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Abstract. The performances of gridshells depend on the topology of the
grid but also on the geometry of the underlying surface. Topology and
geometry are linked: the shape of a hanging chain model depends on the
pattern of the suspended fabric. In this paper, a method is proposed that
generates topologies by varying continuous parameters. The obtained
grids are adapted to the support conditions of the considered surface:
elements converge towards the supports and arrive perpendicular to the
edges otherwise. Grids are then lifted: the spatial mesh is the result of
an optimisation to have a funicular surface and flat panels. The spatial
mesh is then mechanically evaluated and its performance according to
different criteria is represented in a Pareto front. A non-intuitive result
shows that a large number of different topologies are situated on the
Pareto front. These results show the strength of the method to explore
different topologies.

Keywords: Topology finding · Gridshell · Form Finding.

1 Introduction

1.1 Necessity of topology generation

Meshes are everywhere in free form architecture, especially when it comes to
constructing surfaces. On so-called discrete surfaces, or gridshells, made of beams
and panels, the mesh is clearly visible: the beams are the edges of the mesh, the
panels are the faces. The topology of the grid, i.e. the connectivity between the
different elements, is thus apparent.

The construction of the surfaces must meet several requirements, of a geo-
metrical nature and relative to manufacturing (flat panels are less expensive and
easier to implement, for example), of a mechanical nature (the engineer seeks to
reduce deformations, to direct the forces towards the supports) or even aesthetic
(one prefers an equal distribution of the elements and panels of regular shape)
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The geometry of the grid, its shape, is one of the ways to meet these ob-
jectives. But before the geometry, it is necessary to choose the topology of the
grid.

The topology of the grid can be derived from the geometry to be discretised.
In the case of the Milan Trade Fair (Figure 1), the abrupt change in curvature
makes it necessary to introduce higher valence nodes (i.e. nodes that connect
more elements, coloured on the image) in order to limit the distortion of the
panels [16].

Fig. 1. Milan Trade Fair (Fuksas/SBP) Fig. 2. Isler’s hanging model [6]

But the topology of the grid can also control the resulting shape, in a process
of form finding as illustrated by the image of a Heinz Isler model (Figure 2). This
shape was obtained by suspending a net, whose topology (the textile orientation)
influences the deformation under gravity loading. The influence of the topology
is also illustrated in [5] where different fabric patterns are lifted, and in Figure
6 where a quad mesh with isolated singularities is submitted to gravity with a
constraint on panel planarity.

In general, most form finding methods depend on the definition of an input
grid topology, be it thrust network analysis [1], the Marionette method [10] or
other historical methods developed by Frei Otto at the Institute for Lightweight
Structures [12].

1.2 Existing methods of topology generation

Topological generation has not been widely studied for architectural structures,
but is a subject of research in the computer graphics community (see surveys [2,
4] and [7, 9] which are closer to the method described hereafter).

Topological generation is not to be confused with topological optimisation,
which optimises the distribution of material in an element.

R. Oval [13, 14] developed a method of topology generation based on the
boundary of the surface to be meshed, as well as features such as points or
curves chosen by the designer. The exploration of the different grids is then
controlled by a grammar of elementary operations on strips.



Topology generation 3

The method presented here is a continuation of this approach called ”topol-
ogy finding”. It proposes a new paradigm where the exploration of the grids is
controlled by continuous parameters defined at the boundary. It is therefore in-
tuitive, and starts from the support conditions which are a crucial element in the
behaviour of the structure but also its integration in an architectural context.

1.3 Importance of boundary conditions

The support conditions are the starting point for the method presented in this
article. Beyond aesthetics, the main issue of gridshell design is to carry the load
towards the supports where forces are transmitted to the ground.

Fig. 3. Smithsonian Institute, Washing-
ton, DC (Foster and Partners / Buro Hap-
pold - 2001) [8].

Fig. 4. Cabot Circus, Bristol (Chapman
Taylor with Nayan Kulkarni / SKM - 2008)
[17]

On both surfaces in Figures 3 and 4, the grid is formed of regular quadrilater-
als. In the case of the Smithsonian Institute, the support conditions are punctual,
and the topology of the grid is not changed at the columns. However, the thick-
ness of the beams increases at this point where the forces are concentrated. In
the case of Cabot Circus, the regular grid is supported by large edge beams,
which interrupt the grid: at the boundary, the beams are of various lengths, and
the connections may be unique.

The method, presented in the next section, generates topologies and grids
based on parameters defined along the edge. The resulting grids have beams
that converge at the supports, and beams that arrive perpendicular to the edge
elsewhere. They are therefore optimal from a mechanical point of view.

2 Topology and geometry generation method

2.1 Topology generation

The topology finding process is detailed in [3]. It relies on the computation of
minimal surfaces that are only an intermediate tool in the topology finding pro-
cess, but are not connected to the architectural shape. However, the boundary of
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the minimal surface is chosen in relation to the supports of the real architectural
surface, in order to find a topology and a grid that are adapted to the bound-
ary conditions. One example is shown Figure 5, the minimal surface boundary
is plotted in red, its vertical components are aligned with the columns shown
underneath.

Fig. 5. Topology and grid generation process. A crenelated boundary (in red) is built
over the real supports of the surface. This artificial boundary is controlled by height
parameters. A minimal surface (in blue) is computed on this boundary. A topological
skeleton is then retrieved (top right). It is made of singularities (red dots) of the height
gradient field. Streamlines lines of the gradient are shown in blue, the level set is shown
in orange. The skeleton defines patches that can be discretised regularly. The field is
finally integrated to get patch subdivisions (bottom right).

The grid is the discretisation of streamlines of a field, namely the gradient
field and its conjugate set the level set, on minimal surfaces which boundary is
made of horizontal curves and vertical lines. This choice provides thus a proper
alignment of the grid to the boundary, and smooth streamlines which intersect
at 90 degrees. Moreover, level lines converge at the location of vertical bound-
ary lines, which we choose to locate at the supports. By doing so forces are
channelled to the supports. This phenomenon is illustrated Figure 5, where grey
lines converge at six points on the boundary, where columns are, and arrive
perpendicularly to the edge otherwise.

The boundary of the minimal surface can be modified: it is subdivided into
slots whose heights can vary while keeping the same planar projection, and thus
the resulting grid changes as well. This relation between the boundary and the
grid is at the core of the generation process shown hereafter.

Generation of grid skeleton In this study, grids with quad panels are gener-
ated. Some triangular panels appear at the boundary, and the boundary point
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they connect is called a pole. Other irregular points, located on the boundary
or in the shape, are called singularities. At these points on the minimal surface,
the gradient is null: singularities are saddle points. The topology finding process
falls out into few parts: the determination of singularities (shown in red in Figure
5) and the computation of a skeleton. The skeleton, represented with blue and
orange curves Figure 5, is made of streamlines that connect singularities between
them and to the boundary. It defines patches: quadrilateral or triangular zones
that can be discretised regularly.

2.2 Determination of the geometry

Direct method for determining the strip subdivisions The number of
patch subdivisions is the same for all patches of a strip (a strip is a series of
patches that are connected along their opposite edges) and is computed to get
a target average edge length (of about 1.2 meters in our example).

The resulting grid is made of quads panels (except at poles) that are not
distorted because they come from the discretisation of lines that meet at right
angle. There are overall distributed nicely in the mesh. However, concentration
of lines at poles, and large faces at singularities can be noted. This could easily
be remeshed locally, and the former grids are kept for the evaluation, despite
this constructive remark.

Direct method for computing an adapted shape In this study, in order to
compare topologies, only one shape is computed for each topology. This shape
depends on the topology, but is not the only one that is adapted to this topology.
It is the result an optimisation under two major constraints: flat panels and a
funicular shape. This optimisation is run with Kangaroo [15]. The funicular load
is proportional to the tributary area in plane, therefore all grids, that have the
same planar projection, are submitted to the same loading. Other goals are
applied for achieving a smooth shape: mesh edge lengths are controlled, and a
stiffness is provided at the ridge beams to smooth curvature. The optimised shape
is rescaled to get a maximum target height that is the same for all grids (and
corresponds to a ratio height/span of 0.2). Grid heights could also be normalised
to get a constant enclosed volume. This lifting process is illustrated on two grids
with different topologies in Figure 6: because the shape depends on the topology,
the resulting geometries vary.

As mentioned in the introduction, this method for generating topologies can
also be used as a form finding method, as the resulting geometry is directly
related to the topology of the grid. Therefore, each geometry is also evaluated
as an isotropic shell, in order to compare their performance.

3 Case study: generation of grids on a hexagonal
boundary

The method is illustrated on a regular shape, that can be used to cover an
interior space or as a building (like the restaurant of Felix Candela in Xochimilco
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Fig. 6. Two grid examples that are lifted with a gravity load and constrained to have
planar panels. The two lifted shapes differ, because grid topologies are different.

[11]). We consider a point supported structure, whose boundary projection is an
hexagon, where supports are located at the discontinuities of the boundary. The
crenellated contour is thus made of six slots, and five parameter heights are
considered (when removing the rigid body motion). Some topologies that are
found are shown Figure 7.

3.1 Topologies that can be reached with this method

Even if this contour is very symmetrical, many topologies can appear. The types
of topologies that can occur are controlled by the Poincaré Hopf theorem: the
sum of the indices of the vertices must be equal to the Euler characteristic of
the surface (equal to 1 in this case).

Fig. 7. Selection of topologies that can be achieved with the presented method. Various
combinations of vertex indices can be created.

3.2 Mechanical model

Structural behaviour Three structural types are tested: a shell (isotropic),
a braced gridshell (anisotropic but with a membrane stiffness) and a gridshell
without bracing (anisotropic). The gridshell without bracing serves as a reference
for equivalent mechanical properties. The bracing section for the diagonals of
the braced gridshell is taken as a tenth of the regular beams section. The shell
properties are chosen in order to get a similar rigidity than the braced gridshell.

Applied loads and boundary conditions A symmetric gravity load is ap-
plied to mesh points and proportional to the tributary area. Hinged supports
are set at the six corners.
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Initialisation of the model Some parameters are chosen at the first iteration
and kept constant for the rest of the generation process (same structure mass
and section inertia in all grids). The only variables of the generation are those
changing the topology, i.e the slot heights of the boundary of the minimal surface.

Evaluation of the grids The grid geometry is thus given, and its properties can
be evaluated. Among all the criteria that can be chosen, dimensionless ratios are
built: the thrust divided by the vertical reaction, which can be a design criteria
for structures on top of existing building for example, the ratio between axial
and bending strain energies, which characterises deformations and forces in the
structure, and deflection, which is a design factor for relatively low structures
(deflection is kept as it is, since the height and span of the different structures are
the same). Since several criteria are involved, the Pareto front of the generated
grids is evaluated.

3.3 Results

In total, three structural topologies are tested. More than a hundred of grids are
generated, but one cannot prove that it constitutes an exhaustive scan of the
space of grids achievable with this method. Nevertheless, this sample allows to
see the diversity of possible designs, and to compare grids between them (see
Figure 8).

Fig. 8. Grids that belong to the Pareto front when evaluated for a symmetric loading.
Different topologies appear, but also geometric variations of the same topology, which
are framed with colours.

Pareto Front The Pareto front is calculated for the gridshell without bracing.
Over the 138 tested grid, 24 of them belong to the Pareto front, and are repre-
sented Figure 8. These grids can be grouped into topological families. Indeed,
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the generation method controls both the topology of the grid and the position
of the elements in space. Some topologies are also equivalent (with one rotation)
and are grouped together. Finally, eleven different topologies are present on the
Pareto front.

Fig. 9. Projection of the grids without bracing, in the plane of the support reactions
and deflection criteria. The grids belonging to the Pareto front are shown in red, one
representative of each topology family of the Pareto front is displayed on the side.

These grids are plotted in the objective space, a three dimensional space
whose axis are the supports reactions, the ratio of strain energies and deflection.
The grids belonging to the Pareto front are represented in red among all other
generated grids represented in blue in Figure 9. The results are represented as a
projection in the plane of two criteria (in this case the deflection on the ordinate
and the ratio of horizontal to vertical reactions on the abscissa). A representative
of each family is also displayed. This visualisation tool shows how the grids are
positioned in relation to each other. It also allows the designer to make choices
according to the criteria to be met.

Comparison of the structure typologies Three structural typologies are
tested and compared in Table 1. Values are computed for two topologies, the
symmetrical one with one singularity in the center, and another topology with
a singularity in the surface, two in corners, and no symmetry in the grid (these
topologies are shown in Figure 11 and the resulting 3D shapes are shown Figure
10).

As expected, adding bracing improves drastically the behaviour of the grid,
in particular with regard to strain energies. The relative performance depends on
the type of structure considered: with bracing, the symmetrical topology works
better than the asymmetrical topology. Deflection is much larger for the shell
models than for the grids.
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Table 1. Comparison of the performance of two grids, for three structural types (R.
for reactions, E. for strain energy and d for deflection).

3-symmetrical topology asymmetrical topology

R. E. d (mm) R. E. d (mm)

Gridshell 1.84 4.70 0.62 2.13 5.16 1.0

Braced gridshell 1.79 1.44 0.49 2.11 1.29 0.75

Shell 1.83 0.47 5.7 2.19 0.59 18

Fig. 10. Perspective views of the grid whose performances are compared for the dif-
ferent structural typologies: a symmetric topology with a central singularity (left) and
an asymmetric topology with one singularity in the surface and two at corners (right).

The shell model serves as an evaluation of the geometry obtained with the
grid topology. Stresslines can be computed on this shell, and compared to the
grid that was used to create the geometry. Two examples are shown Figure 11.
The stress lines of the two funicular forms are completely different. However, the
shape of the lines is close to the underlying grid topology. The deviations may
be due to the added planarity objective, or to the method of determining these
lines on imperfect meshes. This topic deserves to be explored in more detail.

Fig. 11. Stress lines under gravity loading computed on the symmetric grid and on a
grid with no symmetries and singularities located in the surface and on the boundary,
with their associated topology.

4 Conclusion and perspectives

The presented method allows the generation of a variety of grid topologies, all
adapted to the support conditions, by varying parameters defined along the edge.
This variety is reflected in the Pareto front of the case study: a real choice is
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offered to the designer according to the chosen criteria. The topology generation
tool can also be used upstream of many formfinding methods, for which the
topology is a given. Local remeshing techniques and local optimisations could
be added to improve grid performance. The link between topology and isotropic
shells deserves further investigation.
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