
HAL Id: hal-04353008
https://hal.science/hal-04353008

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ship Wakes: Kelvin or Mach Angle?
Marc Rabaud, Frederic Moisy

To cite this version:
Marc Rabaud, Frederic Moisy. Ship Wakes: Kelvin or Mach Angle?. Physical Review Letters, 2013,
110, pp.214503. �10.1103/PhysRevLett.110.214503�. �hal-04353008�

https://hal.science/hal-04353008
https://hal.archives-ouvertes.fr


Ship wakes: Kelvin or Mach angle?

Marc Rabaud1, Frédéric Moisy1,2

1Laboratoire FAST, Université Paris-Sud,
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From the analysis of a set of airborne images of ship wakes, we show that the wake angles decrease
as U−1 at large velocities, in a way similar to the Mach cone for supersonic airplanes. This previously
unnoticed Mach-like regime is in contradiction with the celebrated Kelvin prediction of a constant
angle of 19.47o independent of the ship’s speed. We propose here a model, confirmed by numerical
simulations, in which the finite size of the disturbance explains this transition between the Kelvin
and Mach regimes at a Froude number Fr = U/

√
gL ' 0.5, where L is the hull ship length.

PACS numbers: 47.35.Bb, 42.15.Dp, 92.10.Hm

The V-shaped wakes behind objects moving on calm
water is a fascinating wave phenomenon with important
practical implications for the drag force on ships [1] and
for bank erosion along navigable waterways [2]. The wake
pattern was first explained by Lord Kelvin, who by rec-
ognizing the dependence of the phase speed cϕ of surface
gravity waves on their wavelength (dispersion) predicted
that the wake half-angle αK = arcsin(1/3) ≈ 19.47o

should be independent of the object’s velocity U [3, 4].
However, Kelvin’s analysis is called into question by nu-
merous observations of wakes significantly narrower than
he predicted [5–10], which have been rationalized by in-
voking finite-depth effects [6], nonlinear resonances or
solitons [7, 8], unsteady forcing [9], and visualisation
biases [10]. Analysing a set of airborne images taken
from the Google Earth database [11], we show here that
ship wakes undergo a transition from the classical Kelvin
regime at low speeds to a previously unnoticed high-
speed regime α ∼ U−1 that resembles the Mach cone
prediction α = arcsin(cϕ/U) for supersonic airplanes [3].

Since the pioneering work of Froude and Kelvin, waves
generated by ships have received considerable interest in
naval hydrodynamics, because an important part of the
resistance to motion of a ship is due to the energy radi-
ated by these waves [1, 4, 12]. A key parameter governing
the wave drag is the hull Froude number, Fr = U/

√
gL,

where L is the hull length and g the gravitational acceler-
ation. This non-dimensional number can be conveniently
rewritten as Fr =

√
λg/2πL, where λg = 2πU2/g is the

wavelength of the gravity wave propagating in the ship di-
rection with a phase speed equal to U . We propose here a
model that takes into account the finite length of the ship,
and which successfully predicts the Kelvin-Mach transi-
tion at a critical Froude number Fr = U/

√
gL ' 0.5.

We have systematically measured the angle of ship
wakes from a series of airborne images taken from the
Google Earth database [11] (data available as Supple-
mental Material [13]). These images, which are corrected
for parallax distortion, are chosen close to active harbors,

where a high resolution of order of 1 m is available. Only
images where the ship wake forms straight arms, ensuring
a constant ship direction, are selected. For each image,
the ship length L is measured and its velocity U is de-
duced from the wavelength λ measured in the wake arms
[see Eq. (1) below and Ref. [14]], from which the Froude
number is determined. From these images, wake angles
close to the Kelvin prediction αK = 19.47o are system-
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FIG. 1. (color online) Airborne images of ship wakes taken
from the Google Earth database [13]. (a), Cargo ship near
Antwerpen, with α ' 20o and Froude number Fr ' 0.15.
(b), Speed boat near Toronto, with α ' 9o and Fr ' 1.03.
For each image, the wake angle α is defined from the slope
of the line going through the brightest points resulting from
sun glitter or whitecaps (yellow dotted line), which trace the
maximum amplitude of the wake. Using the highest available
magnification, the ship length L can be accurately determined
with the calibration provided by Google Earth.
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atically found at low Fr, i.e. for L � λg (Fig. 1a). In
this case, a double wedge pattern, generated by the bow
and the stern, can be observed. At larger Fr, λg reaches
the ship length L, resulting in interacting bow and stern
waves. At this point it is known that the trim of the
boat is affected and the wave drag strongly increases:
this is the so-called hull limit velocity [1, 4] — even if
powerful speed boats or sailing boats nowadays overcome
this limit. At even larger Fr (L � λg), the hull partly
rises out of the water, entering in the so-called planing
regime [1]. It is in this large-Fr regime that we find ex-
amples of narrow wakes, with angles of 10o or less, as
illustrated in Fig. 1b.

The wake angles measured from the airborne images
are plotted as a function of the Froude number in Fig.
2. In spite of a significant scatter, which can be mainly
ascribed to the uncertainty in measuring the wavelength
λ, the data clearly shows a plateau at α ' 18.6o ± 1.8o

up to Fr ' 0.5± 0.1, in good agreement with the Kelvin
theory. For larger Fr, this Kelvin regime is followed by
a decrease of the angle down to values of order of 7o for
the fastest boats of our dataset [13]. Interestingly, like
in the Mach cone problem, this decrease approximately
follows a law α ∼ 1/Fr.

In order to explain the transition in the wake an-
gle, the starting assumption is to relate each wavenum-
ber k emitted by the ship hull to a specific angle α(k).
This k-dependent angle can be inferred from the linear
dispersion relation for gravity waves in deep water [3],
ω2 = gk, from which it follows that the group velocity
cg = dω/dk of each wavenumber k is half its phase speed

cϕ = ω/k =
√
g/k. Since the wake is stationary in the

reference frame of the ship, the phase speed of each k
must be given by the ship velocity projected in the di-
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FIG. 2. (color online) Log-log plot of the wake angle α as
a function of the hull Froude number Fr = U/

√
gL. Red

circles: angles measured from the 37 airborne images of the
dataset [13]. Blue line: model (3). Blue dotted line: asymp-
totic law (4). Yellow squares: numerical simulations.

rection of the wave propagation,

U cos θ(k) = cϕ(k) =
√
g/k. (1)

Accordingly, only wavenumbers k ≥ kg = 2π/λg = g/U2

can form a stationary pattern. Following the geometrical
construction of Ref. [15] (see Fig. 3), we consider a wave
of given wavenumber k emitted at time −t in the direc-
tion θ(k) given by Eq. (1) when the boat was in M, with
MO= Ut. Since its group velocity is half its phase speed,
the distance MH= cgt traveled by this wave is half the
distance MI= cϕt. It follows that the wedge angle formed
by this particular wavenumber k is

α(k) = tan−1

√
k/kg − 1

2k/kg − 1
, (2)

which is plotted in Fig. 4. This angle vanishes at the
lower bound k = kg allowed by the ship velocity (cor-
responding to the transverse wave λg shown in Fig. 3)
and at k → ∞, and reaches the maximum αK =
tan−1(1/

√
8) ' 19.47o at k = 3kg/2. No energy can be

found outside this wedge of angle αK , so if all wavenum-
bers are excited (flat disturbance spectrum), the classical
Kelvin angle αK is found.

An important point is that the departure from the
Kelvin angle αK in Fig. 2 is observed at large velocities,
for which both viscosity and surface tension effects can
be neglected, so a model for the Kelvin-Mach transition
must rely only on gravity waves. The key assumption
here is that a ship of size L cannot excite waves of size
much larger than L, suggesting to model the finite size of
the ship by a disturbance spectrum Ed(k) truncated at
low wavenumber. The simplest choice is a Heaviside step
spectrum, Ed(k) ∝ H(k−kL), with a cutoff wavenumber
kL = 2π/L. The resulting wake angle is therefore simply
given by the maximum of (2) taken over the range of ex-
cited wavenumbers, [kL,∞[. When kL ≤ 3kg/2, i.e. for
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FIG. 3. Wake angle α(k) of a given Fourier component k. The
wave of wavenumber k emitted in the direction θ(k) at time
−t when the ship was in M reaches at time 0 the point H at
the middle of MI because the group velocity is half the phase
speed. The wave crests illustrate the transverse waves λg at
α = 0 and the divergent waves λ at α 6= 0 (with λ = 2λg/3
for the classical Kelvin wake).



3

Fr ≤ Frc =
√

3/4π ' 0.49, the maximum of α(k) be-
longs to the excited range and the classical Kelvin angle
is found; on the other hand, when kL > 3kg/2, a lower
angle given by Eq. (2) at k = kL is selected, resulting in
a piecewise wake angle

α = tan−1(1/
√

8) ' 19.47o, F r ≤ Frc (3a)

α = tan−1

√
2πFr2 − 1

4πFr2 − 1
, F r ≥ Frc, (3b)

This model provides a good comparison with the angles
measured from the wake images, as shown in Fig. 2. Val-
ues slightly below Eq. (3b) probably originate from a sys-
tematic underestimation of the Froude number for the
fastest boats: at such large Fr boats are in the plan-
ing regime, resulting in a waterline length smaller than
their actual length L seen from above. It is worth not-
ing that the details of the high wave-number part of the
disturbance spectrum, which must be affected by com-
plex flow phenomena around the ship hull (flow separa-
tion, capillary effects, splashing), is not critical in this
model. All disturbance spectrum with no energy below
kL = 2π/L would produce essentially the same transition
at Fr = Frc, and would differ only in the limit of low
Froude number.

Interestingly, for large Froude numbers, Eq. (3b) sim-
ply reduces to

α ≈ 1

2
√

2πFr
, (4)

which is analogous to the Mach cone angle for (non-
dispersive) acoustic waves, α ' cg/U , where the con-

stant group velocity cg = 1
2

√
g/kL selected by the ship

length L plays here the role of the sound velocity. We
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FIG. 4. Selection of the wake angle by the disturbance spec-
trum. Thick line: wake angle α(k) [Eq. (2)] as a function of
the normalized wavenumber k/kg, with kg = g/U2 = 2π/λg.
Thin dashed lines: disturbance spectrum Ed(k) used in the
numerical simulation, plotted for various Froude numbers.
The resulting wake angle α is given by the maximum of α(k)
taken over the range of significant Ed(k).

can therefore call the regimes described by Eq. (3a) and
(3b) the ’Kelvin’ and ’Mach’ regimes, respectively. The
asymptotic law (4) matches the model (3b) to within
1% for Fr > 1, and describes equally well the data in
Fig. 2. Note that Eq. (4) is similar to what would be
obtained in the case of a (non-dispersive) shallow water
wake [6], namely α ≈ 1/FrH , where FrH = U/

√
gH is

now the depth Froude number based on the sea depth H.
But despite this resemblance, Eq. (4) remains essentially
a dispersive result, as confirmed by the the characteris-
tic feathered wave pattern seen in Fig. 1(b). Indeed, a
non-dispersive shallow-water wake would be made of two
straight crests comparable to a supersonic shock wave,
which we have never observed in our set of images. The
finite size rather than finite depth origin of the narrow
wakes analysed here is further confirmed by the depth
Froude number determined for each location [16], which
does not correlate to the measured angles [13].

In order to confirm the influence of the finite size of
the disturbance on the wake angle, we have performed a
pseudo-spectral simulation of the wave pattern generated
by a disturbance moving at constant velocity with infinite
water depth. The simulation is carried out in a square
domain r = (x, y) ∈ [−D/2, D/2]2, discretized on a grid
of size N = 2048. At each time step δt = δx/U , where
δx = D/N is the mesh unit, a disturbance δζ located at
rs = (D/4, 0) is added to the surface deformation ζ(r, t)
initially set to 0. The disturbance is a localized defor-
mation of the interface δζ = wd(r− rs)δt, mimicking the
effect of a pressure disturbance applied during δt. Since
the simulation is performed in the reference frame of the
disturbance, the actual deformation field ζ(r, t) is trans-
lated by one mesh unit δx, Fourier-transformed, and each
wave component is phase-shifted according to the dis-
persion relation, ζ̂(k, t + δt) = ζ̂(k, t) exp[iω(k) δt]. The
resulting spectrum is then Fourier-transformed back in
the physical domain, yielding ζ(r, t+ δt), and an absorb-
ing boundary condition is applied in order to avoid the
wake pattern re-entering the periodic domain. The pro-
cedure is repeated until a stationary pattern is achieved,
i.e. when the transient waves generated at t = 0 leave
the domain. Note that the resulting deformation ζ(r)
is complex, with the real part being the actual surface
deformation (related to the potential energy), and the
imaginary part coding for the phase of the wave (related
to the kinetic energy, which is in phase quadrature with
the potential energy for each Fourier component).

The deformation disturbance wd(r) is the response of
the free surface to an applied moving pressure distribu-
tion P (r − Utex), given by −U∂P/∂x in the frame of
the disturbance. Introducing a highly simplified hull dis-
turbance in the form of an axisymmetric Gaussian pres-
sure distribution P (r), the resulting disturbance defor-
mation has a dipolar shape, which we write as wd(r) ∝
−∂[exp(−2π2(r/L)2)]/∂x, with a bump before and a hole
behind it. The corresponding disturbance spectrum is
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Ed(k) = |ŵd(k)|2 ∝ k2x|P̂ (k)|2 ∝ k2x exp[−(kL)2/4π2],
which is maximum at kx = 2π/L. This model spectrum
(plotted in Fig. 4 for four values of the Froude number)
has therefore an effective low-wavenumber cutoff, which
is the fundamental ingredient of the Heaviside step spec-
trum leading to the wake angle (3). Its decrease at large k
(which is required for numerical convergence) should not
affect the wake angle selection, provided that the Froude
number is not too small.

The simulated wake patterns shown in Fig. 5 for four
Froude numbers reproduce successfully the key features
of the ship wake observations. Interestingly, at Fr = 0.5,
the transverse wave of wavelength λg is clearly present
in the field, in addition to the divergent wave of wave-
length 2λg/3 along the cusp line at α ' 19o, as com-
monly observed behind boats at moderate Froude num-
bers. Froude numbers below 0.3 produce no wake, be-
cause the range of wavenumbers k ∈ [kg,∞[ is not signif-
icantly fed by the disturbance spectrum (see the curve at
Fr = 0.25 in Fig. 4); this is a limitation of the smooth
pressure distribution chosen here, which does not pos-
sess the high-wavenumber energy content of the Heavi-
side spectrum used in the model. At larger Fr, only the
divergent wave is present, since the transverse compo-
nent at kg falls outside the disturbance spectrum Ed(k).
We can note the broad wake arms at Fr = 1, for which
Ed(k) covers a range where α(k) varies significantly. At
larger Fr, Ed(k) picks only a narrow range of α(k), and
the wake angle becomes more precisely selected. The

(a) Fr = 0.5,  α = 18.9° (b) Fr = 1,  α = 15.9°

(c) Fr = 2,  α = 5.8° (d) Fr = 4,  α = 2.9°

FIG. 5. (color online) Wake pattern obtained from numerical
simulation, for Froude numbers Fr = 0.5, 1, 2 and 4. The
disturbance size is L = 4 m, and the imaged domain is 140 m.
The upper panel of each image shows the physical amplitude
R{ζ(x, y)}, and the lower panel shows the modulus |ζ(x, y)|.
Wake angles (shown as yellow squares in Fig. 2) are measured
from best linear fit of the maximum of |ζ(x, y)|. Black dotted
lines indicate the Kelvin angle αK = 19.47o.

wake angles have been measured from a linear fit through
the maxima of the modulus of the complex deformation
|ζ(x, y)| (shown in Fig. 5), which conveniently displays
the square root of the total energy in the physical space.
The resulting wake angles, also plotted in Fig. 2 (yellow
squares), are in good agreement with the two branches
(3a) and (3b), confirming that the Kelvin-Mach transi-
tion at Fr ' 0.5 is correctly captured by the finite size
effect of the disturbance.

Our results suggest that the departure from conven-
tional Kelvin wakes reported in the literature can be at-
tributed at least in part to the effect of the finite size
of the disturbance. The Mach-like ship wakes described
here provide an intriguing example of a seemingly non-
dispersive wake pattern, similar to a supersonic shock
wave, although keeping its specific feathered shape char-
acteristic of a dispersive medium. We are now extend-
ing this approach to smaller scales, e.g. for ducks or in-
sects [17, 18], for which richer wake patterns are expected
from the interplay between the capillary cutoff and the
finite size of the moving body.
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Rousseaux for fruitful discussions, and J.P. Hulin and
N. Ribe for their comments to the manuscript.
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(2011).
[18] I. Carusotto and G. Rousseaux, arXiv:1202.3494v1

(2012).


	Ship wakes: Kelvin or Mach angle?
	Abstract
	 Acknowledgments
	 References


