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Abstract

In decentralized and decision-oriented communication paradigms, autonomous devices strategically implement

information compression policies. In this work, we study a strategic communication game between an encoder and

two decoders. An i.i.d. information source, observed by the encoder, is transmitted to the decoders via two perfect

links, one reaching the first decoder only and the other reaching both decoders, as in the successive refinement

setup. All three communicating devices are assumed to be rational, i.e. they want to minimize their respective cost

functions, that depend on the source variable and the output symbols of both decoder. The game takes place as

follows: the encoder commits to implementing an encoding strategy which induces a Bayesian game among the

two decoders. The encoder is the Stackelberg leader and the two decoders are the Stackelberg followers, they select

simultaneously the output sequences that minimize their respective long-run costs. We characterize the asymptotic
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behavior of the long-run optimal cost of the encoder, when the decoders implement decoding strategies that form

a Bayes-Nash equilibrium. We show that this optimal cost converges to a single-letter expression which involves

two auxiliary random variables and single-letter incentive constraints of the decoders.

I. INTRODUCTION

The lossy source coding setup of Shannon [1] involves an encoder and a decoder that share the common

goal of reliably transmitting an information source. What if the communicating agents are self-interested

and want to minimize their own cost function? What if the communicating devices have their own incentive

constraints? Such situations often arise in adversarial communication settings in which agents have non-

aligned and distinct objectives, and the goal of each agent is to optimize its own objective given the

information available locally. Such strategic communication scenarios are also frequent in economical

interactions, financial transactions, marketing, negotiation, auctions, court, security, and political campaigns

among others.

In the seminal paper [2], Kamenica and Gentzkow investigate the Bayesian persuasion game, in which

the encoder commits to implementing an encoding strategy. The question of the optimal information

disclosure policy arises. In this paper, this problem is referred to as the strategic communication problem.

As Machine Learning (ML) is being used in areas such as education, health, employment, and commerce

in order to make important decisions about individuals, strategic communication is also being increasingly

observed in such human-machine interactions. In adversarial machine learning where data generators and

learners have mismatched objectives, classification problems [3] often exhibit opportunities for a strategic

agent to get a better classification result by selectively revealing information to the classifier, especially

if the transmitter is in possession of information about the classifier like its objective function. Such non-

cooperative communication scenarios which frequently arise in real-world circumstances, require new

multi-disciplinary approaches and techniques in order to achieve optimal outcomes. The present work

studies a non-cooperative successive refinement source coding setup in which communication is subjected

to information constraints as well as incentive constraints of the decoders. As information theory is

concerned with optimizing the performance of communication systems and game theory analyzes the

strategic interactions among rational agents, the problem of strategic information selection and transmission

can be naturally studied at the intersection of these two disciplines. In the following, we review the

standard cooperative successive refinement source coding setup and the optimal region of achievable rates

characterized in [4] and [5].
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A. Preliminary: Successive Refinement Coding

Successive refinement is a special case of multiple description code for a discrete memoryless source

U drawn according to an i.i.d. distribution PU and observed by an encoder E and communicated via two

perfect links to two decoders D1 and D2. In the standard cooperative communication scheme, formulated

as a rate-distortion problem, a source stream is encoded into two descriptions M0 at rate R0 and M1 at

rate R1 in a progressive order, which allows the later description to be used in order to refine the early

one. This improves the quality of the reconstructions progressively. D1 receives both descriptions M0 and

M1, while D2 receives only one description M0. Both decoders are endowed with distortion measures,

also called cost functions, c1(U, V1) and c2(U, V2) where V1 and V2 are their respective reconstructions

of the source. The early works [4] and [5], focused on the fundamental problem of characterizing the

optimal rate-distortion region, in which such a progressive coding does not result in any performance loss,

compared to single stage coding systems, see also [6, Chapter 13.5]. For a given conditional distribution

QV1V2|U and a pair of costs (C1, C2) such that E[c1(U, V1)] ≤ C1 and E[c2(U, V2)] ≤ C2, the optimal

successive refinement rate distortion region is the set of pairs (R0, R1) such that

R0 ≥I(U ;V1), (1)

R0 +R1 ≥I(U ;V1, V2). (2)

In this work, the goal is not to find the optimal rate region for fixed cost values. We consider an equivalent

analysis which consists of minimizing the expected cost function for fixed rates, subject to a conditional

distribution that satisfies the information constraints (1) and (2).

We investigate a strategic communication problem through a decentralized, successive refinement net-

work with restricted communication, between one informed encoder and two decoders making the ultimate

decisions that affect the encoder, as depicted in Fig. 2. The encoder and the decoders are endowed with

non-aligned objectives captured by distinct and arbitrary cost functions. The goal of the encoder consists

of designing an information disclosure policy specifying what bits of information should be revealed in

order to attain a specific objective subject to the challenges imposed by the successive refinement coding

setup. We consider interdependent decoders cost functions, i.e. the cost function of each decoder depends

on the state and on the choice of action of the other decoder. The goal of each player is to minimize its

respective cost function. We assume that the players are aware of the objectives of the other players, i.e

cost functions are known by all players and thus encoding and decoding functions are selected accordingly.
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The game starts when the encoder commits to and reveals its encoding function to both decoders. Each

encoding function induces a finite Bayesian game among the decoders, as in [7]. This Bayesian game

admits Bayes-Nash equilibria at which the pair of decoding functions will be played. Once the source

sequence of independent and identically distributed random variables is drawn, the encoder observes it

and transmits a public signal to both decoders and a private signal to the first decoder only. Then, each

decoder observes its received messages, and draws a sequence of actions according to its respective

decoding function. This setting, also referred to as the Bayesian persuasion game, enables the use of

entropy constraints in order to derive the fundamental information-theoretic limits of compression and

communication. We are interested in characterizing the coding scheme that minimizes the encoder’s long-

run cost function subject to the constraints imposed by the channel.

B. Motivation

Consider a navigation app E that is also concerned with traffic regulation, sending signal recommenda-

tions to two different users, drivers D1 and D2, about road traffic: busy (b) or light (l). Assume that one of

the users, driver D1, has a premium account which gives her access to an additional private information

about the state of the road. Each driver, based on the symbol(s) received from the app, will choose between

two actions: Take the road vi0 or not vi1 for i ∈ {1, 2}. We assume no driver has incentive in taking the

road when the traffic is busy. Initially, D1 is better off if both drivers choose the same action, i.e either

they both take the road, or they both don’t. However; driver D2 is better off if each takes a different

action. The app however, is better off if only one of the drivers takes the road. Assume that the signaling

strategy, i.e. the conditional distribution over the symbol spaces {l, b}×{l, b} given the state of the traffic

{light, busy}, of the app is known by both drivers. The app and each of the drivers are endowed with

cost functions that depend on the state of the road and on the actions taken by both drivers. These cost

functions are given in the following tables when the traffic is busy and when the traffic is light.

Busy traffic v20 v21
v10 2, 3, 1 1, 2, 2
v11 1, 2, 2 2, 3, 1

Light traffic v20 v21
v10 1, 2, 0 0, 1, 1
v11 0, 1, 1 1, 2, 0

Fig. 1: Cost functions of E , D1, D2 with respect to the state of traffic and drivers’ action pairs. If the
traffic is busy, D1 plays v10 and D2 plays v20, the cost of E is 2, the cost of D1 is 3, and the cost of D2

is 1.



5

In this example, for every signaling strategy of the app, the decoders will play a matching pennies

game which admits an equilibrium. What is the optimal signaling strategy of the navigation app in order

to minimize its cost? In other words, how can the app persuade one of the drivers to take the road and

the other not to by sending a public signal to both drivers and a private signal to driver D1?

In this paper, we follow the approach of [8], [9], and extend our previous work in [10] which considers

strategic communication via a successive refinement network where the action of one decoder does not

affect the cost function of the other decoder. In the following, we provide a brief review of related literature

before proceeding with our system model and the formulation of the problem and the solution.

C. Related Literature

Originally referred to as the sender-receiver game, the problem of strategic information transmission

was formulated in the game theory literature with no communication constraints. The Nash equilibrium

solution of the cheap talk game was investigated by Crawford and Sobel in their seminal paper [11],

in which the encoder and the decoder are endowed with distinct objectives and choose their coding

strategies simultaneously. In [2], Kamenica and Gentzkow formulate the Stackelberg version of the strategic

communication game, in which the encoder is the Stackelberg leader and the decoder is the Stackelberg

follower, choosing its strategies as a best-response to the encoder’s strategy. This setting, referred to as the

Bayesian persuasion game, is the one under study in this paper by considering the successive refinement

coding setup with two decoders.

Information design with multiple senders interacting with a set of receivers is studied in [7]. The authors

establish the existence of equilibria, and show that the senders do not need to randomize if the public

message is selected from the continuum. In [12], [13], the Nash equilibrium solution is investigated for

multi-dimensional sources and quadratic cost functions. In [14], both Nash and Stackelberg equilibria are

studied for dynamic multi-stage signaling games under quadratic criteria.

Strategic compression in the context of strategic information transmission was addressed in [15].

The problem is modeled as a Stackelberg game with mismatched objectives, and asymptotic limits of

equilibrium strategies are characterized along with their associated costs for three different problem

settings. The case where the decoder privately observes a signal correlated to the state, also referred to as

the Wyner-Ziv setting [16], is studied in [15], [17] and [9]. Vora and Kulkarni investigate the achievable

rates for the strategic communication problem in [18], [19] where the decoder is the Stackelberg leader.

In [20], Deori and Kulkarni characterize the minimum number of distinct source symbols that can be
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correctly recovered by a receiver in any Stackelberg equilibrium of the sender-receiver game where the

encoder is the Stackelberg leader.

The computational aspects of the persuasion game are considered in [21]. The strategic communication

problem through a noisy channel has been addressed in [8]. The persuader and the decision maker are

endowed with mismatched utility functions. Their solution is formulated as a function of the channel’s

capacity and characterized using the concavification method of [2]. The problem considered in [8] is

analogous to the one studied in this paper which consists of persuading two interdependent decoders

instead of one decoder endowed with a utility measure.

In our communication scenario, the Bayesian persuasion game played between the encoder and both

decoders is a Stackelberg game in which players do not choose their strategies simultaneously, but the

encoder, who is the Stackelberg leader, chooses its strategy first, then the decoders, who are two Stackelberg

followers, play a subsequent Bayesian game and choose their respective strategies simultaneously after

observing the encoder’s strategy.

D. Contributions

We establish a strategic model for the successive refinement lossy source coding setup in which the

encoder is endowed with a cost function that depends on the actions of both decoders as well as the

state. We study the information-theoretic limits of the strategic communication problem by considering

several independent and identical copies of the Bayesian persuasion game of [2]. We combine the incentive

constraints of the decoders with the information constraints imposed by the successive refinement coding

setup. We assume that the encoder E commits to and reveals an encoding strategy before observing the

source. We use the successive refinement coding technique to characterize the set of target distributions

which will be used in the solution formulation. In [10], the cost function of decoder Di depends only on

its own action Vi, for i ∈ {1, 2}. In this work, we consider cost functions that depend on the state and

actions of both decoders. Thus, each commitment of the encoder induces a finite Bayesian game among

the decoders. Since the set of information policies is compact, such a Bayesian game admits an essential

Bayes-Nash equilibrium [22]. In order to get a robust solution concept, we assume that decoders will

select the pair of output sequences that minimizes their respective costs and maximizes the encoder’s

cost. We fully characterize the sets of target distributions of the encoder and the decoders as well as the

optimal single-letter expected cost of the encoder and the single-letter Bayesian game played among the

decoders. Our main result describes the asymptotic behavior of the encoder’s long-run cost function and
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E

ce(U, V1, V2) c1(U, V1, V2)

c2(U, V1, V2)

D1

D2 V n
2

V n
1

Un

M1 ∈ {1, ..2⌊nR1⌋}

M0 ∈ {1, ..2⌊nR0⌋}

Fig. 2: Strategic successive refinement coding
setup with cost-interdependent decoders

its lower bound that could be achieved with strategic compression and transmission. In order to prove

achievability, we propose an alternative formulation of the solution by considering a dense subset of target

distributions which induce essential equilibria only. We control the Bayesian beliefs of each decoder about

the state and about the type of the other decoder. In our converse proof we identify the auxiliary random

variables and show for each pair of single-letter distributions, there exists at least one pair of decoding

strategies that forms a Bayes-Nash equilibrium. We also show that the single-letter optimal cost of the

encoder is a lower bound to its long-run optimal cost.

This paper is organized as follows. In Sec. II, we introduce the system model, and we provide the main

result in Sec. III. The converse and the achievability proofs are stated in Sec. IV and Sec. V.

E. Notations

Let Un and V n
i denote the sequences of random variables of source information un = (u1, ..., un) ∈ Un,

and decoder Di’s actions vni ∈ Vn
i respectively for i ∈ {1, 2}. Calligraphic fonts U and Vi denote the

finite alphabets of the state space and the action set of decoder Di respectively. Lowercase letters u and

vi denote the symbol realizations. For a discrete random variable X, we denote by ∆(X ) the probability

simplex, i.e. the set of probability distributions over X , and by PX(x) the probability mass function

P{X = x}. We use the notation of suppPX to refer to the support of PX . We denote by T n
δ (PX) the set

of all δ−typical sequences corresponding to PX . This definition can be extended to k−tuples of sequences

(xn
1 , x

n
2 , ...x

n
k) ∈ X n

1 ×X n
2 ×...×X n

k , that are jointly δ−typical with respect to the joint probability PX1...Xk
.

The set of all such k−tuples is denoted by T n
δ (PX1...Xk

). The Kullback-Leiber (KL) divergence between

two distributions P and Q is denoted by D(P
∣∣∣∣Q). Notation X −
− Y −
−Z stands for the Markov chain

property PZ|XY = PZ|Y . The information source U follows the independent and identically distributed

(i.i.d) probability distribution PU ∈ ∆(U).
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In the following, we introduce the model and we define the strategic communication game.

II. SYSTEM MODEL

In this section, we define the coding functions, as well as single-letter and long-run cost functions.

We specify the consisting elements of the Bayesian game induced by each encoding and we describe the

corresponding set of Bayes-Nash equilibria. Finally we state the strategic encoding problem to be solved

by the encoder.

Definition 1. Let R0, R1 ∈ R2
+ = [0,+∞[2, and n ∈ N⋆ = N\{0}. The encoding function σ and the

decoding functions τi of the encoder E and decoders Di for i ∈ {1, 2} respectively, are given by

σ : Un 7→ ∆
(
{1, ..2⌊nR0⌋} × {1, ..2⌊nR1⌋}

)
,

τ1 : {1, 2, ..2⌊nR0⌋} × {1, 2, ..2⌊nR1⌋} 7→ ∆(Vn
1 ),

τ2 : {1, 2, ..2⌊nR0⌋} 7→ ∆(Vn
2 ). (3)

The coding triplet (σ, τ1, τ2) induces a joint probability distribution

Pσ,τ1,τ2
UnM0M1V n

1 V n
2
=

( n∏
t=1

PUt

)
Pσ

M0M1|UnPτ1
V n
1 |M0M1

Pτ2
V n
2 |M0

. (4)

Definition 2. We consider the single-letter cost functions ce : U × V1 × V2 7→ R of the encoder and

ci : U × V1 × V2 7→ R of the decoder Di, for i ∈ {1, 2}. A coding triplet (σ, τ1, τ2) induces a long-run

cost function

cne (σ, τ1, τ2) =
∑

un,vn1 ,v
n
2

Pσ,τ1,τ2
UnV n

1 V n
2
(un, vn1 , v

n
2 ) ·

[
1

n

n∑
t=1

ce(ut, v1,t, v2,t)

]
,

where Pσ,τ1,τ2
UnV n

1 V n
2

denotes the marginal distributions of Pσ,τ1,τ2
UnM0M1V n

1 V n
2

over the n-sequences (Un, V n
1 , V

n
2 ).

We consider the strategic communication game in which the decoders aim to minimize their respective

cost functions. In our model, the decoders cost functions are interdependent. As a consequence, each

encoding function σ induces a Bayesian game Gσ among the decoders. The consisting elements of the

Bayesian game Gσ are listed in the following definition.

Definition 3. For each encoding σ, the finite Bayesian game Gσ consists of:

• The decoders D1 and D2 are the players of the game,

• The sets of actions Vn
1 , Vn

2 are the set of decoder output sequences.
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• The pair of messages (M0,M1) corresponds to the type of decoder D1, the message M0 is the type

of decoder D2.

• The decoding functions τ1, τ2 are the behavior1 strategies of the decoders.

• The decoder D1 knows the type of the decoder D2. The decoder D2 forms a belief Pσ
M1|M0

regarding

the type of the decoder D1.

• The cost function Cσ
i : {1, 2, ..2⌊nR0⌋} × {1, 2, ..2⌊nR1⌋} × Vn

1 ×Vn
2 7→ R of decoder Di, i ∈ {1, 2} is

defined by

Cσ
i (m0,m1, v

n
1 , v

n
2 ) =

∑
un

Pσ
Un|M0M1

(un|m0,m1)

[
1

n

n∑
t=1

ci(ut, v1,t, v2,t)

]
, ∀vn1 , vn2 ,m0,m1. (5)

• Given the decoding functions (τ1, τ2) and the types (m0,m1), we define the expected decoder costs

by

Ψσ
1 (τ1, τ2,m0,m1) =

∑
vn1 ,v

n
2

Pτ1
V n
1 |M0M1

(vn1 |m0,m1)Pτ2
V n
2 |M0

(vn2 |m0)C
σ
1 (m0,m1, v

n
1 , v

n
2 ), (6)

Ψσ
2 (τ1, τ2,m0) =

∑
m1

Pσ
M1|M0

(m1|m0)
∑
vn1 ,v

n
2

Pτ1
V n
1 |M0M1

(vn1 |m0,m1)Pτ2
V n
2 |M0

(vn2 |m0)C
σ
2 (m0,m1, v

n
1 , v

n
2 ).

(7)

Remark 1. Unlike the case in the Bayesian persuasion game of Kamenica-Gentzkow [2] in which the

decoder plays a pure strategy, our model allows randomization at the decoders which play behavioral

strategies as defined in Definition 1. This assumption is required as it guarantees the existence of Bayes-

Nash equilibria for the Bayesian game Gσ.

The Bayesian game Gσ as defined in Definition 3, is finite and the players of this game which are

the decoders use behavioral strategies, therefore Nash Theorem [23] ensures the existence of at least one

Bayes-Nash equilibrium for Gσ. At equilibria, no player has incentive in deviating from its equilibrium

strategy. In the following, we define the set of Bayes-Nash equilibria of the Bayesian game Gσ, and we

formulate the encoding problem accordingly.

Definition 4. Given σ, for each behavior strategy τ2 (resp. τ1), decoder D1 (resp. D2), computes the set

1A behavior strategy τi of player i in a Bayesian game is a mapping Ti 7→ ∆(Vi), where Ti is the set of types of player i and Vi is the
set of actions.
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BR1(σ, τ2) (resp. BR2(σ, τ1)) of best-response strategies as follows

BR1(σ, τ2) =
{
τ1,Ψ

σ
1 (τ1, τ2,m0,m1) ≤ Ψσ

1 (τ̃1, τ2,m0,m1),∀ τ̃1,m0,m1

}
.

BR2(σ, τ1) ={τ2,Ψσ
2 (τ1, τ2,m0) ≤ Ψσ

2 (τ̃2, τ2,m0) ∀ τ̃2,m0}.

Definition 5. For each encoding strategy σ, we define the set BNE(σ) of Bayes-Nash equilibria (τ1, τ2)

of Gσ as follows

BNE(σ) = {(τ1, τ2), τ1 ∈ BR1(σ, τ2) and τ2 ∈ BR2(σ, τ1)}.

Remark 2. The assumption that state and action sets are finite can be generalized to compact sets as

in [2]. In fact, there exist Bayes-Nash equilibria for Bayesian games with compact convex spaces and

quasi-concave functions. More details on existence of Bayes-Nash equilibria can be found in [24, Chap. 6].

The communication game takes place following the timeline given below:

• The encoder E chooses, announces the encoding σ.

• The sequence Un is drawn i.i.d with distribution PU .

• The messages (M0,M1) are encoded according to Pσ
M0M1|Un , and the game between the decoders Gσ

begins.

• Knowing σ, the decoders select (τ1, τ2) ∈ BNE(σ). In case of multiple Bayes-Nash equilibria (τ1, τ2),

we assume the decoders select the worst one for the encoder perspective. A sequence V n
1 is drawn

according to τ1 and a sequence V n
2 is drawn according to the strategy τ2.

• The encoder cost is given by cne (σ, τ1, τ2).

For (R0, R1) ∈ R2
+ and n ∈ N⋆, the coding problem under study is given by

Γn
e (R0, R1) = inf

σ
max

(τ1,τ2)∈BNE(σ),
cne (σ, τ1, τ2). (8)

In [2] and [10], the decoders are assumed to select the best-response strategy that is worst for the

encoder’s cost. In this model, we also consider the Bayes-Nash equilibrium which is worst for the encoder’s

cost in order to get a robust solution concept. In the following, we present our main result which consists

of two statements describing the asymptotic behaviour of the encoder’s long-run cost given in (8).
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III. MAIN RESULT

A. Characterization

We consider two auxiliary random variables W0 ∈ W0 and W1 ∈ W1 with |W0| = |V1| × |V2|, and

|W1| = |V1|.

Definition 6. For (R0, R1) ∈ R2
+, we define the set of target distributions as follows

Q0(R0,R1) =

{
QW0W1|U , R0 ≥ I(U ;W0), R0 +R1 ≥ I(U ;W1,W0)

}
, (9)

Definition 7. For each distribution QW0W1|U ∈ ∆(W0 ×W1)
|U|, we define a single-letter Bayesian game

as follows:

• The type of the decoder D1 is (w0, w1), whereas the type of the decoder D2 is w0.

• The decoder D1 knows the type of the decoder D2, the decoder D2 forms a Bayesian belief QW1|W0

regarding the type of the decoder D1.

• The single-letter cost functions C⋆
i : V1 × V2 × W0 × W1 7→ R of decoder Di are defined for all

(v1, v2, w0, w1) by

C⋆
i (v1, v2, w0, w1) =

∑
u

Q(u|w0, w1)ci(u, v1, v2),

• For each pair (QV1|W0W1 ,QV2|W0) and types (w0, w1), the single-letter expected costs are defined by

Ψ⋆
1(QV1|W0W1 ,QV2|W0 , w0, w1) =

∑
v1,v2

Q(v1|w0, w1)Q(v2|w0)C
⋆
1(v1, v2, w0, w1). (10)

Ψ⋆
2(QV1|W0W1 ,QV2|W0 , w0) =

∑
w1

Q(w1|w0)
∑
v1,v2

Q(v1|w0, w1)Q(v2|w0)C
⋆
2(v1, v2, w0, w1). (11)

Definition 8. For each distribution QW0W1|U ∈ ∆(W0×W1)
|U|, the auxiliary set of Bayes-Nash equilibria

is given by

BNE(QW0W1|U) =
{
(QV1|W0W1 ,QV2|W0), Ψ⋆

1(QV1|W0W1 ,QV2|W0 , w0, w1) ≤ Ψ⋆
1(Q̃V1|W0W1 ,QV2|W0 , w0, w1)

∀Q̃V1|W0W1 , w0, w1,Ψ
⋆
2(QV1|W0W1 ,QV2|W0 , w0) ≤ Ψ⋆

2(QV1|W0W1 , Q̃V2|W0 , w0) ∀Q̃V2|W0 , w0

}
.
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Definition 9. The encoder’s optimal single-letter cost is defined by

Γ⋆
e(R0, R1) = inf

QW0W1|U
∈Q0(R0,R1)

max
(QV1|W0W1

,QV2|W0
)∈

BNE(QW0W1|U
)

E
[
ce(U, V1, V2)

]
, (12)

where the expectation in (12) is evaluated with respect to the distribution PUQW0W1|UQV1|W0W1QV2|W0 .

Theorem 1. Let (R0, R1) ∈ R2
+, we have

∀ε > 0,∃n̂ ∈ N, ∀n ≥ n̂, Γn
e (R0, R1) ≤ Γ⋆

e(R0, R1) + ε, (13)

∀n ∈ N, Γn
e (R0, R1) ≥ Γ⋆

e(R0, R1). (14)

The proof of Theorem 1 is stated in Sec. V and IV.

Lemma 1. The sequence
(
nΓn

e (R0, R1)
)
n∈N⋆ is sub-additive.

The proof of Lemma 1 is stated in Appendix A . Using Fekete’s Lemma for the sub-additive sequence(
nΓn

e (R0, R1)
)
n∈N⋆ , we get

lim
n→∞

Γn
e (R0, R1) = inf

n∈N⋆
Γn
e (R0, R1) = Γ⋆

e(R0, R1). (15)

This result describes two features of the asymptotic behavior of the encoder’s long run cost function

Γn
e (R0, R1):

1) Γn
e (R0, R1) converges to the single-letter cost Γ⋆

e(R0, R1),

2) Γ⋆
e(R0, R1) is a lower bound to Γn

e (R0, R1).

It’s important to note that just like the case of Shannon’s lossy source coding, the single-letter solution

Γ⋆
e(R0, R1) in the strategic setting is only achievable asymptotically by block coding and cannot be

achieved in the one-shot scenario with the transmission of a single symbol. That is, if n = 1, Γ1
e(R0, R1) ̸=

Γ⋆
e(R0, R1).

B. Sketch of the Converse Proof of Theorem 1

The goal is to show that for any block length n ∈ N, the optimal long-run cost Γn
e (R0, R1) of the

encoder, resulting from block coding and the Bayesian beliefs induced by the coding strategies, admits a

lower bound Γ⋆
e(R0, R1), formulated using auxiliary random variables and single-letter Bayesian beliefs.
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The game played by blocks of n-sequences can be viewed as a sequence of single-letter games played

at each stage t ∈ {1, . . . , n}. The proof consists of establishing the relations between the beliefs as well

as the equilibria for both single-letter and block games. We begin by identifying the auxiliary random

variables and the single-letter distribution induced by the coding such that the Markov chain properties of

our model are satisfied. Then we show that the marginal distribution Pσ
W0W1|U induced by the encoding

σ satisfies the information constraints imposed by successive refinement coding. Then we characterize

the set of single-letter Bayes-Nash equilibria induced by Pσ
W0W1|U using the marginals Pτ1

V1|W0W1
and

Pτ2
V2|W0

such that τ1 and τ2 are best responses to σ of D1 and D2 respectively. This allows switching

from optimizing over coding strategies to optimizing over single-letter distributions and hence showing

the desired inequality.

C. Sketch of the Achievability Proof of Theorem 1

Our proof consists of three main parts:

1) We introduce an alternative formulation of the problem which allows the restriction of the opti-

mization to a dense subset of Q0(R0, R1) composed of distributions QW0W1|U inducing Bayes-Nash

equilibria that are essential, i.e for which small perturbations of QW0W1|U induce small perturbations

in the equilibrium strategies (QV1|W1W0 ,QV2|W0) ∈ BNE(QW0W1|U). This reformulation eliminates

irregular jumps of the encoder cost function resulting from perturbing the equilibrium strategies.

2) We generate the codebook for the successive refinement setup as in [6, Section 13.5] and we show

that the probability of error over the codebook is small.

3) We show that the Bayesian posterior beliefs of each decoder induced by the coding functions are

close, under the Kullback-Leibler (KL)-divergence, to the single-letter posterior beliefs described

using auxiliary random variables.

D. Special Case with Independent Decoders Cost Functions

Consider the problem of strategic communication via a successive refinement network in which the

cost function of one decoder does not depend on the action of the other decoder, i.e. suppose for all

u, v1, v
′
1, v2, v

′
2 we have c1(u, v1, v2) = c1(u, v1, v

′
2) and c2(u, v1, v2) = c2(u, v

′
1, v2). Therefore, for every

encoding σ, and for all τ1, τ2, τ ′1, τ
′
2, we have BR1(σ, τ2) = BR1(σ, τ

′
2) and BR2(σ, τ

′
1) = BR2(σ, τ

′
1).
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Lemma 2. For all σ, τ1, τ2, we have

BNE(σ) = BR1(σ, τ2)×BR2(σ, τ1). (16)

Therefore, the encoding problem to be solved by the encoder, writes as follows

Γn
e (R0, R1) = inf

σ
max

τ1∈BR1(σ),
τ2∈BR2(σ)

cne (σ, τ1, τ2). (17)

Let (R0, R1) ∈ R2
+. Consider the optimal single-letter cost function Γ̃e(R0, R1) given by

Γ̃e(R0, R1) = inf
QW0W1|U
∈Q0(R0,R1)

max
QV1|W0W1

∈Q1(QW0W1|U
)

QV2|W0
∈Q2(QW0|U

)

E
[
ce(U, V1, V2)

]
. (18)

where the infimum is taken over the set Q0(R0, R1) defined in (9), and the decoders’ target distributions

are defined as follows

Q1(QW1W0|U) = argmin
QV1|W0W1

E QW0W1|U
QV1|W0W1

[
c1(U, V1)

]
, (19)

Q2(QW0|U) = argmin
QV2|W0

E QW0|U
QV2|W0

[
c2(U, V2)

]
. (20)

Corollary 1. Let (R0, R1) ∈ R2
+. We have

Γ⋆
e(R0, R1) = Γ̃e(R0, R1). (21)

In the following, we proceed with the proof of the converse statement (14) of our main result.

IV. CONVERSE PROOF OF THEOREM 1

Let (R0, R1) ∈ R2
+ and n ∈ N⋆. Fix (σ, τ1, τ2), and consider a random variable T uniformly distributed

over {1, 2, ..., n} and independent of (Un,M0,M1, V
n
1 , V

n
2 ). We identify the auxiliary random variables

W0 = (M0, T ), W1 = M1, (U, V1, V2) = (UT , V1,T , V2,T ), distributed according to Pστ1τ2
UW0W1V1V2

defined for

all (u,w0, w1, v1, v2) = (ut,m0,m1, t, v1,t, v2,t) by

Pστ1τ2
UW0W1V1V2

(u,w0, w1, v1, v2) = Pστ1τ2
UTM0M1,tV1,tV2,t

(ut,m0,m1, t, v1,t, v2,t)

=
1

n

∑
ut−1

unt+1

∑
vt−1
1 ,vn1,t+1

vt−1
2 ,vn2,t+1

( n∏
t=1

PU(ut)

)
Pσ

M0M1|Un(m0,m1|un)Pτ1
V n
1 |M0M1

(vn1 |m0,m1)Pτ2
V n
2 |M0

(vn2 |m0).
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Remark 3. Notations UT , V1,T and V2,T refer to components Ut, V1,t and V2,t of the sequences Un, V n
1

and V n
2 respectively selected uniformly at random for t ∈ {1, 2, .., n}.

Lemma 3. The distribution Pστ1τ2
UW0W1V1V2

has marginal on ∆(U) given by PU and satisfies the Markov

chain properties

(U, V2)−
− (W0,W1)−
− V1,

(U,W1, V1)−
−W0 −
− V2.

Proof. [Lemma 3] The i.i.d. property of the source ensures that the marginal distribution is PU . By the

definition of the decoding functions τ1 and τ2 we have

(UT , V2,T )−
− (M1,M0, T )−
− V1,T ,

(UT ,M1, V1,T )−
− (M2,M0, T )−
− V2,T .

Therefore, the distribution of auxiliary random variables decomposes as Pστ1τ2
UW0W1V1V2

= PUPσ
W0W1|UP

τ1
V1|W0W1

Pτ2
V2|W0

.

Lemma 4. For all σ, the distribution Pσ
W0W1|U ∈ Q0(R0, R1).

Proof. [Lemma 4] We consider an encoding strategy σ, then

nR0 ≥ H(M0) ≥ I(Un;M0) =
n∑

t=1

I(Ut;M0|U t−1) (22)

= nI(UT ;M0|UT−1, T ) (23)

= nI(UT ;M0, U
T−1, T ) (24)

≥ nI(UT ;M0, T ) = nI(U ;W0). (25)

In fact, (23) follows from the introduction of the uniform random variable T ∈ {1, . . . , n}, (24) comes

from the i.i.d. property of the source and (25) follows from the identification of the auxiliary random

variables (U,W0). Similarly,

n(R1 +R0) ≥ H(M1,M0) ≥ I(Un;M1,M0)

=
n∑

t=1

I(Ut;M1,M0|U t−1) = nI(UT ;M1,M0|UT−1, T )
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≥nI(UT ;M1,M0, T ) = nI(U ;W1,W0).

Lemma 5. For all (σ, τ1, τ2) and i ∈ {1, 2}, we have

cne (σ, τ1, τ2) =E
[
ce(U, V1, V2)

]
. (26)

where the expected values are evaluated with respect to PUPσ
W0W1|UP

τ1
V1|W0W1

Pτ2
V2|W0

. Moreover, for each

(m0,m1, v
n
1 , v

n
2 ) and i ∈ {1, 2} we have

Cσ
i (m0,m1, v

n
1 , v

n
2 ) =E

[
C⋆

i (w0, w1, v1, v2)
]
, (27)

Ψσ
1 (τ1, τ2,m0,m1) =E

[
Ψ⋆

1(P
τ1
V1|W0W1

,Pτ2
V2|W0

, w0, w1)
]
, (28)

Ψσ
2 (τ1, τ2,m0) =E

[
Ψ⋆

2(P
τ1
V1|W0W1

,Pτ2
V2|W0

, w0)
]
. (29)

Proof. [Lemma 5] By Definition 2, we have

cne (σ, τ1, τ2) =
∑

un,m0,m1,

vn1 ,vn2

( n∏
t=1

PU(ut)

)
Pσ

M0M1|Un(m0,m1|un)Pτ1
V n
1 |M0M1

(vn1 |m0,m1)

× Pτ2
V n
2 |M0

(vn2 |m0) ·

[
1

n

n∑
t=1

ce(ut, v1,t, v2,t)

]

=
n∑

t=1

∑
ut,m0,m1,
v1,t,v2,t

Pσ,τ1,τ2(ut,m0,m1, t, v1,t, v2,t)ce(ut, v1,t, v2,t) = E
[
ce(U, V1, V2)

]
.

For each (m0,m1, v
n
1 , v

n
2 ) and i ∈ {1, 2} we have

Cσ
i (m0,m1, v

n
1 , v

n
2 ) =

∑
un

Pσ
Un|M0M1

(un|m0,m1)

[
1

n

n∑
t=1

ci(ut, v1,t, v2,t)

]

=
1

n

∑
un

n∏
t=1

Pσ
Ut|M0M1

(ut|m0,m1)
n∑

t=1

ci(ut, v1,t, v2,t)

=
n∑

t=1

∑
ut

Pσ(ut|m0,m1, t)ci(ut, v1,t, v2,t)

= E
[
C⋆

i (v1, v2, w0, w1)
]
.

Ψσ
1 (τ1, τ2,m0,m1)
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=
∑
un

( n∏
t=1

PU(ut)

)
P1(m0|m0,m1)

∑
vn1 ,v

n
2

Pτ1(vn1 |m0,m1)Pτ2(vn2 |m0)

[
1

n

n∑
t=1

c1(ut, v1,t, v2,t)

]

=
n∑

t=1

∑
ut

PU(ut)P1(m0, t|m0,m1, t)
∑

v1,t,v2,t

Pτ1,t(v1,t|m0,m1, t)Pτ2,t(v2,t|m0, t)
[
c1(ut, v1,t, v2,t)

]
=

∑
u

PU(u)P1(w0|w0, w1)
∑
v1,v2

Pτ1,t(v1|w0, w1)Pτ2,t(v2|w0)C
⋆
1(v1, v2, w0, w1)

= E
[
Ψ⋆

1(P
τ1,t
V1|W0W1

,Pτ2,t
V2|W0

, w0, w1)
]
.

Similarly, equation (29) can be shown.

In the following, we show that for each encoding strategy σ, each equilibrium (τ1, τ2) of the game of

block n, induces an equilibrium for the single-letter game.

Lemma 6. For all σ, we have

BNE(Pσ
W0W1|U) =

{
(QV1|W0W1 ,QV2|W0), ∃(τ1, τ2), τ1 ∈ BR1(σ, τ2), τ2 ∈ BR2(σ, τ1),

QV1|W0W1 = Pτ1
V1|W0W1

,QV2|W0 = Pτ2
V2|W0

}
. (30)

Proof. [Lemma 6] Fix σ and let (QV1|W0W1 ,QV2|W0) ∈ BNE(Pσ
W0W1|U). We consider (τ1, τ2) such that

Pτ1
V n
1 |M0M1

(vn1 |m0,m1) =
n∏

t=1

QV1|W0W1(v1,t|m0,m1, t),

Pτ2
V n
2 |M0

(vn2 |m0) =
n∏

t=1

QV2|W0(v2,t|m0, t).

Then ∀(w0, w1, v1) = (m0,m1, t, v1,t),

Pτ1
V1|W0W1

(v1|w0, w1) =Pτ1
V1|W0W1

(v1,t|m0,m1, t) =
∑

vt−1
1 ,vn1,t+1

n∏
s=1

QV1|W0W1(v1,s|m0,m1, s)

=QV1|W0W1(v1,t|m0,m1, t)
∑

vt−1
1 ,vn1,t+1

∏
s ̸=t

QV1|W0W1(v1,s|m0,m1, s)

=QV1|W0W1(v1,t|m0,m1, t) = QV1|W0W1(v1|w0, w1). (31)

Suppose that τ1 /∈ BR1(σ, τ2). Then, there exists τ̄1 ̸= τ1 such that

EPσ
U|W0W1

[
Ψ⋆

1(P
τ̄1
V1|W0W1

,Pτ2
V2|W0W2

, w0, w1)
]
= Ψσ

1 (τ̄1, τ2,m0,m1)

< Ψσ
1 (τ1, τ2,m0,m1) = EPσ

U|W0W1

[
Ψ⋆

1(P
τ1
V1|W0W1

,Pτ2
V2|W0W2

, w0, w1)
]
, (32)
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which contradicts (QV1|W0W1 ,QV2|W0W2) ∈ BNE(Pσ
W0W1|U). Therefore, τ1 ∈ BR1(σ, τ2) and thus QV1|W0W1

belongs to the right-hand side of (30). Similarly, one can show that τ2 ∈ BR2(σ, τ1). The other inclusion

is direct.

For any strategy σ, we have

max
τ1,τ2

cne (σ, τ1, τ2) =max
τ1,τ2

E Pσ
W0W1|U

Pτ1
V1|W0W1

Pτ2
V2|W0

[
ce(U, V1, V2)

]
(33)

= max
(QV1|W0W1

,QV2|W0
)∈

BNE(Pσ
W0W1|U

)

E Pσ
W0W1|U

QV1|W0W1
QV2|W0

[
ce(U, V1, V2)

]
(34)

≥ inf
QW0W1|U
∈Q0(R0,R1)

max
(QV1|W0W1

,QV2|W0
)∈

BNE(Pσ
W0W1|U

)

E
[
ce(U, V1, V2)

]
(35)

=Γ⋆
e(R0, R1). (36)

Equations (33) and (34) follow from Lemma 5 and Lemma 6, whereas (35) comes from Lemma 4. This

concludes the converse proof of Theorem 1.

In the following, we prove the achievability statement (13) of our main result.

V. ACHIEVABILITY PROOF OF THEOREM 1

We denote by T n
δ (PX) the set of all δ−typical sequences corresponding to PX . The set of all such

k−tuples is denoted by T n
δ (PX1...Xk

). By a slight abuse of notation, the δ-typical set can be denoted by

T n
δ (X) or T n

δ when the context is not ambiguous.

E
D1

D2

Un

M1

M0

V n
1

V n
2

PV1|W1W0

PV2|W0

ce(U, V1, V2) W n
1 ,W

n
2

W n
0

c2(U, V2)

c1(U, V1)

Fig. 3: Achievability proof via successive refinement source coding.

A. Essential Equilibria

The random coding scheme may induce some perturbations in the probability distribution QW0W1|U of the

Bayesian game of Definition 7. A Bayesian game is essential [22, Definition 4.1] if small perturbations of

the probability distributions may induce small perturbations of the set of Bayes-Nash equilibria. According

to [22, Theorem 4.2], the set of essential Bayesian games is a dense subset of the set of Bayesian games.
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Without loss of generality, we consider the target probability distribution QW0W1|U induces an essential

Bayesian games.

Definition 10. Given QW0W1|U ∈ Q0(R0, R1). An equilibrium (QV1|W1W0 ,QV2|W0) ∈ BNE(QW0W1|U) is

essential if for all ε > 0, there exists an open neighborhood Ω including QW0W1|U such that for all

Q̃W0W1|U ∈ Ω, we have

(Q̃V1|W1W0 , Q̃V2|W0) ∈ BNE(Q̃W0W1|U)

=⇒ max
w0,w1

||QV1|W0W1(·|w0, w1)− Q̃V1|W0W1(·|w0, w1)||+ ||QV2|W0(·|w0)− Q̃V2|W0(·|w0)|| ≤ ϵ, (37)

where || · || denote the L1-norm. We denote by EBNE(QW0W1|U) the set of essential equilibria.

Equation (37) ensures that the Bayes-Nash equilibrium of the perturbed game (Q̃V1|W1W0 , Q̃V2|W0) ∈

BNE(Q̃W0W1|U) is close under the L1-norm, to the original Bayes-Nash equilibrium (QV1|W1W0 ,QV2|W0) ∈

BNE(QW0W1|U).

Definition 11. For (R0, R1) ∈ R2
+, we define the set

Q̃0(R0, R1) =
{
QW0W1|U , R0 > I(U ;W0), R0 +R1 > I(U ;W1,W0),

min
u,w0,w1

QW0W1|U(w0, w1|u) > 0, BNE(QW0W1|U) = EBNE(QW0W1|U)
}
. (38)

In the following, we show that optimizing over the full set of target distributions results in the same

cost as when the optimization is taken over the set of target distributions with full support that induce

essential Bayes-Nash Equilibria.

Definition 12. We replace the set Q0(R0, R1) by the set Q̃0(R0, R1) and we define the following program:

Γ̃e(R0, R1) = inf
QW0W1|U

∈

Q̃0(R0,R1)

max
(QV1|W0W1

,QV2|W0
)

∈EBNE(QW0W1|U
)

E
[
ce(U, V1, V2)

]
.

Lemma 7. For (R0, R1) ∈ R2
+, we have

Γ⋆
e(R0, R1) = Γ̃e(R0, R1). (39)

The proof of Lemma 7 follows from [22, Theorem 4.2] and the Lemmas 8 and 9, below.

Lemma 8. Given QW0W1|U ∈ Q0(R0, R1), the set EBNE(QW0W1|U) is dense in
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BNE(QW0W1|U).

Proof. [Lemma 8] Let (R0, R1) ∈ R2
+ and consider the Bayes-Nash equilibrium correspondence Q0(R0, R1) ⇒

BNE(QW0W1|U). According to [22, Theorem 3.3], for finite games, this correspondance is non-empty,

compact-valued and upper semi-continuous. From [25, Theorem 2], see also [22, Lemma 2.1], there exists

dense subset of probability distributions QW0W1|U such that this correspondence is lower semi-continuous,

hence continuous. In conclusion, [22, Theorem 4.2] shows that there exists dense subset of probability

distributions QW0W1|U such that BNE(QW0W1|U) = EBNE(QW0W1|U), i.e. the Bayes-Nash equilibria are

essential Bayes-Nash equilibria.

Lemma 9. Let (R0, R1) ∈ R2
+, the set Q̃0(R0, R1) is a dense subset of Q0(R0, R1).

Proof. [Lemma 9] The set of distributions QW0W1|U with full support is dense in ∆(W0×W1)
|U|. The finite

intersection of dense subsets is dense. By using Lemma 8, Q̃0(R0, R1) is a dense subset of Q0(R0, R1).

The last part of our achievability proof consists of showing that for sufficiently large n, the expected

cost of the encoder evaluated with respect to the long-run beliefs of the decoders is close under the L1-

norm to the expected cost evaluated with respect to the single-letter beliefs. This requires showing that

Bayesian beliefs of the decoders induced by the coding strategies in the game of block n, are close under

the KL-divergence to the single-letter beliefs defined with respect to the auxiliary random variables W0

and W1. Decoder D1 has belief about the state U whereas decoder D2 has belief about the state U and

the observation M1 of decoder D1.

B. Codebook Generation

Fix a conditional probability distribution QW0W1|U ∈ Q̃0(R0, R1). Without loss of generality, we assume

that there exists η > 0 such that

R0 =I(U ;W0) + η, (40)

R1 =I(U ;W1|W0) + η, (41)

• Codebook generation: Randomly and independently generate 2⌊nR0⌋ sequences wn
0 (m0) for m0 ∈ [1 :

2⌊nR0⌋], according to the i.i.d distribution
∏n

t=1 QW0(w0,t). For each (m1,m0) ∈ [1 : 2⌊nR1⌋] × [1 :

2⌊nR0⌋] generate a sequence wn
1 (m1,m0) randomly and conditionally independently according to the

i.i.d conditional distribution
∏n

t=1QW1|W0(w1,t|w0,t(m0)).
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• Encoding function: Encoder E observes un and selects m0 such that (un, wn
0 (m0)) ∈ T n

δ (PUQW0|U),

and m1 such that (un, wn
1 (m1,m0), w

n
0 (m0)) ∈ T n

δ (PUQW0W1|U) and sends m0 to both decoders and

m1 to the decoder D1. If such a jointly typical tuple doesn’t exist, the source encoder sets (m0,m1)

to (1, 1).

• Decoding function: Decoder D1 observes the pair (M0,M1) and decoder D2 observes M0

C. Analysis of error probability

We define the following error events

F0 ={(Un,W n
0 (m0)) /∈ T n

δ , ∀m0}, (42)

∀m0, F1(m0) ={(Un,W n
0 (m0),W

n
1 (m1,m0)) /∈ T n

δ ∀m1}. (43)

We denote the codebook by C. For each m0 ∈ {1, ..2⌊nR0⌋}, we denote the inner codebook by C(m0) =

{wn
1 (m0,m1) ∈ C,m1 ∈ {1, ..2⌊nR1⌋}}. For each codeword m0 ∈ C, for each symbol w1 ∈ W1, for each

t ∈ {1, . . . , n}, for δ > 0, we denote

At(w1|m0) =
{
wn

1 ∈ C(m0), w1,t = w1

}
, ∀w1,m0 (44)

J (m0) =

{
t ∈ {1, .., n},

∣∣∣∣∣∣∣∣QW1|W0(·|w0,t)−
|At(·|m0)|
|C(m0)|

∣∣∣∣∣∣∣∣ > δ

}
, ∀m0, (45)

where || · || denote the L1-norm.

Let J =
⋃

m0
J (m0). We have by the union of events bound P(|J | > δ) ≤

∑
m0

P(|J (m0)| > δ).

By the covering lemma [6, Lemma 3.3], P(F0) tends to zero as n −→ ∞ if R0 ≥ I(U ;W0) + η,

and P(F1(M0)|F c
0) goes to zero by the covering lemma if R1 ≥ I(U ;W1|W0) + η. Moreover, for all

(w1, t,m0), we have

∑
wn

1∈C(m0)

P
[
W1,t = w1|wn

0 (m0)
]
=

∑
wn

1∈C(m0)

E
[
1{W1,t=w1}

∣∣wn
0 (m0)

]
= E

[
|At(w1|m0)|

∣∣∣∣wn
0 (m0)

]
(46)

=
∑

wn
1∈C(m0)

Q(w1,t|w0,t) =
∣∣C(m0)

∣∣ · QW1|W0(·|W0,t). (47)

Therefore, as n −→ ∞, P(J (m0)) goes to zero for all m0 ∈ {1, ..2⌊nR0⌋}.

The expected probability of error over the codebook being small means that for all ε2 > 0, for all
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η > 0, there exists δ̄ > 0, for all δ ≤ δ̄, there exists n̄ ∈ N such that for all n ≥ n̄ we have:

E
[
P(F0)

]
≤ε2, (48)

E
[
P(F1(m0)|F c

0)
]
≤ε2, (49)

E
[
P(|J (m0)| > δ)

]
≤ε2. (50)

D. Control of the Bayesian belief

We introduce the indicator of error events E1
δ ∈ {0, 1} defined as follows

E1
δ =


1, if (un, wn

1 , w
n
0 ) /∈ T n

δ (PUQW1W0|U).

0, otherwise.
(51)

We control the Bayesian belief of decoder D2 about the type of D1.

Lemma 10. For all (wn
0 , w

n
1 , w0, w1, t), we have

lim
n7→∞

E

[
1

n

n∑
t=1

D(PW1,t|Wn
0
(.|W n

0 )||QW1,t|W0,t(.|W0,t))

∣∣∣∣∣E1
δ = 0

]
= 0. (52)

The proof of Lemma 10 is stated in App. B. Given the types (m0,m1) of the decoders, the Bayesian

posterior belief about the source U at stage t ∈ {1, . . . , n} is close to the single-letter Bayesian belief.

Lemma 11. For all δ > 0, we have

lim
n7→∞

E

[
1

n

n∑
t=1

D(PUt|M0M1||QU |W1W0(·|W1,t,W0,t))

∣∣∣∣∣E1
δ = 0

]
≤ δ. (53)

The proof of Lemma 11 is stated in App. C.

In the following, we define the Bayesian game Gσ,t at stage t for t ∈ {1, 2, ...n}, and we show that

for each σ, (τ1, τ2) is an equilibrium of Gσ if and only if (τ1,t, τ2,t) is an equilibrium of Gσ,t for all

t ∈ {1, 2, ...n}.

E. Bayesian game of stage t ∈ {1, 2, ...n}

For each σ and for all t ∈ {1, 2, ...n}, we define the Bayesian game at stage t ∈ {1, 2, ...n}. Then, we

relate the Bayesian game of the coding problem Γn
e (R0, R1), to the Bayesian game at stage t ∈ {1, 2, ...n},

and finally, to the Bayesian game of the single-letter solution Γ⋆
e(R0, R1).
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Definition 13. For each encoding σ, and t ∈ {1, 2, ...n}, the Bayesian game Gσ,t of stage t ∈ {1, 2, ...n}

consists of:

• The decoders Di, i ∈ {1, 2} as the players of the game,

• Vi,t is the set of action of Di,

• (M0,M1) is the type of decoder D1, and M0 is the type of decoder D2.

• τ1,t : {1, 2, ..2⌊nR0⌋} × {1, 2, ..2⌊nR1⌋} 7→ ∆(V1,t) is a behavior strategy of decoder D1, and τ2,t :

{1, 2, ..2⌊nR0⌋} 7→ ∆(V2,t) is a behavior strategy of D2.

• The decoder D1 knows the type of the decoder D2. The decoder D2 forms a Bayesian belief Pσ
M1|M0

about the type of the decoder D1.

• The cost function of decoder Di at stage t ∈ {1, 2, ...n} is defined by

Cσ,t
i (m0,m1, v1,t, v2,t) =

∑
ut

Pσ(ut|m0,m1)ci(ut, v1,t, v2,t), ∀v1,t, v2,t,m0,m1.

• Given the strategies (τ1,t, τ2,t) of the decoders at stage t ∈ {1, 2, ...n}, the expected costs are given

by

Ψσ,t
1 (τ1,t, τ2,t,m0,m1) =

∑
v1,t,v2,t

Pτ1,t(v1,t|m0,m1)Pτ2,t(v2,t|m0)C
σ,t
1 (v1,t, v2,t,m0,m1).

Similarly, Ψσ,t
2 (τ1,t, τ2,t,m0) can be defined.

Definition 14. For each encoding σ, and t ∈ {1, 2, ...n}, the essential Bayesian game G̃σ,t(M0,M1, V1,t, V2,t)

of stage t ∈ {1, 2, ...n} consists of:

• The decoders Di, i ∈ {1, 2} as the players of the game,

• Vi,t is the set of action of Di,

• M0,M1 is the type of decoder D1, and M0 is the type of decoder D2.

• τ1,t : {1, 2, ..2⌊nR0⌋} × {1, 2, ..2⌊nR1⌋} 7→ ∆(V1,t) is a behavior strategy of decoder D1, and τ2,t :

{1, 2, ..2⌊nR0⌋} 7→ ∆(V2,t) is a behavior strategy of D2.

• The decoder D1 knows the type of the decoder D2. The decoder D2 forms a Bayesian belief Pσ
W1,t|W0,t

about the type of the decoder D1.

• The cost function of decoder Di at stage t ∈ {1, 2, ..., n} is defined by

C̃σ,t
i (m0,m1, v1,t, v2,t) =

∑
ut

Q(ut|w0,t(m0), w1,t(m0,m1))ci(ut, v1,t, v2,t), ∀v1,t, v2,t,m0,m1.
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• Given the strategies (τ1,t, τ2,t) of the decoders at stage t ∈ {1, 2, ...n}, the expected costs are given

by

Ψ̃σ,t
1 (τ1,t, τ2,t,m0,m1) =

∑
v1,t,v2,t

Pτ1,t(v1,t|w0,t(m0), w1,t(m0,m1))Pτ2,t(v2,t|w0,t(m0))C̃
σ,t
1 (v1,t, v2,t,m0,m1).

Similarly, Ψ̃σ,t
2 (τ1,t, τ2,t,m0) can be defined.

For each encoding strategy σ and stage t ∈ {1, 2, ...n}, the set BNE(σ, t) of Bayes-Nash equilibria

(τ1,t, τ2,t) of G̃σ,t(M0,M1, V1,t, V2,t) is given by

˜BNE
t
(σ) =

{
(τ1,t, τ2,t), Ψ̃σ,t

1 (τ1,t, τ2,t,m0,m1) ≤ Ψ̃σ,t
1 (τ̃1,t, τ2,t,m0,m1),∀ τ̃1,t,m0,m1,

Ψ̃σ,t
2 (τ1,t, τ2,t,m0) ≤ Ψ̃σ,t

2 (τ1,t, τ̃2,t,m0) ∀ τ̃2,t,m0

}
. (54)

Definition 15. For each encoding σ, and t ∈ {1, 2, ...n}, the Bayesian game Ĝσ,t(W n
0 ,W

n
1 , V1,t, V2,t) of

stage t ∈ {1, 2, ...n} consists of:

• The decoders Di, i ∈ {1, 2} as the players of the game,

• Vi,t is the set of action of Di,

• (W n
0 ,W

n
1 ) = (W0,t,W1,t,W

t−1
0 ,W n

0,t+1,W
t−1
1 ,W n

1,t+1) is the type of decoder D1, and W n
0 is the type

of decoder D2.

• τ1,t : {1, 2, ..2⌊nR0⌋} × {1, 2, ..2⌊nR1⌋} 7→ ∆(V1,t) is a behavior strategy of decoder D1, and τ2,t :

{1, 2, ..2⌊nR0⌋} 7→ ∆(V2,t) is a behavior strategy of D2.

• The decoder D1 knows the type of the decoder D2. The decoder D2 forms a Bayesian belief Pσ
Wn

1 |Wn
0

about the type of the decoder D1.

• The cost function of decoder Di at stage t ∈ {1, 2, ...n} is defined by

Ĉσ,t
i (w0,t, w1,t, v1,t, v2,t) =

∑
ut

Pσ(ut|w0,t, w1,t)ci(ut, v1,t, v2,t), ∀v1,t, v2,t, w0,t, w1,t.

• Given the strategies (τ1,t, τ2,t) of the decoders at stage t ∈ {1, 2, ...n}, the expected costs are given

by

Ψ̂σ,t
1 (τ1,t, τ2,t, w0,t, w1,t) =

∑
v1,t,v2,t

Pτ1,t(v1,t|w0,t, w1,t)Pτ2,t(v2,t|w0,t)Ĉ
σ,t
1 (v1,t, v2,t, w0,t, w1,t).

Similarly, Ψ̂σ,t
2 (τ1,t, τ2,t, w0,t) can be defined.
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Lemma 12. For every σ, (τ1, τ2) ∈ BNE(σ) if and only if (τ1,t, τ2,t) ∈ BNE(σ, t) for all t ∈ {1, 2, ..., n}.

Proof. Given σ, let (τ1, τ2) ∈ BNE(σ). Assume that there exists t such that (τ1,t, τ2,t) /∈ BNE(σ, t). This

means that at t, at least one of the decoders is better off if it deviates from its strategy. Without loss of

generality, assume D1 deviates to τ̃1,t and selects ṽ1,t accordingly. This shifts the action sequence vn1 that

corresponds to τ1, to ṽn1 = (v1,1, v1,2, ..., ṽ1,t, ..., v1,n). Thus τ1 /∈ BRσ
1 (τ2), and (τ1, τ2) /∈ BNE(σ).

Conversely, if (τ1,t, τ2,t) ∈ BNE(σ, t) for all t ∈ {1, 2, ..., n}, we define (τ1, τ2) such that

Pτ1(vn1 |m0,m1) =
n∏

t=1

Pτ1,t(v1,t|m0,m1), ∀vn1 ,m0,m1 (55)

Pτ2(vn2 |m0) =
n∏

t=1

Pτ2,t(v2,t|m0), ∀vn2 ,m0. (56)

Suppose that (τ1, τ2) /∈ BNE(σ). Without loss of generality, assume τ1 /∈ BR1(σ, τ2), i.e there exists τ̃1 ∈

BR1(σ) such that Ψσ
1 (τ1, τ2,m0,m1) ≥ Ψσ

1 (τ̃1, τ2,m0,m1) ∀m0,m1 . Therefore, there exists t ∈ {1, ..., n}

such that Ψσ,t
1 (τ1,t, τ2,t,m0,m1) ≥ Ψσ,t

1 (τ̃1,t, τ2,t,m0,m1) ∀m0,m1. Thus, (τ1,t, τ2,t) /∈ BNE(σ, t) which

leads to the desired contradiction.

We use Lemmas 10, 11, and 12, in order to evaluate the expected cost of the decoder D1 for strategies

(τ1, τ2) of types (wn
0 , w

n
1 ).

Ψσ
1 (τ1, τ2, w

n
0 , w

n
1 ) =

∑
vn1 ,v

n
2

Pτ1(vn1 |wn
0 , w

n
1 )Pτ2(vn2 |m0)

∑
un

P(un|wn
0 , w

n
1 )

[
1

n

n∑
t=1

c1(ut, v1,t, v2,t)

]
(57)

=
1

n

n∑
t=1

∑
v1,t,v2,t

Pτ1,t(v1,t|wn
0 , w

n
1 )Pτ2,t(v2,t|wn

0 )
∑
ut

P(ut|wn
0 , w

n
1 )c1(ut, v1,t, v2,t) (58)

≃ 1

n

n∑
t=1

∑
v1,t,v2,t

Pτ1,t(v1,t|wn
0 , w

n
1 )Pτ2,t(v2,t|wn

0 )
∑
ut

Q(ut|w0,t, w1,t)c1(ut, v1,t, v2,t)

(59)

=
1

n

n∑
t=1

∑
v1,t,v2,t

Pτ1,t(v1,t|w0,t, w1,t)Pτ2,t(v2,t|w0,t)
∑
ut

Q(ut|w0,t, w1,t)c1(ut, v1,t, v2,t)

(60)

=
∑
w0,w1

πW0W1(w0, w1)
∑
v1,v2

P(v1|w0, w1)P(v2|w0)
∑
u

Q(u|w0, w1)c1(u, v1, v2), (61)

where πW0W1(·) denotes the empirical distribution induced by the sequences (wn
0 , w

n
1 ) and (59) follows
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from Lemma 11. Similarly, we evaluate the cost of decoder D2 for strategies (τ1, τ2) of type wn
0 .

Ψσ
2 (τ1, τ2, w

n
0 ) (62)

=
∑
wn

1

P(wn
1 |wn

0 )
∑
vn1 ,v

n
2

Pτ1(vn1 |wn
0 , w

n
1 )Pτ2(vn2 |wn

0 )
∑
un

P(un|wn
0 , w

n
1 )

[
1

n

n∑
t=1

c2(ut, v1,t, v2,t)

]
(63)

=
1

n

n∑
t=1

∑
wn

1

P(wn
1 |wn

0 )
∑
v1,t,
v2,t

Pτ1,t(v1,t|wn
0 , w

n
1 )Pτ2,t(v2,t|wn

0 )
∑
ut

P(ut|wn
0 , w

n
1 )c2(ut, v1,t, v2,t) (64)

≃ 1

n

n∑
t=1

∑
wn

1

P(wn
1 |wn

0 )
∑
v1,t,
v2,t

Pτ1,t(v1,t|wn
0 , w

n
1 )Pτ2,t(v2,t|wn

0 )
∑
ut

Q(ut|w0,t, w1,t)c2(ut, v1,t, v2,t) (65)

=
1

n

n∑
t=1

∑
wn

1

P(wn
1 |wn

0 )
∑
v1,t,
v2,t

Pτ1,t(v1,t|w0,t, w1,t)Pτ2,t(v2,t|w0,t)
∑
ut

Q(ut|w0,t, w1,t)c2(ut, v1,t, v2,t) (66)

=
1

n

n∑
t=1

∑
w1,t

P(w1,t|wn
0 )

∑
v1,t,
v2,t

Pτ1,t(v1,t|w0,t, w1,t)Pτ2,t(v2,t|w0,t)
∑
ut

Q(ut|w0,t, w1,t)c2(ut, v1,t, v2,t) (67)

≃ 1

n

n∑
t=1

∑
w1,t

Q(w1,t|w0,t)
∑
v1,t,
v2,t

Pτ1,t(v1,t|w0,t, w1,t)Pτ2,t(v2,t|w0,t)
∑
ut

Q(ut|w0,t, w1,t)c2(ut, v1,t, v2,t) (68)

=
∑
w0

πW0(w0)
∑
w1

Q(w1|w0)
∑
v1,v2

Q(v1|w0, w1)Q(v2|w0)
∑
u

Q(u|w0, w1)c2(u, v1, v2), (69)

where πW0(·) denotes the empirical distribution of the sequence wn
0 , (65) comes from Lemma 11 and (68)

comes from Lemma 10. This concludes the achievability proof of Theorem 1.

APPENDIX A

PROOF OF LEMMA 1

Let n,m ∈ Z. We denote by σn+m
c , the concatenation of the strategies σn, σm where σn is implemented

over the first n stages and σm is implemented over the last m stages. For decoder i ∈ {1, 2}, consider

the best responses τi
n ∈ BRi(σ

n) and τi
m ∈ BRi(σ

m). Then, the concatenation τn+m
i,c of τi

n and τi
m is

also a best response τn+m
i,c ∈ BRi(σ

n+m
c ). Therefore, we have the inequality

nΓn
e (R1, R2) +mΓm

e (R1, R2)

=inf
σn

max
τ1

n∈BR1(σ
n),

τ2
n∈BR2(σ

n)

E
[ n∑

t=1

ce(Ut, V1,t, V2,t)
]
+ inf

σm
max

τ1
m∈BR1(σ

m),
τ2m∈BR2(σ

m)

E
[ m∑

t=1

ce(Ut, V1,t, V2,t)
]

(70)

= inf
σn+m
c

max
τn+m
1 ∈BR1(σ

n+m
c ),

τn+m
2 ∈BR2(σ

n+m
c )

E
[ n+m∑

t=1

ce(Ut, V1,t, V2,t)
]

(71)
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≥ inf
σn+m

max
τ1

n+m∈BR1(σ
n+m),

τ2
n+m∈BR2(σ

n+m)

E
[ n+m∑

t=1

ce(Ut, V1,t, V2,t)
]

(72)

=(n+m)Γn+m
e (R1, R2), (73)

where the notation σn+m
c stands for the encoding strategies obtained by concatenation.

APPENDIX B

BELIEF ABOUT THE TYPE OF D1: PROOF OF LEMMA 10

We introduce the indicator of error events E1
δ ∈ {0, 1} defined as follows

E1
δ =


1, if (un, wn

1 , w
n
0 ) /∈ T n

δ (PUQW1W0|U).

0, otherwise.
(74)

Also recall the following sets: For all m0, C(m0) = {wn
1 (m0,m1) ∈ C,m1 ∈ {1, ..2⌊nR1⌋}}, and for all

m0, w1 ∈ W1, t ∈ {1, . . . , n}, At(w1|m0) =
{
wn

1 ∈ C(m0), w1,t = w1

}
.

Lemma 13. For all (wn
0 , w

n
1 , w0, w1, t), we have

lim
n 7→∞

E
[ 1
n

n∑
t=1

D(PW1,t|Wn
0
(.|W n

0 )||QW1,t|W0,t(.|W0,t))
∣∣∣E1

δ = 0
]
= 0. (75)

Proof. For any (wn
1 , w

n
0 ), and sufficiently small δ > 0, and sufficiently large n we have

P(wn
1 |wn

0 ) =
∑

un∈T n
δ (PU|W0W1

,wn
0 ,w

n
1 )

P(wn
1 , u

n|wn
0 ) (76)

=
∑

un∈T n
δ (PU|W0W1

,wn
0 ,w

n
1 )

P(un|wn
0 )P(wn

1 |un, wn
0 ) (77)

=
∑

un∈T n
δ (PU|W0W1

,wn
0 ,w

n
1 )

2−nH(U |W0)1(E1
δ = 0) (78)

=|T n
δ (PU |W0W1 , w

n
0 , w

n
1 )|2−nH(U |W0) (79)

=2nH(U |W0W1)2−nH(U |W0) (80)

=2−nI(U ;W1|W0) (81)

=2−n(R1−η). (82)
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For any (t, w1,t, w
n
0 ), and sufficiently small δ > 0, we have

PW1,t|Wn
0
(w1,t|wn

0 ) =
∑

wn
1∈T n

δ (PW1|W0
,wn

0 )

P(wn
1 |wn

0 ) (83)

=
∑

wn
1∈At(w1,t|m0)

2−n(R1−η) (84)

= |At(w1,t|m0)|2−n(R1−η) (85)

=
|At(w1,t|m0)|

|C(m0)|
(86)

= QW1,t|W0,t(w1,t|w0,t) (87)

where (84) follows from (82) and (44), and (87) follows from (50). Therefore, we get

lim
n7→∞

E
[ 1
n

n∑
t=1

D(PW1,t|Wn
0
(.|W n

0 )||QW1,t|W0,t(.|W0,t))
∣∣∣E1

δ = 0
]

(88)

= lim
n7→∞

∑
wn

1 ,w
n
0

Pσ(wn
1 , w

n
0

∣∣∣E1
δ = 0)

1

n

n∑
t=1

∑
w1

P(w1|wn
0 ) log2

P(w1|wn
0 )

Q(w1,t|w0,t)
(89)

=0. (90)

where (90) follows since lim
n7→∞

log
PW1,t|Wn

0
(w1,t|wn

0 )

QW1,t|W0,t
(w1,t|w0,t)

= 0.

APPENDIX C

CONTROL OF BELIEFS ABOUT THE STATE U : PROOF OF LEMMA 11

We denote the Bayesian posterior belief about the state Pσ
Ut|M1M0

(·|m1,m0) ∈ ∆(U) by Pm1,m0
t . We

show that on average, the Bayesian belief is close in KL distance to the target belief QU |W1W0 induced

by the single-letter distribution QW1W0|U . The indicator of error event E1
δ ∈ {0, 1} is as given in (74).

Assuming the distribution QU |W1W0 is fully supported, the beliefs about the state are controlled as follows

E
[ 1
n

n∑
t=1

D(Pm1,m0
t ||PU |W1W0(·|W1,t,W0,t))

∣∣∣E1
δ = 0

]
(91)

=
∑

m1,m0,wn
1 ,w

n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

D(Pm1,m0
t ||PU |W1W0(·|W1,t,W0,t)) (92)

=
∑

m1,m0,wn
1 ,w

n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

Pm1m0
t (u)

PU |W1W0(u|w1,t, w0,t)
(93)

=
∑

m1,m0,wn
1 ,w

n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1

PU |W1W0(u|w1,t, w0,t)
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−
∑

m1,m0,wn
1 ,w

n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1

Pm1m0
t (u)

(94)

=
1

n

∑
m1,m0,wn

1 ,w
n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) ·

n∑
t=1

∑
u

Pm1m0
t (u) log2

1

PU |W1W0(u|w1,t, w0,t)

− 1

n

n∑
t=1

H(Ut|M1,M0, E
1
δ = 0) (95)

=
1

n

∑
un,wn

1 ,w
n
0

Pσ,τ1,τ2(un, wn
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1∏n
t=1PU |W1W0(ut|w1,t, w0,t)

− 1

n

n∑
t=1

H(Ut|M1,M0, E
1
δ = 0)

(96)

=
1

n

∑
un,wn

1 ,w
n
0∈T n

δ

Pσ,τ1,τ2(un, wn
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1∏n
t=1PU |W1W0(ut|w1,t, w0,t)

− 1

n

n∑
t=1

H(Ut|M1,M0, E
1
δ = 0)

(97)

≤ 1

n

∑
un,wn

1 ,w
n
0∈T n

δ

Pσ,τ1,τ2(un, wn
1 , w

n
0

∣∣∣E1
δ = 0) · n ·

(
H(U |W1,W0) + δ

)
− 1

n
H(Un|M1,M0, E

1
δ = 0) (98)

≤ 1

n
I(Un;M1,M0

∣∣∣E1
δ = 0)− I(U ;W1,W0) + δ +

1

n
+ log2 |U| · Pσ,τ1,τ2(E1

δ = 1) (99)

≤η + δ +
1

n
+ log2 |U| · Pσ,τ1,τ2(E1

δ = 1). (100)

• Equation (92) comes from the definition of expected K-L divergence.

• Equation (93) comes from the definition of K-L divergence.

• Equation (94) comes from splitting the logarithm.

• Equation (95) follows since:

∑
m1,m0,wn

1 ,w
n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1

Pm1m0
t (u)

(101)

=
∑

m1,m0,wn
1 ,w

n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

H(Ut|M1 = m1,M0 = m0) (102)

=
1

n

n∑
t=1

∑
m1,m0,wn

1 ,w
n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · H(Ut|M1 = m1,M0 = m0) (103)

=
1

n

n∑
t=1

∑
m1,m0

Pσ,τ1,τ2(m1,m0

∣∣∣E1
δ = 0) · H(Ut|M1 = m1,M0 = m0) (104)

=
1

n

n∑
t=1

H(Ut|M1,M0, E
1
δ = 0). (105)
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• Equation (96) follows since:

∑
m1,m0,wn

1 ,w
n
0

Pσ,τ1,τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1

PU |W1W0(u|w1,t, w0,t)

(106)

=
1

n

n∑
t=1

∑
ut,m1,m0,wn

1 ,w
n
0

Pσ,τ1,τ2(ut,m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1

PU |W1W0(ut|w1,t, w0,t)
(107)

=
1

n

n∑
t=1

∑
un,m1,m0,wn

1 ,w
n
0

Pσ,τ1,τ2(un,m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1

PU |W1W0(ut|w1,t, w0,t)
(108)

=
1

n

∑
un,m1,m0,wn

1 ,w
n
0

Pσ,τ1,τ2(un,m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1∏n
t=1PU |W1W0(ut|w1,t, w0,t)

(109)

=
1

n

∑
un,wn

1 ,w
n
0

Pσ,τ1,τ2(un, wn
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1∏n
t=1PU |W1W0(ut|w1,t, w0,t)

. (110)

• Equation (97) follows since the support of Pσ,τ1,τ2(un, wn
1 , w

n
0 |E1

δ ) = P{(un, wn
1 , w

n
0 ) ∈ T n

δ } is

included in T n
δ .

• Equation (98) follows from the typical average lemma property (Property 1 pp.26 in [6]) given in

lemma 16, and the chain rule of entropy: H(Un|M1,M0,W
n
1 ,W

n
2 ) ≤

∑n
t=1H(Ut|M1,M0,W1,W0).

• Equation (99) comes from the conditional entropy property and the fact that H(Un) = nH(U) for

an i.i.d random variable U and lemma 17.

• Equation (100) follows since I(Un;M1,M0) ≤ H(M1,M0) ≤ log2 |J | = n · (R1 + R0) = n ·

(I(U ;W1,W0) + η) and lemma 17.

If the expected probability of error is small over the codebooks, then it has to be small over at least

one codebook. Therefore, equations (48) and (49) imply that:

∀ϵ2 > 0,∀η > 0,∃δ̄ > 0,∀δ ≤ δ̄, ∃n̄ ∈ N, ∀n ≥ n̄,∃b⋆, s.t. Pb⋆(E
2
δ = 1) ≤ ε2. (111)

The strategy σ of the encoder consists of using b⋆ in order to transmit the pair (m1,m0) such that

(Un,W n
0 (m0),W

n
1 (m0,m1)) is a jointly typical sequence. By construction, this satisfies equation (111).

Lemma 14. Let QW1W0|U ∈ Q̃0(R1, R0), then ∀ε > 0, ∀α > 0, γ > 0, there exists δ̄, ∀δ ≤ δ̄, ∃n̄, ∀n ≥ n̄,

∃σ, such that 1− Pσ(Bα,γ,δ) ≤ ε.

Proof. of lemma 14 We have:

1− Pσ(Bα,γ,δ) := Pσ(B
c
α,γ,δ) (112)
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= Pσ(E
1
δ = 0)Pσ(B

c
α,γ,δ|E1

δ = 0) (113)

≤ Pσ(B
c
α,γ,δ|E1

δ = 0) (114)

≤ ε2 + Pσ(B
c
α,γ,δ|E1

δ = 1). (115)

Moreover,

Pσ(B
c
α,γ,δ|E1

δ = 0) =
∑

wn
1 ,w

n
0 ,m1,m0

Pσ

(
(wn

1 , w
n
0 ,m1,m0) ∈ Bc

α,γ,δ

∣∣∣∣∣E1
δ = 0

)
(116)

=
∑

wn
1 ,w

n
0 ,m1,m0

Pσ

(
(wn

1 , w
n
0 ,m1,m0) s.t.

|Tα(w
n
1 , w

n
0 ,m1,m0)|
n

≤ 1− γ

∣∣∣∣∣E1
δ = 0

)
(117)

= Pσ

(
#

n

{
t,D

(
Pm1,m0

t

∣∣∣∣∣∣∣∣QU |W1W0(·|W1,t,W0,t)

)
≤ α2

2 ln 2
< 1− γ

∣∣∣∣∣E1
δ = 0

}
(118)

= Pσ

(
#

n

{
t,D

(
Pm1,m0

t

∣∣∣∣∣∣∣∣QU |W1W0(·|W1,t,W0,t)

)
>

α2

2 ln 2
≥ γ

∣∣∣∣∣E1
δ = 0

}
(119)

≤ 2 ln 2

α2γ
· Eσ

[
1

n

n∑
t=1

D

(
Pm1,m0

t

∣∣∣∣∣∣∣∣QU |W1W0(·|W1,t,W0,t)

)]
(120)

≤ 2 ln 2

α2γ
·
(
η + δ +

2

n
+ 2 log2 |U| · Pσ(E

2
δ = 1),

)
(121)

• Equations (116) to (119) are simple reformulations.

• Equation (120) comes from using Markov’s inequality given in lemma 15.

• Equation (121) comes from equation (100).

Lemma 15. (Markov’s Inequality). For all ε1 > 0 , ε2 > 0 we have:

Eσ

[
1

n

n∑
t=1

D

(
Pm1,m0

t

∣∣∣∣∣∣∣∣QU |W1W0(·|W1,t,W0,t)

)]
≤ ε0 (122)

=⇒ Pwn
1 ,w

n
0 ,m1,m0

(
#

n

{
t,D

(
Pm1,m0

t

∣∣∣∣∣∣∣∣QU |W1W0(·|W1,t,W0,t)

)
> ε1

}
> ε2

)
≤ ε0

ε1 · ε2
. (123)

Proof. of lemma 15 We denote by Dt = D(Pm1,m0
t ||QU |W1W0(·|W1,t,W0,t) and Dn = {Dt}t the K-L

divergence. We have that:

P
(
#

n

{
t, s.t.Dt > ε1

}
> ε2

)
=P

(
1

n
·

n∑
t=1

1

{
Dt > ε1

}
> ε2

)
(124)
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≤
E
[
1
n
·
∑n

t=1 1

{
Dt > ε1

}]
ε2

(125)

=

1
n

∑n
t=1 E

[
1

{
Dt > ε1

}]
ε2

(126)

=

1
n

∑n
t=1 P

(
Dt > ε1

)
ε2

(127)

≤
1
n

∑n
t=1

E

[
Dt

]
ε1

ε2
(128)

=
1

ε1 · ε2
· E

[
1

n

n∑
t=1

Dt

]
≤ ε0

ε1 · ε2
. (129)

• Equations (124), (126), (127) and (129) are reformulations of probabilities and expectations.

• Equations (125) and (128), come from Markov’s inequality P(X ≥ α) ≤ E[X]
α

, ∀α > 0.

APPENDIX D

ADDITIONAL LEMMAS

Lemma 16. (Typical Sequences Property 1, pp.26 in [6]). The typical sequences (un, wn
1 , w

n
2 ) ∈ T n

δ

satisfy:

∀ε > 0, ∃δ̄ > 0, ∀δ ≤ δ̄, ∀n, ∀(un, wn
1 , w

n
2 ) ∈ T n

δ ,∣∣∣∣∣ 1n · log2
1∏n

t=1P(u|w1,t, w2,t)
−H(U |W1,W2)

∣∣∣∣∣ ≤ ε, (130)

where δ̄ = ε ·H(U |W1,W2).

Lemma 17. Let Un an i.i.d random variable and M a random variable. For all ε > 0, there exists n̄ ∈ N,

such that for all n ≥ n̄, we have

H(Un|Eδ = 0) ≥ n ·
(
H(U)− ε

)
. (131)

Proof.

H(Un|Eδ = 0) =
1

P(Eδ = 0)
·
(
H(Un|Eδ = 1)− P(Eδ = 1) ·H(Un|Eδ = 1)

)
(132)

≥H(Un|Eδ)− P(Eδ = 1) ·H(Un|Eδ = 1)
)

(133)
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≥H(Un)−H(Eδ)− P(Eδ = 1) ·H(Un|Eδ = 1)
)

(134)

≥H(Un)− n · ε. (135)

• Equation (132) follows from the conditional entropy definition.

• Equation (133) follows since P(Eδ = 0) ≤ 1.

• Equation (134) comes from the property H(Un|M,Eδ) = H(Un,M,Eδ) − H(M) − H(Eδ) ≥

H(Un)−H(M)−H(Eδ).

• Equation (135) follows since U is i.i.d and the definition of Eδ = 1. Hence, for all ε, there exists an

n̄ ∈ N such that for all n ≥ n̄ we have H(P(Eδ = 1)) +H(M) + P(Eδ = 1) · log2 |U| ≤ ε.
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[14] S. Sarıtaş, S. Yüksel, and S. Gezici, “Dynamic signaling games with quadratic criteria under Nash and Stackelberg equilibria,”

Automatica, vol. 115, no. C, May 2020.
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