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Web Appendix A: Generalized estimating equation 

A.1. Generalized estimating equation and sandwich variance estimator for the pseudo-

values regression for independent data 

In section 2.2.3 in the main text, we consider the following generalized linear regression 

model: 

                                                       
                

                                                      

where    is the time horizon,    is the true time-to-event for individual  ;   
         , 

where    is the intervention variable = 1 if the individual   received the intervention and 

0 if the individual is in a control group;           , where    is the intercept and    

is the intervention effect, and      a link function. Because the survival time can be 

censored,         
   is not observed for all individuals and is replaced by the pseudo-

values   , defined in equation (6) in the main text, in equation (1). The regression 

coefficients may be estimated from the following generalized estimating equation 

(GEE):
1,2 

                                               

 

   

  
   
  

  
            

 

   

                           

where    is a working variance and             . Andersen et al.
3
 showed that the 

estimates of the regression coefficients are consistent and the variance for    could be 

estimated with the following sandwich estimator:
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A.2. Generalized estimating equation and exchangeable working correlation matrix: 

estimation of   and   parameters 

In section 2.3.3 in the main text, we consider a sample of   clusters of size    

(k=1,…, ) and then      
 
    individuals. The following generalized estimating 

equation is considered: 

                                         

 

   

   
   

  
 
 

  
     

       

 

   

                          

where                  
 ,                  with               

  and    is an 

      working covariance matrix for cluster k. It is defined as       

 

       

 

 , 

where   is a dispersion parameter,      is an       working correlation matrix and 

   an       diagonal matrix with          as diagonal elements. If the working 

correlation matrix is exchangeable, then       

    

    
 
 

 
 

 
 

 
 

  where,   

                        The parameters   and   are estimated from the Pearson 

residuals defined as following: 

                                                       
        

         
                                                               

The dispersion parameter   is estimated by  

                                                
 

   
      

  

   

 

   

                                                            

The parameter   is estimated by  
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where              
   . 

 

 

Web Appendix B: Permutation-based confidence intervals 

We consider the model (1) described in the Appendix A.1, with      the identity link 

function, for the pseudo-values regression.  

                                                 
              

                                      

A 100(1-α)% permutation-based confidence interval for the intervention effect    can 

be obtained by inverting the permutation test. This requires testing the non-zero null 

hypothesis          , where     , with permutation tests and collecting the set of 

values that are not rejected by these tests. To do so, Rabideau and Wang
4
 proposed to 

rewrite the model (8) as follows:  

          
                                                                

and to test an equivalent zero null hypothesis                      . The 

permutation test is carried out comparing the test statistic obtained by fitting model (9) 

using the observed dataset and the permuted test statistics obtained by fitting the 

following model under different permuted intervention allocations:  

                                          
                 

               
    

                       

with the fixed offset term     
    where   

    is the intervention allocation in the 

observed dataset, and   
    

 is a permuted intervention allocation.  
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This method could be computationally intensive because permutation tests are 

performed on a large number of    and each permutation test is carried out on many 

permuted intervention allocations. Rabideau and Wang
4
 proposed an efficient 

procedure, based on a method suggested by Garthwaite
5
, to reduce the computation 

time. It is a sequential search, performed separately for the lower and upper bounds, 

which considers only a single permuted intervention allocation for each permutation 

test. We computed permutation-based confidence interval using this approach, which is 

briefly described below. For further details, see Rabideau and Wang
4
 and Garthmaite

5
. 

 

B.1. Search procedure 

Suppose we considered a  -step search for the upper bound of the 100(1-α)% confidence 

interval for   , denoted  . At the step  , we set      , the current value of  , and 

randomly permuted the allocation of the clusters to the control and intervention groups. 

We fit the model (10) to obtain the permuted test statistic   
    

. We also fit the model 

(9) with the observed dataset to obtain the observed test statistic   
   . The upper bound 

is updated based on the observed and permuted test statistics. 

      
   

      

 
                     

    
   

   

   
         

 
         

    
   

   

  

where   is a positive constant, called the step length constant. 

Independently, the search for the lower bound   is carried out in a similar way, using 
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The final updated value, at the step    are used as the bounds of the CI. 

 

B.2. Implementation 

Following the recommendations of Rabideau and Wang
4
 and Garthwaite

5
, at the step  , 

we set             and             for the upper and lower bounds, respectively, 

where              
 
 

               with α the significance level of the 

permutation test,       the    -quantile of the standard normal distribution and     the 

estimation of    obtained by fitting the model (8) with the observed dataset. The lower 

and upper bounds were initialized at     
     

 
 and     

     

 
, respectively, where    

and    are the second smallest and second largest permuted estimations of         from a 

permutation test testing           , with           permutated allocations. To avoid 

an early large change,   is set to                      at the first step. Finally, we 

set   to 5000 iterations to obtain an asymptotic variance of the coverage of the 95% 

confidence interval of         . 

 

 

Web Appendix C: Additional details for the simulation study 

C.1. Simulation of censoring times 

We simulated random censoring times independent of the event times. We assumed that 

the censoring times in a cluster were independent. Considering a fixed censoring rate  , 

we generated     (for                   ) from a continuous uniform 

distribution on 0 to 1 and censored the observation if      . When an observation 
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was censored, the censoring time for this individual l from the cluster k was generated 

with a uniform distribution on 0 to    , the time-to-event of this individual.
6
  

C.2. Simulated survival function  

Figure C2: Simulated survival functions under proportional and non-proportional 

hazards assumptions for true HR = 0.5 and Kendall’s tau   = 0.1. The survival functions 

for the other scenarios are similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.3. Computation of the true difference in RMST 

We computed the true difference in RMST up to    by integrating the marginal survival 

function in each group between 0 and   . 

                                                       
  

 

            
  

 

                                 

where          is the marginal survival function for the group   ( =0 for the control 

group, 1 for the intervention group). The marginal survival function in each group was 

derived from the conditional survival function by integrating out the frailty with respect 

to the gamma density function.
7 
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where               is the conditional survival function for individuals in group   

(     ) and      is the density function of the distribution gamma   
 

 
 
 

 
  with a 

mean of 1 and variance  . An analytic form was obtained by using the Laplace 

transform.
7 

                  
 

   
           

   
 
   

 

  

where      is the Laplace transform and      the cumulative hazard function. 

The integrals in (4) were approximated by using the numerical integration method of the 

right Riemann sum.  

For non-proportional hazards assumption, we summed the true  RMST computed 

separately over the 2 periods (0 to 90 days, 90 days to   ) with the corresponding 

treatment effect  . 

 

Table C3: True difference in RMST up to 365 days for each scenario setting 

Hazards assumption 
True hazard ratio 

        
Kendall’s 

tau   

True  RMST 

up to 365 

Null hypothesis 1 0.001 0 

  0.01 0 

  0.05 0 

  0.1 0 

  0.2 0 

Proportional hazards 0.5 0.001 55.15 

  0.01 54.78 

  0.05 53.11 

  0.1 51.00 

  0.2 46.70 

 0.8 0.001 18.72 

  0.01 18.60 

  0.05 18.04 

  0.1 17.33 
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  0.2 15.87 

Non-proportional hazards 0.5 (after 90 days) 0.001 42.03 

  0.01 41.72 

  0.05 40.33 

  0.1 38.58 

  0.2 35.01 

C.4. Definition of the performance measures reported in the simulations 

Let’s denote             and                 the            and its variance 

estimation in the simulated dataset   (  = 1,…, 1000) and      
   the true RMST 

difference. The performance of methods maintaining the type I error rate was assessed 

with the following criteria: 

 (1) The relative bias calculated as 
                         

  

     
      , where                     

 
 

    
             

    
   , 

(2) the relative error (RE) of the asymptotic standard errors (ASE), defined as 

       

   
    , where       

 

    
                

    
    and the empirical standard 

error       
 

   
                                   

     
   . The RE corresponds to the 

bias in the estimation of the true standard error, and thus the variance, of the 

         . A value of the RE close to 0 reflects a good estimation of the asymptotic 

standard error of the intervention effect. When the RE deviates from 0, the variance is 

underestimated if RE is < 0 and overestimated otherwise.  

(3) The empirical coverage rate of the nominal 95% confidence intervals defined as the 

proportion of 95% confidence intervals containing the true RMST difference. 
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Web Appendix D: Convergence 

Table D1: Scenario settings and percentage of simulation iterations that did not converge for 

the pseudo-values regression with an exchangeable correlation matrix. There were no 

convergence issues for the scenarios not reported in the Table. 

Total number 

of clusters 

Mean cluster 

size 

Kendall’s 

tau   

True hazard ratio 

        
Percentage of datasets with 

convergence issues 

Null hypothesis 

10 80 0.001 1 14.0 

10 80 0.01 1 3.0 

10 80 0.05 1 0.2 

20 80 0.001 1 6.4 

20 80 0.01 1 0.2 

40 80 0.001 1 2.0 

50 25 0.001 1 1.4 

50 80 0.001 1 0.6 

100 25 0.001 1 0.2 

Proportional hazards 

10 80 0.001 0.8 14.9 

10 80 0.001 0.5 15.4 

10 80 0.01 0.8 3.2 

10 80 0.01 0.5 5.4 

10 80 0.05 0.8 0.2 

10 80 0.05 0.5 0.2 

10 80 0.1 0.5 0.1 

20 80 0.001 0.8 4.2 

20 80 0.001 0.5 4.4 

20 80 0.01 0.8 0.4 

20 80 0.01 0.5 0.7 

40 80 0.001 0.8 1.5 

40 80 0.001 0.5 1.6 

50 25 0.001 0.8 1.6 

50 25 0.001 0.5 1.0 

50 25 0.01 0.8 0.2 

50 80 0.001 0.8 0.3 

50 80 0.001 0.5 0.6 

100 25 0.001 0.8 0.2 

100 25 0.001 0.5 0.2 

Non-proportional hazards 

10 80 0.001 0.5 (after 90 days) 14.3 

10 80 0.01 0.5 (after 90 days) 4.4 

10 80 0.05 0.5 (after 90 days) 0.2 

20 80 0.001 0.5 (after 90 days) 5.2 

20 80 0.01 0.5 (after 90 days) 0.5 

40 80 0.001 0.5 (after 90 days) 1.2 

50 25 0.001 0.5 (after 90 days) 1.5 

50 25 0.01 0.5 (after 90 days) 0.5 

50 80 0.001 0.5 (after 90 days) 0.3 

100 25 0.001 0.5 (after 90 days) 0.2 

100 25 0.01 0.5 (after 90 days) 0.1 

100 80 0.001 0.5 (after 90 days) 0.2 
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Web Appendix E: Simulation results for the type I error rate 

Table E1: Type I error rate (%) under the proportional hazards assumption for different 

combinations of number of clusters (  = 50, 100) and Kendall’s tau (  = 0.001, 0.01, 0.05, 

0.1, 0.2) with mean cluster size   = 25. Type I error between 3.6% and 6.4%, indicated in 

bold, was considered acceptable based on a binomial model with 1000 simulated datasets. 

Number of 

clusters   

Kendall’s   Methods for 

independent data 

 Extended methods for 

clustered data 

KMindep PVindep  KMclust PVECM PVICM 

50 0.001 5.2 5.1  5.6 6.9 5.8 

0.01 10.8 10.7  6.2 7.3 6.3 

0.05 25.3 25.3  5.5 5.9 6.1 

0.1 39.9 39.9  5.4 6.0 5.8 

0.2 51.6 51.6  7.4 7.8 7.7 

100 0.001 6.0 6.0  6.1 5.8 5.9 

0.01 11.5 11.5  5.3 5.2 5.6 

0.05 27.3 27.3  6.1 5.7 6.0 

0.1 39.1 39.1  6.1 5.6 6.5 

0.2 50.1 50.1  6.7 5.6 7.1 
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Web Appendix F: Simulation results with mean cluster size      

Table F1: Relative bias (%), relative error (%) and coverage rate (%) under proportional and 

non-proportional hazards assumptions for different combinations of number of clusters (  = 

50, 100), Kendall’s tau (  = 0.001, 0.01, 0.05, 0.1, 0.2) and true HR (HR = 0.8, 0.5) with 

mean cluster size   = 25. 

 

 

 

True 

HR 
K   

Relative bias  Relative error  Coverage rate 

KMclust PVECM PVICM  KMclust PVECM PVICM  KMclust PVECM PVICM 

0.8 50 0.001 -2.29 -2.20 -2.31  0.4 -1.4 -0.4  93.6 92.4 93.1 

  0.01 2.08 2.13 2.05  -1.5 -2.9 -2.1  94.3 93.9 94.1 

  0.05 -0.19 -0.53 -0.23  -5.0 -3.2 -5.1  91.3 92.2 91.2 

  0.1 0.18 0.12 0.15  -4.8 -1.0 -4.7  93.0 93.5 92.5 

  0.2 -4.01 -0.83 -4.05  -6.4 -3.8 -6.3  93.1 92.7 91.8 

 100 0.001 1.11 1.16 1.08  -2.4 -3.3 -2.7  94.0 93.3 94.1 

  0.01 -0.70 -0.68 -0.72  -5.5 -6.0 -5.6  93.4 93.4 93.2 

  0.05 -0.68 -0.75 -0.70  -0.2 1.5 -0.1  94.6 94.3 94.6 

  0.1 -5.19 -4.36 -5.21  0.0 0.1 0.1  93.9 93.7 93.7 

  0.2 -0.36 -0.55 -0.38  -2.3 -1.8 -2.1  94.7 94.7 94.5 

0.5 50 0.001 -1.27 -1.51 -1.42  0.0 -3.2 -0.2  93.7 93.3 93.7 

  0.01 -0.82 -0.98 -0.94  -6.4 -6.6 -6.7  93.0 93.0 93.0 

  0.05 -1.94 -1.61 -2.05  -2.9 -2.0 -3.3  94.1 94.2 93.5 

  0.1 -2.48 -2.61 -2.63  -6.3 -6.1 -6.4  92.6 92.9 91.9 

  0.2 -2.78 -2.89 -2.90  -6.2 -6.3 -6.5  93.0 92.9 91.8 

 100 0.001 -0.45 -0.57 -0.59  -1.7 -2.4 -1.4  94.0 94.0 94.1 

  0.01 -0.56 -0.67 -0.69  2.6 2.7 2.8  95.7 95.2 95.6 

  0.05 -1.04 -1.10 -1.15  0.2 0.3 0.1  94.9 94.7 95.2 

  0.1 -2.14 -2.16 -2.24  -2.4 -4.0 -2.6  94.2 92.8 93.9 

  0.2 -3.58 -3.62 -3.67  -3.2 -2.2 -3.4  93.1 93.9 93.0 

Non-proportional hazards 
0.5 

(after 

90 

days) 

50 0.001 2.58 2.59 2.47  -2.8 -4.8 -3.0  92.9 91.6 92.7 

 0.01 2.64 2.74 2.55  -5.4 -5.6 -5.6  92.8 92.4 92.9 

 0.05 1.69 1.67 1.59  -1.9 -1.1 -1.9  93.8 94.0 93.5 

 0.1 2.09 2.57 1.99  -3.1 -2.4 -3.2  93.0 92.4 92.7 

 0.2 0.72 0.91 0.62  -4.8 -3.5 -4.8  93.1 93.1 92.1 

 100 0.001 2.35 2.27 2.24  -1.0 -0.4 -0.8  93.4 93.9 93.6 

  0.01 3.10 2.96 3.01  -1.4 -2.3 -1.2  93.2 92.5 93.1 

  0.05 1.62 1.69 1.56  -2.2 -1.7 -2.0  94.3 93.9 94.2 

  0.1 1.81 1.98 1.72  -1.7 -3.5 -1.5  94.6 94.0 94.4 

  0.2 1.07 0.94 0.99  -1.9 1.1 -1.8  94.4 94.8 93.6 
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Web Appendix G: Checking the proportional hazards assumption and R code for the 

illustrative example OEDIPUS 

G.1. Checking the proportional hazards assumption 

Figure G1: The                 curves for the outcomes of the OEDIPUS trial: A) time to 

first unscheduled contact with an asthma exacerbation; B) time to first asthma review in 

primary care 

 
 

G.2. R code to estimate the difference in RMST  

The R code used to compute the difference in RMST and its confidence interval for the 2 

outcomes of the OEDIPUS trial with all the proposed methods in Table 5 is detailed in the 

following section. The “ci” function used to estimate the permutation-based confidence 

interval is available on https://github.com/Le-Vilain-Abraham/Simulation-study-with-R-

software/tree/ main/Proportional-hazards/1%20-

%20Generation%20of%20the%20datasets%20and%20 

statistical%20analysis/Permutation%20test/confidence%20interval. The functions called by 

the “ci” function (“allocation”, “ci_permuation”, “initialization”, ”initialization_ci”, 

https://github.com/Le-Vilain-Abraham/Simulation-study-with-R-software/tree/main/Proportional-hazards/1%20-%20Generation%20of%20the%20datasets%20and%20statistical%20analysis/Permutation%20test/confidence%20interval
https://github.com/Le-Vilain-Abraham/Simulation-study-with-R-software/tree/main/Proportional-hazards/1%20-%20Generation%20of%20the%20datasets%20and%20statistical%20analysis/Permutation%20test/confidence%20interval
https://github.com/Le-Vilain-Abraham/Simulation-study-with-R-software/tree/main/Proportional-hazards/1%20-%20Generation%20of%20the%20datasets%20and%20statistical%20analysis/Permutation%20test/confidence%20interval
https://github.com/Le-Vilain-Abraham/Simulation-study-with-R-software/tree/main/Proportional-hazards/1%20-%20Generation%20of%20the%20datasets%20and%20statistical%20analysis/Permutation%20test/confidence%20interval
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“update_bound”) are also available on this link. To use the “ci” function, the variable 

indicating the group of intervention and the cluster ID must be denoted arm and cluster, 

respectively, due to the way the function was coded. 

We consider a dataset, denoted dataset, with the following variables: the observed survival 

time (denoted time), the event indicator = 1 if the observed time corresponds to the time 

between the origin and the occurrence of the survival event and 0 otherwise (denoted 

indicator), the trial group = 0 for the control group and 1 for the intervention group (denoted 

group) and the cluster ID (denoted cluster). The horizon time    (denoted t_star) is fixed to 

365. 

 

 G.2.1. Kaplan-Meier–based method 
 

t_star = 365 

 

#function to compute the bootstrap variance 

variance_bootstrap <- function(dataset, t_star) { 

cluster.id.0 <- 

unique(as.numeric(dataset[which(dataset$group == 0), 

]$cluster)) 

cluster.id.1 <- 

unique(as.numeric(dataset[which(dataset$group == 1), 

]$cluster)) 

 

K0 <- length(cluster.id.0) 

K1 <- length(cluster.id.1) 

 

#sample K0 and K1 clusters in control and intervention 

groups 

c <-c(sample(cluster.id.0, K0, replace = TRUE), 

sample(cluster.id.1, K1, replace = TRUE)) 

 

#select the clusters in the data.frame 

data.boot <- dataset[unlist(lapply(c, function(x) 

which(dataset$cluster == x))), ] 

 

# Check 

while(min(max(data.boot[which(data.boot$group==1),]$time), 

max(data.boot[which(data.boot$group == 0), 

]$time))<t_star){ 



16 
 

cluster.id.0 <- 

unique(as.numeric(dataset[which(datase$group == 0), 

]$cluster)) 

cluster.id.1 <- 

unique(as.numeric(dataset[which(dataset$group == 1), 

]$cluster)) 

 

K0 <- length(cluster.id.0) 

K1 <- length(cluster.id.1) 

 

#sample K0 and K1 clusters in control and intervention 

group 

c <- c(sample(cluster.id.0, K0, replace=TRUE), 

sample(cluster.id.1, K1, replace=TRUE)) 

 

 

data.boot <- dataset[unlist(lapply(c , function(x) 

which(dataset$cluster == x))), ] 

} 

 

#Analyze with the bootstrap dataset 

results <- rmst2(data.boot$time, data.boot$indicator, 

data.boot$group, tau= t_star) 

 

#Return the difference in RMST 

return(results$unadjusted.result[1,1]) 

} 

 

 

kaplan_meier <- rmst2(dataset$time, dataset$indicator, 

dataset$group, tau = t_star) 

 

 

bootstrap <- replicate(10000, variance_bootstrap(dataset, 

t_star)) 

 

 

#Difference in RMST 

kaplan_meier$unadjusted.result[1,"Est."] 

 

#Confidence interval 

quantile(bootstrap, 0.025) 

quantile(bootstrap, 0.975) 

 

 

G.2.2. Pseudo-values regression based methods 
t_star = 365 

 

#Computation of the pseudo-values 

dataset$pv <- pseudomean(dataset$time, 

                         dataset$indicator, 
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                         tmax=t_star) 

 

#Exchangeable matrix 

PV1 <-summary(gee(pv ~ group,  

              data = dataset,  

              id = cluster,  

              family = gaussian,  

              corstr = "exchangeable)) 

 

#Independent matrix 

PV2 <- summary(gee(pv ~ group,  

               data = dataset,  

               id = cluster,  

               family = gaussian,  

               corstr = "independence")) 

 

#Difference in RMST 

PV1$coefficients["group","Estimate"] 

PV2$coefficients["group","Estimate"] 

 

#Model-based confidence interval 

PV1$coefficients["group","Estimate"]-

qnorm(0.975)*sqrt(PV1$coefficients["group","Robust S.E."]^2) 

PV1$coefficients["group","Estimate"]+qnorm(0.975)*sqrt(PV1$coe

fficients["group","Robust S.E."]^2) 

 

PV2$coefficients["group","Estimate"]-

qnorm(0.975)*sqrt(PV2$coefficients["group","Robust S.E."]^2) 

PV2$coefficients["group","Estimate"]+qnorm(0.975)*sqrt(PV2$coe

fficients["group","Robust S.E."]^2) 

 

#Permutation-based confidence interval 

base$arm <- base$group 

 

ci_exc <- ci(dataset, "exchangeable") 

ci_ind <- ci(dataset, "independence") 

 
 


