and testing,
we conduct experiments using RASD to assess the SADIS approach’s robustness
to parameter sensitivity and noises. RASD has a longer time length compared to
MIMII, with 10 seconds for MIMII and 23 seconds for RASD. This preliminary
experiment aims to analyze the impact of window-length variation and noise
factors. By varying the window length and introducing background noise, we
evaluate their effects on the SADIS approach’s detection rate, time, and overall
robustness against background noise.

Paramters sensitivity and selection Parameter sensitivity analysis is con-
ducted to assess the impact of different parameters on the detection rate and
time performance of the approach. Experimental results are summarized in Ta-
ble 3 and Table 4. The window length is varied within a range of 0.2 to 1.25 as
shown in Fig.2 considering the frequent trajectory changes and sound capturing
uncertainty [2]. Table 3 and Table 4 outline the performance results and de-
tection time results of SADIS approach using TAS and PCA reduction method
respectively.

Fig. 2. Left figure depicts the AUC values (detection rate) for various window lengths
of TAS and PCA, while the right figure illustrates the detection time (DT) for different
window lengths of SADIS-TAS and SADIS-PCA

Table 3. paramter sentivity results of SADIS using TAS as reduction method

Window length (s) Performance Time Taken
AUC (%) DT(s) PT(s) MT(s)

0.2 91 3.54 3.1 0.43

0.25 94 0.97 0.95 0.01

0.5 95 5.14 4.33 0.8

0.75 96 4.12 3.5 0.61

1 94 5.14 4.81 0.67

1.25 95 5.27 4.65 0.62
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Table 4. paramter sentivity results of SADIS using PCA as reduction method

Window length (s) Performance Time Taken
AUC (%) DT(s) PT(s) MT(s)

0.2 92 1.06 1.05 0.01

0.25 92.5 1.34 1.21 0.13

0.5 93 6.86 6.24 0.62

0.75 95 8.71 8.05 0.65

1 96 4.41 4.24 0.17

1.25 97 6.75 6.53 0.22

The results show that varying the window length has minimal impact on the
detection rate (AUC values) of SADIS-TAS and SADIS-PCA, with an average
TPR of 99‰ and FPR of 2%. However, the window length variation significantly
affects the detection time (DT), while the tscore is negligible. The PT strongly
influences the DT, as shown in the result Table 3 and Table 4, and the MT
averages at 0.4 seconds. Based on these findings, window lengths of 0.25 seconds
and 0.2 seconds are selected for TAS and PCA, respectively, using the RASD
dataset, while different datasets may require varying window lengths.

Robustness of SADIS against background noise We assess SADIS’s ro-
bustness to background noise through experiments using artificially synthetic
test data. Introducing a noise factor (ranging from 0.1 to 0.5) to a subset of
normal and abnormal test data allows us to evaluate SADIS’s sensitivity to
varying levels of background noise. Given that sound parameters are sensitive
to background noise, and real-world industrial systems often operate in noisy
environments, these experiments provide valuable insights. E.g a noise factor of
0.1 indicates relatively low background noise, while a factor of 0.5 represents
higher background noise. The results of this analysis are presented in Table 5
and Table 6 and Figure 3.

Table 5. SADIS-TAS detection per-
formance with noise factor

Noise factor AUC (%) DT (s)

0.1 71.6 0.42

0.2 70.8 0.42

0.3 69.2 0.42

0.4 67.0 0.41

0.5 58.0 0.42

Table 6. SADIS-PCA detection per-
formance with noise factor

Noise factor AUC (%) DT (s)

0.1 82.5 0.48

0.2 82.2 0.49

0.3 81.8 0.48

0.4 81.5 0.49

0.5 81.0 0.49

PCA is less affected by background noise compared to TAS, although it
has a longer computation time. These results partially address the domain shift
challenge discussed in the introduction section, as the presence of background
noise represents a target domain (test data) different from the source domain
(train data).
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Fig. 3. SADIS performance with noised data

Real-time SADIS performance under different anomalies vectors The
real-time performance of the SADIS approach is evaluated in this section, with
results presented in Table 7. Three anomaly vectors are generated and described
in Section 5.2. These experiments assess SADIS’s applicability in real-world sce-
narios, detecting anomalies with background noise and domain shift conditions.

Table 7. Real-time SADIS performance under different anomalies vectors

Anomaly vector SADIS-TAS SADIS-PCA
FPR(%) TPR(%) AUC(%) DT (s) FPR(%) TPR(%) AUC(%) DT (s)

1 1.2 98.4 95 1.86 2.5 95 91 1.4

2 1 97 94 2.15 3 92 85 1.35

3 0.02 99.8 99.9 1.90 0 100 100 0.92

The effectiveness of the SADIS approach is demonstrated in the results. The
SADIS approach performs best at detecting anomaly vector 3, which is consid-
ered the most dangerous, with a detection rate of 100% for PCA and 99.9%
for TAS. Additionally, the SADIS approach achieves an extremely low detec-
tion time of 1.90 seconds for TAS and 0.92 seconds for PCA. Anomaly vector
2 had slightly lower performance compared to anomaly vector 3, but still out-
performed anomaly vector 1. However, it should be noted that anomaly vectors
1 and 2 are very similar to the nominal behaviour. Despite this similarity, the
SADIS approach is able to detect anomalies with an average detection rate of
92% and an average detection time of 1.7 seconds. This demonstrates that the
SADIS is capable of detecting abnormal behaviour of the system, even those
with slight deviations. This highlights the SADIS approach’s ability to detect
even minor deviations, addressing the domain shift challenge and successfully
detecting anomalies in the presence of background noise and other factors.
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6 Conclusion

In this paper, we introduced RASD and presented SADIS, a novel real-time
sound-based anomaly detection approach that effectively detects anomalies in
industrial systems. With a high detection rate above 96% and a detection time
of less than 1 second on average, SADIS can identify abnormal behaviours, even
those with slight deviations. The SADIS approach is compatible with various
industrial systems, as demonstrated by its high detection rate on the MIMII
dataset. Additionally, the method is less sensitive to background noise. While
the SADIS approach shows promising real-time anomaly detection performance,
there are areas for improvement. Although the rate of false positives is low
(less than 1%), further efforts should be made to minimize the need for human
intervention in handling these false positives. Future research can explore using
multiple parameters to enhance the robustness of side-channel fingerprinting for
improved anomaly detection.
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