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Abstract 

For time-to-event outcomes, the difference in restricted mean survival time (RMST) is a 

measure of the intervention effect, an alternative to the hazard ratio, corresponding to 

the expected survival duration gain due to the intervention up to a predefined time   . 

We extended two existing approaches of RMST estimation for independent data to 

clustered data in the framework of cluster randomized trials (CRTs): one based on the 

direct integration of Kaplan-Meier curves and the other based on pseudo-values 

regression. Then, we conducted a simulation study to assess and compare the statistical 

performance of the proposed methods, varying the number and size of clusters, the 

degree of clustering and the magnitude of the intervention effect under proportional and 

non-proportional hazards assumption. We found that the extended methods well 

estimated the variance and controlled the type I error if there was a sufficient number of 

clusters ( 50) under both proportional and non-proportional hazards assumption. For 

CRTs with a limited number of clusters (<50), a permutation test for pseudo-values 

regression was implemented and corrected the type I error. We also provided a 

procedure to estimate permutation-based confidence intervals which produced 
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adequate coverage. All the extended methods performed similarly, but the pseudo-

values regression offered the possibility to adjust for covariates. Finally, we illustrated 

each considered method with a CRT evaluating the effectiveness of an asthma-control 

education program.  

Keywords 

Cluster randomized trial; time-to-event outcome; restricted mean survival time; pseudo-

values; Kaplan-Meier estimate 
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1. Introduction  

Cluster randomized trials (CRTs) are trials in which intact social units, such as 

hospitals, geographical areas or medical practices, are randomized between intervention 

and control groups.
1
 This study design has rapidly spread in the field of health research. 

CRTs are well suited to evaluate an intervention delivered at the cluster level and to 

minimize the potential risk of between-group contamination.
2 

In CRTs, outcomes assessed on individuals within a given cluster tend to be more 

similar than outcomes on individuals between different clusters. Statistical analysis 

must account for the clustering induced by such correlated data to avoid an 

underestimation of the variance leading to increased risk of type I error when estimating 

the intervention effect.
3
 Most of the methods developed to account for clustering in 

CRTs address continuous or binary outcomes, with less interest in time-to-event 

outcomes.
4
 However, a recent review found that time-to-event outcomes are not 

uncommon in CRTs but concluded that appropriate analysis methods are infrequently 

used.
4
 

In addition to clustering, specificities of time-to-event data such as right-censoring must 

be accounted for. In individually randomized controlled trials with time-to-event 

outcomes, the intervention effect is usually estimated by a hazard ratio (HR) obtained 

from classical survival models such as Cox models.
5
 In the specific context of CRTs, 

the HR can be estimated by using a conditional approach accounting for clustering 

using frailty terms or a marginal approach with a sandwich variance estimator.
6,7

 

Although the HR has a long history in survival analysis,
8-10

 it may be difficult to 

interpret clinically, especially when the proportional hazards assumption is violated.
11-15 

As mentioned in Uno et al.
14

, the HR is not a probability measure or a relative risk but 



 

4 
 

rather a ratio of hazard rates. Therefore, the magnitude of the intervention benefit could 

be difficult to assess. In addition, its causal interpretation has been questioned.
16,17

 The 

restricted mean survival time (RMST) up to time   , defined as the average survival 

time up to   , does not require a proportional hazards assumption
18

 and has a causal 

effect interpretation.
19

 Royston et al.
20

 recently proposed the use of the difference in 

RMST to design and analyze clinical trials.
 
The difference in RMST between the 

intervention and control groups could be an alternative measure of the intervention 

effect.  

Several methods have been developed to estimate a difference in RMST for independent 

data such as the direct integration of the Kaplan-Meier survival curves
21

, Andersen’s 

pseudo-values regression method
22-24

, Royston and Parmar’s flexible parametric 

survival model
15,20 

as well as methods based on the inverse probability of censoring 

weighting accounting for covariate-dependent censoring 
25-27

. Recently, Chen et al.
28

 

adapted to clustered data a method initially proposed by Zhong and Schaubel
27

 for 

independent data that estimates the RMST as a continuous function of the horizon time 

   allowing for covariate-dependent censoring. To our knowledge, no other RMST 

estimation approach has been extended to clustered data.  

Our objective was to propose two original and easy-to-use approaches to estimate a 

difference in RMST for clustered data in CRTs. We extended two approaches 

developed for independent data to clustered data: direct integration of Kaplan-Meier 

curves and pseudo-values regression. Section 2 presents the RMST and details the 

Kaplan-Meier and pseudo-values regression methods for estimating a difference in 

RMST in case of independent data, then the extensions of these approaches to clustered 

time-to-event data. Section 3 reports the design and results of a simulation study to 
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assess and compare the statistical performance of the proposed methods. Section 4 

illustrates the proposed methods with an application to a CRT evaluating an asthma-

control education program. Section 5 concludes with a discussion. 

 

2. Methods 

2.1. Definition of RMST 

Let T denote a random variable representing the time to an event and    a specific time 

horizon. The restricted mean survival time up to    is defined as the expectation of 

          and corresponds to the area under the survival function,     , from 0 to   . 

                                                               
  

 

                                      

In a randomized trial with two parallel groups, the intervention effect could be 

summarized by a difference in RMST up to    (         ) between the intervention 

and control groups. 

                             
          

         
  

 

         
  

 

                 

where        
   and       are the RMST up to    and the survival function in the 

group j (j = 0 for the control group, 1 for the intervention group), respectively. The 

          is easily interpretable. For example, if the           equals one month 

for individuals followed up over 12 months, we may expect an increased life expectancy 

of one month over the first follow-up year for individuals in the intervention group 

versus the control group.  

 

2.2. Methods of estimating           for independent data 
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2.2.1. Notations 

Let    be the observed time defined as the time between the origin and the occurrence 

of the survival event or censoring (i.e.,              , where    is the true time-to-

event and    the right-censoring time for individual  ). Thereafter, we assume that the 

event times are independent of the censoring times. The event indicator,   , equals 1 if 

      and 0 otherwise. Thus, for inference, we consider a sample of   independent 

and identically distributed individuals with data                   , with the 

intervention indicator    = 1 if the individual   received the intervention and 0 if the 

individual is in the control group.  

 

2.2.2. Kaplan-Meier-based method for independent data (KMindep) 

One commonly used method to estimate the RMST is the direct integration of Kaplan-

Meier survival curves.
21

 The survival function      in equation (1) is replaced by the 

Kaplan-Meier estimate, denoted      : 

                                                    
  

 

                   

 

   

                                      

where         are the E distinct event times before   ,      and        . The 

variance of           may be estimated by using the Greenwood formula.
29

  

The           is estimated by the difference between the RMSTs estimated in each 

group. The variance of            is the sum of the variances of the estimated RMST 

in each group, and the         % confidence interval (CI) is estimated as:  

                                  
  

 
 
          

                
                                  

where    is the  -quantile of the standard normal distribution.
29 
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2.2.3. Pseudo-values regression-based method for independent data (PVindep) 

Andersen et al.
22,23

 proposed a pseudo-values approach to estimate the          . If 

the time-to-events were not censored,              would be observed and 

        
   would be available for each individual l. The following generalized linear 

regression model could be used to specify how           
     

   depends on    :  

                                                                  
                

                                                

where   
         ;           , where    is the intercept coefficient and    is the 

intervention effect coefficient; and      is a link function. However,    is not observed 

for all individuals because of right-censoring and standard methods cannot be used.  

The pseudo-values approach aims at replacing         
   by a pseudo-value     for each 

individual l. Let           be the Kaplan-Meier-based estimator described in the 

previous section in equation (3), that is an approximately unbiased estimator for 

          The pseudo-value for the individual l is defined as 

                                           
  

 

                
  

 

        

where           is the Kaplan-Meier–based estimator for the entire sample and 

            is the leave-one-out Kaplan-Meier–based estimator (i.e., the estimator for 

the dataset of size     without the individual l). The pseudo-value     is then used as 

the response in the generalized linear regression model (equation (5)). Of note, in 

equation (5) we only consider intervention group as a cluster-level covariate, but we 

could adjust for any additional cluster or individual-level covariates by adding them into 

  
 . Thereafter, we used an identity link function, usually used for RMST.

22,23
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The regression coefficients may be estimated by using the generalized estimating 

equation (GEE), and the variance for    could be estimated by using the sandwich 

estimator detailed in Andersen et al.
22

 and provided in Web Appendix A.1.
 
The 

           corresponds to     and the associated 100(1-α)% CI is calculated as 

        

 

           , where           is the robust sandwich variance of the regression 

coefficient associated with the intervention group.  

 

2.3. Methods of estimating          : extension to clustered data (CRT framework) 

2.3.1. Notations 

In this section, we extend the two previous methods for independent data to the 

clustered data framework. We now consider a sample of   clusters of size    

(k=1,…, ) with    and    clusters in the control and intervention groups, respectively. 

Then, we consider      
 
    individuals with the data                 

               , where     is the observed survival time,     the event indicator 

and     the intervention indicator for individual   from cluster  . 

 

2.3.2. Kaplan-Meier-based method: Extension to clustered data (KMclust) 

We extended the Kaplan-Meier-based method to the context of CRTs. The point 

estimate for RMST in the control and intervention groups was obtained with equation 

(3) because the Kaplan-Meier estimator is consistent for clustered data.
30

 However, the 

variance needs to be adapted,
30

 and thus we estimated the variance of           by 

using non-parametric bootstrap.
31

 The bootstrap variance was obtained with 10 000 

replications of one-stage resampling of   entire clusters with replacement, with    and 
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   clusters in the control and intervention groups, respectively. All individuals from a 

selected cluster were included without resampling because Ren et al.
32

 showed that 

sampling only the highest level is the best sampling method for clustered data. The 

100(1-α)% CI was estimated by using non-parametric percentiles bootstrap.
31 

 

2.3.3. Pseudo-values regression-based method: Extension to clustered data with an 

exchangeable working correlation matrix (PVECM) 

To extend the pseudo-values regression-based method to clustered time-to-event data in 

the context of CRTs, we computed the pseudo-values      for individual l in cluster k by 

using equation (6). The same generalized linear regression model specified in equation 

(5) was considered. The regression coefficients were still estimated by using GEE with 

a robust sandwich variance estimator but with a covariance matrix reflecting the 

correlation of the outcomes of individuals within a cluster.
33 

Let denote                  
  and               

 , where                 . 

The regression coefficients were estimated from the following GEE:
33,34

 

                                     

 

   

   
   

  
 
 

  
     

       

 

   

                                

where    is an       working covariance matrix for cluster k. It is defined as 

      

 

       

 

 , where   is a dispersion parameter,      is an       working 

correlation matrix and    an       diagonal matrix with          as diagonal 

elements.
33,34

 In CRTs, an exchangeable working correlation matrix is usually selected, 

assuming that the correlation for all pairs of outcomes within a cluster are identical and 



 

10 
 

common across all clusters:       

    

    
 
 

 
 

 
 

 
 

  where, 

                        . 2 The estimations of   and   is detailed in Appendix A.2. 

The variance of the regression coefficient estimates was estimated with the following 

sandwich estimator:
33 

                                                        
  
                

  
                                                 

where  

                                                         
   

  
 
 

  
   

   

  
 

 

   

                                                  

                                                                          
 

 

   

                                              

By accounting for clustering in equation (8), the variance estimator obtained with this 

method tends to be larger than that obtained for independent data with the PVIndep 

method. This will avoid the underestimation of the variance when ignoring the 

clustering, which results in too-narrow CIs and thus inflated type I error rate.  

 

2.3.4. Pseudo-values regression-based method: Extension to clustered data (CRT 

framework) with an independent working correlation matrix (PVICM) 

Although an exchangeable working correlation structure is usually assumed in CRTs, it 

can produce non-convergence when the number of clusters is limited.
35,36 

Thus,
 
we 

explored an alternative independent working correlation structure because GEE 

estimates have been shown to be consistent even when the correlation structure is 

misspecified.
34

 Moreover, some previous work obtained satisfactory results with 
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pseudo-values regression methods for median survival time and cumulative incidence 

function estimations for clustered data with an independent correlation structure.
37,38

 

With PVICM, the correlation matrix,     , is the identity matrix. The GEE and sandwich 

variance estimators are the same as those defined in equations (7) and (8) substituting 

the independent correlation matrix for the exchangeable correlation matrix. 

 

2.4. Permutation test for pseudo-values regression 

The difference in RMST obtained from the pseudo-values regression relies on a GEE 

approach, which can lead to inflated type I error rate when the number of clusters is 

small and the normality-based Wald test is used for inference.
39

 Several methodological 

reviews indicated that CRTs often randomized fewer than 40 clusters,
40-42

 so a 

permutation test could be relevant to control the type I error rate when estimating the 

          with pseudo-values regression. Permutation tests have been studied in 

CRTs for binary and continuous outcomes
43-46

 and for time-to-event outcomes.
47,48 

In practice, we first performed the pseudo-values regression on the observed dataset and 

estimated the Wald-test statistic, equal to              . Second, we randomly permuted 

the allocation of the clusters to the control and intervention groups. We estimated a 

Wald-test statistic for each permutation. The p-value for the null hypothesis of no 

intervention effect was estimated as the proportion of permutations with a test statistic 

equal to or greater than the test statistic from the observed dataset.  

Complementarily, we also proposed the CIs estimation by inverting the permutation 

test. The 100(1-α)% permutation-based CI was obtained by searching the set of values 

     such as the null hypothesis           is not rejected. This approach is 

computationally challenging, since it requires to carry out a large number of 
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permutation tests. To reduce the computation time, we used the efficient method 

proposed by Rabideau and Wang
49

 and Garthwaite
50

, detailed in Appendix A.3.  

 

2.5. Implementation 

All analyses were performed with R v4.0.0.
51

 We used the rmst2 function from the R 

package “survRM2” to estimate the           using the direct integration of the 

Kaplan-Meier survival curves. We computed the pseudo-values with the pseudomean 

function from the R package “pseudo”
 
and fitted the generalized linear regression model 

with the gee function from the R package “gee”.
52

  

 

3. Simulation study 

3.1. Simulation study design 

3.1.1. Data generation 

We simulated a 2-group CRT with a time-to-event outcome expressed in days. We 

considered a total number of   clusters with exactly the same number of clusters in 

each group,        /2 and the variable cluster sizes    (  = 1, …,  ) drawn from 

a negative binomial distribution with mean   and variance  . 

We considered several scenarios depending on the degree of clustering and the 

magnitude of the intervention effect simulated under a proportional hazard or non-

proportional hazard assumption. We generated clustered time-to-events with a Weibull 

gamma frailty regression model, with shape and scale parameters   and  , respectively. 

Under the proportional hazards assumption, the hazard function for individual l from 

cluster k at time   was defined as             
             , where    is the 

intervention effect and    the frailty term common to all the individuals of cluster k, 
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introducing a correlation between their survival times.
53

 The frailty term for each cluster 

was drawn from a gamma distribution   
 

 
 
 

 
 , with a mean of one and variance  . We 

quantified the degree of clustering by using the Kendall’s tau    with   
 

   
  Under the 

non-proportional hazards assumption, we assumed a delayed intervention effect with no 

intervention effect before time        and a benefit after: 

            
                         

54
 With both proportional and non-

proportional hazards assumptions, no additional covariate than intervention group was 

considered. We generated time-to-events by inverting the cumulative incidence function 

of the Weibull gamma frailty regression model. We simulated random censoring times 

independent of event times. We assumed that the censoring times of individuals from a 

same cluster were independent. More details about the simulation of the censoring times 

are available in Web Appendix C.1. 

 

3.1.2. Scenarios 

The simulation design was conducted to mimic real-world CRTs, choosing the 

parameters of our scenarios according to the distribution observed in a previous review 

of published CRTs.
4
 We simulated CRTs with different numbers of clusters:   

                 . Because GEE methods with a small number of clusters could lead 

to an inflation of the type I error rate for estimating the intervention effect,
39

 we 

simulated scenarios with              to assess the minimal number of clusters 

giving acceptable type I error rates. We considered a cluster size distribution of mean   

= 80 and variance v=48² or   = 25 and variance v = 15², corresponding to a coefficient 
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of variation of the cluster size of 0.6 that seems realistic.
55

 We did not consider the 

scenarios of 10, 20 and 40 clusters of size 25, which does not seem plausible. 

We varied the degree of clustering by using the Kendall’s tau 

                            . 

The parameters       of the Weibull distribution were set to (2, 0.000016), to obtain a 

survival rate in the control group of about 0.2 at the end of follow-up, fixed at 365 days 

(Web Figure C2). In the proportional hazards case, the HR (i.e.,        ), was set to 

    and     to simulate a high and medium intervention effect, respectively. For non-

proportional hazards assumption, we fixed the HR to 0.5 after the change point       , 

set to 90 days. To assess the null hypothesis (i.e., absence of intervention effect), we 

set      corresponding to HR  . 

We fixed the censoring rate  , reflecting the loss to follow-up, at 20% in all scenarios. 

Finally, we explored 140 scenarios depending on number of clusters, size of cluster, 

degree of clustering, intervention effect and proportional hazards assumption or not 

(Table 1). We simulated 1000 datasets for each scenario.  

 

3.1.3. Statistical analysis 

We fixed the time horizon    at 365 days. When HR = 1, the true           = 0. 

When HR ≠ 1, the true           depends on both the Kendall’s tau and the HR; for a 

fixed HR, it decreases with increasing Kendall’s tau. The true           varied from 

46.70 to 55.15 days for an HR of 0.5 and from 15.87 to 18.72 days for an HR of 0.8 

under the proportional hazards assumption. We detail the procedure to compute the true 
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          up to 365 days in Web Appendix C.3 and provide the true value of 

          for each scenario in Web Table C3. 

We set the significance level α to 5%. In each simulated dataset             , we 

estimated the           between the intervention and control groups, the variance and 

the 95% CI at time horizon        days by using the five methods described above: 

KMindep, PVindep, KMclust, PVECM and PVICM. In addition, we studied the permutation test 

for PVECM and PVICM when   = 10, 20, or 40. Because of exactly the same number of 

clusters in each group (       /2), the number of possible permutations of the 

intervention allocation is     
 

   
 . Therefore, for   = 10,   = 252 and all 

permutations were used. For   = 20 and 40 clusters, the number of permutations 

exceeded 100 000, so to obtain a reasonable computation time, we used 1000 randomly 

selected permutations from the   possible intervention allocations for the permutation 

test. First, the performance of methods in estimating the true           was assessed 

by the type I error rate corresponding to the proportion of 95% CIs for           that 

do not contain 0 when the true intervention effect equals   (i.e., when    and 

          equal 0). According to a binomial model with 1000 simulations and test 

size 5%, we considered a type I error rate of 3.6% to 6.4% acceptable. Second, for the 

methods with acceptable type I error rate, we studied the following performance 

criteria: relative bias, relative error of the estimated asymptotic standard error, and 

empirical coverage rate of the nominal 95% CIs. Performance criteria are detailed in 

Web Appendix B.4. 

The code for simulation study is available on https://github.com/Le-Vilain-

Abraham/Simulation-study-with-R-software.git. 

https://github.com/Le-Vilain-Abraham/Simulation-study-with-R-software.git
https://github.com/Le-Vilain-Abraham/Simulation-study-with-R-software.git
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3.2. Results 

3.2.1. Convergence 

Non-convergence occurred only for the pseudo-values regression with an exchangeable 

correlation matrix (PVECM), with a small degree of clustering and/or a limited number of 

clusters (Web Table D1). The percentage of convergence problems was low when 

    , between 0.1% and 1.6%, but increased strongly with decreasing number of 

clusters, reaching up to 15.4% when      and        . The performance measures 

of the PVECM method were computed on the basis of the simulation iterations which 

converged. The performance measures of the other methods were estimated with the 

1000 simulated datasets. 

In light of these results, we did not evaluate the PVECM method for the estimation of the 

permutation-based CI for     . Indeed, this requires carrying out permutation tests 

of null hypothesis          , for many different values of   , and therefore fitting 

multiple times model (9) of the Web Appendix B, that might not converge with an 

exchangeable working correlation matrix. 

 

3.2.2. Type I error rate 

Table 2 presents the type I error rate with the five methods and the permutation test for 

the pseudo-values regression for mean cluster size   = 80 and varying values of   and 

 . Results for   = 25 (Web Table E1) are qualitatively similar.  

As expected, methods that do not take into account the clustering (KMindep and PVindep) 

produced an uncontrolled type I error rate under all combinations of   and  , except for 

the smallest   value = 0.001. For the small degree of clustering   = 0.01, the type I error 
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rate was about 20%. Of note, for those methods, the type I error rate increased with 

increasing   and reached 70% when   = 0.2. 

In contrast, extended methods for clustered data (KMclust, PVECM and PVICM) produced 

acceptable type I error rates if there was a sufficient number of clusters ( 50). There is 

no apparent pattern of the type I error rate according to Kendall’s tau with these three 

methods. The type I error rate was slightly smaller with the PVECM method than KMclust 

and PVICM methods. With     , the type I error rate for the three methods KMclust, 

PVECM and PVICM was largely above 6.4%. 

We studied the permutation test to assess whether this method could be an acceptable 

alternative for CRTs with a limited number of clusters. The type I error rate for the 

permutation test for PVECM and PVICM are presented when   = 10, 20, or 40. For both 

methods, the permutation test produced an appropriate and similar type I error rate for 

all combinations of   and  .  

Thereafter, we excluded the methods that did not account for clustering, KMindep and 

PVindep, because they are not appropriate for CRTs. 

 

3.2.3. Simulation results under proportional hazards assumption 

The results for the performance criteria under the proportional hazards assumption for 

the three methods KMclust, PVECM and PVICM are summarized in Table 3 for  =80. 

Results for  =25 (Web Table F1) are qualitatively similar. 

All three methods lead to negligible bias for estimating their respective true 

         . The relative bias, in absolute value, did not exceed 10% across all 

scenarios and was qualitatively similar for the three extended methods. The values of  , 

 ,         and   did not seem to affect the relative bias. 
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With    50, the relative error ranged from -6.1% to 2.1% for the methods accounting 

for clustering. The relative error was close to 0, regardless of the Kendall’s tau. 

Therefore, with a sufficient number of clusters, the variance of the           was 

well estimated with the three methods. The relative error was slightly closer to 0 with 

the PVECM method than the other two methods, especially for high values of  , which 

explains the slightly smaller type I error for the corresponding scenarios. 

Overall, the coverage was close to 95% across all combinations, when    50. We 

found no obvious pattern when the simulation parameters varied. 

With a limited number of clusters (  < 50), the relative error is negative, indicating that 

the three methods underestimate the variance. The negative bias in estimating the 

variance increased with decreasing total number of clusters. This negative bias 

explained the inflated type I error rates obtained in 3.2.2. as well as the coverage rate 

under the 95% nominal rate.  

We also studied the coverage rate of the permutation-based CIs for PVICM when   = 10, 

20, or 40 (Table 3). The coverage rate was close to 95% for all combinations of  ,   

and        , confirming that the permutation test is an appropriate alternative for CRTs 

with a limited number of clusters.  

 

3.2.4. Simulation results under non-proportional hazards assumption 

We provide the simulation results for the three methods accounting for clustering under 

non-proportional hazards assumption in Table 4 for  =80. Results for  =25 (Web 

Table F1) are qualitatively similar. Overall, the results are qualitatively similar as 

compared to those obtained under the proportional hazards assumption. The three 

methods have negligible bias in estimating the true           across all scenario 
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settings. When   50, the relative error ranged from -5.6% to 1.1% for the extended 

methods under all settings combinations. The coverage rates were close to 95% for the 

three clustered data methods across all values of  ,   and  . When   = 10, 20, or 40, 

the three methods had negative relative error and under-coverage. 

The coverage rates for the permutation-based CIs for PVICM when      are presented 

in Table 4. The permutation test provided coverage rate close to 95% across all scenario 

settings. 

 

4. Illustrative example 

We illustrated the proposed methods using the education program for south Asians with 

asthma and their primary and secondary care clinicians (OEDIPUS) trial.
56

 This two 

parallel-group CRT aimed at evaluating the effectiveness of an asthma-control 

education program dedicated to South Asian ethnic minority people in two London 

districts (Newham and Tower Hamlets). Clusters were general practices randomized to 

receive the intervention or usual care. In total, 84 general practices were randomized: 44 

and 40 to the intervention and usual care groups, respectively. The study enrolled 375 

patients: 183 and 192 in the intervention and usual care groups. Patients in both groups 

were comparable regarding the inclusion characteristics, such as sex, age and asthma 

severity (Table 2 in Griffiths et al.
56

). 

In this study, two time-to-event outcomes were studied over the first year: 1) the time to 

the first unscheduled contact with an asthma exacerbation (one of the primary 

outcomes), and 2) the time to the first asthma review in primary care (one of the 

secondary outcomes). Because the outcomes of this trial were routinely collected, there 

was no loss to follow-up. At one year, the censoring rate was 30% for the primary 
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outcome and 36% for the secondary outcome. Kaplan-Meier curves for both outcomes 

are in Figure 1. The proportional hazards assumption, checked graphically by plotting 

the                 curves, was met for both outcomes (Web Figure G1). The 

Kendall’s tau was 0.02 and 0.12 for the primary and the secondary outcomes, 

respectively.  

Using classic statistical analysis (marginal Cox model fitted with GEE), we found no 

significant effect of the asthma control education program on time to the first 

unscheduled contact with an asthma exacerbation (HR=1.09, 95% CI 0.85 to 1.41) but a 

significant intervention effect on time to the first asthma review in primary care 

(HR=2.73, 95% CI 1.54 to 2.78). The asthma-control education program may 

significantly contribute to reduce the time to the first asthma review in primary care. 

We estimated the           for both outcomes by using the KMclust, PVECM and 

PVICM methods. Although this is not necessary because the number of clusters is higher 

than 50, we estimated permutation-based CIs for comparison. The permutation-based 

CIs were calculated for both PVICM and PVECM methods, since the large number of 

clusters in the study prevents for non-convergence. The R code is available in Web 

Appendix G.2. We fixed    at 365 days, the maximum follow-up for the study because 

the data were collected over the first year. The results are in Table 5. We found similar 

conclusions as obtained with the HR but with complementary interpretations. For the 

three methods accounting for clustering, we estimated a 4-day non-significant 

difference between the intervention and control groups on time to the first unscheduled 

contact with an asthma exacerbation. In contrast, for the three methods, the asthma-

control education program contributed to shortening the time to the first asthma review 

in primary care, by a significant decrease of nearly three months. Results obtained with 



 

21 
 

the three extended methods were very close. The permutation-based and the model-

based CIs were similar and led to the same conclusions for both outcomes. 

 

5. Discussion 

The aim of this work was to propose and compare two easy-to-use approaches to 

estimate the           for CRTs with time-to-event outcomes. With a large 

simulation study, we demonstrated that i) all proposed methods accounting for 

clustering are unbiased, ii) they have good statistical performance in terms of type I 

error rate and variance estimation for CRTs with at least 50 clusters, and iii) the 

permutation test for pseudo-values regression allows for controlling for type I error 

rates when there are fewer than 50 clusters. 

As expected, methods ignoring the clustered data structure produced an uncontrolled 

type I error rate, even with a small degree of clustering, and must be avoided. This has 

also been assessed in the presence of competing risks.
48 

Not accounting for clustering in 

the statistical analysis could lead to incorrect conclusions, and appropriate methods 

must be applied. In contrast, the three proposed methods accounting for clustering, 

KMclust, PVECM and PVICM, gave satisfactory estimates of the           and its 

variance, with controlled type I error rates if there was a sufficient number of clusters 

( 50). With a limited number of clusters, we observed inflated type I error rates. For 

the extended Kaplan-Meier-based method, the bootstrap percentile CIs tended to be too 

narrow for samples with a small number of units,
57

 which explains the uncontrolled type 

I error rates. To our knowledge, no solution exists to control for type I error rate when 

using bootstrap CIs. For the pseudo-values regression methods, we found that the type I 

error can be controlled using a permutation test. An alternative approach could be the 
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use of bias-corrected sandwich variance estimators.
58-61

 These correction methods were 

studied in CRTs for time-to-event outcomes and gave satisfactory results.
62-64

 We will 

explore these bias-corrected estimators for pseudo-values regression in our future work.  

Chen et al.
25

 recently proposed an extended method for estimating           for 

clustered data based on a different approach directly modeling the RMST as a 

continuous function of the horizon time    and accounting for covariate-dependent 

censoring with inverse probability weights. Our method is suitable when there is a clear 

time horizon, but the Chen et al. approach is useful in an exploratory analysis to guide 

the selection of the most appropriate time point of interest   . Their method has the 

advantage of handling covariate-dependent censoring in CRTs. In our work, we 

assumed completely at random censoring, an assumption that may be violated in 

practice. It requires future research to assess the potential impact of a deviation from 

this assumption on the properties of the pseudo-values regression. Other censoring 

assumptions could be studied, such as covariate-dependent censoring, already 

investigated by Binder et al.
65

 for independent data in the presence of competing risks, 

or clustered censoring times.  

The three extended methods, KMclust, PVECM and PVICM had similar good statistical 

performance to estimate           in a CRT with both proportional and non-

proportional hazards assumptions and a reasonable number of clusters ( 50). In 

addition to the possibility of correcting type I error by using a permutation test when the 

number of clusters is small, another advantage of the pseudo-values regression method 

over the Kaplan-Meier-based methods is the possibility to adjust for other covariates 

than intervention group by including additional covariates in the generalized linear 

regression model described in equation (5). Adjustment on covariates is useful in CRTs 
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because the randomization of a smaller number of units does not always permit balance 

in cluster and individual level variables.
66,67

 One other advantage of the extended 

pseudo-values regression methods is that they are already available in software such as 

R,
52

 SAS
52

 and Stata,
68

 whereas the bootstrap variance estimates must be implemented. 

Consequently, we recommend using one of the pseudo values-based methods. When 

    , the PVECM method gave slightly lower type I error rates than the other 

methods, especially with a high degree of clustering, so this method should be preferred 

if there is no convergence issue. As illustrated in the simulation study, for CRTs with 

less than 50 clusters, the PVICM method combined with a permutation test could be 

chosen to obtain both a p-value and a confidence interval.  

One might be discouraged from estimating a confidence interval based on permutation 

test since it could be time-consuming. In our simulation study, the time to run a 

complete scenario depended on the number of clusters and varied from about two hours 

and twenty minutes, for 10 clusters, to four hours and 40 minutes, for 40 clusters. 

Therefore, on average, the computational time to estimate a permutation-based 

confidence interval for a single dataset was between 8.4 and 16.8 seconds. It is 

important to note that we benefited from a computing centre, that allowed us to 

parallelize the calculations with 30 cores. In the OEDIPUS trial, situation closer to 

practical use since the calculations were not parallelized, we estimated the confidence 

interval in a maximum time of 2 and a half minutes. As a reminder, the OEDIPUS trial 

randomized 84 clusters, so the computation time should be even shorter when the 

permutation-based confidence interval is used when     . Therefore, the 

computation time seems reasonable to use permutation-based confidence interval in 

practice. 
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Our study has several limitations. First, we considered only the intervention group as a 

covariate in both the simulation of the data and the statistical analysis to allow for 

comparison of Kaplan-Meier and pseudo-values-based methods.
69

 Additional research 

is needed to assess the performance of the pseudo-values regression with a larger 

number of covariates and clustered data. Second, we did not provide an analytical 

demonstration of the asymptotic properties of the pseudo-values regression in CRTs. 

Our work reported only empirical results on the performance of the proposed 

approaches based on the simulation study. Therefore, our results can only be reliably 

applied to configurations similar to those we specifically evaluated and should not be 

extrapolated to more general situations. Although the proposed sandwich variance 

estimation performed well in the simulation study for a sufficient number of clusters, it 

does not take into account the variability induced by the estimation of the pseudo-values 

with jackknife. For independent data, Jacobsen and Martinussen
70

 and Overgaard et al.
71

 

showed that the sandwich variance estimate for pseudo-values regression is in general 

not consistent because of an omitted term. We could expect the same result for clustered 

data. It involves a complex theory, but one could possibly derive an appropriate 

variance estimator for pseudo-values regression in CRTs using von Mises expansion as 

in Jacobsen and Martinussen,
70

 Overgaard et al.
71

 and Zeng et al.
72 

Third, the use of 

          as the main intervention effect estimate in a CRT will require a sample-size 

formula based on          . Because to our knowledge, no sample-size formula 

based on           has been developed in the context of CRTs, future work should 

consider the development of such a formula. 

The           has several advantages over the classical HR. The difference in RMST 

is easily interpretable as the expected survival duration gained due to the intervention 
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for patients followed up to   . The unit of measure is temporal and the magnitude of the 

intervention effect is quantified in a more understandable way than the HR. In addition, 

the difference in RMST does not rely on the proportional hazards assumption, and our 

simulation study confirmed the good performance of the           under the 

proportional hazards assumption as well as the non–proportional. The only complexity 

when using           is the choice of an appropriate time horizon of interest. The 

time horizon    must be a priori specified at the trial design stage and should be a 

clinically meaningful time based on the study objective.
13,29

 If this complex choice of 

the time horizon of interest could lead to use a HR to summarize the intervention effect, 

one must be aware that the HR also relies on a time window. Not reporting the HR with 

a time window is similar to considering that the HR is constant forever.
73

 Then the HR 

and the           both require the choice of a time horizon, and the choice of    

should not be a criterion to select the HR instead of the          .  

In conclusion, the           is an interesting alternative measure of the intervention 

effect for time-to-event outcomes. We demonstrated that it can be accurately and simply 

estimated in CRTs by using one of our proposed methods under proportional and non-

proportional hazards assumptions and a sufficient number of clusters ( 50) and that we 

can perform a permutation test in case of a small number of clusters (<50). 
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Figure 1: Kaplan-Meier curves for the outcomes of OEDIPUS trial: A) probability of no 

first unscheduled contact with asthma exacerbation at time  ; B) probability of no 

asthma review in primary care at time   

Note: The median time to first unscheduled contact with an asthma exacerbation in the 

intervention and the control groups is 171 and 189 days, respectively. The median time 

to first asthma review in primary care in the intervention and the control groups is 71 

and 324 days, respectively. 
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Table 1: Simulation settings for the number of clusters, mean cluster size, Kendall’s tau, 

true hazard ratio (HR) and proportional hazards assumption or not. 

 

Total number of 

clusters   

Mean cluster 

size   
Kendall’s tau   

True HR 

        
Null hypothesis 

10, 20, 40 80 0.001, 0.01, 0.05, 0.1, 0.2 1 

50, 100 25, 80 0.001, 0.01, 0.05, 0.1, 0.2 1 

Proportional hazards 

10, 20, 40 80 0.001, 0.01, 0.05, 0.1, 0.2 0.5, 0.8 

50, 100 25, 80 0.001, 0.01, 0.05, 0.1, 0.2 0.5, 0.8 

Non-proportional hazards 

10, 20, 40 80 0.001, 0.01, 0.05, 0.1, 0.2 0.5 (after 90 days) 

50, 100 25, 80 0.001, 0.01, 0.05, 0.1, 0.2 0.5 (after 90 days) 
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Table 2: Type I error rate (%) for different combinations of number of clusters (  = 10, 

20, 40, 50, 100) and Kendall’s tau (  = 0.001, 0.01, 0.05, 0.1, 0.2) with mean cluster 

size   = 80. Type I error between 3.6% and 6.4%, indicated in bold, was considered 

acceptable based on a binomial model with 1000 simulated datasets. 

Number of 

clusters   

Kendall’s   Methods for 

independent data 

 Extended methods for 

clustered data 

 Extended methods 

and permutation test 

KMindep PVindep  KMclust PVECM PVICM  PVECM PVICM 

10 0.001 6.4 6.5  12.5 18.0 16.0  4.9 5.1 
0.01 20.9 20.9  12.2 13.0 13.5  5.6 4.5 
0.05 48.3 48.3  12.7 13.2 16.6  4.5 4.2 
0.1 58.9 58.9  12.4 11.0 15.6  4.7 4.8 
0.2 68.6 68.6  13.4 13.3 16.7  4.6 4.6 

20 0.001 5.9 5.9  7.2 9.6 8.5  4.6 5.3 
0.01 19.9 19.9  8.7 9.8 9.6  5.2 4.9 
0.05 48.3 48.3  7.6 7.4 9.1  4.0 4.0 
0.1 60.2 60.2  9.5 9.4 10.9  5.3 5.8 
0.2 72.3 72.3  7.2 6.6 9.5  3.9 4.1 

40 0.001 6.8 6.8  6.9 7.6 7.1  5.6 5.7 
0.01 20.3 20.3  6.8 6.5 6.9  4.9 5.1 
0.05 47.7 47.7  7.0 7.2 7.6  5.3 4.8 
0.1 60.7 60.7  7.0 6.2 7.8  5.2 5.3 
0.2 70.1 70.1  6.5 5.5 7.1  4.1 4.9 

50 0.001 6.2 6.2  6.7 6.9 6.6    

0.01 18.3 18.3  6.2 5.4 6.4    

0.05 46.3 46.3  7.1 6.4 7.4    

0.1 59.9 59.9  6.1 5.9 6.6    

0.2 71.7 71.7  5.9 5.8 6.3    

100 0.001 7.4 7.4  6.2 6.2 6.1    

0.01 17.8 17.8  4.9 4.9 5.3    

0.05 46.4 46.4  5.6 5.1 6.0    

0.1 60.3 60.3  5.7 5.4 6.0    

0.2 70.6 70.5  6.7 6.1 7.0    
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Table 3: Relative bias (%), relative error (%) and coverage rate (%) under proportional hazards assumptions for different combinations 

of number of clusters (  = 10, 20, 40, 50, 100), Kendall’s tau (  = 0.001, 0.01, 0.05, 0.1, 0.2) and true HR (HR = 0.8, 0.5) with mean 

cluster size   = 80. 

True 

HR 
K   

Relative bias  Relative error  Coverage rate 

KMclust PVECM PVICM 
 

KMclust PVECM PVICM 
 

KMclust PVECM PVICM 
PVICM and 

Permutation 

0.8 10 0.001 0.05 -0.59 0.05  -7.5 -14.1 -14.2  87.9 84.0 85.7 95.6 

  0.01 -0.63 -0.81 -0.66  -14.1 -18.2 -18.8  87.2 85.2 84.2 95.3 

  0.05 7.24 7.07 7.17  -17.2 -14.4 -20.5  86.3 85.3 83.2 95.1 

  0.1 -6.00 -6.39 -6.04  -13.6 -8.6 -17.1  88.1 88.4 84.7 95.4 

  0.2 -2.22 -3.25 -2.42  -18.6 -14.2 -21.4  87.2 88.0 82.2 96.1 

 20 0.001 0.51 0.52 0.50  -6.9 -10.3 -9.2  90.5 89.1 90.0 94.8 

  0.01 -2.48 -2.45 -2.49  -3.6 -4.7 -5.1  92.4 91.7 91.8 95.7 

  0.05 1.92 1.68 1.89  -4.7 -3.4 -5.5  92.5 91.7 91.0 95.4 

  0.1 2.23 2.01 2.15  -5.8 -7.1 -6.5  91.6 91.4 90.1 95.2 

  0.2 1.10 1.96 0.94  -9.1 -7.4 -9.7  90.8 92.2 89.7 95.2 

 40 0.001 1.58 1.45 1.56  -1.1 -3.9 -2.0  95.1 94.1 94.8 96.4 

  0.01 -0.64 -0.64 -0.66  -8.4 -8.0 -8.8  92.1 92.0 91.7 93.8 

  0.05 0.39 -0.12 0.34  -8.1 -5.1 -8.0  92.1 93.2 91.1 94.8 

  0.1 2.80 4.79 2.78  -6.8 -5.7 -6.6  91.8 92.8 90.9 94.2 

  0.2 0.62 -0.51 0.55  -5.5 -4.4 -5.4  93.2 93.4 92.4 95.5 

 50 0.001 0.44 0.44 0.42  -2.7 -4.8 -3.4  93.3 92.2 92.6  

  0.01 1.62 1.53 1.61  -1.1 -1.2 -1.3  94.4 93.8 94.0  

  0.05 -2.82 -3.30 -2.83  1.9 -0.9 2.1  94.0 93.0 93.7  

  0.1 0.19 0.97 0.15  -3.4 -0.5 -3.2  94.6 95.1 93.8  

  0.2 -6.26 -7.24 -6.32  -4.8 -4.2 -4.6  92.9 93.6 92.1  

 100 0.001 0.98 0.96 0.96  0.3 -0.6 0.1  94.7 94.6 94.5  

  0.01 1.12 0.89 1.11  -3.3 -3.4 -3.3  94.1 93.9 94.2  

  0.05 0.46 -0.13 0.44  -6.1 -5.2 -5.9  93.6 93.7 93.3  
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  0.1 0.11 -0.48 0.08  -1.6 0.7 -1.5  94.1 94.7 93.9  

  0.2 -5.77 -5.97 -5.80  -4.2 -2.8 -4.1  94.1 94.4 93.5  

0.5 10 0.001 -2.12 -2.34 -2.25  -17.3 -13.5 -20.8  85.9 87.0 81.5 94.3 

  0.01 0.08 -0.35 -0.08  -11.2 -18.4 -17.1  86.5 82.5 85.6 95.7 

  0.05 -0.49 -0.59 -0.61  -13.1 -15.3 -17.8  86.6 84.2 82.7 96.1 

  0.1 -2.37 -1.51 -2.49  -14.6 -12.3 -17.9  87.5 87.9 84.6 95.1 

  0.2 -0.23 -0.79 -0.27  -12.7 -12.4 -16.7  87.2 85.3 84.1 96.4 

 20 0.001 -0.68 -0.71 -0.82  -3.9 -7.5 -6.1  92.4 90.5 91.8 94.5 

  0.01 -1.05 -1.03 -1.14  -8.7 -10.5 -10.1  90.4 89.4 90.2 94.1 

  0.05 -0.51 -0.38 -0.63  -10.2 -6.2 -11.4  91.7 91.8 90.2 95.8 

  0.1 0.70 0.79 0.51  -9.5 -5.9 -10.4  91.1 92.1 89.5 95.1 

  0.2 0.33 0.83 0.23  -6.7 -5.3 -7.9  91.8 91.3 89.7 94.8 

 40 0.001 -0.79 -0.84 -0.92  -2.7 -4.3 -3.7  92.6 91.4 92.2 94.2 

  0.01 -1.11 -1.22 -1.24  -6.1 -5.1 -6.6  92.9 92.1 92.0 94.4 

  0.05 -0.89 -1.26 -1.01  -3.7 -2.1 -4.1  92.5 93.6 92.4 95.1 

  0.1 -1.90 -1.67 -2.02  -4.0 -3.0 -4.2  92.9 94.2 92.6 95.2 

  0.2 -4.15 -3.25 -4.26  -7.9 -6.6 -8.2  91.2 92.0 90.2 93.6 

 50 0.001 -0.61 -0.76 -0.73  0.9 -1.1 0.4  93.5 93.3 93.7  

  0.01 -0.32 -0.43 -0.44  -1.2 -1.4 -1.5  94.6 94.4 94.6  

  0.05 -0.83 -1.21 -0.94  -2.8 -2.8 -3.1  93.8 94.1 92.9  

  0.1 -2.58 -2.13 -2.68  -4.1 -5.4 -4.4  92.9 91.9 92.6  

  0.2 -1.77 -1.33 -1.88  -5.7 -4.5 -6.0  93.2 92.7 92.3  

 100 0.001 -0.69 -0.79 -0.81  -0.8 -1.1 -0.7  94.5 94.7 94.7  

  0.01 -0.44 -0.59 -0.57  -0.6 -1.4 -0.8  94.6 94.3 94.4  

  0.05 -1.03 -0.97 -1.15  0.8 0.5 0.7  95.0 95.8 94.7  

  0.1 -1.67 -1.45 -1.78  -4.8 -5.2 -5.0  93.5 93.2 93.2  

  0.2 -1.93 -1.83 -2.03  -5.0 -4.8 -5.2  93.5 92.8 93.2  



 

40 
 

Table 4: Relative bias (%), relative error (%) and coverage rate (%) under non-proportional hazards assumptions for different combinations of 

number of clusters (  = 10, 20, 40, 50, 100). Kendall’s tau (  = 0.001, 0.01, 0.05, 0.1, 0.2) with true HR = 0.5 after 90 days and mean cluster size 

  = 80. 

 

 

 

K   

Relative bias  Relative error  Coverage rate 

KMclust PVECM PVICM 
 

KMclust PVECM PVICM 
 

KMclust PVECM PVICM 
PVICM and 

Permutation 

10 0.001 2.33 2.29 2.26  -4.3 -13.5 -10.7  88.2 85.4 87.1 96.0 

 0.01 1.78 1.67 1.75  -10.0 -12.8 -14.8  87.6 86.0 84.9 95.5 

 0.05 1.11 1.62 0.99  -7.7 -6.1 -11.4  89.1 88.4 86.9 96.7 

 0.1 -2.51 -1.17 -2.58  -14.3 -10.3 -17.9  87.8 88.0 84.6 94.8 

 0.2 1.19 1.67 0.95  -12.4 -9.2 -15.5  88.6 88.5 84.9 95.9 

20 0.001 2.49 2.54 2.37  -7.2 -11.5 -9.2  90.9 88.3 89.5 94.8 

 0.01 2.70 2.73 2.61  -7.5 -7.7 -8.8  91.0 90.9 90.3 94.7 

 0.05 2.90 2.68 2.83  -10.3 -7.9 -11.2  90.5 90.5 89.1 94.4 

 0.1 1.83 1.88 1.69  -9.0 -8.0 -9.8  90.9 91.6 89.3 94.9 

 0.2 6.47 6.33 6.31  -10.4 -7.2 -11.2  89.7 89.7 87.7 93.4 

40 0.001 2.62 2.68 2.52  0.2 -1.8 -0.6  92.8 91.9 92.5 94.8 

 0.01 2.47 2.49 2.36  -3.7 -3.1 -3.9  92.7 93.7 92.6 95.2 

 0.05 1.96 1.90 1.87  -4.5 -3.7 -4.4  92.9 93.8 92.5 95.2 

 0.1 2.59 1.67 2.47  -1.7 2.3 -1.6  93.1 94.0 92.2 95.7 

 0.2 2.79 1.71 2.68  -3.7 -1.1 -3.7  93.2 92.9 92.3 95.2 

50 0.001 2.80 2.75 2.71  -3.3 -4.2 -3.7  92.5 91.9 92.6  

 0.01 2.78 2.63 2.67  -5.1 -5.2 -5.2  91.8 92.2 92.3  

 0.05 3.17 2.49 3.08  -0.3 0.5 -0.2  94.6 94.2 94.3  

 0.1 0.20 0.92 0.10  -4.5 -0.8 -4.4  93.5 93.7 93.5  

 0.2 -0.80 -0.61 -0.90  -6.0 -1.1 -6.0  94.1 95.0 93.4  

100 0.001 2.52 2.45 2.43  -2.1 -2.5 -2.2  91.7 91.9 92.2  

 0.01 2.60 2.41 2.50  0.5 -0.2 0.7  94.4 93.7 94.2  

 0.05 1.96 2.22 1.88  -3.0 -0.1 -2.8  94.0 94.4 94.1  

 0.1 2.28 1.62 2.20  -0.6 0.9 -0.4  94.9 94.8 94.6  

 0.2 2.54 2.44 2.47  -3.7 -4.3 -3.7  93.6 93.8 93.4  
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Table 5: Estimations of the           at 365 days and the 95% confidence interval (95% 

CI) for the two outcomes of the OEDIPUS trial: 1) time to first unscheduled contact with an 

asthma exacerbation (n = 372) and 2) time to first asthma review in primary care (n = 371). 

 
Method            

95% CI 

 Model-based Permutation-based 

Time to first unscheduled contact with an asthma exacerbation  

 KMclust -4.056 [-36.181;27.254] - 

 PVECM -4.718 [-36.128;26.691] [-38.009;27.613]* 

 PVICM -4.056 [-35.088;26.977] [-35.907;27.788]* 

     

Time to first asthma review in primary care  

 KMclust -89.524 [-122.063;-53.317] - 

 PVECM -84.104 [-118.567;-49.642] [-118.040;-47.220]** 

 PVICM -89.524 [-123.717;-55.331] [-126.179;-53.566]** 

  

*The computation times for the PVECM and PVICM  are 2 minutes and 30 secondes and 1 minutes and 

48 secondes respectively. 

** The computation times for the PVECM and PVICM are 2 minutes and 12 secondes and 1 minute and 

48 secondes, respectivel
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Figure 1: Kaplan-Meier curves for the outcomes of OEDIPUS trial: A) probability of no first unscheduled contact with asthma exacerbation at 

time  ; B) probability of no asthma review in primary care at time   

 

Note: The median time to first unscheduled contact with an asthma exacerbation in the intervention and the control groups is 171 and 189 days, 

respectively. The median time to first asthma review in primary care in the intervention and the control groups is 71 and 324 days, respectively. 


