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A remark on the onset of resonance overlap
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Abstract

Chirikov’s celebrated criterion of resonance overlap has been widely used
in celestial mechanics and Hamiltonian dynamics to detect global instability,
but is rarely rigourous. We introduce two simple Hamiltonian systems,
each depending on two parameters measuring respectively the distance to
resonance overlap and non-integrability. Within some thin region of the
parameter plane, classical perturbation theory shows the existence of global
instability and symbolic dynamics, thus illustrating Chirikov’s criterion.
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1 Heuristic introduction – resonance overlapping

Let H : T×R×T → R be a time-dependent Hamiltonian of class C∞, 2π-periodic
in time, of the form

H(x, y, t) = H0(y) + εF (x, y, t). (1)

When ε = 0, the time-2π map ϕ of the flow of H is integrable and the level
curves of the coordinate y are all invariant. Curves whose rotation number H ′

0(y)
is rational or have good rational approximations disappear for generic Fourier
coefficients of F , as Poincaré noticed [30]. In place of some of those resonant curves,
periodic orbits originate, usually by elliptic/hyperbolic pairs. (More generally, non-
smooth invariant graphs known as Aubry-Mather sets can be found generically as
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the support of minimizing measures.) For systems of one and a half degree of
freedom, like (1) (or two degrees of freedom), elliptic orbits are surrounded by
elliptic ”eyes” (see [2, 17, 20] and references therein), where some kind of stability
prevails over long time intervals (see [4]). Simultaneously, as KAM theory proves,
a positive Lebesgue measure of Diophantine invariant curves persist [24, 25]. As
ε increases, more invariant curves disappear. (Some new invariant curves also
show up, although these ones are harder to detect.) Persisting invariant curves are
obstructions to large deviations in the y direction. Note that, in higher dimension,
Lagrangian invariant tori do not separate the phase space anymore and allow the
dynamics for slow, non-local instability, called Arnold diffusion [1, 10]. Arnold
diffusion is notoriously difficult to show.

As ε keeps increasing, the seeming sizes of resonant eyes grow. As long as the
separatrices of two resonances are well apart, invariant curves separating the two
zones confine orbits on one side or the other, and the system behaves as if the two
resonances did not interact: in each zone, the dynamics is reasonably described
by an integrable approximation retaining only the harmonics responsible for the
opening of the relevant eye. Chirikov has conjectured that an orbit will start
moving between two resonance eyes in a chaotic and unpredictable manner “as
soon as these unperturbed resonances overlap” [9, 10]. For a modern reference,
with applications to celestial mechanics, see Morbidelli’s book [22, Chap. 6 and
Section 9.2 in particular]. Indeed, as soon as the separatrices of the two resonances
get close to each other, the dynamics is no more described by two adjacent one-
resonance integrable models and, as Morbidelli puts it, “an initial condition in
the overlapping region does not know which resonance it belongs to, and hesitates
about which guiding trajectory it should follow”. The criterion has been used for
magnetically confined plasmas (as in Chirikov’s initial work or Escande’s review
[14]), the Solar System (e.g. [23, 22, 27, 29]), space debris [6], transport and
turbulence in fluid mechanics [12], as well as particle dynamics in accelerators,
microwave ionization of Rydberg atoms, etc. (see [17] and references therein).

Defining the closeness of two resonance eyes, or their overlap, is not a simple
matter, since generically separatrices split and thus do not precisely circumscribe
an ”eye”. Physicists speak of a ”stochastic layer” at the border, but little is
really known about dynamics in this layer, apart from the horseshoe (a set of zero-
measure) given by the Birkhoff-Smale theorem [26]. Moreover, there is a whole web
of resonances, and, for each resonance, there are infinitely many ways to choose
integrable approximations describing the opening of the corresponding eye. All
this makes Chirikov’s criterion imprecise. For a further analysis of why Chirikov’s
criterion fails in general, see for example [3, 7, 20].

Key to instability is the destruction of invariant curves. The precise mecha-
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nism remains mysterious, despite extensive efforts (e.g. [16, 19]). One attempt to
describe whether invariant curves persist or not, which has been quite successful
for practical purposes, is Greene’s criterion, which analyzes the stability of ac-
cumulating periodic orbits. This criterion has been partly justified [13, 15, 18].
Renormalization should also be an important tool for the full picture [7].

We will not address this difficult issue directly, but rather aim at illustrating
Chirikov’s criterion on a simple, rigorous example. Consider the Hamiltonian

hε,µ(x, y, t) =
y2

2
− y3

3
+ εF (x, y, t;µ); F (x, y, t;µ) = − 1

12
cosx+µf(x, y, t) (2)

on T×R×T, where ε and µ are real parameters and f(x, y, t) is a C∞ time-periodic
perturbation.

We denote by

hε(x, y) =
y2

2
− y3

3
− ε

12
cosx (3)

the Hamiltonian hε,µ with µ = 0.
The use of two parameters is reminiscent of Arnold’s approach to Arnold Dif-

fusion in his seminal paper [1] where he separates the average with respect to all
angles but x (which he takes bigger, of size ε) from the other harmonics (of size
εµ).

For µ = 0, the Hamiltonian (3) can be viewed as a modification of the twist
Hamiltonian y2/2 in the class of “classical” Hamiltonians (sums of a kinetic part
depending only on y and a potential part depending only on x and t) involving
only the lowest degree term in y and lowest order harmonic in the average cosx
creating two resonance eyes close to each other. In this sense, hε,µ is a simple
but somewhat general model family eligible to Chirikov’s criterion of resonance
overlapping (although in the parameter space or in the space of series coefficients
the regime we consider is very specific).

As a variant we also consider the doubly periodic Hamiltonian

h̃ε,µ(x, y, t) = cos y + εF (x, y, t;µ); F (x, y, t;µ) = − cosx+ µf(x, y, t) (4)

on T3, for which the instability is similar locally, but also more global due to the
double periodicity. As before, we denote its first order by

h̃ε(x, y) = cos y − ε cosx. (5)

Interestingly, the Hamiltonian h0 (cubic in the actions) has a twistless curve
(where the unperturbed frequency map y 7→ y(1 − y) has a fold singularity).
Greene’s criterion has been applied to this twistless curve in [11]. Hamiltonians
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similar to h̃ε have been studied notably by Zaslavsky in [31], as examples displaying
“stochastic webs” with spatial patterns. The Hamiltonian h̃ε is also a minimalistic
Hamiltonian subcase of the so-called Arnold-Beltrami-Childress (ABC) flow, for
which we refer to [32]. This later work, to which the present paper is closely
related, uses Melnikov theory for proving the existence of chaotic solutions.

2 An illustration of the overlapping principle

We will now describe the Hamiltonians (2) and (4), where one can quite explicitly
see the transition from complete integrability to resonance overlapping. The key
point in these examples is that the two parameters controlling the appearance of
(and distance between) resonance eyes and the non-integrability are decoupled.

The same overlapping of resonances behavior would take place if cosx in (3)
and (5) would be replaced by any potential V (x) with unique non-degenerate
maximum and minimum, which is a generic condition. We state the results just
for the models (3) and (5) for the sake of simplicity.

The phase portraits of Hamiltonians hε and h̃ε defined above are shown in Figs.
1 and 2 for different values of the parameter ε. The interesting bifurcation value
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for us will be ε = 1, so henceforth we will assume that ε > 0. Both Hamiltonians
(3) and (5) are integrable but do not have global action-angle coordinates (as they
would for ε = 0) –namely, they have separatrices which create “eyes” of width
O(

√
ε) in the (x, y)-coordinates. Also, they possess hyperbolic critical points at{

((2k + 1)π, 0) and (2kπ, 1) for hε

(2kπ, 2k′π) and ((2k + 1)π, (2k′ + 1)π) for h̃ε

(6)

for every k, k′ ∈ Z. The two Hamiltonians undergo a bifurcation (sometimes called
a heteroclinic reconnection) when the energy levels of the two families of hyperbolic
points coincide, namely for ε = 1.

For 0 < ε < 1, the separatrices attached to the hyperbolic critical points are
graphs over the x direction. This implies that there are invariant curves separating
the saddles having different y component. At the bifurcation value, the net of sep-
aratrices changes its topology by creating heteroclinic connections between saddles
with different y component. In particular, all smooth invariant curves separating
the two resonance eyes of hε may break down, and the Hamiltonian h̃ε might not
have any invariant smooth curve over the x- or y-axes.

Consider now the perturbed Hamiltonians (2) and (4) with 0 < µ ≪ 1. Note
that now the parameter ε measures the size of resonant eyes, while µ measures the
distance to the integrable approximations hε and h̃ε. Note that those Hamiltonians
are of the form (1).

The parameter ε measures hyperbolicity (i.e. the size of eyes of resonance),
while εµ measures the distance to some integrability. The real, difficult case for
Chirikov’s criterion is when µ = 1, i.e. when non-integrable terms are of the same
size as the integrable terms responsible for the eyes of resonance. The goal of
the present work is to illustrate Chirikov’s criterion within a thin region in the
parameter plane, defined by |ε − 1| ≪ 1 and |µ| ≪ 1.1 Our main result is the
following.

Proposition 1. There exist constants C1, C2, µ0 > 0 such that for any µ ∈ (0, µ0),

1. for 0 < ε < C1 < 1, heteroclinic connections between the periodic orbits
µ-close to the saddles (6) with different y-component is not possible.

2. for 1 − C2µ < ε ≤ 2, hε,µ possesses transversal heteroclinic connections
between the same periodic orbits as there are for the case ε = 1 and µ = 0.

1It is a matter of definition whether our analysis in the regime where |µ| ≪ 1 may indeed
be called “Chirikov’s criterion”: on the one hand, this regime is eligible to being analysed with
classical, perturbative tools, as we show below and contrary to the standard domain of application
of the criterion; on the other hand, it does correspond to the general idea of overlapping eyes of
resonance.

5



This result can be seen as the process of overlapping resonances in a non-
integrable Hamiltonian system. In Regime 1 KAM curves prevent overlapping
between the considered resonances: dynamics is confined between the invariant
curves. In contrast, in Regime 2 all KAM curves break down and there is overlap-
ping between resonances.

Note that here we are only considering the strongest resonances, corresponding
to ẋ = 0. Certainly, the Hamiltonians hε,µ and h̃ε,µ possess many more at ẋ ∈ Q
but they are much weaker (so we would need µ much smaller in order to apply the
same arguments).

We will now prove the proposition. For µ small enough, hε,µ and h̃ε,µ have
hyperbolic periodic orbits µ-close to the saddles of hε and h̃ε respectively for any
ε ∈ (0, 2]. Melnikov Theory [21] implies that the separatrices of hε and h̃ε usually
break down.

We will use the following two lemmas.

Lemma 1. Fix ε > 0. For a generic f there exists µ0 > 0 such that for all
µ ∈ (0, µ0) all the separatrices of the Hamiltonians hε and h̃ε break down and the
resulting invariant manifolds intersect transversally.

In this statement, generic actually means that f may be chosen in an open and
dense subset of the functional space (typically the space of analytic Hamiltonians,
or of Hamiltonians of classe Cr with r large enough). See [8] for a (much more
advanced) discussion in this direction.

Note that this result is significantly different for ε ̸= 1 and ε = 1 since the
separatrices for hε are different in both cases. Moreover, since we are interested
in ε close to 1 and depending on µ, one can also prove the following more precise
lemma, which is also a consequence of Melnikov Theory (ibid.).

Lemma 2. There exist δ0 > 0 and µ0 > 0 small such that for a generic f with
∥f∥C2 ≤ 1, for all µ ∈ (0, µ0) and ε ∈ [1 − δ0, 1 + δ0] all the separatrices of the
Hamiltonians hε and h̃ε break down and the corresponding invariant manifolds
intersect transversally.

Proof. We prove the lemma for hε,µ but the same proof applies to h̃ε,µ. Writing
ε = 1 + δ, hε,µ becomes

hε,µ(x, y, t) =
y2

2
− y3

3
− cosx+ F (x, y, t)

where
F (x, y, t) = −δ cosx+ µ(1 + δ)f(x, y, t)
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satisfies F ∼ O(δ, µ). Then, for δ and µ small enough one can apply Melnikov
Theory to prove that, for a generic f , the heteroclinic connections of the integrable
Hamiltonian break down and that the stable and unstable invariant manifolds of
the corresponding saddles intersect transversally. Note that Melnikov Theory only
gives the transversality of the invariant manifolds which coincided for y2

2
− y3

3
−cosx,

that is invariant manifolds of different saddles. Nevertheless, the Lambda lemma
[28] implies that, for δ and µ small enough, the stable and unstable invariant man-
ifold of one saddle also intersect transversally giving rise to transversal homoclinic
connections.

A consequence of these lemmas is that, for 0 < ε < 1 + δ (dependent or inde-
pendent of µ) all homoclinic separatrix connections associated with the periodic
orbits of hε,µ and h̃ε,µ split. Moreover, they imply (together with KAM Theory)
the existence of two regimes: separation of resonances and overlapping, which are
given by the existence (or absence) of heteroclinic connections between saddles
with different y-component.

End of proof of proposition 1. Statement 1 is a direct consequence of KAM The-
orem. Indeed, the Hamiltonians hε and h̃ε have invariant curves which “separate
the saddles” with different y-component and are graphs over the base y = 0.
Moreover, except at one curve, hε and h̃ε are non-degenerate at those curves (the
period of the periodic orbit is changing with its energy). Therefore, one can apply
KAM Theorem for time-periodic Hamiltonians to show existence in the extended
phase space of a positive measure set of 2 dimensional invariant tori close to those
periodic orbits of hε and h̃ε.

Statement 2 of this proposition is a direct consequence of Lemma 2.

Proposition 1 has several consequences. Constant C2 > 0 refers to Proposi-
tion 1.

Corollary 1. For µ > 0 small enough and ε > 1 − C2µ, both hε,µ and h̃ε,µ have
a compact invariant subset carrying symbolic dynamics with random excursions in
the y direction, of amplitude uniform with respect to both µ and ε.

Indeed, consider for example the four saddle points (±π,±π) of h̃ε. In the
neighborhood of these equilibria, a classical construction leads to a subshift of
four symbols by using the concatenation of heteroclinic connections through (0, 0),
(±2π, 0) and (0,±2π). This subshift is not a full shift, since for instance one
cannot go directly from (neighborhoods of) (π, π) to (−π,−π) without passing
through neighborhoods of either the other two, but these obvious obstructions are
the only obstructions. One actually gets subshifts of arbitrarily many symbols
by considering neighborhoods of correspondingly many saddles. We refer for any
classical book in Dynamical Systems for this construction, and for example to [5].
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In Regime 1 of Proposition 1, one also certainly has symbolic dynamics but it
is confined in the vertical direction by the KAM curves.

The Lambda lemma [28] implies the following for h̃ε,µ.

Corollary 2. Let y+ > y−, µ > 0 small enough and ε > 1−C2µ. The Hamiltonian
h̃ε,µ has orbits which travel from y = y− to y = y+. Moreover, one can achieve
such transition in time T ∼ (y+ − y−) | lnµ|.

This behavior is not possible in Regime 1 due to KAM curves. Note that this
behavior is still not possible for the Hamiltonian hε,µ for µ > 0 small enough
and ε > 1 − C2µ since it has invariant curves surrounding the two overlapped
resonances.

3 Numerics

So-described instabilities easily show numerically; see Fig. 3. Despite the exponen-
tial divergence of solutions, approximate computations in the above two regimes
are justified by the Lambda lemma, which entails that computed pseudo-orbits
are shadowed by true orbits of h̃ε,µ.

Figure 3: Examples of unstable orbits of h′
ε,µ(x, y, t) = cos(y)−ε cos(x)+µ cos(x+

2y + t), for t ∈ [0, 500]. On the top, ε = 0.8, µ = 0.1, initial condition close to
(0, 10−1). On the bottom, ε = 0.99, µ = 0.1, initial condition close to (0, 10−2).
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