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4.1 Introduction

4.1.1 The initial impetus

In (Dedekind, 1897b), Richard Dedekind recalled how he was led to the notion
of Dualgruppe, formally equivalent to our lattices, which he introduced there for
the first time:

For many years, I have been busy with these questions, but I was
compelled to do so not by logic but by the theory of these systems
of numbers which I call modules. Through the efforts to obtain this
theory from the smallest number of fundamental laws, not without
great difficulties, I recognized the [defining properties of Dualgrup-
pen] (. . . )1 (Dedekind, 1897b, p. 113)

To understand what he meant by this, one has to go back to his famous 1871
Supplement X to Lejeune-Dirichlet’s Vorlesungen über Zahlentheorie,2 in which

1Unless stated otherwise, all translations are mine.
2(Dedekind, 1871), (Lejeune-Dirichlet, First edition 1863, re-ed. 1871, 1879, 1894)
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2 Duality as a guiding light in the genesis of Dedekind’s Dualgruppen

he introduced the notion of module, a “system a of real or complex numbers α
whose sums and differences themselves belong to a” (Dedekind, 1871, p. 42).3
With this new notion, he also defined notions of divisibility (a module a is
divisible by a module, b if a ⊂ b) and related arithmetical notions for modules,
among which the least common multiple (LCM) of two modules a and b, which
is a ∩ b, and the greatest common divisor (GCD) of two modules a and b, which
is the module composed by all the numbers α + β with α and β respectively
running through all numbers of a and b. These notions can be applied to ideals
as well, which is the basis of Dedekind’s proof of the validity of the unique
factorization theorem for algebraic number fields.

In (Dedekind, 1877), Dedekind introduced notations for these notions: a
divides b is denoted by a < b or b > a; the GCD of a and b by a + b; and their
LCM by a− b. These notations facilitated the expression and proof of new
theorems such as, for three modules a, b, c with a < b (Dedekind, 1877, p. 121):

(a + b)− (a + c) = a + (b− (a + c))
(a− b) + (a− c) = a− (b + (a− c)).

which correspond to what is now called the “modular law” in lattice theory.
Dedekind noted that these “characteristic theorems” for modules display a

“dualism that holds throughout for the notions of GCD and LCM” (Dedekind,
1877, p. 121), that is, any true formula expressed in terms of + and − can be
transformed into another true formula by switching these symbols.

Dedekind published a new version of his algebraic number theory in the
fourth edition of Dirichlet’s Vorlesungen über Zahlentheorie (Dedekind, 1894a),
developing further the study of GCD and LCM of modules, and stating that

Between the concepts of greatest common divisor and least common
multiple of arbitrary modules there exists a peculiar dualism, whose
ultimate reason might be hard to recognize. (Dedekind, 1894a,
p. 498)

Dedekind’s interest in this “peculiar dualism” prompted him to investigate the
laws obeyed by the operations defined between modules. This eventually led to
the introduction of Dualgruppen.4

In footnotes, in (Dedekind, 1894a), Dedekind mentioned several times that
he was working on a notion named Modulgruppe, which corresponds to a special
case ofDualgruppen.5 Dedekind presented hisDualgruppen theory in (Dedekind,

3Dedekind’s modules are Z-modules. They were introduced as an extension of congruences.
4Although a Dualgruppe is formally equivalent to a lattice, the two concepts were developed

independently, and are in fact very different in their conception and uses. Birkhoff’s first works
on lattices are independent of Dedekind’s Dualgruppen. It was Øystein Ore, who at the time
was editing Dedekind’s Gesammelte Werke, who brought these papers to Birkhoff’s attention
(Birkhoff, 1934, p. 200). I will use Dedekind’s terminology throughout this chapter. In general,
I will keep Dedekind’s vocabulary. In particular, I will follow his use of the word “group”, which
he used with a relatively wide and fluid meaning.

5According to (Mehrtens, 1979, p. 87), this suggests that Dedekind had already thoroughly
studied the “structure” in question. It is important to emphasize, however, that this does not
mean that he had already formed the general definition of a Dualgruppe.
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1897b) and (Dedekind, 1900). This was, in his words, obtained “not without
great effort” (Dedekind, 1897b, p. 113) and indeed after two decades of work.

As emphasized by (Mehrtens, 1979, p. 83), Dedekind’s Nachlass reveals that
the “dualism” between the operations was a strong “stimulus” for his research
on modules and toward Dualgruppen, as he wrote several texts explicitly on the
subject. Observing this, and taking seriously Dedekind’s remarks on the origins
of Dualgruppen and the years of protracted labor preceding its conception, I will
dive into what will reveal to be a long and complex story, so as to understand
the role played by duality in the genesis of Dualgruppen.

4.1.2 Some possible external influences regarding duality

Since it is an aim of this book to clarify to what extent various conceptions of
duality influenced each other, let me mention two notable such conceptions with
which Dedekind came in contact.

The only two explicit references made by Dedekind in the drafts we will
study are Ernst Schröder’s Vorlesungen über Algebra der Logik (vol. I, 1890)
and Frobenius and Stickelberger’s 1879 paper on groups.6 The latter is not
related to duality per se. The first certainly is, but Dedekind’s interest in
the duality of the operations in module theory started well before he read it.
Reading the Algebra der Logik was likely important for Dedekind’s research, but
rather for its “logical” aspect than for duality.

We know that Dedekind also read (Schröder, 1873) before 18767, in which
duality is briefly addressed.8 While we have no textual evidence of him read-
ing (bo:Schroeder1877a), in which Schröder started to study duality related
properties, it is not unlikely that he could have also read this treatise as well. In
particular, Dedekind numbers equations using (α) and (α′) to denote the dual
property, just as Schröder did.9

Dedekind also regularly uses the strategy to write dual results in two columns.
This format, introduced by Gergonne in 1825, was widespread among geome-
ters such as Steiner or Chasles to display the striking parallelism between dual
theorems in projective geometry.10 And Dedekind, as we learn from a letter to
Klein quoted in (Ferreirós, 2008), taught geometry when he was Privatdozent
in Göttingen in 1854-55:

Dedekind had chosen geometry as the subject for his first lecture
6(Frobenius and Stickelberger, 1879)
7(Lipschitz, 1986, p. 74), (Scheel, 2014, p. 214).
8See Dirk Schlimm’s chapter in this volume.
9I will come back to Dedekind’s reading of Schröder in 4.4.3. For more on Schröder and

Dedekind, see (Mehrtens, 1979, pp. 114–123). — As far as duality in 19th century logic is
concerned, let me mention that Dedekind studied some of Boole’s work on probability theory
(Boole, 1854b; Dedekind, 1855), and might have read (Boole, 1862) (as Boole, in a 1862 letter
to Borchardt asks him to talk to Dedekind about it (Dugac, 1976, p. 222)). This does not
however necessary imply that he read either of Boole’s 1847 or 1854 treatises.

10Any theorem can be transformed into another one by exchanging the words “point” and
“line” in plane projective geometry, or “point” and “plane” in spatial projective geometry. See
also (EtwF2019).
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course at Götingen in 1854/55, when, as he said in a letter to Klein,
he “made an effort to establish a parallelism between the modern
analytic and synthetic methods” (Lorey, 1916, p. 82). To prepare
that course, he borrowed from the Göttingen library Steiner’s book,
together with works by Chasles, Plücker [1828 and 1835], and the
barycentrische Calcul of Möbius. (Ferreirós, 2008, p. 24)

Dedekind’s Nachlass contains several sets of notes dated from the 1850s and
1860s on geometry, ideal geometry, Geometrie der Lage, suggesting additional
reflections on the subject.

4.1.3 Dedekind’s drafts and the genesis of Dualgruppen

This chapter will concentrate on the place, role and status of duality in the
invention of the concept of Dualgruppe. Its goal is to follow the slow and pro-
gressive march from the operations defined between modules in the mid-1870s
to the introduction of a brand new and very general concept. It will thus be
an exploration of the conceptual and textual genesis of the concept, which will
spread over twenty years of drafts — and only drafts. These drafts also give us
textual evidence to unfold the long, complex path followed by Dedekind, and
show how duality played the role of a leading thread, of a guiding light, in the
conception of Dualgruppen.

Description of the archive

We are lucky that in Richard Dedekind’s Nachlass, kept at the Niedersächsische
Staats- und Universitätsbibliothek in Göttingen, nine files contain documents
related to Dualgruppen: Cod. Ms. R. Dedekind III 14, X 9, X 10, X 11-1, X 11-2,
XI 1, XI 2, XI 3-1 and XI 3-2. They contain a total of 568 pages. In addition,
Cod. Ms. R. Dedekind III 30 contains 8 pages of reading notes on (Schröder,
1890).11

The dating of these documents is difficult, as Dedekind himself rarely gives
such indications on his drafts. Time intervals can be given using references to
other works (in particular, Dirichlet’s Vorlesungen and Dedekind’s own works,
occasionally Schröder’s or Frobenius’), or indications given by the sheets on
which Dedekind was writing. Indeed, he often wrote on the back of advertise-
ments, invoices, administrative papers, letters, or drafts of his own (published)
papers. However, a discrepancy of up to ten years can be observed, for example
on manuscripts containing both a reference to a published work and the date of
an invoice, which prompts caution in dating. Other contentual aspects, such as
results or notations, can help to determine an order for the manuscripts.

The establishment of Dedekind’s Nachlass adds to the difficulty: as ex-
plained at the beginning of the archives’ catalog12, Dedekind’s Nachlass was

11Some notes can also be found in Cod. Ms. R. Dedekind III 14 and XI 3-2.
12http://hans.sub.uni-goettingen.de/nachlaesse/Dedekind.pdf

http://hans.sub.uni-goettingen.de/nachlaesse/Dedekind.pdf
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donated to the Göttingen archive by Dedekind’s heirs in 1931 (fifteen years af-
ter Dedekind’s death) and there is no certainty that Dedekind himself put the
folios together in each file. Despite the seemingly thematic organization of the
Nachlass, some boxes seem to contain unrelated documents. In addition, many
of the files appear to be very fragmentary. Hence, while it is evidence possible
to date with a relative precision some of the folios, it cannot be systematically
applied to those surrounding them.

Thus, the reference codes of the files do not tell us anything about the
chronological order. My own reading of the archives suggests that the order is
— broadly and, always, with some exceptions — the following:

• Cod. Ms. R. Dedekind X 11-1 (late 1870s to 1894);

• Cod. Ms. R. Dedekind III 14 (1890s up to 1897)13;

• Cod. Ms. R. Dedekind X 9 (after 1884 up to 1900);

• Cod. Ms. R. Dedekind X 10 (mid-1890s);14

• Cod. Ms. R. Dedekind XI 1 (1894 to 1897, and a couple of folios from the
late 1870s);

• Cod. Ms. R. Dedekind XI 2 (late 1890s);

• Cod. Ms. Dedekind X 11-2 (late 1890s, with an early draft of (Dedekind,
1900));

• Cod. Ms. Dedekind XI 3-1 and XI 3-2 (mostly after 1900).

These last two will be of little use to us, since we are interested in the research
Dedekind did before publishing his papers on Dualgruppen. As the tentative
dating suggest, several of these files largely overlap, too.

These files mostly contain work documents, drafts. They consist of investiga-
tions and computations on modules, groups, the duality and various properties
of the operations, of Modulgruppen, and of Dualgruppen, much of which can be
found in both published papers.

Despite the difficulties described here, and the lack of context and commen-
tary from Dedekind’s hand, the archive is extremely rich and offers great insights
on the research process through these material traces. Dedekind’s drafts are also
well preserved, very clean, few things are scratched out and his handwriting is
very readable.

13This file is the only one that can be related to (Dedekind, 1897b) and exclusively to it.
14Cod. Ms. R. Dedekind X 9 and X 10 contain, in fact, documents from both before and

after Cod. Ms. R. Dedekind XI 1.
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Working with mathematical drafts

By studying mathematical drafts, we enter into the mathematician’s workshop.
They show us material traces of the scientific research, its trials, errors and
detours. They allow us to understand the research process, the mathematics as
it was being done, as it was being written. As such, they unveil entire parts
of the mathematical practice that remain unknown if one only reads published
papers: preliminary and intermediary steps and states of mathematical research;
ways of writing specific to this private space, freed from publication constraints;
artefacts, devices and elements of practice elaborated for the research and absent
from publications. It is particularly interesting to see the extent to which his
mathematical and writing practices in drafts can differ from his publications —
and from his statements on how mathematics is best written —, in particular
in his extensive practice of computations, his careful crafting of notations and
even his use of visualisation devices. Indeed, Dedekind famously advocated for
“conceptual” mathematics, freed from computations, not relying in any essential
way on notations or “modes of representation”, and he openly spoke against using
visual representations in mathematics, if it were not for purely pedagogical or
heuristic reasons.15

Dedekind’s drafts show us that he started by exploring the properties of mod-
ules and their operations, using computations as a way to experiment, to better
understand the divisibility laws of modules by manipulating simple cases, test-
ing on progressively more general cases. A slow process of generalisation arose
through these repeated computations: numerical examples, resolution of prob-
lems, particular cases with arbitrary elements, more general particular cases,
attempts at a completely general approach. . . This gave Dedekind key elements
to observe the properties and laws verified by the operations between modules,
and identify which properties are generally valid, and which laws are fundamen-
tal, i.e. cannot be deduced from other laws (e.g. associativity). In this process,
the duality displayed by the operations, and put forward by the notations and
layouts elaborated by Dedekind, is a tool for the conceptual clarification of (what
will become) Dualgruppen. The reflections on duality and the computations en-
riched each other. Duality was a driving force for investigating the operations’
properties, and at the same time, the computations allowed to experiment on
the said operations and to observe their dualistic behavior. Duality is, thus,
omnipresent in the computations themselves, and in the spatial organisation of
writing.

Dedekind’s research went through several phases of such explorations of the
properties of modules and their operations through computations. Indeed, his
research process here was not linear. It did not consist of a phase of research and
a phase of writing. Several such phases succeeded and overlapped each other.
The process does seem to follow a certain pattern: computations, documents
such as tables summarizing the results, problems (Aufgaben), more complete

15Hence, drafts can also help understand how epistemological, disciplinary, sociological and
rhetorical criteria shape the final published text. But this will fall outside of the scope of the
present chapter.
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documents stating — and sometimes proving — results, textualisation of the
research, then back to computations.

Digital edition of the manuscripts

A digital edition of the manuscripts is available at

http://eman-archives.org/Dedekind/

I elaborated this edition with a triple aim in mind: to understand the long
and winding road that led from GCD and LCM of modules to Dualgruppen;
to unfold the writing and research processes in Dedekind’s mathematics, as
a basis for a historical and critical characterisation of his mathematics in the
making ; and to lay the foundations of a reflection on a textual and conceptual
genetic analysis inspired by similar works in literature and philosophy.16 The
edition is organised into files corresponding to the catalog in Göttingen. For
each material textual unit, I wrote a notice using Dublin Core and personalized
metadata. Finally, I established a system of keywords and of relations between
the texts.17 This allows the reader to have a global view of the corpus, in
particular to grasp the internal organisation across the files, but also to be able
to single out specific aspects (e.g., steps of the research, thematic units, research
on a given result. . . ). In particular, two keywords were associated to duality:

• http://eman-archives.org/Dedekind/items/browse?tags=dualité

• http://eman-archives.org/Dedekind/items/browse?tags=dualisme

The first one, “dualité”, corresponds to my assessment of a manuscript being
related to duality. The second one, “dualisme”, corresponds to pages in which
Dedekind explicitly refers to duality (as Dedekind favors the term “Dualismus”
to “Dualität”). This distinction allows us to distinguish between my assessment
of duality and Dedekind’s explicit mention of it, and at the same time to see
the occurrence and circulation of duality in the corpus.

This edition complements the present chapter, but the chapter was written
so that the reader doesn’t need to refer to the edition.

Structure of the chapter

This chapter consists of four main sections. First, I will consider two early
texts on module theory and the dualism in module theory written in the mid-
1870s, which set the machine in motion. Secondly, I will study several aspects
of Dedekind’s practices in his drafts which show how duality is present through-
out the mathematical research, in the way Dedekind elaborates new notations,
specific layouts and devices. The Modulgesetz, identified early by Dedekind as
a law of special interest, will also provide us with documents showing how his
attention to duality might have, at some points, sent him in directions he later

16(Biasi, 2011; Barberousse and Pinon, 2003; Grésillon, 2016)
17http://eman-archives.org/Dedekind/graphall/

http://eman-archives.org/Dedekind/
http://eman-archives.org/Dedekind/items/browse?tags=dualit�
http://eman-archives.org/Dedekind/items/browse?tags=dualisme
http://eman-archives.org/Dedekind/graphall/
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abandoned. Thirdly, I will consider the gradual generalisation of Dedekind’s
research, and the role it played in the clarification of Dualgruppen and a certain
distance taken from Dedekind’s initial interest in duality. Finally, I will present
three manuscripts as the last steps towards Dualgruppen, showing how the dif-
ferent aspects of Dedekind’s investigations are tied together into the general,
unifying concept of Dualgruppe.

I do not have any claim of exhaustiveness in this reconstruction of the gen-
esis of Dualgruppen. While the choice of the manuscripts to comment, here,
remains a subjective one, I did my best to choose representative folios, taking
into account that these drafts can be, at times, quite repetitive.

4.1.4 Dedekind’s main results on Dualgruppen

Because the genesis of a concept can only be understood if one keeps the final
product in mind, let me describe the main contents of Dedekind’s two papers
on Dualgruppen: “On the decomposition of numbers into their greatest common
divisor” (1897), and “On the Dualgruppe generated by three modules” (1900).18

The 1897 paper

In (Dedekind, 1897b), Dedekind studies the possibility of generalising the de-
composition of a finite system of numbers in their GCDs:

If we have a finite system of natural numbers, and if one forms all the
greatest common divisors of two or more of these numbers, the latter
are thereby divided into factors in a multitude of ways. Although
these factors are known in general not to be prime numbers, they
are of sufficient service for many investigations, and it is therefore
well worth the effort to present the laws thus exhibited in this con-
text. This is the first subject of the present paper, but at the same
time the initial problem shall be generalised as much as possible
and transferred to domains where there are no decomposition into
prime factors at all. In doing so, the investigation admittedly loses
its arithmetic character almost completely, so that it hardly requires
mathematical knowledge, but at the same time the laws and their
grounds become clearer, and I may hope, that in this respect my
work may be welcome to some mathematicians. (Dedekind, 1897b,
p. 103)

Dedekind starts by studying systems of 3 and 4 numbers, and observes that in
order to extend these investigations to systems of n numbers, and to be able
to get a more general approach, it becomes necessary to study the possible
combinations (Kombinationen) of n elements.19 Dedekind studies two combi-
nations, denoted by + and − equivalent to union and intersection (and called
“Summe” and “Durchschnitt”), in a standard way. He shows that they verify

18For more on these papers, see (Corry2004; Mehrtens, 1979; Schlimm, 2011).
19Here, “combinations” designates subsets of a finite set of integers.
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“six fundamental laws”: commutativity, associativity and absorption (for + and
−). Because of the absorption property, he writes, the operations “enter into a
dualistic connexion”, from which follows the idempotence property (Dedekind,
1897b, p. 109). And there is also the “double law”:

(α− β) + (α− γ) = α− (β + γ)
(α+ β)− (α+ γ) = α+ (β − γ)

(4.1)

which is, in lattice theory, the distributive law (of which the modular law can
be seen as a special case).

This leads to the notion of Dualgruppe, which Dedekind introduces by ac-
knowledging that his previous remarks are not new, and that insofar as com-
binations are just systems of elements, they are parts of the theory of systems,
which was treated in Schröder’s Algebra der Logik (Dedekind, 1897b, p. 112).
Giving Schröder the priority for these investigations in (what Dedekind calls)
logic (that is, a relatively naive set theory), Dedekind explains that he had
himself been studying these questions for several years when working on mod-
ule theory. It seems that reading Schröder’s book was a strong incentive for
Dedekind to publish his own work.20 We will see that, indeed, Schröder’s book
might have had a significant impact on Dedekind’s reflections.

Recalling, as quoted above, that he was looking for the “smallest number of
fundamental laws” on which to found his theory of modules, Dedekind eventually
defined the concept of Dualgruppe :

A system A of things α, β, γ, . . . is called a Dualgruppe, if there are
two operations ±, such that they create from two things α, β, two
things α±β, that are also in A and that satisfy [commutativity for +
and –, associativity for + and –, and α± (α∓ β) = α (absorption)].
(Dedekind, 1897b, p. 113), transl. in (Schlimm, 2011).

Because he wants to “show how multifarious the domains are to which this
concept can be applied”, Dedekind gives a series of examples: Schröder’s logi-
cal calculus, the Dualgruppen formed by modules, ideals, the subgroups of an
Abelian group, fields, and points of an n-dimensional space. He then studies
more deeply some of these examples (ideals and modules).

Dedekind explains that some (but not all) Dualgruppen verify the previously
stated equalities (4.1), and that this “double law” should be called Idealgesetz
(ideal law) in reference to the fact that Dualgruppen generated by “ideals in a
finite[ly generated] field” verify said law — such Dualgruppen are said to be “of
the ideal type”.21 Similarly, a Modulgesetz (module law) can be stated

[α+ (β − γ)]− (β + γ) = [α− (β + γ)] + (β − γ) (4.2)

which is verified by Dualgruppen generated by modules — which are thus said to
be “of the module type” (Dedekind, 1897b, p. 117) (and which are our modular

20There were several other instances in which other people’s publications similarly prompted
Dedekind to publish some of his own works, in particular (Dedekind, 1872).

21Dualgruppen of the ideal type are thus distributive lattices.
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lattices). These laws cannot be derived from the “six fundamental laws”, a result
which Dedekind proves. They should be considered each as an additional law
complementing the fundamental laws to define a specific type of Dualgruppe.
Dedekind proves that every Dualgruppe of the ideal type is also of the module
type, that there exist Dualgruppen that are not of the module type, and that
there exist Dualgruppen of the module type which are not of the ideal type.
He also shows that to characterise a (finite) Dualgruppe, it is necessary and
sufficient to give the laws defining the operations and the explicit list of its
elements. These two laws, in particular the Modulgesetz, and the investigations
surrounding them, play an important role in the genesis of Dualgruppen.

The next step is the definition of (what we would call) the order < (or >)
by setting that, for α, α1 in a given Dualgruppe, α > α1, α1 < α for α + α1 =
α = α − α1. Dedekind does not name this relation in (Dedekind, 1897b), but
calls it “divisibility” in his number-theoretical works and in (Dedekind, 1900).

However, for Dedekind, his 1897 paper is not so much about Dualgruppen,
which he calls a “digression”. Dualgruppen appear to have, here, the status once
attributed to module theory22 of a useful auxiliary theory.23 Coming back to the
core subject of his paper, combinations of numbers, he explains that the sought
after generalisation can be done in two ways: combinations of arbitrary many
numbers, or combinations of elements of an Abelian (finite or infinite) group
G. It is the latter that Dedekind wishes to explore. From there, Dedekind
engages into a study of group theory, extending the definitions of product, unit,
fraction, combinations, integral elements, divisibility and GCD (which entails
the introduction of a second operation denoted by + verifying the laws of + in
Dualgruppen and distributive over the multiplication) to elements of an Abelian
group.

Finally, Dedekind comes back to Dualgruppen by showing, after defining the
integral elements, that it is always possible to define another operation − (which
verifies the laws of − in Dualgruppen) in G, which gives it the structure of a
Dualgruppe with Idealgesetz (that is, a distributive lattice).

(Mehrtens, 1979) concludes his presentation of the paper with the following
(very accurate) statement:

The work is remarkable in its abstractness. The title task is of little
22At the beginning of the section entitled “Auxiliary theorems of module theory” of

(Dedekind, 1876-1877), Dedekind states:

As I have emphasised in the Introduction, we shall often have to consider systems
of numbers closed under addition and subtraction. The general properties of such
systems form a theory quite extended, which can also be used in other research;
but, for our purposes just the elements of this theory are sufficient. In order to
avoid later interruption to the course of our exposition, and at the same time to
make it easier to understand the scope of the concepts on which our theory of
algebraic numbers is based, it seems appropriate to begin with a small number of
very simple theorems, even though their interest lies mainly in their applications.
(Dedekind, 1876-1877, 62, transl. modified)

23In fact, the study of the drafts suggests that a large part of (Dedekind, 1897b) was
developed without the use of Dualgruppen, which were rather added towards the end.
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interest, and the solution is ultimately rather complicated. The gen-
eralisation of the problem to a group with an additional operation,
the use of the Dualgruppe and arguably the solution by a combina-
torial use of finite sets must have been strange to contemporaries. In
addition, the essay appeared in a commemorative publication of the
Technical University of Braunschweig, so that hardly much response
was to be expected. (Mehrtens, 1979, p. 95)

The 1900 paper

In (Dedekind, 1900), Dedekind investigates the Dualgruppe generated by three
modules (which, in modern terms, is the free modular lattice with three gen-
erators), and the Dualgruppe generated by three ideals (which is the free dis-
tributive lattice with three generators). Finally, he further investigates the Du-
algruppe generated by modules, and proves some fundamental theorems about
them.

The paper’s first section gives the definition and general properties of Dual-
gruppen as given in (Dedekind, 1897b), including the definition and properties
of the order. By analogy with number and module theories, Dedekind names
the operations + and − respectively the “greatest common divisor” and “least
common multiple”. It ends with the property:

If d is a divisor of m, that is d < m and p is an arbitrary element,
then we have

(p + m)− d < (p− d) + m

because each of the two elements p + m and d is a divisor of each of
the two elements p− d and m. (Dedekind, 1900, p. 239)

Dedekind then studies D the “Dualgruppe generated by three modules” in the
second section. He first states the Modulgesetz, already given in (Dedekind,
1897b), under the form:

If a module d is a divisor of a module m, that is d < m and p an
arbitrary module, then we have

(p + m)− d = (p− d) + m24

(Dedekind, 1900, p. 239)

To study the said Dualgruppe D, Dedekind starts by listing the 28 elements
of which it is composed, and then shows that it indeed verifies the laws defining
a Dualgruppe. He emphasizes the duality of the operations, by pointing the
possibility to transform (dual) equalities into each other by “permutation” (Ver-
tauschung) of the operations. Dedekind then proves that D contains exactly 28
distinct elements. In §4, Dedekind studies the Dualgruppe generated by three

24This corresponds to the law given in (Dedekind, 1897b) with p = a, d = b+ c, m = b− c.
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ideals. These paragraphs constitute a great part of Dedekind’s research in his
drafts.

Dedekind introduces three important notions, respectively in §§3, 5 and7:
(m, n) the number of congruence classes in m modulo n, chains and “levels”
(Stufen). The “number of non-congruent numbers in m modulo n” (m, n) was
introduced in Dedekind’s number-theoretical works. He himself cites (Dedekind,
1894a, §171), but the number of congruence classes already played an important
role in (Dedekind, 1871), as it is used to define the norm of ideals — the notation
used here was introduced in (Dedekind, 1876-1877). A number of properties of
(m, n) were given in previous works,25 of which Dedekind recalls the following:

(m, n) = (m + n, n)

(m, n) = (m,m− n)

which he uses to study further the elements of D: he groups the (m, n) which
are equal to each other, studies the values of (m, n) for the three generators of
D in terms to the other members of the Dualgruppe, which eventually leads him
to the equality (already “mentioned” in a footnote in (Dedekind, 1871)):

(b, c)(c, a)(a, b) = (c, b)(a, c)(b, a).

In order to “deepen the understanding of the Modulgesetz ”, Dedekind intro-
duces the notion of “chain” (Kette):26

By a chain of the Dualgruppe D, we mean a finite sequence of at least
two elements in D, which are each nearest divisor of the next one;27
these elements are called the links of the chain, and the first and last
links are to be called the beginning and the end of the chain; the
number of links minus one is named the length of the chain. When
two chains have the same beginning and the same end, they are said
to be equivalent, and when all links of a chain H are also links of a
chain K, we call H a sub-chain (Theilkette) of K.” (Dedekind, 1900,
p. 253)

The Kettengesetz is then proved:

Any two equivalent chains have the same number of links, thus have
the same length. (Dedekind, 1900, p. 254)

25Dedekind cites (Dedekind, 1894a), the most recent version of his algebraic number theory,
but these results are in (Dedekind, 1876-1877).

26Note that in his number-theoretical works, Dedekind used the notion of “chain” of modules
(or of ideals) to designate a finite ordered sequence of modules, for example p. 561 of the 1879
edition of Dirichlet’s Vorlesungen, and p. 523sqq. of the 1894 edition. It was likely the
inspiration for the notion of chain in Dualgruppen. We will encounter several times such
chains of modules in this chapter.

27An element d in D is called a “nearest divisor” of m (resp. m is called a “nearest multiple”
of d) when d < m, d 6= m, and there exists no element n of D such that d < n < m (Dedekind,
1900, p. 252).
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Following this, Dedekind studies “relationships between the Modul- and the
Kettengesetz ” (Dedekind, 1900, p. 255), so as to show that the chain condition
is not as “self-evident” as it could seem (this being due, according to Dedekind,
to the choice of studying this specific Dualgruppe generated by three modules).
Here is a selection of the results he proves:

• If in a Dualgruppe H, theModulgesetz is not valid for all the elements, then
there exists in H a Dualgruppe G constituted of five distinct elements in
which neither the Modulgesetz nor the Kettengesetz are valid (Dedekind,
1900, p. 255).28

• If in a Dualgruppe H and in all its subgroups, the Kettengesetz is valid,
then the Modulgesetz is also valid (Dedekind, 1900, p. 259).

• If a and b are two arbitrary elements of a Modulgruppe M, then there
exists a one-to-one correspondence between the group of all the elements
b′ in M verifying the condition a + b < b′ < b and the group of all the
elements a1 in M such that a < a1< a− b, which can be expressed by the
following relations (Dedekind, 1900, pp. 259–260):29

a1 = a− b′

b′ = b + a1

• In any Modulgruppe M, any two equivalent chains have the same length,
that is, the Kettengesetz is verified in any Modulgruppe (Dedekind, 1900,
p. 264).

Motivated by the second and last of the theorems listed here, Dedekind turns to
what he calls the “levels” in a finite Modulgruppe M (Dedekind, 1900, pp. 265–
267).30 In such a M, it is “obvious” that among its elements m, there exists one
and only one element p which is a divisor of all m, and one and only one q which
is a multiple of all m. If m 6= p (resp. m 6= q), then there exists at least one
nearest divisor (resp. multiple) of m. Dedekind proposes to group the elements
into “levels”, with p being the lowest one and q the highest one. The level of p is
denoted by Sp with p an arbitrary integer. For m 6= p and a multiple of p, with
h the length of all the chains beginning in p and ending in m, m = p+h is called
the “Stufenzahl ” of m, and m is taken in the level Sm (so, p is the “Stufenzahl ”
of p). If s(m) designates the “Stufenzahl ” of an element m, then for any two a,
b:

s(a) + s(b) = s(a + b) + s(a− b)

Finally, Dedekind turns to relations between (m, n) and the Modulgesetz. We
know from module theory that (m, d) = 1 and m > d are equivalent. Dedekind

28These five distincts elements are N5, the pentagon. Dedekind also showed that N5 is the
smallest non-modular lattice.

29This result was already in (Dedekind, 1894a, 499, footnote).
30The notion of “level” cannot be formalized in general lattice theory.
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proves that in a Dualgruppe D, if for any two m, n, (m, n) is non-zero and verifies

(m, n) = (m + n, n)
(m, n) = (m,m− n)

If p < q < r, then (p, r) = (p, q)(q, r)
(m, d) = 1 ⇔ m > d

then this Dualgruppe also verifies the Modulgesetz.

A note on some of Dedekind’s other works in the 1890s

Investigations on module theory constitute the ground for developments on
Modul- and Dualgruppen. Some results of module theory, in particular on the
arithmetic of modules and on their norms, were presented in (Dedekind, 1894a),
in which a first reference to Modulgruppen was made. These results, as well as
some notations used to study Modulgruppen are used in (Dedekind, 1895),31
whose goal is to generalise the notion of norm defined for modules and ideals.
For both these works, drafts from early manuscript versions of the published
text were re-used as draft paper.

In 1895, Dedekind also worked on group theory, which led to (Dedekind,
1897a),32 in which he studies Hamiltonian groups and proved that a finite Hamil-
tonian group can be decomposed into a direct product of an Abelian group and
the group of quaternions. While there are no methods related to Dualgruppen in
that paper, investigations around Abelian and non-Abelian groups appear often
in Dedekind’s drafts and played an important role in the genesis of (Dedekind,
1897b). This suggests that his reflections on group theory were intertwined with
the development of Modulgruppen and later Dualgruppen — but rather in the
sense that his investigations on groups influenced, or maybe helped, his research
on Dualgruppen, than the opposite. Dedekind also had a regular correspondence
with Frobenius, with whom he exchanged a lot on the topic of groups.33 The
correspondence with Heinrich Weber also includes exchanges on groups, in par-
ticular a letter from 30 October 1895 exposing his reflections on what would
become (Dedekind, 1897a) and asking for Weber’s advice.34

These two papers also developed ideas presented in (Dedekind, 1894a), plac-
ing the latter at the root of many of the works Dedekind published after his
retirement in 1894.

31In the footnote in (Dedekind, 1895, p. 77), Dedekind notes that he is using notations
introduced to study Modulgruppen.

32In the introduction of the paper, Dedekind writes that he worked on this research in the
Fall of 1895 (Dedekind, 1897a, p. 88)

33See (Hawkins, 2013).
34(Scheel, 2014, pp. 285–287). It is the only letter available for that year — and in general,

many letters between Dedekind and Weber were not retrieved for this period. We do know,
from the rest of their correspondence, that Dedekind and Weber wrote to each other very
regularly, sometimes weekly. It is thus reasonable to assume that they exchanged more on
the subject. Let me mention that there are no traces of them discussing Dedekind’s works on
Dualgruppen, unfortunately, nor are there any discussions related to duality.
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It is however relatively difficult, either from the drafts or from the papers, to
state precisely how these works could have influenced the research on Dualgrup-
pen and reciprocally — and clarifying that would be outside the scope of this
chapter. So as to avoid any undue over-interpretation, let us restrict ourselves
to the following statement: research on module theory and research on group
theory, which coincided in time, intersected and both played significant roles in
the genesis of Dualgruppen. This can be verified with the drafts studied in this
chapter, which are, in the Nachlass catalog, explicitly related to “the theory of
three modules”, Modulgruppen and Dualgruppen.

4.2 Earliest considerations on duality in module
theory

4.2.1 “Theory of modules”

The roots of Dedekind’s Dualgruppen are to be found in his investigations on
module theory, as he told us himself. One of the first texts dedicated to module
theory, in Dedekind’s Nachlass — that is, on module theory independently of
his research for (Dedekind, 1871) and later versions of it — is entitled “Theorie
der Moduln” (Cod. Ms. Dedekind XI 1, p. 36-43). It can be dated from between
1871 and 1877.35 It was never published as such, even if some of the results
were integrated in later works using modules, such as (Dedekind, 1877) and the
Supplements on algebraic number theory in Dirichlet’s Vorlesungen. This text
is 14 pages long, written in a two columns layout. This layout is characteristic
(albeit not systematically used) of Dedekind’s writing for next-to-last versions
of a text. The left-side column contains the main text, and the right-side column
contains additions, corrections and various notes (not always to be integrated
to the text). The text is not completely written (for example, Dedekind only
broadly refers to (Dedekind, 1871) for some of the definitions) and Dedekind
indicated in the top right corner that another title could be “General theorems
on modules, orders and congruences”.

“Theorie der Moduln” is a good starting point to understand the path Dedekind
went down and the ground covered. Dedekind gives basic elements for the the-
ory of modules of numbers, which continue the analogy with rational arithmetic
that he introduced in his works on algebraic number theory. Here is broadly
the content of the text:

• Definition of a module.

35Dedekind makes references to the 1871 edition of Dirichlet’s Vorlesungen. As he system-
atically refers to the most recent version of that work, this suggests that it was written before
(Dedekind, 1876-1877; Dedekind, 1879). The reference to “orders” (Ordnungen) in the title
further suggests that it was written around the same time or just after as (Dedekind, 1876-
1877). This hypothesis is supported by the content of the text, and in particular the fact that
questions related to the dualism of the operations in module theory, apparently highlighted
here for (one of the) first time(s), were first published in (Dedekind, 1877).
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• Definition of divisibility for modules and what it means for a module d to
be a divisor of a module m.

• Definition and properties of GCD of modules.

• Definition and properties of LCM of modules.

• Definition of congruence, classes, and number of classes for modules.

• Definition of the multiplication, quotient, inverse, and power for modules.

For the definition of modules and their divisibility, Dedekind only refers to the
1871 edition of Dirichlet’s Vorlesungen. In the margin, he introduces, probably
for the first time, the notation for d is a divisor of a:

The divisibility of a by d – i.e., a multiple of d, d divisor of a – may
be indicated by

a < d, d > a

or maybe just the other way around, by

a > d, d < a

(Cod. Ms. Dedekind XI 1, p. 36r)

Let me address briefly the hesitation on the notation. Recall that a module d is
said to divide (or be a divisor of) a module a if a is included in d. Dedekind’s first
attempt at a notation reflected the inclusion relation between a and d. However,
as it has been noticed by Dedekind himself, the definition of divisibility as
inclusion goes against the intuition we get from number theory, since the divisor
contains more elements than the multiple. The notation eventually chosen by
Dedekind seems, here, to try to restore the analogy with arithmetic.

The definitions of the GCD and the LCM of modules are the occasion to
introduce notations for these notions — which were absent from (Dedekind,
1871; Dedekind, 1876-1877):

3. Definition of the greatest common divisor a+ b of two modules a
and b; a + b = b + a.

Theorem. Every common divisor of a and b is a divisor of a + b.

4. The divisibility between a and d is also expressed by a + d = d.

5.We have a + a = a.

6. We have (a+b)+c = a+(b+c). From this, (from D[irichlet’s Vor-
lesungen über Zahlentheorie], §236), definition of the greatest com-
mon divisor of several modules a, b, c, d, . . .m) (in countable num-
ber?).

36Interestingly, Dedekind refers here to the section generalising the properties of multipli-
cation to an arbitrary number of integers.
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7. Also for an uncountable number of modules, there exists a fully
determined greatest common divisor: the system of all the numbers
each of which is a sum of a finite numbers which are each contained
in one of the given modules.
8. Definition of the least common multiple a ∨ b = b ∨ a of two
modules a and b.
Theorem. Every common multiple of a and b is a multiple of a ∨ b.
9. We have also (a ∨ b) + a = a and from{

c + a = a
c + b = b

}
follows

c + (a ∨ b) = a ∨ b

and reciprocally.
10. We have (a ∨ b) ∨ c = a ∨ (b ∨ c) From this, (from D[irichlet’s
Vorlesungen über Zahlentheorie], §2), definition of the least common
multiple of several modules a, b, c, d, . . .m) (in countable number).
11. Also for an uncountable number of modules, there exists a fully
determined least common multiple: the system of all the numbers
which are contained in each of the given modules.
(Cod. Ms. Dedekind XI 1, p. 36)

The notation for the LCM is different from the one eventually chosen by Dedekind.
This text and the accompanying table seems to be the only manuscript left in
which Dedekind uses this ∨ notation. In fact, the bottom right corner of the
page 36r, shows that Dedekind considered various notations. For the divisibility
relation, he considered writing

a � d, d ≺ a

For a + b and a ∨ b, he considered writing respectively

af b and ag b.

Dedekind also made several attempts at drawing alternate notations: curlier
versions of the above ones, or crossed over versions (which ressemble a cur-
sive letter A). The origins of Dedekind’s use of the ∨ and almost use of the ∧
notations are unclear.

I will consider the question of notations a little more in the next section. It
should already be emphasized, though, that Dedekind did not use these nota-
tions in later works.

Properties such as

a + a = a a ∨ a = a

a + b = b + a a ∨ b = b ∨ a

(a + b) + c = a + (b + c) (a ∨ b) ∨ c = a ∨ (b ∨ c)
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are given as consequences of the interpretation of the operations as GCD and
LCM of modules. For example, rather than stating that a+ a = a is a property
of +, Dedekind presents it as coming from the fact the the GCD of a and itself
is a. His focus is, thus, very much on the arithmetical interpretation of the
operations.

The text consists mainly in elements of module theory which are of little
relevance here. And while the text itself does not contain any mention of duality,
it is accompanied by the following table, which I transcribe and translate in its
entirety (Cod. Ms. Dedekind, XI 1 p. 35):37

Duality in the theory of modules between
Gr[eatest] com[mon] divisor a+b of two
modules

Le[ast] com[mon] multiple a ∨ b of two
modules

1. We have a+b < a and a+b < b and
from d < a and d < b follows d < a + b

1. We have a∨ b > a and a∨ b > b and
from d > a and d > b follows d > a ∨ b

2. We have a + a = a 2. We have a ∨ a = a

3. We have (c ∨ a) + (a ∨ b) = a ∨ ((c ∨
a) + b)

3. We have (c+ a)∨ (a+ b) = a+ ((c+
a) ∨ b)

4. We have (a+b, b) = (a, b) = (a, a∨b) 4. We have (b, a∨b) = (b, a) = (a+b, a)

5. We have (a, b ∨ c) = (a, b)(a ∨ b, c) 5. We have (b + c, a) = (b, a)(c, a + b)

6. We have (a, b) = (a, (c ∨ a) + b)(a ∨
a, b)

6. We have (b, a) = ((c+a)∨b)(b, c+a)

7. We have (when z runs through all
rational integers) az = a

7. We have a
z = a

8. From a > b follows ac > bc 8. From a > b follows a
c >

b
c and c

a <
c
b

9. We have (a + b)c = ac + bc 9. We have a∨b
c = a

c ∨
b
c and c

a+b =
c
a ∨

c
b

37Let me emphasize that this is one of the rare texts in which Dedekind uses the word
“Dualität” (duality) rather than “Dualismus” (dualism). It is worth noting that “Dualismus”
is also the word used by Ernst Schröder (already in (bo:Schroeder1877a)). However, this
does not allow us to draw any conclusion on his influence on Dedekind’s choice of words for two
reasons. The first reason is that Dedekind uses “Dualismus” in (Dedekind, 1877) which was
published the same year as Schröder’s book. The second reason is that while we have several
sets of notes from Dedekind’s reading of Schröder’s Vorlesungen über die Algebra der Logik,
we do not have any for Der Operationskreis des Logikkalkuls, which although not excluding
that Dedekind did read it, prompts caution.
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10. We have (a ∨ b)c > (ac) ∨ (bc) 10. We have a+b
c < a

c + b
c and c

a∨b <
c
a + c

b

11. We have c
a + c

b >
c

a∨b

12. Definition of the quotient consists
in that ac > b and c > b

a are identical
conditions.

13. From b > c follows b
a >

c
a and

a
b <

a
c

This table seems to be taking note of the duality displayed by the operations
and the divisibility relation, rather than providing an analysis or use of these
properties. Whether this table was written after or during “Theorie der Moduln”
is difficult to assess. However, the act of establishing a table seems to be, for
Dedekind, a way to put things into order and maybe, to a certain extent, a
visualisation device.

4.2.2 “Dualism in the laws of modules of numbers”

In a second text, likely written before 1877,38 we observe a distinct inflexion
towards duality. It is entitled “Dualism in the laws of modules of numbers” and
starts in the following way:

The following considerations presuppose no other mathematical knowl-
edge than that of addition and subtraction, and refer to the concept
of a number-module that I introduced,∗ whose properties, as far as
they are of importance here, are to be developed first. (Cod. Ms.
Dedekind, X 9, p. 3)

This introductory sentence, followed immediately by the definition of a module
(of numbers), shows that Dedekind’s sole interest, in this short draft, is the
theory of modules. The next properties concern more precisely the operations
defined between modules. This is in line with Dedekind’s long lasting idea of
developing an arithmetic of modules (and ideals), on which I have written else-
where.38 It is also clearly embedded in a very typically Dedekindian approach
of wanting to lay clear, rigorous grounds for a given theory. Hence, Dedekind’s
desire to develop the arithmetic of modules and clarify the foundation of mod-
ule theory was at the root of his works, but the additional property of duality

38Indeed, it does not contain the laws first published in (Dedekind, 1877) and considered,
at that point, as a core result. It could be that the text is unfinished. In that case, let me
also mention that it refers to the 1871 edition of Dirichlet’s Vorlesungen, which suggests that
it was written at the latest before 1879.

∗Dirichlet, Lectures on number theory, second edition [Footnotes with a symbol are
Dedekind’s. Footnotes with a number are the author’s.]

38(Haffner, 2017)
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displayed by the operations took an increasing importance in these parts of his
research.

It would be more accurate to describe the text as concerned with properties
of operations which happen to be dual of each other, rather than as concerned
with studying their duality properly speaking.39 Dedekind starts by defining
modules and finitely generated modules of numbers, as well as divisibility of
modules (as he usually does, see above) and introduces the notation for m
divisible by d:40

m > d ; d < m. (1)

He then gives the definition of a sum of two modules a + b, as defined in his
published number-theoretical works:

If α designates each number in the module a and β each number in
the module b, then all the numbers of the form α+β evidently form
again a module which we name the sum of a and b, and designate
by a + b. (Cod. Ms. Dedekind X 9, p. 4r)

Dedekind completes the definition with the three following properties:

a + a = a (2)
a + b = b + a (3)

(a + b) + c = a + (b + c) (4)

Following this, he justifies calling a+ b the greatest common divisor of a and b.
Such a justification is also given in his number-theoretical works, in which the
labeling and its justification are usually introduced before the operation (when
the latter is indeed introduced, which is not always the case). Dedekind then
underlines that

If m is divisible by d, then

m + d = d (1′)

(Cod. Ms. Dedekind X 9, p. 5r)

In later texts, Dedekind starts by introducing the two operations + and − and
uses (1′) to define the divisibility relationship, then denoted by the < symbol.

Dedekind does the same for the difference of two modules a−b (also already
explicitly defined in some of his number-theoretical papers):

If a and b are any two modules, then the totality of all the numbers
µ which belong to both modules a and b, such as the number 0 for
example, always forms a module. [. . . ] We want to designate this
module by a − b and name it the difference of a and b. (Cod. Ms.
Dedekind X 9, p. 5r)

39We will see that this is not the only occurence of a text whose title gives a great importance
to duality, while the text itself less so.

40I kept Dedekind’s numbering of the equations in the manuscripts from here on.
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He completes it with the three properties:

a− a = a (2′)
a− b = b− a (3′)

(a− b)− c = a− (b− c) (4′)

Then, he remarks that divisibility between m and d is equivalent to:

m− d = d (1′′)

Note the way Dedekind numbers dual properties with (α) and (α′). This is
an explicit way to put forward the dualism (or parallelism) between the opera-
tions.41

After this, Dedekind justifies again the arithmetical terminology used here,
and introduces the product and quotient of two modules. These notions are, as
Dedekind emphasizes, important for ideal theory. They do not, however, play
a significant role in the development of Dualgruppen.

The text ends abruptly after the definition of the “number of classes in a
according to b” (a, b), and properties such as:

(a, b) = (a + b, b) (5)
(a, b) = (a, a− b) (5′)

(m, d) = 1↔ m > d (1′′′)

In this text, Dedekind’s considerations on “the dualism in module theory”
seem to be, again, restricted to observing a certain property of symmetry or
parallelism between the operations. The said dualism is not used at any point
in the text. It is merely highlighted as an interesting property.

These texts are written fairly early in Dedekind’s investigations on these
aspects of module theory. I will show, in the next section, that it is through
the research process, the computations, devices and artefacts set up to study
modules, that duality is exhibited, analysed and clarified.

4.3 How duality emerges in Dedekind’s mathe-
matical research

Dedekind’s drafts suggest that the role played by the dualism is brought out
by the research itself: through the writing and research practices, Dedekind
followed the thread of duality. It is exhibited, put forward by the computations
on modules and analyses of their properties. At the same time, it was a strong
incentive for studying the operations more closely, and continues to be a guiding
light for Dedekind’s investigations. This can be observed in particular in the
choice of notations, of the organisation of writings on paper, and in the artefacts
devised by Dedekind to support his research.

41A similar strategy was used by Ernst Schröder in (bo:Schroeder1877a).
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In a large portion of these drafts, Dedekind’s research process consists in
computations on modules. Such computations are explorations of the prop-
erties of modules and their operations, in an approach akin or likened to an
experimentation with modules allowing to observe the laws governing the the-
ory. Computations, as well as some of the layouts and devices used by Dedekind
in drafts, are largely (if not entirely) absent from his publications. In that aspect,
they appear to be ways of working designed for the research process, dedicated
to work out the properties of modules (and later groups of modules, and Du-
algruppen). I would like to consider, in the following sections, to which extent
these devices and experimentations played a role in putting forward duality
properties of the operations, and in clarifying their role in the definition-to-be
of Dualgruppen. My goal will not be to study the details of Dedekind’s compu-
tations — they are, most of the time, relatively simple and fairly repetitive42
— but rather to exhibit how Dedekind devised notations and layouts for his
drafts that allowed to better bring to the fore the dualism in the properties of
modules.

4.3.1 A short aside on groups

Before I expose some of the details of these research practices, it is important to
mention that Dedekind’s drafts show us that he was working on two aspects of
module theory. On one hand, he studied the properties of the operations: finding
the smallest number of fundamental laws, establishing and proving properties
(e.g., the Modulgesetz ). On the other hand, he was interested in what he called
“groups of modules”, systems formed by modules and closed under the GCD and
LCM operations.

Dedekind had been working on and with groups since the mid-1850s, when
he gave the first class on Galois theory in Germany (Dedekind, 1856-1858). He
adopted a very general conception of groups from the start, defining them in
the following way:

The following investigations are based only on the two fundamental
results proven above [associativity, right- and left-cancelability] and
on the assumption that the number of substitutions is finite: The
results are therefore valid for any finite domain of elements, things,
concepts θ, θ′, θ′′, . . . admitting an arbitrarily defined composition
θθ′ for any two given elements θ, θ′, such that θθ′ is itself a member
of the domain, and such that this composition satisfies the laws
expressed in the two main results. In many parts of mathematics,
and especially in the theory of numbers and in algebra, one often
finds examples of this theory; the same methods of proof are valid
here as there. (Dedekind, 1856-1858, p. 63), transl. in (Corry2004)

In his 1894 Supplement X, in which he develops Galois theory further, the
definition of a group is more concise:

42See (Haffner, 2018).
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A system Π of n different field permutations π is called a group if
any one can be composed with any other, and the resultant is always
contained in Π. (Dedekind, 1894a, p. 482)

The associativity and the existence of an inverse element are seen, here, as
consequences of the definition of permutations themselves. Dedekind’s uses of
the word “group” suggest that the essential condition for a system (of numbers,
permutations, or other mathematical objects, including arbitrary indefinite el-
ements) to be a group is the closure by one or two binary operations. The
properties of the operations would give defining properties of the “group” in
question — properties such as associativity were not, for example, included in
his general idea of a “group”. It is the use made in his drafts on Dualgrup-
pen. Besides, for Dedekind, there was no problem with forming sets of sets, as
he thought of them as objects rather than collections. It is thus unsurprising
that having defined two commutative operations for modules, he would look at
“groups” formed by modules. I will use the term “group” as an actor’s category
and follow Dedekind’s use of the word.43

Throughout the drafts we are studying, from the theory of three modules
to Dualgruppen, the methods used by Dedekind are strongly reminiscent of the
methods used in group theory at the end of the 19th century: study of the
internal organisation (or ‘structure’), tables or list of elements. . . Such strate-
gies were usual at the time in works on groups (they were used by Cayley, who
Dedekind read, for example). Dedekind’s drafts thus suggest that he was work-
ing in module theory and slowly taking the direction of setting up and studying
a notion of “group”, broadly conceived, of modules.

In Cod. Ms. Dedekind X 10, p. 8, written on an envelope dated from
01/02/1878 but followed by a page dated from 01/04/1889, for example, Dedekind
considers two chains of modules a (of m links) and b (of n links), and builds all
the c = a− b (of mn links) and d = a + b (of mn links). He then observes that

All a− b are themselves c
" b− c " " c
" a + d " " d
" b + d " " d
" a± a′ " " a
" b± b′ " " b
" c− c′ " " c
" d + d′ " " d


Here, a′, b′, c′, d′ seem to be respectively members of the chains of a, b, c, d.

43Outside of Dedekind’s works, at the end of the 19th century, the term “group” also covered
several different meanings or understandings of the concept (Wussing, 1984; Ehrhardt, 2012).
There was no “group theory” as we understand it today. Note that, in a draft of (Dedekind,
1888) reproduced in (Dugac, 1976, p. 296), we see that Dedekind’s chains were first called
“groups”. It is one of many occurrences, in Dedekind’s manuscripts, of changing terminology
as part of the research process.
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Dedekind then builds a + c, b + c, a− d, b− d, c + c′, d− d′, c + d, c− d for cases
when a > a′ and b > b′. He notes:

The gr[eatest] com[mon] divisors built by a, b, a − b coincide with
the sm[allest] com[mon] multiples built by a, b, a+b, and constitute
consequently a group. (Cod. Ms. Dedekind X 10, p. 8r)

Following this, Dedekind does not investigate further the group aspect of this
system, but considers the cases for a < a′ and b < b′, extends his computations
to more factors and states a “general theorem” for the operations.44 We observe,
here, how the concept of group (of modules) enters into Dedekind’s module-
theoretic research: as an overarching concept of a system closed by a binary
operation, but without Dedekind actually developing considerations pertaining
to group theory standardly conceived (unlike, for example, in his (Dedekind,
1897a)).

We will see many examples of Dedekind’s investigations on so-called groups
of modules. Most of the time, Dedekind was interested in case studies, in
which he gave himself three or four modules (arbitrary or finitely generated),
sometimes with numerical cases or with initial conditions on the divisibility
relations of those modules. In such case studies, of course, the examination of
the properties of the operations holds a central place. The inverse is not true:
a number of Dedekind’s studies on the properties of the operations for modules
did not consider questions related to groups. These two aspects are, thus, closely
related, but were nevertheless first developed independently. Ultimately, they
will be merged, in a crucial move for the emergence of the Dualgruppe concept.

4.3.2 Notations
As Dedekind himself emphasized, it was the introduction of a notation for the
GCD and LCM of modules, that allowed him not only to go from mimicking
arithmetic to actually computing with modules. By introducing these notations,
the notions of GCD and LCM became operations. It also led to highlighting
their duality. We saw that, in the 1870s, Dedekind tried a different symbol for
the operation giving the LCM of modules, which he ultimately decided to write
as −. In fact, Dedekind used several notations through the years, some of which
did not appear in the published papers. Dedekind experimented several ways of
writing his computations, which suggests a willingness to put forward — if not
to rely on — the dualism.

44“If

a > a′ > a′′ > . . . > a
(r)

b < b′ < b′′ < . . . < b
(r)

then we have

(a− b) + (a′ − b′) + . . .+ (a
(r) − b(r)) = (a+ b′)− (a′ + b′′)− . . .− (a

(r−1) − b(r))− a(r) − b

(a+ b)− (a′ + b′)− . . .− (a
(r)

+ b(r)) = (a− b′) + (a′ − b′′) + . . .+ (a
(r) − b(r−1))− a− b(r)”

(Dedekind X 10, p. 8r)
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This suggests that choosing a suitable notation can help visualize, and maybe
even better understand, some properties and relations of the objects studied. As
Dedekind repeatedly argued that notations should not hold a central place in
mathematical inquiries, it is interesting that it was a decisive step in his study of
module theory. In particular, in (Dedekind, 1894b), Dedekind quoted Gauss’s
famous remark on notations vs. notions:

Waring confessed that the demonstration [for the result: the product
of all numbers less than a given prime number, when increased by
unity is divisible by this prime number (EH)] seemed more difficult
because no notation can be devised through which one could express
a prime number. But in our opinion truths of this kind ought to be
drawn out of notions [notionibus, translated in German by Begriffen]
and not out of notations. (Gauss, 1801, §76, 50)

Dedekind considered this statement to be “a great scientific thought” (and an
argument in favor of his ideal theory against Kronecker’s divisor theory). For
him, it was a question of giving the primacy to “internal characteristic qualities”
rather than “external forms of representation” (Dedekind, 1894b, pp. 54–55). Of
course, this statement should not be taken as Dedekind suggesting that math-
ematics should be rid of any kind of Darstellungformen — this would amount
to mathematics without writing. He is rather insisting on what he considers as
suited to be taken as a definition. More importantly, Dedekind’s careful reflec-
tions on his own notations happen after the operations are defined, and they do
not modify the definition in any way. In addition, looking for the best notation
was likely related to questions of heuristics and to mathematics in the making.
The mathematics developed in such contexts is not yet fixed, it is in constant
evolution and it is freed of a number of constraints of writing for publication. It
illustrates the research and writing processes, the genesis of the mathematical
works, in ways difficult to find in publications.

First example of notation

The first notation introduced by Dedekind is the following. For three modules
a, b, c :

Gr[eatest]
c[ommon]
div[isor]

 a′ = b + c
b′ = c + a
c′ = a + b

Le[ast]
c[ommon]
m[ultiple]

 a1 = b− c
b1 = c− a
c1 = a− b

(Cod. Ms. Dedekind X 11-1, p. 19v)
The operations used by Dedekind, here, correspond to the ones whose defini-

tion we gave on p. 2.45 He works, as much as possible, with modules as objects,
as indeterminate operands. This allows him to manipulate the operations only
taking into account their fundamental laws (associativity, commutativity, idem-
potence) and properties such as the ones proved in (Dedekind, 1877) (see p. 2).
Introducing designations such as a′ = b + c shortens the computations.

45When working with numerical cases, they amount to addition and intersection of Z-
modules.
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For some time, Dedekind computes with only these notations. Eventually,
the need arises for more modes of representation of operations between modules,
such as:

a2 = a + a1
a′′ = a− a′

a3 = b1 + c1
a′′′ = b′ − c′

And so on. Several manuscripts bear the traces of Dedekind’s reflections on
how to represent modules and their operations. A striking example of this is
what seems to be the very first attempt at a systematic table of all the possible
combinations of modules with + and − in Cod. Ms. Dedekind X 11-1, p. 18v.
See p. 34.

Once these modes of representation are introduced, Dedekind works with
them in a very systematic manner. This is particularly noticeable in the various
lists and tables he draws, to which I will come back later. Not only do these
ways of writing allow for a considerable gain of time and simplify computations,
they are also useful to see results and patterns, such as46

I. (b− b′) + (c− c′) = (c− c′) + (a− a′) = (a− a′) + (b− b′)
= (a− a′) + (b− b′) + (c− c′)

= a′ − b′ − c′

II. (b + b1)− (c + c1) = (c + c1)− (a + a1) = (a + a1)− (b + b1)

= (a + a1)− (b + b1)− (c + c1)
= a1+b1+c1

which we will encounter several times in this chapter.
The symmetry between the primes and the indexes mirrors the duality of

operations and clearly puts it forwards. This notation is used until the mid-
1890s, when it is replaced by a slightly different notation, though still relying
on the idea of a dualism between the primes and indexes (see below).

Second example of notation

Before this change, and in fact probably in parallel with the other ways of writing
described here, Dedekind coined a notation with what we could call symbolic
numbers in which he designates modules by numbers. For example, in (Cod.
Ms. Dedekind X 10, p. 52), he takes four modules designated by 1, 2, 3 and 4,
then:

12 = 1 + 2 34 = 3 + 4
13 = 1 + 3 24 = 2 + 4
14 = 1 + 4 23 = 2 + 3

46In the equations below, recall that the primes designate GCDs of two modules, and the
indexes designate LCMs of two modules.
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12 is thus a notation for 1 + 2, and so on. Then, he writes:

123 = 12 + 3 = 13 + 2 = 23 + 1
124 = 12 + 4 = 14 + 2 = 24 + 1
134 = 13 + 4 = 14 + 3 = 34 + 1
234 = 23 + 4 = 24 + 3 = 34 + 2

123 = 123 + 4 = 124 + 3 = 134 + 2 = 234 + 1
= 12 + 34 = 13 + 24 = 14 + 23

in which 123 is a notation for 12 + 3 (i.e., for (1 + 2) + 3) and the subsequent
equalities give the associativity of addition.

Of course, this kind of concatenation notation is difficult to use for two dual
operations. Dedekind does not address this issue, in that manuscript. Rather,
he introduces additional notations, namely:

a1 = 1− 234, a2 = 2− 134, a3 = 3− 124, a4 = 4− 123
123− 124 = 12 + a3 = 12 + a4 = a12
123− 134 = 13 + a2 = 13 + a4 = a13

. . .
b1 = 123− 124− 134
b2 = 123− 124− 234

. . .

Similar notations were used by Cayley in a number of papers47. We know
that Dedekind read some of Cayley’s works on group theory, and it is a fairly
reasonable assumption to believe he may have read more.

We can find several such attempts at working with symbolic numbers in
Dedekind’s drafts. Many of them are abandoned relatively quickly. These seem
to be related to reflections on combinatorics and in particular the decomposition
of numbers into prime factors, and a version of the notation is used in (Dedekind,
1897b, p. 109), in which Dedekind explains that three “combinations” α, β, γ
such that α = 2347, β = 1357, γ = 1267,48 then:

β + γ = 123567, γ + α = 123467, α+ β = 123457
β − γ = 17, γ − α = 27, α− β = 37

where + is the union and− the intersection. The combinations used in (Dedekind,
1897b) are said to be “just a system of elements” and thus to belong to “the the-
ory of systems (Systemlehre)” (Dedekind, 1897b, p. 112). As such, they fit into
the inquiries on Dualgruppen as particular cases. Drafts for (Dedekind, 1897b)
suggest that, just like for module theory, research on combinations led Dedekind
to identify them as part of a larger, more general theory. In his published paper
(and in a number of drafts), Dedekind goes back to his usual +, − notation
when studying the general case.

47(Ribrag, 2019). I would like to thank Hourya Benis-Sinaceur for pointing this out to me.
48Here, what Dedekind calls “combinations” are subsets of the set of integers

(1, 2, 3, 4, 5, 6, 7).
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This concatenation notation is difficult to handle and, as the above example
illustrates, sometimes demands to be mixed with other notations. As a com-
puting tool, it is not very efficient. And as a device to highlight duality, it is
close to useless, since the symmetry between the operations is almost invisible.
In several instances, Dedekind seems to try to work around this last difficulty
with the introduction of additional ways of writing used elsewhere, such as the
use of primes. There is considerably less consistency and systematicity with this
notation than with the two others described above and below.

Third example of notation

Finally, and this is the notation for which we have the greatest amount of mate-
rial, Dedekind uses a similar strategy as described on p. 25 but with a decreasing
scale of primes and indexes. In Cod. Ms. Dedekind X 11-2, p. 15r (approxima-
tive date: mid-1890s), for example, Dedekind considers three modules a, b, c,
and defines:

d′′′′ = a + b + c ; d4 = a− b− c
a′′′ = b + c, b′′′ = a + c, c′′′ = a + b ; a3 = b− c, b3 = a− c, c3 = a− b
d′ = a′′′ − b′′′ − c′′′ ; d1 = a3 + b3 + c3 a′′ = a + d′, b′′ = a + d′, c′′ = a + d′ ; a2 = b− d1, b2 = a− d1, c2 = a− d1

a′ = a + d1, b
′ = a + d1, c

′ = a + d1 ; a1 = b− d′, b1 = a− d′, c1 = a− d′

a0 = a′ − d′ = a1 + d1 ; b0 = b′ − d′ = b1 + d1 ; c0 = c′ − d′ = c1 + d1

Some basic computations allow to see that we have also: a′′ = b′′′ − c′′′, b′′ = c′′′ − a′′′, c′′ = a′′′ − b′′′ ; a2 = b3 + c3, b2 = c3 + a3, c2 = a3 + b3,
a′ = a + a3, b

′ = b + b3, c
′ = c + c3 ; a1= a− a′′′, b1= b− b′′′, c1= c− c′′′

a0 = a1 + a3 = a′ − a′′′, b0 = b1 + b3 = b′ − b′′′, c0 = c1 + c3 = c′ − c′′′

This third notation, following a similar idea as the first presented above, is the
one that is the most widely used in Dedekind’s drafts, and the one used in the
published papers. It is unclear why Dedekind preferred the decreasing scale of
indexes and primes over his first notation. In any case, using this decreasing
scale of indexes and primes implies that Dedekind knew the number of elements
of the group of modules.

How the dualism is highlighted by the notation

Dedekind’s choice of notations allows him to state results displaying the “dual-
ism” in module theory, such as, in Cod. Ms. Dedekind X 11-2, p. 15v., following
the above manuscript. This example allows us to see how Dedekind worked with
duality, and how the notations he devised helped him in this enterprise. In the
top part of the page, Dedekind states results for numbers of classes, such as:

(d′′′′, a′′′) = (b′′′, c′′) = (a′′, d′) = (a′, a0) = (a, a1) = a
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using the definition of the elements, and the divisibility relations between them.
He does so for (b, b1) = b, (a′, a) = a1, (b′, b) = b1, (c′, c) = c1. This leads him
to:

(a′′, a′) = (b′′, b′) = (c′′, c′) = (d′, a0) = (d′, b0) = (d′, c0) =

(a1, a2) = (b1, b2) = (c1, c2) = (a0, d1) = (b0, d1) = (c0, d1) =

}
= h or d.49

From which he gets:

(b, c) = hbc1 (c, b) = hcb1
(c, a) = hca1 (a, c) = hac1
(a, b) = hab1 (b, a) = hba1

And finally:

(b, c)(c, a)(a, b) = (c, b)(a, c)(b, a) = h3abca1b1c1.

This last theorem, he writes, “can also be proven without the complete theory
of three modules (dualism) with only the three elementary theorems”:

I. (a, b) = (a + b, b)
II. (a, b) = (a, a− b)

III. If p divisor of n, and n divisor of m, then (p,m) = (p, n)(n,m)[. . .]
In fact, with application of the above notations (not theorems), we have

(b, c) = (b + c, c) = (a′′′, c) according to I.

The “complete theory of three modules (dualism)” seems to designate, here,
the formation of all the elements generated by a, b, c. But Dedekind certainly
does not move away from duality related observations in what follows:

Moreover, since c′′ = a′′′ − b′′′ is a multiple of a′′′ and a divisor of c,
then we have

(a′′′, c) = (a′′′, c′′)(c′′, c) according to III;

furthermore, we have

(a′′′, c′′) = (a′′′, a′′′ − b′′′) = (a′′′, b′′′) according to II,

but we have b + b′′′ = b + (c + a)) a′′′ + b′′′ = (b + c) + (c + a) = b + c
+a = b + b′′′, consequently

(a′′′, b′′′) = (a′′′ + b′′′, b′′′) = (b + b′′′, b′′′) = (b, b′′′) according to I ;

and it follows the first of the six equations

IV.
{

(b, c) = (b, b′′′)(c′′, c); (c, a) = (c, c′′′)(a′′, a); (a, b) = (a, a′′′)(b′′, b)
(c, b) = (c, c′′′)(b′′, b); (a, c) = (a, a′′′)(c′′, c); (b, a) = (b, b′′′)(a′′, a)

from which the remaining ones follow from permutations, and at the
same time follows the above theorem

V. (b, c)(c, a)(a, b) = (c, b)(a, c)(b, c) = (a, a′′′)(b, b′′′)(c, c′′′)(a′′, a)(b′′, b)(c′′, c).
49The d is not used elsewhere in the manuscript. It is unclear what it refers to and, in fact,

it could just be a change of heart regarding naming the result with the letter h.
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Then, writes Dedekind, “dualistically, it follows also”:

(b, c) = (b, b− c) = (b, a3) according to II.

furthermore a2 = c3 + a3 is a divisor of a3 and a multiple of b, so we
have

(b, a2) = (b, b2)(b2, a3) according to III.

furthermore, we have

(b2, a3) = (c3 + a3, a3) = (c3, a3) according to I.

but we have c3 − a3 = (a− b)− (b− c) = a− b− c = c− c3, conse-
quently

(c3, a3) = (c3, c3 − a3) = (c3, c− c3) = (c3, c) according to II.,

consequently

VI.
{

(b, c) = (b, b2)(c3, c); (c, a) = (c, c2)(a3, a); (a, b) = (a, a2)(b3, b)

(c, b) = (c, c2)(b3, b); (a, c) = (a, a2)(c3, c); (b, a) = (b, b2)(a3, a)

And finally:

VII. (b, c)(c, a)(a, b) = (c, b)(a, c)(b, c) = (a, a2)(b, b2)(c, c2)(a3, a)(b3, b)(c3, c).

(Cod. Ms. Dedekind X 11-2, p. 15v.)
For Dedekind, this equality is the dual of V. It but must be looked at di-

agonally to ‘see’ the duality. Indeed, with the equalities we gave on p. 28,
a′′ = a + d′ = b′′′ − c′′′ and a2 = a− d1 = a3 + c3 are dual of each other,50 and
so on for b′′, c′′ and b2, c2. The equalities in V. and VII. are thus equivalent to:

(b, c)(c, a)(a, b) =

{
(a, b + c)(b, a + c)(c, a + b)(b′′′ − c′′′, a)(a′′′ − c′′′, b)(b′′′ − a′′′, c)
(a, b3 + c3)(b, c3 + a3)(c, b3 + a3)(b− c, a)(a− c, b)(a− b, c)

where the colors (mine) highlight the dualism between each side51.
Despite the changes in the notations, the play of symmetry between the

primes for the addition and the indexes for the subtraction remains a central
feature. It gives Dedekind the possibility to systematically work with this sym-
metry, and to put forward what he sometimes calls “dual pairs”. For example,

50d′ = a′′′ − b′′′ − c′′′ and d1 = a3 + b3 + c3 are dual of each other.
51If we develop again the a′′′, etc., and a3, etc., we get: (b, c)(c, a)(a, b) ={

(a, b+ c)(b, a+ c)(c, a+ b)((a+ c)− (a+ b), a)((b+ c)− (a+ b), b)((a+ c)− (b+ c), c)

(a, (a− c) + (a− b))(b, (a− b) + (b− c))(c, (a− c) + (b− c))(b− c, a)(a− c, b)(a− b, c)
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in a later draft, in Cod. Ms. Dedekind XI 2, p. 54r, he wrote:

Primary divisibilities:
d′′′′ < b′′′, c′′′ d1 > c0, a

′

b′′′ < a′′, c′ c0 > a′′, c′

c′′′ < a′′ a′ > a′′

a′′ < a′, c0 a′′ > c′′′, b′′′

c′ < c0 c′ > b′′′

a′ < d1 c′′′ > d′′′′

c0 < d1 b′′′ > d′′′′

Dual pairs
d′′′′, d1
b′′′, c0
c′′′, a′

a′′, a′′

c′, c′

Changing notations?

Dedekind does not justify either the notations, nor their modifications. Nev-
ertheless, we do find several drafts acting the change of notation as being a
“better designation” (bessere Bezeichnung). Some of them consist in a complete
rewriting of the results, especially the tables of all possible combinations for 3
modules, which I will describe in the next section. In other drafts, Dedekind
changes notations while working, which confirms that the way of writing played
an essential role in his research. For example, in Cod. Ms. Dedekind X 10, p. 1,
Dedekind starts with a “simple Modulgruppe (or chain)”. “Chain” means simply
an ordered sequence of modules, here denoted by 1 < 2 < 3 < . . . < n − 1 < n
(with always r < s < t < u).52 He then considers a module 0 such that

r′ = 0 + r of which there are n
r′′ = 0 + r of which there are n

rs = r′′ + s = s′ − r, with r < s of which there are n(n−1)
2

The multiplicative notation rs, albeit slightly unusual, is reminiscent of the one
used in cases in which he denotes the modules with numbers. The lefthand
side of the manuscript contains columns listing possible combinations of the
group thus generated using letters r, s, t, u, r′, r′′, . . . , s′, s′′, . . . (of which there
are (n+1)+n+n+ n(n−1)

2 = n2+5n+2
2 ). He then proposes another presentation:

ar instead of r
br instead of r′ = n+ ar
cr instead of r′′ = n− ar
drs instead of rs = cr + as

m instead of 0

With this new notation — which seems more manageable —, he studies the
order in this Modulgruppe. But by the bottom of the manuscript, after drawing

52Dedekind used chains of modules in number theory. The fact that he considered Modul-
gruppen and chains together, here, gives us yet another indication that the consideration of
“groups” of modules was a very progressive step taken by Dedekind.
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a separation, he notes “Yet another presentation!!” and proposes that the n given
modules be renamed:

a−n+1 < a−n+3 < . . . < an−3 < an−1 ; b−n < b−n+1 < . . . < bn.

The module to be added is called b, and we have

b + ar = b r−n−1
2

b + ar = b r+n+1
2

From there, Dedekind continues to investigate properties of the order for
a couple of lines.53 On a corner, he notes the following with the commentary
“Versuch! ”:

(b− ar) + ar+2 =

(b + ar+2 − ar =

}
a′r+1

The changes do not seem to be prompted by considerations on duality — at
least, not on duality alone. Rather, they are motivated by how practical, man-
ageable and readable the notation can be. In these considerations on usability
and readability, duality comes into account as one of the questions to be inves-
tigated when looking for fundamental laws or general properties.54

An additional change of notation happens later in the progress of the re-
search, which is, this time, justified by Dedekind, namely replacing the signs
+ and − by the Greek letters ϕ and ψ when generalising the investigation to
arbitrary binary operations verifying a set of properties such as associativity,
absorption etc. This move, which I study in section 4.4.4, is a fairly usual one
for Dedekind.

53On the next page (written with a similar pencil, but on a different piece of paper),
Dedekind studies a chain of modules b1 < . . . < bn to which he adds a module a such
that

a+ b1 < . . . < a+ bn < a < a− b1 < . . . < a− bn.

This additional hypothesis on a gives:

(a+ br)− bs = (a− bs) + br when r ≥ s
(a+ br)− bs = bs when r ≤ s
(a− bs) + bs = br when r ≤ s

thus simplifying the research. Dedekind then considers examples, in which the modules are
denoted by the numbers 1, 2, 3 and 0.

54Cod. Ms. Dedekind X 11-1, p. 42-43 is another good example of adapting notations to
research (see http://eman-archives.org/Dedekind/items/show/211). The two pages Cod.
Ms. Dedekind X 10, p. 20-21 show two similar studies on finitely generated modules with
two different notations, one of them being labelled “old designation” (alte Bezeichnung) (see
http://eman-archives.org/Dedekind/items/show/242). Cod. Ms. Dedekind X 10, p. 48,
which is studied below p. 50 is also an example of changes in notations during the writing. See
also the documents listed on the page https://eman-archives.org/Dedekind/items/browse?
tags=meilleure-presentation, where are gathered the various documents in which Dedekind
explicitly noted using a different (new, older or better) presentation.

http://eman-archives.org/Dedekind/items/show/211
http://eman-archives.org/Dedekind/items/show/242
https://eman-archives.org/Dedekind/items/browse?tags=meilleure-presentation
https://eman-archives.org/Dedekind/items/browse?tags=meilleure-presentation
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4.3.3 Layouts and research devices

In Dedekind’s drafts, we observe isolated computations, detailed case studies,
tables, lists, partially written texts, even diagrams. These various manners of
approaching the study of modules serve as an intensive, repeated exploration of
the properties of modules and their operations. A striking feature of Dedekind’s
drafts is the way in which they are organised, how the writings are spatially ar-
ranged, which not only marks a significant departure from the linear, rectangular
printed text, but also testifies of a reflection on how and where to position cer-
tain computations and/or results, how to organise them, and sometimes even
how to provide a visual support for the research (showcasing duality, internal
‘structure’, order. . . ). Depending on the step of the research presented in the
draft, the spatial organisation of the writings can testify to successive operations
or of a willingness to organise the results in a specific manner — both to sup-
port the very systematic way in which Dedekind works, and to showcase certain
results, among which is the duality. It seems, as the following paragraphs will
illustrate, that there is a reciprocal relation between the choices of notation and
organisation of writings and the investigation of the dualistic properties of di-
visibility of modules: some of these choices played a role in the observation and
clarification of properties of duality, and reciprocally the attention to duality
certainly guided a number of such choices.

To give the reader a taste of the spatial organisation of Dedekind’s work-in-
progress manuscripts, I will focus on a series of pages in Cod. Ms. Dedekind
X 11-1 (early to mid-1890s), which are particularly striking for two reasons.
Firstly, the visual features: the organisation in columns, small frames, with
and without diagrams, sometimes rewritten several times, the presence of very
clear corrections show us the progression of the research. Secondly, they appear
to constitute a delimited sequence towards an identifiable set of manuscripts,
which contain cleaned up versions of the results (here, lists and tables for the
theory of three modules, Cod. Ms. Dedekind X 11-1, pp. 40-41).55 Thus, they
show us different states of research and writing. It is important to keep in
mind that the progression might not have been linear. It is however possible to
distinguish some steps in the development of the investigation (by comparing
to the final results, or again with erasures, displacements, etc.). The order in
which the manuscripts are presented in the following section does not mean that
a document was written before the next one (which can be difficult to assess
precisely). I have rather chosen to present the manuscripts according to their
form and contents.

The choice of these pages also comes from the fact that these documents’
features are very representative of what can be found in Dedekind’s drafts. The
layouts are fairly consistent throughout Dedekind’s years of research, up to the
last stages, and even after the definition for the Dualgruppe was given.

55See also
http://eman-archives.org/Dedekind/exhibits/show/parcours-vers-document-de-trav/
which exposes (in French) the steps.

http://eman-archives.org/Dedekind/exhibits/show/parcours-vers-document-de-trav/
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Tables

The first document I would like to present is the table in Cod. Ms. Dedekind
X 11-1, p. 18v, which lists the modules generated by three modules a, b, and
c (in other words, not used on this sheet by Dedekind, the members of the
Modulgruppe generated by a, b, and c). This table, written on an old marking
sheet for the winter semester of 1872-73, bears the traces of its own elaboration.
Dedekind first wrote the elements themselves, then replaced them by the nota-
tion he designed. A transcription of the first nine columns and four lines gives
us:

a b c a′ b′ c′ a1 b1 c1
a′′′ b′′′ c′′′

a′ b′ c′ d d d b′ − c′ c′ − a′ a′ − b′

a3 b3 c3
a1 b1 c1 b1 + c1 c1 + a1 a1 + b1 m m m

a′′ b′′ c′′

a− a1 b− b1 c− c1 m′ m′ m′ a1 b1 c1

Crossed-out cells show the moment when Dedekind decided to introduce the
supplementary designations. We can, here, observe the temporality of the writ-
ing of this table. The complete table suggests that Dedekind might have been
looking for a pattern. Because an image is sometimes, indeed, worth a thousand
words, a reproduction of this table can be seen as Figure 4.1, p. 35.56

The many rewritings of similar tables for three modules also suggest that
he was looking for a way to display the clean symmetry which can be seen
in the finished table (as published in (Dedekind, 1900, pp. 246–247)). Indeed,
Dedekind drew a dozen of such tables standing on their own, and many more
(smaller ones) integrated into the research. We find tables of divisors, of GCD /
LCM, of divisibility, several of which are 28 lines and 28 columns. Interestingly
Dedekind did not, in fact, draw a lot of different tables, he drew several times
the same table with different notations, different organisations. The prevalent
kind of table gives the GCD of two modules on the upper right side and LCM
of two modules on the lower left side. See Figure 4.2, p. 36. Dedekind draws
several versions of this table, in particular as he changes the notation used.

Dedekind also drew a couple of tables dedicated to showcasing the divisibility
relations between modules, in particular a 28 × 28 table in which the sign +
indicates that the module on the line is a divisor of the module in the column,
and the sign − indicates that the module on the line is a multiple of the module
in the column. See Figure 4.3, p. 37.57

In these two types of tables, the presentation and notation chosen emphasize
the dualism, as they display a perfect symmetry between GCDs and LCMs (or
between divisor and multiples).

56Manuscripts are reproduced with the autorisation of the Niedersächsische Staats- und
Universitätsbibliothek Göttingen.

57Another attempt at such a table is done in Cod. Ms. Dedekind X 11-1, p. 45, in which
the signs for being a divisor and being a multiple were respectively a O and an X.
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Figure 4.1: Cod. Ms. Dedekind X 11-1, p.18v.
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Figure 4.2: Cod. Ms. Dedekind X 11-1, p. 41r.
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Figure 4.3: Cod. Ms. Dedekind X 11-1, p. 46r.
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Finally, Dedekind also drew several tables whose aim seems to have been to
organize the results on chains and levels.

Spatial organisation(s) of writings and results

When computing all the possible combinations of three modules, Dedekind ex-
periments with organizing them in different ways. We find, in his drafts, several
variations of lists and tables for these modules. It is unclear whether these doc-
uments were developed simultaneously, and if not which one was written first.
In any case, they testify to a moment of Dedekind’s research process during
which he was computing all possible combinations and looking for the best way
to organize and/or present his results.

Cod. Ms. Dedekind X 11-1, p. 25 presents a relatively straightforward list
of all possible combinations, written as the combination of two operands (the
elements a′, a1, a′′, a2, etc. have already been defined, although their definition
is not re-written on this page), and sorted according to the operation. Here is
a transcription of the first five lines and columns:58

a+ b = c′ a− b = c1 a− b = c1 c′ −m′ = m′ a′′ −m′ = a′′

a+ c = b′ a− c = b1 a− c = b1 b′ − d = m′ a1 −m = m

a+ c′ = c′ a− c′ = a a− c′ = a b′ − c1 = c1 a1 − b′′ = a1
a+ b′ = b′ a− b′ = a a− b′ = a b′ − b1 = b1 a1 − c′′ = a1
b+ c = a′ a− a′ = a′′ a− a′ = a′′ b′ − a′′ = a′′ a1 − a′′′ = a1
. . . . . . . . . . . . . . .

The crossings-out and a few arrows to move certain lines indicate that this list
was written at a relatively early stage. Note also that some elements seem to be
missing, as the Modulgruppe generated by three modules contains 28 elements,
and Dedekind’s list only gives 21 of them.

The first two columns suggest an attention to the dualism between the re-
sults, but the table appears to have been written too early in the research
development for this to be fully accomplished. A complete and clean version
(with the notation described p. 28) can be found in Cod. Ms. Dedekind X 11-1,
p 10. In this clean version, the dualism is clearly highlighted by the columns
carefully putting face to face the dual elements. For example, the first six lines:

a+ a = a a− a = a
a+ b = c′′′ a− b = c3
a+ c = b′′′ a− c = c3
b+ b = b b− b = b
b+ c = a′′′ b− c = a3
c+ c = c c− c = c
. . . . . .

a+ a′′ = a′′ a− a2 = a2
a+ b′′ = c′′′ a− b2 = c3
a+ c′′ = b′′′ a− c2 = b3
b+ a′′ = c′′′ b− a2 = c3
b+ b′′ = b′′ b− b2 = b2
b+ c′′ = a′′′′ b− a2 = a3
. . . . . .

The double line separating the first two and the last two columns is a delimiter
signifying that each set of columns go together. The second set is only the con-

58The underlined equalities correspond to the definition of the element.
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tinuation of the list. The dualism here, is particularly striking and showcased
beautifully by the symmetry in Dedekind’s notation.

Cod. Ms. Dedekind X 11-1, p. 26 is a combination of a list and a table — or,
to put it differently, a table of lists. Organised in 28 columns (and three unused)
each corresponding to an element, the table gives the additions (and only the
additions) for two operands between the elements naming each column and all
the other elements. This organisation allows Dedekind to avoid repeating the
same computations (thanks to the commutativity of the operation) and results
in a triangular shaped table, of which I transcribe the first five lines and columns:

a b c d m . . .

a+ b = c′

a+ c = b′ b+ c = a′

a+ d = d b+ d = d c+ d = d
a+m = a b+m = b c+m = c d+m = d
a+ a′ = d b+ a′ = a′ c+ a′ = a′ d+ a′ = d m+ a′ = a

. . . . . . . . . . . . . . . . . .

At the bottom of each column are written the operations for the three addi-
tional elements a4, b4 and c4 (e.g., a+a4 =). They were crossed out later. This
suggests that Dedekind first wrote all the possible combinations and filled them
afterwards, since the Modulgruppe generated by three modules only contains 28
elements. So, this document and the previous one show us that this fact was not
clear at this point for Dedekind. After the table, Dedekind wrote some results
on the order, on which I will come back later.

The third example in this series is Cod. Ms. Dedekind X 11-1, p. 27, the
only one with a title: “Modulgruppe built by three arbitrary modules a, b, c”.
On the left side of the page, Dedekind wrote a numbered list of all the 28
modules in a column entitled “Definition”. On the right side, facing each line,
under the title “Propositions” (Sätze), are listed all the combinations equal to
the corresponding module in the “Definition” column. For example:

. . .
6.
7.
8.
. . .

 a′ = b+ c a′ = b′′′ + c′′′ = b+ c′′′ = c+ b′′′ = b+ c2 = c+ b2 = b2 + c2
b′ = c+ a b′ = c′′′ + a′′′ = c+ a′′′ = a+ c′′′ = c+ a2 = a+ c2 = c2 + a2
c′ = a+ b c′ = a′′′ + c′′′ = a+ b′′′ = b+ a′′′ = a+ b2 = b+ a2 = a2 + b2

Again, the way the writings are arranged tells us that Dedekind wrote his “propo-
sitions” as his computations progressed, since he did not always plan enough
room on some of the lines.

Such tables and lists are one of Dedekind’s main tools in his investigations
on the “theory of three modules”, and indeed part of a larger toolbox developed
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to accompany his computations. They constitute a result in themselves insofar
as they contain the results of Dedekind’s many computations, which are subse-
quently ordered and put in the said table. Dedekind, when developing a more
general theory, insists on the importance of having tables of all the elements of
a finite Modul- or Dualgruppe. But the tables also appear to be a device for
Dedekind, for conducting computations: they help shorten and verify the com-
putations, and they also might help to better see the patterns. In particular, the
duality which appears in the computations and can be difficult to fully visualize
or understand, becomes striking with a graphical device such as this one.

Representing the order

At several points, after the lists and tables exposed above, Dedekind wrote
some results on the order, with lists of “immediate neighbours” (Unmittelbare
Nachbarn), which he will later call “nearest divisors” (or “nearest multiples”).
To study this aspect, he also set up specific layouts. The small table showcasing
“dual pairs” reproduced on p. 31 is an example. In the series of manuscripts
we have been looking at in this section, considerations on the order are often
written after the table. One page is dedicated to it, in a similar way as the above
cited manuscripts were dedicated to the combinations: Cod. Ms. Dedekind X
11-1, p. 20. Dedekind separated the page in two sides: the left side for <, and
the right side for > (Figure 4.4, p. 40).

Figure 4.4: Cod. Ms. Dedekind X 11-1, p. 20v.

The disposition of the writings on this page suggests that Dedekind first
wrote the left side, and completed the right side afterwards. Here, Dedekind
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tried to state the order relation of each element in comparison to the others:
all the modules < a and all the modules > a, all the modules < b and all the
modules > b, etc. This exhaustiveness is not systematic in Dedekind’s studies
on the order relation. His interest rather lies in three key notions: nearest divi-
sors/multiples, levels and chains.

For nearest divisors/multiples and chains, Dedekind usually adopted a simple
presentation in columns, such as (Cod. Ms. Dedekind X 11-1, p. 27):59

d < a′, b′, c′ ; d < a′ < b′′′, c′′′ b′, c′ < a′′′ < m′, a2 a′′′ < a2 < a, a4 a2 < a < a′′

d < b′ < c′′′, a′′′ c′, a′ < b′′′ < m′, b2 b′′′ < b2 < b, b4 b2 < b < b′′

s < c′ < a′′′, b′′′ a′, b′ < c′′′ < m′, c2 c′′′ < c2 < c1, c4 c2 < c < c′′

. . .

More interesting, as far as layouts are concerned, are the levels. Dedekind tries
out several different dispositions to highlight their organisation and duality. The
one used most often is this type of triangular list (in Cod. Ms. Dedekind X
11-1, p. 24):

I. d
II. a′, b′, c′

III. a′′′, b′′′, c′′′

IV. a2, b2, c2,m
′

V. a4, b4, c4, a, b, c
VI. a′′, b′′, c′′, d1
VII. a3, b3, c3
VIII. a1, b1, c1
IX. m

Dedekind tries several horizontal versions (Figure 4.5, also in Cod. Ms. Dedekind
X 11-1, p. 24):

Figure 4.5: Cod. Ms. Dedekind X 11-1, p. 24r.

59Note the presence of a4, b4 and c4. Dedekind noted above, probably later: a′′′′ = a4, b′′′′ =
b4, c′′′′ = c4. This shows that, here again, the clarification of the elements of the ‘group’ is
not finished.
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The diagrammatic aspect of both layouts is remarkable. The horizontal one
doesn’t seem to work as well as Dedekind wished, and appears only a few times.
Diagrammatic representations are also used to represent chains, in diagrams
strikingly resembling Hasse diagrams,60 the modern representation of lattices
(again, in Cod. Ms. Dedekind X 11-1, p. 24) :

Figure 4.6: Cod. Ms. Dedekind X 11-1, p. 24r.

In this diagram, starting at the center, each link corresponds to the relation
“being a divisor of”: d = a′ + b′ + c′, hence d is a divisor of a′, of b′ and of c′,
which Dedekind would write d < a′, b′, c′ as above. Following the successive links
from the center to the upper left, we have a chain of modules:61

d < a′ < b′′′ < b2< b < b′′ < b3< a1

60According to (Birkhoff48), the name “Hasse diagram” does come from Helmut Hasse’s
“effective use” of such diagrams, but “the scheme goes back at least to H. Vogt, Résolution
algébrique des équations, Paris, 1895, p. 91, and has been used for many years in genealogy.”
As a matter of fact.

61The a3 indicated in the diagram is likely a mistake — as supported by the chain given a
little further down in the manuscript.
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with
d = a′ + b′ + c′

a′ = b′′′ + c′′′

b′′′ = b2+c2
b2= b + b1

b
b′′ = b− b′

b3= b′′ − c2= b′′ − a2= a1+c1
a1= b3−c3.

Note that for a perfect symmetry, one would need to add m = a1 − b1 − c1, but
it does not appear in Dedekind’s diagram. This may be for lack of space, or of a
good way to draw all the links, since m does appear in the list of chains written
on the same page. In any case, Dedekind’s notation seems clearly more suited
for computations than for diagrams. Many smaller instances of such diagrams
appear throughout Dedekind’s drafts.62

Some drafts also contain diagrams which combine the diagrammatic repre-
sentation of levels and chains (Figure 4.7):

Figure 4.7: Cod. Ms. Dedekind X 10, p. 9r (early to mid-1890s).

Dedekind never reproduced the diagrams in his published papers, despite
studying chains and levels.

Writing in small frames and how it helps display duality

The recto of the table Cod. Ms. Dedekind X 11-1, p. 18 (see p. 34) contains
computations which are most probably not the ones that led to the table, as
they study order (divisibility) properties of modules, but the two pages are
likely complementary and part of the same research. The results laid on p. 18r
of Cod. Ms. Dedekind X 11-1 do not use the notations introduced in the

62See the “Diagrammes” tab on https://eman-archives.org/Dedekind/emanindexpage?q=
81&vide=0&type=Item.

https://eman-archives.org/Dedekind/emanindexpage?q=81&vide=0&type=Item
https://eman-archives.org/Dedekind/emanindexpage?q=81&vide=0&type=Item
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table. Dedekind finds some of the equalities (such as (c1 + a1) = (b − d1)),
which suggests that this might have been written before the table. This also
suggests that the chronology of the use of paper was not necessarily linear — at
least at that moment of research. Nevertheless, this page is interesting in itself,
as it displays a recurring feature of Dedekind’s drafts: the writing in series of
small frames, with small lists facing each other and thus displaying the dualism
between them. Here is a partial transcription of the top part of Cod. Ms.
Dedekind X 11-1, p. 18r:

b > a′ ; a′ < b
c > a′ ; a′ < c
a > b′ ; b′ < a
c > b′ ; b′ < c
a > c′ ; c′ < a
b > c′ ; c′ < b

b > a1 a1 > b
c > a1 a1 > c
c > b1 b1 > c
a > b1 b1 > a
a > c1 c1 > a
b > c1 c1 > b

m > d1 > m′ > d

b > b′ − c′ b1 + c1 > a d1 < a′

b > c′ − a′ c1 + a1 > b d1 < b′

c > a′ − b′ a1 + b1 > c d1 < c′

d1 > m′ d1 > b′ − c′ a + d1 > b′ − c′

d1 > c′ − a′ b + d1 > c′ − a′

d1 > a′ − b′ c + d1 > a′ − b′

This organisation of the computations and/or their results is very frequently
used by Dedekind — in fact, we already encountered it in the drafts studied up
to now in this chapter, and we will do so again. This seems to be, simply, a way
to put them into order. See, for example, this small set of results on Cod. Ms.
Dedekind X 11-1, p. 32. This is written on the back of an invoice dated from
1885, and seven other similar small folios have similar computations, the final
version of which is likely Cod. Ms. Dedekind X 11-1, p. 31.63 In this excerpt,
Dedekind computes with finitely generated modules, with the basis elements
written in square brackets, as he does usually in his number-theoretical works.

a = [1] ; b = [ω] ; c = [c, c1 + c2ω]
ω irrat[ional]
c, c1, c2 integers
c, c2 pos[itive]

a′ = b + c = [ω, c, c1 + c2ω] = [c, c1, ω] = [a′, ω]; [a′] = [c, c1]
b′ = c + a = [1, c2ω]
c′ = a + b = [1, ω]

a1 = b− c = [ cc2a′ ω]

b1 = c− a = [c]
c1 = a− b = 0

b1 + c1 = [c] a− a′ = [a′]
c1 + a1 = [ cc2a′ ω] b− b′ = [c2ω]

a1 + b1 = [c, cc2a′ ω] c− c′ = [c, c1 + c2ω]

b′ − c′ = [1, c2ω] a + a1 = [1, cc2a′ ω]

c′ − a′ = [a′, ω] b + b1 = [c, ω]
a′ − b′ = [a′, c2ω] c + c1 = [c, c1 + c2ω]

63See http://eman-archives.org/Dedekind/graphitem/200. Another one of these drafts is
studied p. 48.

http://eman-archives.org/Dedekind/graphitem/200
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In general, we have:
b′ − c′ = a + (b− b′) = a + (c− c′)
c′ − a′ = b + (c− c′) = b + (a− a′)
a′ − b′ = c + (a− a′) = c + (b− b′)

b1 + c1 = a− (b + b1) = a− (c + c1)
c1 + a1 = c− (c + c1) = b− (a + a1)
a1 + b1 = c− (a + a1) = c− (b + b1)

(Cod. Ms. Dedekind X 11-1, p. 32)
The presentation of the computations or results in two columns is often used

by Dedekind in his drafts, as we saw above. It is only one of the strategies he
adopted to investigate and display the dualism. The choices of notation and
spatial organisation, the specific layouts and devices developed during his re-
search process suggest that the investigation of duality is indeed strongly related
to such choices. With these examples, we also see clearly how the clarification of
the dualism was done along and through the research process — computations,
spatial organisation, rewriting and interpretation of results. . .

4.3.4 The Modulgesetz, the source of dualism?

Throughout Dedekind’s investigations, one specific property retained his atten-
tion, which he would later call the Modulgesetz.64 Recall that this law can be
stated as follows: for three modules p, m, d, if d < m, then we have

(p + m)− d = (p− d) + m

or, with p = a, m = b− c and d = b + c

(a + (b− c))− (b + c) = (a− (b + c)) + (b− c).

It was first published in (Dedekind, 1894a, p. 499) as a property of modules. In
the earliest drafts (in the 1870s and the 1880s) and in (Dedekind, 1877, p. 121),
the following properties are given for three arbitrary modules a, b, c:

(a + b)− (a + c) = a + (b− (a + c))
(a− b) + (a− c) = a− (b + (a− c)).

But theModulgesetz is not stated. It starts to appear in later drafts, in particular
in computations. Such uses of the property seem to have prompted Dedekind
to question its conditions of validity, from the late 1880s on. Still working in the
module-theoretical framework, he tried to determine the conditions for the law
to be generally valid. It is not the place, here, to look into his attempts to prove
that d < m is a sufficient and necessary condition for (p + m)− d = (p− d) + m,
and whether this property can be proven from the “fundamental laws” (i.e., the

64As far as conceptual development is concerned, it is very significant that the Modulgesetz
is named so late. For readability purposes, I will use its name (and likewise for the Idealgesetz )
even before Dedekind did.
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defining laws) of the operations — which I have done elsewhere.65 It suffices to
say that Dedekind’s approach, here again, was that of stepwise generalisation
and proceeded largely by trials and errors.

Around 1890, his research focused on proving that for three arbitrary mod-
ules a, b, c if b > c, then (a + b)− c = (a− c) + b, using only the axioms for +
and − and the definition of divisibility — or, in Dedekind’s own words, to prove
it “without new principles”. This proof is, in fact, not possible,66 a realisation to
which Dedekind came slowly. The observation of the impossibility to prove this
property from the fundamental laws alone was made well before introducing the
concept of Modulgruppe — in fact, even before applying the operations to other
operands. In this context, Dedekind’s first conclusion about the Modulgesetz
was not that it could be added to the fundamental laws of the operations as a
distinctive feature of module theory. Rather, he attributed a particular status
to it, calling it “indispensable”. In Cod. Ms. Dedekind X 11-1, p. 15, he took as
initial condition

(a + b)− c < a + (b− (c + a))

which invalidates the equality. Note that it is always true, in Dualgruppen, that

(a + b)− c < a + (b− (c + a))

which can be deduced from the (also always valid) inequality (for m < d)

(m + p)− d < m + (p− d).

For Modulgruppen (i.e., not a modular lattice), one would need the equality.
Dedekind gave an example which is not a Modulgruppe, and concluded:

17 November 1890. This example of an additive group shows the
indispensability of the law (which does not hold here)

(p + m)− d = (p− d) + m

m divisible by d, that is, m + d = d. (Cod. Ms. Dedekind X 11-1,
p. 15)

Labelling the law as “indispensable” suggests that Dedekind was still working
solely with modules (especially since he did acknowledge later that the law
is not necessary to Dualgruppen, but only a specificity of module-generated
and module-like ones). Importantly enough, Dedekind seemed to conceive this
“indispensability” in relation to forming “groups” of modules, which might justify

65(Haffner, 2021)
66In (Dedekind, 1900), he wrote:

But this Modulgesetz is, as I showed in §4 of my [(Dedekind, 1897b), i.e. the proof
that there exist Dualgruppen which do not verify the modular law (EH)], unfor-
tunately not derivable from the fundamental laws [commutativity, associativity
and absorption for + and −] and constitutes therefore an essential extension of
them for module theory. (Dedekind, 1900, 239, Dedekind’s emphasis)
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that it was not added to the fundamental laws defining the operations. This led
him to attribute a (temporary) specific status to it: the “source of dualism”.

In Cod. Ms. Dedekind X 11-1, p. 13-14, which can be dated from the early
to mid-1890s,67 Dedekind studied the divisibility laws for three modules m,
d, p with d divisor of m. The first two pages are covered with lists of results
and computations for the divisibility of the three modules (with all possible
additions and some subtractions), tables of GCDs, LCMs, multiples, and the
systematic verification of associativity. On the third (and last) page, in what
seems to be the conclusion of the preceding investigations, Dedekind wrote a
short paragraph stating:

The source of dualism in the theory of modules, that is, the following
theorem:
I. If m is divisible by d, then (m + p)− d = m + (p− d) amounts to
what follows (for the sign +):
II. If m + d = d, a + m + p = m + p, a + d = d then there exists at
least one element (module) q verifying the conditions

q + p = p, q + d = d, a + m + q = m + q.

Or again (if one sets d = m + p′).
III. If a + m + p = m + p, a + m + p′ = m + p′, then we have at least
one element q verifying the conditions:

q + p = p, q + m + p′ = m + p′, a + m + q = m + q.

But this theorem (I or II or III) is not in any way a necessary con-
sequence of the three laws of pure addition:
IV. a + a = a, a + b = b + a, (a + b) + c = a + (b + c).
(Cod. Ms. Dedekind X 11-1, p. 14v)

Dedekind does not justify calling this law the “source of dualism”, but the like-
liest hypothesis is related to the “indispensability” mentioned above, suggesting
that the dualism would be, at that point, conceived as intimately related to
forming “groups” of modules.68 Note that, in some drafts, Dedekind used “Du-
alismus” as synonymous of “the theory of three modules” (see the example on
p. 29), here. In later texts, Dedekind seems to use “Dualismus” to talk about
duality, which suggests an ambiguity between dualism and duality.

While this is a significant moment in the investigation of the dualism in
module theory — and, more broadly, of the genesis of Dualgruppen —, the Mo-
dulgesetz ’s status as the “source of dualism” is short-lived. It is not mentioned
again, even though the law still plays a central role in Dedekind’s research.

What Dedekind probably hadn’t seen when he attributed this status to
the Modulgesetz is that he could extend these operations and the formation

67It is written on the back of an advertisement that can be dated from after 1888.
68But of course, the initial condition in Cod. Ms. Dedekind X 11-1, p. 15, is in fact

stronger than just assuming that the Modulgesetz does not hold, although we cannot say
when Dedekind actually saw that.
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of “groups” to operands that did not verify the Modulgesetz but did verify the
(strict) inequality

(p + m)− d < (p− d) + m.

This changed when Dedekind applied and defined the operations in a more
general setting. Only then did it become clear that the law presented as the
“source of dualism” is a property of modules, that is, related to the restricted
context he was initially working in; that neither duality nor the possibility to
form “groups” are dependent or related to it; and that non-modular Dualgruppen
can indeed be defined. These three conclusions are entangled and certainly were
not the result of a linear process.

4.4 Generalisation of the research

4.4.1 More generality in module theory

As we saw, in his mathematical experimentations and explorations, Dedekind
often opted for a stepwise approach to the generalisation of his results, manip-
ulating simple cases and testing properties on progressively more general cases.
By doing so, Dedekind was able to observe the properties and laws verified by
the operations between modules, and identify which properties are generally
valid and which laws are fundamental, which was his initial purpose. Eventu-
ally, he also extended his investigations outside of module theory, reaching a
higher level of generality that would be crucial for Dualgruppen.

From numerical cases to general results

Dedekind computed with finitely generated and arbitrary modules and gener-
alising inductively. The series of drafts Cod. Ms. Dedekind X 11-1, p. 28-29
and p. 31-34 offers a clear example of this.69 Dedekind uses an early version of
his notation for sums and differences of three modules, and wrote on the back
of several 1885 invoices, so these can be dated between the late 1880s and the
early 1890s.

Dedekind’s drafts follow mostly the same pattern. They begin with a numer-
ical example for three finitely-generated modules a, b, c (of the form [x, x1+x2ω],
with ω an irrational number, x, xi integers) with the (more or less detailed) com-
putation of (some or all of) a′, b′, c′, b′ − c′, a′ − b′, c′ − a′, a− a′, b− b′, c− c′,
a1, b1, c1, b1 + c1, c1 + a1, a1 + b1, a+ a1, b+ b1, c+ c1. Then, similar computa-
tions for three ideals (seen as a specific type of modules) are done. Dedekind is,
here, testing the properties in a more restricted case of the theory. This suggests
that he was experimenting in more or less restricted contexts. After that, he
considers questions of divisibility between the computed modules, with vary-
ing degrees of generality. General results are stated for the first time in Cod.
Ms. Dedekind X 11-1, p. 28. After the said computations, Dedekind works

69One of these drafts was presented p. 44. See also http://eman-archives.org/Dedekind/
graphitem/200.

http://eman-archives.org/Dedekind/graphitem/200
http://eman-archives.org/Dedekind/graphitem/200
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with arbitrary modules, and starts with the following statements for numbers
of classes:70

(a− a′, b1 + c1) = (a− (b + c), (c− a) + (a− b)) = (a− (b + c), a− (b + (c− a)))
(b′ − c′, a + a1) = ((c + a)− (a + b), a + (b− c))

Since numbers of classes allow to deduce relations of divisibility between the
modules considered, this gives:

Every number in a− a′ = a− (b + c) is of the form:

α = β + γ ; since β = α− γ, γ = α− β follows
so, we have β in b− (a + c) = b− b′

γ in c− (a + b) = c− c′.

Similar results for θ = α1 + β1 + γ1 are written on the right side of the paper.
The above means in terms of divisibility of modules, that:

a− a′ > (b− b′) + (c− c′)
b− b′ > (c− c′) + (a− a′)
c− c′ > (a− a′) + (b− b′)

 (a− a′) + (b− b′) > (b− b′) + (c− c′)

A circled “general” result, which was likely added towards the end (at least after
the next set of computations for ideals), states:

In general = a′ − b′ − c′

(b− b′) + (c− c′) = (c− c′) + (a− a′) = (a− a′) + (b− b′)
(b + b1)− (c + c1) = (c + c1)− (a + a1) = (a + a1)− (b + b1)

= a1 + b1 + c1

Both “= a′ − b′ − c′” and “= a1 + b1 + c1” were added after the two main lines,
suggesting that the “general” result was written in two times. This result is
somewhat superposed with Dedekind’s computations for three ideals, for which
he finds that71

b′ − c′ = a + a1 b1 + c1 = a− a′

c′ − a′ = b + b1 c1 + a1 = b− b′

a′ − b′ = c + c1 a1 + b1 = c− c′

He concludes by stating that “in general”, “only” the inequalities are valid:

b′ − c′ < a + a1 and b1 + c1 > a− a′

c′ − a′ < b + b1 c1 + a1 > b− b′

a′ − b′ < c + c1 a1 + b1 > c− c′

The circled “general result” is proved in Cod. Ms. Dedekind X 11-1, p. 31.
That folio is itself divided in two parts: on the top part, there are (similar) com-
putations for three finitely generated modules; on the bottom part, Dedekind
states the said result with a proof.

70See p. 12.
71It is clear that Dedekind was investigating the same kind of relationships in the draft

mentioned on p. 44.
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From a finite number of modules to any number of modules

Another move towards a more general approach consisted in going from working
with a small number of modules (three to five) and attempting to generalise
to any number of modules. This is a recurring process in Dedekind’s research,
rather than a linear progression. He went back and forth between various degrees
of generality in his computations.

An example that exhibits many of the traits I just described is Cod. Ms.
Dedekind X 10, p. 48, which does not contain any indications for datation but
in which the notations used suggest that it was written in the late 1880s to
early 1890s. Dedekind starts by considering four modules, which he denotes by
1, 2, 3, 4. He does not compute all of the combinations but counts the number
of modules “of the type 1 + (2 − 3 − 4) (. . . ), 1 − (2 + 3 + 4)”, and so on. He
considers the following operation

{(2− 3− 4) + (1− 3− 4) + (1− 2)} − {3 + (1− 2− 4)}

and immediately substitutes letters for some of the operands:

(2− 3− 4) + (1− 3− 4) = p ; (1− 2) = q′

3 = p′ ; (1− 2− 4) = q

}
p > p′ ; p + p′ = p′

q > q′ ; q + q′ = q′.

This leads him to reformulate the initial computation, and deduce the following
equalities:72

(p + q′)− (q + p′) = (p + q + q′)− (p + q + q′) = (p + q) + (q′ − (p + q′))
= (p + q) + ((p′ − q′) + q)
= p + q + (p′ − q′)

In the right corner of the sheet, he notes the equalities he is going to use with
one of his more usual notations:

{a + (b− c)} − {b + (a− c)}
= (a + a1)− (b + b1)
= a′′′ − b′′′ = d1 = a1 + b1 + c1
= (b− c) + (c− a) + (a− b)

He also draws what seems to be a first try at the above reformulation (which I
do not reproduce, as the equalities are the same).

From there, he considers “the multiple for every choice of three modules”:

{1 + (2− 3− 4)} − {2 + (1− 3− 4)} − {3 + (1− 2− 4)} =
(2− 3− 4) + (1− 3− 4) + (1− 2− 4) + (1− 2− 3)

}
symmetrical

This “symmetry” between the two lines noted by Dedekind is related to the
already known property for three modules, namely:

(a + (b− c))− (b + (a− c)) + (c + (a− b)) = (b− c) + (a− c) + (a− b),

72These computations follow easily from laws of module theory such as the ones stated in
the introduction and the definitions of p, p′, q, q′.
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Or, with the notation used here:

(1 + (2− 3))− (2 + (1− 3))− (3 + (1− 2)) = (2− 3) + (1− 3) + (1− 2).

Dedekind follows with a “general theorem on n modules 1, 2, 3, . . . (n− 1), n”:

(1 +m1)− (2 +m2)− . . .− ((n− 1) +mn−1) = m1 +m2 +m1 + . . .+
mn−1 + mn

where m1 is the multiple of the n− 1 modules 2, 3, . . . , n all except
1

m2 [is the multiple of the n− 1 modules] 1, 3, . . . , n all except 2

mn [is the multiple of the n− 1 modules] 1, 2, . . . , n− 1 all except n
Other presentation :

n modules a1, a2 . . . an

From there

ms = a1−a2−. . .−as−1−as+1−. . .−an−1−an multiples of all the a without as

Then, theorem: multiples of only (n − 1) modules : already
symmetrical

(a1+m1)−(a2+m2)−. . . (an−1+mn−1) = m1+m2+m1 . . .+mn−1+mn

(Cod. Ms. Dedekind X 10, p. 48r)

The proof is done by induction on n. Dedekind then proposes a “more general”
result. With

m1 divisible by a1, a2, . . . an and these divisible by d1
m2 " " a1, a3, . . . an " " " " d2
. . . . . . . . . . . . . . .
mn " " a1, a2, . . . an−1 " " " " dn

he concludes that

(a1 − d1) + (a2 − d2) + . . .+ (an − dn) = c− d1 − d2 − . . .− dn

“where c is the gr[eatest] c[ommon] divisor or a1, a2, . . . an” (ibid..).
After the proof, which uses the previous result and, again, induction, Dedekind

proposes a “simpler expression”: with dr the divisors of ms (r 6= s):

1) (d1 +m1)− (d2 +m2)− . . .− (dn +mn) = d+m
2) (d1 −m1) + (d2 −m2) + . . .+ (dn −mn) = d−m

}
where

d = d1 − d2 − . . .− dn
m = m1 +m2 + . . .+mn

to which Dedekind adds that these results “in fact are dualistic of each other”.
This confirms Dedekind’s interest in finding ways of expressing his results so as
to showcase the duality between the operations.
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The results stated by Dedekind, in this sheet, are a generalisation of a result
he knew well for 3 modules, and which we already met several times. The
step-wise aspect of the statement of general results is, here, clearly illustrated,
especially if one considers these investigations as embedded in larger enquiries
about the divisibility of modules, as illustrated in the previous section. This is
not the only result which Dedekind proved for three modules and considered
stating for a random number of modules. For example, other manuscripts show
attempts at stating the Modulgesetz for a random number of modules.

4.4.2 Parallelism between modules and (Abelian) groups

As we saw on p. 49, Dedekind studied early on which kind of specific properties
were exhibited by ideals, and possibly only by ideals. This comes from the fact
that ideals were studied as a specific kind of modules. It led him to identify
some properties that were specific to ideals (i.e., not generally true for modules),
which in turn opened the possibility to study what he called “the theory of
three modules (of ideal character)” (see for example Cod. Ms. Dedekind III 14,
p. 1273). In particular, he identified the so-called Idealgesetz (see p. 9).

Likewise, Dedekind presented modules as special cases of groups. As a con-
clusion of the section introducing modules (of numbers) in (Dedekind, 1876-
1877), he indeed stated:

The research in this first section have been exposed in the special
form suited to our goal, but it is clear that they do not cease to be
true when the Greek letters do not denote numbers anymore, but
arbitrary elements, subjects of our study, any two of which α, β
produce a determinate third element γ = α + β of the same type,
under a commutative and uniformly invertible operation (composi-
tion), taking the place of addition. The modules a become groups
of elements, whose results (the composites) all belong to the same
group. The rational integer coefficients indicate how many times
an element contributes to the generation of another. (Dedekind,
1876-1877, 82, transl. modified, original emphasis)

Thus, just as he studied how applying the operations to ideals could affect
their properties, Dedekind also considered to which extent his investigations on
modules could transfer to the study of groups in general. This manifests itself
in several ways.

Firstly, he draws explicit links between module theory and group theory.
Here is the most explicit instance of it in (Cod. Ms. Dedekind X 9, p. 23):

73https://eman-archives.org/Dedekind/items/show/306

https://eman-archives.org/Dedekind/items/show/306
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Parallelism between
1) Modules a, b Abelian groups A, B
2) a + b A− B [GCD] of A, B
3) a− b AB [LCM] of A, B
Divisibility, d divisor of m
4) m + d = d ; m− d = d M−D = D, MD =M
Then theorem
5) m + (a− d) = (m + a)− d M−AD = (M−A)D
If we set now
6) m = b, d = b + c M = B, D = B − C
it follows
7) (a + b)− (b + c) = b + (a− (b + c)) (A− B)(B − C) = B −A(B − C)
But if we set
8) m = b− c, d = b M = BC, D = B
it follows
9) (a− b) + (b− c) = b− (a + (b− c)) AB − BC = B(A− BC)

Reciprocally, 5) follows from 7) when
b = m, c = d, b + c = d B =M, C = D, B − C = D

and 5) follows from 9), when we set
b = d, c = m, b− c = m B = D, C =M, BC =M

Symbol:
10) (a, b) = (a + b, b) = (a, a− b) (A,B) = (A− B,B) = (A,AB)

There are no sources cited for this table. It seems likely that Dedekind’s
comparison builds on both his own investigations on groups and his study of
Frobenius’ works. In particular, Dedekind also compares (without any addi-
tional commentary) some of his results to (Frobenius and Stickelberger, 1879),
in Cod. Ms. Dedekind X 9, p. 9.74

Dedekind’s observation of the “parallelism” between groups and modules,
here, is certainly nothing more than that at this point. The operations are not
abstracted from their respective context of definition, and Dedekind is still far
from seeing any sort of unifying concept of operation or structure.

Of course, Dedekind was well aware that a module is a specific type of group.
By thinking of modules as arbitrary groups, Dedekind can abstract his research
from modules of numbers, which in turn accentuates the fact that he works with
modules as objects rather than collections of numbers. Working with modules
as objects was usual for Dedekind — it was indeed a fundamental aspect of his
definition of GCD and LCM of modules and, more broadly, of his development
of an arithmetic of modules (and of ideals). This certainly played a significant
role in the development of the conception of the operations as independent of the

74See http://eman-archives.org/Dedekind/items/show/144.

http://eman-archives.org/Dedekind/items/show/144
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operands, which seemed to be done, in parts, by the mediation of case studies
on related objects, like ideals and groups.

Maybe prompted by the observations of the above table, Dedekind worked
with groups inasmuch as they are a concept of which modules are an instance.
Several Aufgaben are presented as working on “modules (or Abelian groups)”.75
They highlight how properties of the operations do not depend on their initial
definition as GCD and LCM of modules, but rather on the so-called fundamental
laws (associativity, commutativity, absorption). In itself, this is far from an
unusual approach to find in Dedekind’s works. What is interesting, here, is the
stepwise aspect revealed by his drafts.

This seems to be part of another aspect of the stepwise generalisation of his
research: can the operations be applied to other objects, in particular objects
more general than modules (e.g. arbitrary groups)? If so, what happens? This
eventually gave him the possibility to consider the operations themselves as gen-
eral, that is, independently of the operands. Slowly, Dedekind worked towards a
conception of the operations in which they are detached (abstracted) from their
interpretation in module theory. Although his position on this matter is not
completely clear, as he often goes back to module theory,76 there are distinct
attempts in the direction of more general operations.

4.4.3 Reading Schröder and the “logical” theory

Dedekind’s reading notes on the Vorlesungen über die Algebra der
Logik

Dedekind left two sets of notes on and several references to the first volume of
Ernst Schröder’s Vorlesungen über die Algebra der Logik (Schröder, 1890) in his
drafts.77 Insofar as Schröder’s book is quoted in “On the dualism in module
theory” (1895-1897), which we will study below and which marks a next-to-
final step in the genesis of the concept, we know that Dedekind read it before
achieving the final definition of Dualgruppen. For this reason, it seems important
to mention his reading of Schröder as part of the paths that led to Dualgruppen
via the text “On the dualism in module theory”, and indeed to do so before
studying that text, even though the second of these two sets of notes can be
dated from after it.

The two sets of notes are broadly similar. It seems that Cod. Ms. Dedekind
III 30 is a rewriting of the notes in Cod. Ms. Dedekind III 14, p. 1-2, in order to
compare Schröder’s and Dedekind’s theories. Cod. Ms. Dedekind III 14, p. 1-2
also uses the symbols + and − rather than ϕ and ψ, suggesting that it is anterior

75See for example Cod Ms Dedekind X 11-2, p. 14, in which he considers the lattice of
normal subgroups. https://eman-archives.org/Dedekind/items/show/301

76This is not surprising, since his (Dedekind, 1900) is indeed dedicated to Dualgruppen
formed by modules. As I mentioned, Dedekind seems to show more interest in instances of
Dualgruppen than in the abstract theory, which might be why he always goes back to modules.
But it is also possible that, at that point of development of the work, in the absence of a solid
foundation for the general theory, Dedekind prefers to go back to modules.

77http://eman-archives.org/Dedekind/items/browse?tags=Schroeder

https://eman-archives.org/Dedekind/items/show/301
http://eman-archives.org/Dedekind/items/browse?tags=Schroeder
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to Dedekind’s reflections on the matter. The latter symbols were introduced in
the mid-1890s by Dedekind for the last step of generalisation of his work, and
in particular for what he called a “logical theory” (for which Dedekind often
refers to Schröder).78 Let me concentrate on Cod. Ms. Dedekind III 14, p. 1-2.
Dedekind’s notes are concise, to say the least: only three pages on some points
of interest in the first eight Vorlesungen, and in the Anhang 6 on group theory.
Dedekind’s notes start with a couple of lines citing the Anhang 6 :

P. 684 Enumeration for the possible types of groups in identical
calculus.79

P. 685-686 Proof of the theorem (statement in §12 p. [282]), that
in the logical calculus with groups, there are cases in which the
formula for the law of distributivity is only one-sidedly valid as a
subordination (Unterordnung) (subsumption). (Cod. Ms. Dedekind
III 14, 1)

Dedekind worked on distributivity related questions, as can be seen in the text
presented in the next section, partly in relation with his investigations around
the Modulgesetz, but also when investigating the properties of the operations as
applied to Abelian groups.80

From there, Dedekind’s notes go back to the beginning of Schröder’s book,
presumably to better understand the previous notes. Most of them are not com-
ments, but a brief statement of what he is reading: symbols used by Schröder
(=( corresponds to Dedekind’s <; for the operations, Schröder uses + and a mul-
tiplicative notation), reflexive property, transitive property, definition of equal-
ity, definition of 0 and 1. . . When noting the definition of Schröder’s addition
and multiplication, Dedekind notes the “similarity” with his own “G(a, b) and
M(a, b)”, that is the union and intersection of sets as defined in (Dedekind, 1888).
He continues with the commutativity and associativity of both operations, the
“Tautologiegesetze”, i.e., the idempotence property, theorems on order, prop-
erties of 0 and 1 as respectively the unit and absorbing element of Schröder’s
addition and multiplication, results on the provability or unprovability of prop-
erties such as the distributivity law, proof “by intuition” of the distributivity
law and the claim that it is impossible to prove it “on the basis of the existing”
(which Dedekind punctuates with a “!”), and proof of said unprovability.

Dedekind’s notes are slightly more developed when he arrives at Schröder’s
statement that there should be two calculi, that is, one in which both sides of
the distributivity inequality are valid (identical calculus), and one in which only
one side is valid (calculus with groups). Dedekind then states:

So, the logical calculus is the more general, weaker (schwächere)
the identical calculus is the more specialized, sharper (schärfere)

78“Logical” is, for Dedekind, broadly synonymous with set-theoretical.
79Schröder lists the “groups” that can be formed with the operations he defined for his

identical calculus, e.g., the multiplicative group.
80See below and (Dedekind, 1897b), §§5-6.
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which is, he adds, his own expression of it. He continues:

P. 292 (§12) The two theorems 26× [a(b + c) =( ab + ac] and 26+
[(a+ b)(a+ c) =( a+ bc]81 can be reduced to each other. [. . . ]
P. 293 (§12) Principle III×: At least, when bc = 0, it is certain that
a(b+ c) < ab+ ac (i.e. 26×).
P. 302 (§13) Definition of the negation.
P. 310 (§13) General proof of (26×) and of (27×) on the basis of
Principle III and the negation.
P. 362 (§17) Theorem (40): From {ac=( bc and a+ c=( b+ c} follows
a=( b”82

Translation in my presentation:
From {(α − γ) + (β − γ) = β − γ and (α + β) + (β + γ) = β + γ}
follows α+β = β. [W]ith respect to the theorem (α−γ)+(β−γ) =
(α+ β)− γ, the hypotheses would be

{(α− γ)− γ = β − γ and (α+ β) + γ = β + γ}

or, when one sets α+ β = γ

δ − γ = β − γ and δ + γ = β + γ,

the theorem (40) therefore amounts to the simple theorem:
From {αγ = βγ and α+ γ = β + γ} follows α = β. [In the margin:
Schröder p. 362 mentions [it] in passing in Corollary 1.]
Or, in my presentation:
{α − γ = β − γ and α + γ = β + γ} follows α = β. (Cod. Ms.
Dedekind III 14, 3)

Without explicit comments from Dedekind, it is difficult to assess the role
played by Schröder’s book in his research on the Modulgesetz, its (un)provability
and its status in his theory. Yet, it seems equally difficult to believe that the
two are unrelated.

The first half of Dedekind’s second (and later) set of notes is similar to
this one, if slightly more developed. As it contains the word “Dualgruppe”,
it was likely written after “On the dualism in module theory”. Dedekind also
takes notes further in Schröder’s book (up to Schröder’s Theorem 50). He then
develops considerations on the distributivity law, going further than Schröder
— considerations which can be found in “On the dualism in module theory”.
Dedekind’s second set of notes is written in columns designed to compare
Schröder’s theory and his own, but he ultimately barely does. The column
dedicated to Schröder’s work is itself written in columns highlighting the dual-
ity of the results.83 Dedekind ends his notes with a table that summarises the

81In Dedekind’s notation, these correspond to a−(b+c)=( (a−b)+(a−c) and (a+b)−(a+c) <
a+ (b− c), i.e., one side of each of the dual equalities of the Idealgesetz. Schröder’s 27× and
27+ are the Idealgesetz (Schröder, 1890, p. 292).

82(Schröder, 1890, p. 362)
83See Dirk Schlimm’s chapter.
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correspondences between Schröder’s notations and definitions and Dedekind’s,
both in module theory and with the “new” notation ϕ, ψ.84

The operations in set theory

Dedekind’s laconic remarks do not allow to state with complete certainty what
kind of impact the reading of Schröder had on his own works. Both in his pub-
lished papers and in his drafts, Dedekind’s (other) references to Schröder are
placing his works as part of logic and as an instance of Dedekind’s own theory
(although, of course, Dedekind does not deny him priority). It seems likely that,
at the very least, Schröder’s book confirmed Dedekind’s move towards building
a theory that would be founded on the properties of the operations abstracted
from their initial definition as GCD and LCM of modules, a theory that would
encompass modules, ideals, groups and sets as special cases. Among the refer-
ences to Schröder in Dedekind’s drafts, several seem to point in that direction.
Let me mention two of them.

In Cod. Ms. Dedekind XI 3-2 p. 38v, we find a reference to Schröder’s
Algebra der Logik at the end of two pages (pp. 37r and 38v85) in which Dedekind
studies the union and intersection of sets as operations corresponding to his +
and − and Schröder’s addition and multiplication. These sheets were written
after 1894 (Dedekind refers to (Dedekind, 1894a)) but likely before “On the
dualism in module theory”. These investigations suggest that, even though he
did know about the correspondence between union (resp. intersection) of sets
and + (resp. −) for modules,86 Dedekind might not have considered (maybe
before reading Schröder?) whether the validity of the laws he knew for modules
also held for the intersection and union of systems.

Dedekind begins with the different manners of writing the intersection and
union of two systems A and B:

A + B the system compounded out of A, B [i.e., union (EH)],
M(A,B)
AB the intersection (Gemeinheit) of A, B, M(A,B) or also A−B?
(Cod. Ms. Dedekind XI 3-2 p. 37r)

Dedekind does not choose between Schröder’s multiplicative notation and his
own, and gives the two alternative notations throughout the draft. He defines
“being a part of” (inclusion) in terms of union and intersection:

That M is a part of D will be expressed by M + D = D, similarly
by MD = M (that is, M −D = M). (Ibid.)

84https://eman-archives.org/Dedekind/items/show/308
85Dedekind writes on a large advertisement folded in two. On the two outer folios, he wrote

on set theory. On the two inner folios, he wrote on modules. The two do not seem to be
directly related.

86(Dedekind, 1894a, 497–498, footnotes)

https://eman-archives.org/Dedekind/items/show/308
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This leads him to state that “when M is a part of D, then we have”

M + (A−D) = (M +A)−D or M +AD = (M +A)D

i.e., the modular law for sets, and for which he does give a proof. The absorption
law is briefly noted in a corner. Dedekind is more interested in proving the
generality of the distributive law (or Idealgesetz ):

Is there generally (A + B) − C = (A − C) + (B − C)? otherwise
(A + B)C = AC + BC? and (A − B) + C = (A + C) − (B + C)?
otherwise AB + C = (A+B)(B + C)? (Ibid.)

For this, he starts by showing the by then well-known equalities

B + (A− (B + C)) = (A+B)− (B + C)
(B − C) + (A−B) = (A+ (B − C))−B.

Dedekind’s proof is set-theoretical.87 He then uses these equalities to prove, in
a similarly set-theoretical manner, that

(A+B)− C = (A− C) + (B − C) that is, (A+B)C = AC +BC

next to which he refers to his Supplement XI in the 1894 edition of Dirichlet’s
Vorlesungen über Zahlentheorie, and more precisely to the sections on module
theory and the laws of + and −,88 and to Schröder’s Algebra der Logik, Lecture
6, that is, again, to the §12, mentioned in his notes.

Dedekind does not mention the link between the Idealgesetz and Modulge-
setz, and the laws he proves here. While these investigations appear to be only
marginally related to duality,89 they are interesting as parts of the genesis of
Dedekind’s Dualgruppen, as part of the development of the idea that the op-
erations could be abstracted from their context of definition and studied for
themselves, as defined by the laws they verify rather than by the objects they
act on.

Groups of arbitrary elements

A second notable reference to Schröder can be found in Cod. Ms. Dedekind
XI 2, p. 10. There, Dedekind studies the “formation of a (ϕ,ψ)-group (logical
calculus, Schröder S. 291) of three basis elements a, m, d under the hypothesis
mϕd = d and so also mψd = m”.90 This draft is not clearly datable, except
for the reference to Schröder. It is written on the back of a dismissed text
entitled “Dualismus” and numbered 17, which is likely not directly related to

87The manuscript is available at https://eman-archives.org/Dedekind/items/show/315.
88Among which, there is the Modulgesetz and the two dual laws

(a± b)∓ (b± c) = b± (a∓ (b± c)).
89Although it seems that the dualism in Schröder’s operations was a key aspect of Dedekind’s

interest in them and, by extension, in investigations such as the one presented here.
90Note that the hypothesis means that d is a divisor of m. See https://eman-archives.

org/Dedekind/items/show/264 for the full manuscript.

https://eman-archives.org/Dedekind/items/show/315
https://eman-archives.org/Dedekind/items/show/264
https://eman-archives.org/Dedekind/items/show/264
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“On the dualism in module theory” (1896-1897), as the latter does not have the
same presentation, is not written on the same paper, and does not miss a page
17. The present draft is likely to have been written before “On the dualism in
module theory”, to which Dedekind eventually suggested a change of title.

Dedekind draws a table of the elements of this “group”. Below the tables,
one finds the definition of the elements of the group:

d′ = mϕa , m′ = aψd
m′′ = mϕm′ , d′′ = dψd′

d′′′ = aϕd , m′′′ = aψm

Dedekind uses the same symmetrical display as he does for modules. On the
right-hand side of the paper, he lists what he calls “Folgerungen”, which are all
the possible combinations, thus giving him the contents of his table. On the
left-hand side, he studies the order properties, briefly considering the ‘levels’
composed by the elements. The last lines state:

From aϕb = u follow
{
uϕa = u, uϕb = u
uψa = a, uψb = b

}
From aψb = v follow

{
vψa = v, vψb = v
uϕa = a, uϕb = b

}
(Cod. Ms. Dedekind XI 2, p. 10r)

Dedekind thus seems to be stating general rules for the composition, but no
proof is given.

The formation of this (ϕ,ψ)-group shows one of Dedekind’s attempts at
applying his (initially) module-theoretical research to a different — here, logical
— context. The choice of notation for the operations is not surprising in the
context of a “logical” inquiry. Indeed, it is Dedekind’s preferred notation for
mappings in a set-theoretical context (in particular since (Dedekind, 1888)).
Dedekind adopts a similar approach in a number of other drafts, but most of
them can be dated from after “On the dualism in module theory”.91 However,
it is presented explicitly as a generalisation in an earlier draft, as we will see in
the next section.

These investigations, together with that of set-theoretical properties and
Schröder’s logical calculus, play a key role in the development of the idea that
the operations initially defined for modules can apply to different operands —
just as one can calculate with objects which are not numbers, which Dedekind
used in many of his other works. We see, thus, a process of abstracting the
operations from module theory, leading to Dedekind working with them more
generally. We also see a clear inflection towards investigating not the laws
of the operations, but the properties of the systems formed by closure under
such operations, without taking into consideration the individual nature of their
elements — another idea pregnant in many of his other works.

91See http://eman-archives.org/Dedekind/items/browse?tags=notation-generale

http://eman-archives.org/Dedekind/items/browse?tags=notation-generale
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4.4.4 “Generalisation of a part of module theory”
In Cod. Ms. Dedekind X 11-2, p. 56-57, Dedekind proposes a “generalisation
of a part of module theory” (the title of these two pages). These pages are
difficult to date, but we can say that they were written before “On the dualism
in module theory”92 and, considering the notations, around the same time as
the texts presented above.

In this manuscript, Dedekind studies the conditions of possibility for the
definition of a group defined by operations ϕ, ψ verifying the same laws as his
module-theoretic + and −, within a general framework. It is reminiscent of his
notes on Schröder’s Algebra der Logik. Dedekind pays particular attention to
the (yet to be named) Modulgesetz, and shows that it is indeed possible to form
a group that only verifies the inequality m+(a−d) > (m+a)−d (with m > d).

Dedekind considers a system of elements a, b, . . . and defines two operations
ϕ and ψ in the following way:

Operation ϕ with the laws (addition of modules; gr[eatest] com[mon]
divisor)

(I) aϕa = a ; aϕb = bϕa ; (aϕb)ϕc = aϕ(bϕc) = aϕbϕc = ϕ(a, b, c)

Operation ψ with the laws (sm[allest] com[mon] mult[iple])

(II) aψa = a ; aψb = bψa ; (aψb)ψc = aψ(bψc) = Ψ(a, b, c) = aψbψc

Connection between ϕ and ψ

(III) (aϕb)ψa = a ; (aψb)ϕa = a

We have, here, the operations defined by their laws solely, without taking into
account the nature of the operands. Dedekind’s first result is:

Theorem. Each of the two facts

(IV) (aϕb) = a ; (aψb) = b

follows from each other. [. . . ] We express the double relation con-
tained in (IV) by

(V) a < b or b > a

from which he deduces the transitivity and antisymmetry of the order and that
the operations preserve the order. More interesting is the consideration of (what
he would later call) the Modulgesetz :

Theorem. If m > d, then we have

mϕ(aψd) > (mϕa)ψd
92The clue for this datation is the use of the idempotence property in the so-called fun-

damental laws, as Dedekind realised, in the manuscript “On the dualism in module theory”
itself, that it could be deduced from the absorption property, and was thus not “fundamental”.
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Deletions show that Dedekind started writing the result using his usual + and
− notations. The proof is short:

We have indeed always (that is, without hypothesis)

m > mϕa, aψd > mϕa, aψd > d

in addition the hypothesis m > d.

From m > mϕa and m > d follows m > (mϕa)ψd

” aψd > mϕa ” aψd > d ” aψd > (mϕa)ψd

}
hence mϕ(aψd) > (mϕa)ψd

But from the previous hypotheses, follows by no means the identity
of these two modules elements!

On the back of the page, Dedekind lists inequalities valid without the hypothesis
m > d.

On the second page, Dedekind attempts “to find the simplest example in
which m > d but mϕ(aψd) and (mϕa)ψd are different”. He makes the “claim”
that

the five elements

a,m, d,m′ = mψd, d′ = mϕa

must all be different.93

We see, here, that Dedekind initiates an explicit generalisation of his re-
search, which in particular relies on the possibility to develop a Modulgesetz -less
theory. Dedekind understood that the property is not related directly to the
operations, but to the context in which they were initially defined, and it is
thus not “indispensable” to study the operations (and the groups thus formed)
if one wishes to generalise them. This is important as it shows how duality is
eventually dissociated from modules for Dedekind, and thus how it leads him
to understand that this dualism is not a property of modules themselves.

4.4.5 The case of the first draft of (Dedekind, 1897b)
The intricate links between Dedekind’s research on the operations in module
theory and his research on groups are clearly visible in the drafts for (Dedekind,
1897b). These drafts can be tiresome to navigate and interpret, as they investi-
gate combinatoric properties of divisors of numbers using Dedekind’s figurative
numbers notation. But a series of notes in Cod. Ms. Dedekind III 14, p. 32-
3694 show early material for a paper whose contents correspond to parts of

93See https://eman-archives.org/Dedekind/items/show/304. On page 58, Dedekind stud-
ies the group with seven elements a,m, d, b = aψd, c = mϕa, h = mϕb, k = cψd which are
“compatible” with the hypothesis m > d but do not verify mϕ(aψd) = (mϕa)ψd. This page is
not titled, unlike the two previous ones. Without further indication and since Dedekind used
a different kind of paper, we can only guess that these three folios go together.

94The following pages up to p. 52 certainly go together with these notes, but only contain
results of computations.

https://eman-archives.org/Dedekind/items/show/304
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(Dedekind, 1897b). These notes themselves do not contain many indications for
their datation, but they were written on re-used sheets of paper bearing dates
as late as 1896. The use of idempotence as a fundamental property suggests
that it was written before “On the dualism in module theory", and thus before
Dedekind had the definition of a Dualgruppe.

Dedekind places these investigations in a group-theoretical context that
seems removed from any considerations on Dualgruppen, which do not appear in
these notes.95 Dedekind is working through what will ultimately constitute the
§§5-6 on Abelian groups and integral elements in (Dedekind, 1897b, pp. 120–
135).

The notes, which start at §3 — presumably after two sections on case stud-
ies of the decomposition of numbers in their GCD, as in (Dedekind, 1897b) —
first consider combinations. Dedekind gives the definition of a combination, its
degree (number of distinct elements), the definition of the “combination com-
posed of 2 combinations α and β denoted by αβ = βα” which he later corrects
with “Better: sum α+β” with idempotence, commutativity, associativity, iden-
tity element, definition of the intersection (Durchschnitt) of two combinations
denoted by α − β, degree of the difference and sum, and as an addendum the
absorption property, Idealgesetz, and idempotence, commutativity, associativ-
ity, identity element for −. This corresponds, broadly, to the contents of the §3
on combinations in (Dedekind, 1897b) — although the organisation is a little
different.

Then, while in (Dedekind, 1897b) Dedekind defines Dualgruppen — to which
he admittedly refers as a digression —, here he immediately goes to a multiplica-
tive Abelian group, defined like in (Dedekind, 1897b). He introduces a second
operation + in the Abelian group, such that:

a + a = a (1)
a + b = b + a (2)

(a + b) + c = a + (b + c) (3)
(a + b)c = ac + bc (4)

He adds:

By the hypothesis of the existence of the operation + (addition), the
generality of the Abelian group is restricted!

Question: is there inside an infinite Abelian group A, which consists
of all the powers ax (positive and negative exponents x and a0 = a)
of an element a, an addition in the above sense?

Answer: Yes, and indeed two (dual opposite [dualistisch entgegenge-
setzte]) additions.

(Cod. Ms. Dedekind III 14, p. 34v)
95A discarded and very incomplete draft of (Dedekind, 1897b), albeit significantly different

from the final version, does contain the notion of Dualgruppe either (Cod. Ms. Dedekind III
14, p. 14-29). See https://eman-archives.org/Dedekind/items/show/311

https://eman-archives.org/Dedekind/items/show/311
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Further, he defines the second operation, again referred to as “dual opposite”,
as

a− b =
ab

a + b

He then proves the idempotence, commutative and associative properties, the
distributivity of the multiplication over −, the absorption property and the
Idealgesetz, and eventually defines the order (divisibility). This correspond to
a condensed version to the §§5-6 of (Dedekind, 1897b) defining a structure of
distributive lattice on the studied group — without, in these drafts, ever men-
tioning Dualgruppen.

These notes suggest that Dualgruppen were later superimposed on initially
unrelated research — even more so in (Dedekind, 1897b) than in (Dedekind,
1900). Dedekind likely recognized afterwards that Dualgruppen, in their general
definition, were a unifying concept for his investigations in group and module
theory.

4.5 The last steps

The manuscript Cod. Ms. Dedekind XI 1, p. 1-27 was initially entitled “On
the dualism in module theory”. Dedekind later corrected it to be “On Dual-
gruppen”. He also indicated that his text had to be merged together with a
shorter manuscript entitled “Some propositions on Modul-Gruppen” (Cod. Ms.
Dedekind XI 1, p. 29-32).96 These two texts were visibly written independently
and merged a posteriori. It is unclear whether they were written at the same
time, but it they were likely both written in a time range of less than two years,
as they can respectively be dated from between 1896 and 1897,97 and between
1895 (reference to (Weber, 1895-1896)) and 1897. Together, these texts consti-
tute an important step in the writing and clarification of Dedekind’s ideas on
(would be) Dualgruppen. As a matter of fact, Dedekind suggested, for the new
text, the title “On Dualgruppen”, adding that Modulgruppen (and Idealgruppen)
were a “special case”. This, however, seems to have been added fairly late in the
process, as none of these texts contain the definition of a Dualgruppe properly
speaking.

This shows that Dedekind came to the concept of Dualgruppen in several
steps, which were most likely related yet autonomous: on one hand, the gener-
alisation of + and −; on the other hand, a rigorous — systematic and general
(i.e., not based on case studies) — presentation of his research on “groups of
modules” as an integral part of module theory; and finally, the application of
these two aspects to objects which are not modules and even to undetermined
objects.

96See respectively http://eman-archives.org/Dedekind/items/show/171 and http://
eman-archives.org/Dedekind/items/show/172.

97Dedekind’s use of the idempotence as a fundamental law in one of the drafts of (Dedekind,
1897b) dated from around 1896 (see above), suggests that this was written afterwards.

http://eman-archives.org/Dedekind/items/show/171
http://eman-archives.org/Dedekind/items/show/172
http://eman-archives.org/Dedekind/items/show/172
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4.5.1 “Some propositions on Modul-Gruppen”
After intensive investigations on the systems or “groups” generated by a finite
number of modules, Dedekind eventually introduced the concept of “Modul-
Gruppe” (most often written without the hyphen), which is defined formally in
(Dedekind, 1894a). It was initially a part of module theory — as suggested by
its first mention in (Dedekind, 1894a). “Some propositions on Modul-Gruppen”
seems to be the outcome of his investigation of groups of modules, likely what
he had in mind in (Dedekind, 1894a). The focus is on divisibility and order
properties in Modulgruppen. The order and the properties of chains are consid-
ered with far more details than the Modulgesetz or the laws of the operations
themselves.

This text is short (7 pages, written in two columns to allow addenda and
modifications), and does not contain all the results published by Dedekind either
on Dualgruppen of the module type, or even on Modulgruppen. In the margin,
Dedekind indicated that it was to be “work[ed] into the paper ‘On the dualism
in module theory’ (better: ‘On Dualgruppen’)” (which was followed by indica-
tions on the notation changes that had to be made). While the dualism is not
addressed in the text, its presence is notable. Duality appears as one property
of the operations among others. It is used, in particular, in the proofs.

In (Dedekind, 1894a), Dedekind gave the following indications on Modul-
gruppen in a footnote:

If one forms from three arbitrary modules new modules ab by always
forming again the greatest common divisor and the smallest common
multiple, then one obtains a finite Modulgruppe, which in general
consists of 28 different modules. The particular properties of each
group, which with two modules a, b also contains the modules a± b
is a topic for another place. Here, I would like to mention only the
following theorem, often applied: if a, b are two arbitrary modules,
then there exists a one-to-one correspondence between the group of
all the modules a′ which are divisors of a and likewise multiples of
a+b, and the group of all the modules b1 which are multiples of b and
likewise divisors of a−b, which can be expressed by the two relations
reciprocal of each other b1 = b− a′, a′ = a + b1. (Dedekind, 1894a,
499, footnote)

The definition given at the beginning of the manuscript is more general and does
not concern the special case of a Modulgruppe generated by three elements. It
also includes both operations as operations of the group:

A systemM of modules is called a group when the modules a + b, a− b
formed by any two modules a, b belong to the same system. (Cod.
Ms. Dedekind XI 1, p. 29r.)

The name and the definition suggest that this concept results from the important
conceptual shift from operations between modules to sets of modules closed by
these operations.
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In the text, Dedekind studies properties and divisibility laws of Modulgrup-
pen, chains of modules and the related “nearest divisor”, “nearest multiple”,
length of the group, levels (Stufe) and number of levels, which he had been
studying in earlier drafts. Some of the results presented in this text are used
for Dualgruppen in (Dedekind, 1900), in particular in the sections “§6 Relations
between Modulgesetz and Kettengesetz ” and “§7 Levels in finite Modulgruppen”.

After the definition of a Modul-Gruppe, Dedekind states that:

Every isolated module a forms a group by itself (a), because a + a = a− a = a.

The system Z of all modules forms a group. (Cod. Ms. Dedekind
XI 1, p. 29r)

He proposes a definition of the GCD of an arbitrary number of groups, also
calling it the intersection of these groups (this intersection does not necessarily
exist — however for a given system of modules, there exists a Modulgruppe
containing them all); as well as the definition of LCM of an arbitrary number of
groups corresponding to the union of these groups (but which is not named as
such) denoted by (M) = (A,B,C). These notions are not in (Dedekind, 1900).

He then gives a more complete version along with a proof of the result stated
in the (Dedekind, 1894a) footnote (to which he explicitly refers):

Let a, b be two arbitrary modules, then there exists between the
group A′ of all the modules a′, which verify the conditions

a + b < a′ < a (1)

and the group B1 of all the modules b1, which verify the conditions

a− b > b1 > b (2)

a one-to-one correspondence, which can be expressed by the two
reciprocal following relations

b1 = b− a′ (3)

a′ = a + b1 (4)

(Cod. Ms. Dedekind XI 1, p. 29v)98

The proof relies on (what will later be called) theModulgesetz, which was proved
(for modules) in (Dedekind, 1894a, p. 498) (to which, again, Dedekind refers
explicitly). In (Dedekind, 1900), it is given in the §6 on the relationships between
Modulgesetz and Kettengesetz.

After this, Dedekind moves on to defining a “finiteModulgruppe M” — which
contains a finite number of modules — and its “degree” — the number of mod-
ules it contains. In M, he defines the notion of “nearest divisor” and “nearest
multiple”:

98In the margin, Dedekind gives the equations (3) and (4) in terms of numbers of congruence
classes, which is the only occurrence of this notion in this text.
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Furthermore, a module m is to be called a nearest divisor of n, and
n a nearest multiple of m (in M), when
1) m < n,
2) m, n are different,
3) m and n are the only two modules (in M), which are at the same
time divisor of n and multiple of m. (Cod. Ms. Dedekind XI 1,
p. 30r)

This leads Dedekind to two results:

If m is different from g [the LCM of all modules (contained in M)],
then there exists at least one nearest multiple of m; if m is different
from o [the GCD of all modules (contained in M)]; then there exists
at least a nearest divisor of m. [. . . ]
If the module m possesses two distinct nearest multiples a, b, then
we have

a + b = m

and a− b is a nearest multiple of a as well as b. If the module m
possesses two distinct nearest divisors a, b, then we have

a− b = m

and a + b is the nearest divisor of a as well as b.
(Cod. Ms. Dedekind XI 1, p. 30)

For this last theorem, Dedekind explicitly states that the “second part” is dual
to the first, but he nevertheless explicitly gives all the details. This result is also
given, under a slightly different form, in §6 of (Dedekind, 1900).

The next set of notions concerns chains of modules (which itself is not de-
fined, here — maybe because it was introduced in (Dedekind, 1894a, p. 523)).
Dedekind gives:

• the definition of a complete chain (i.e., in a finite Modulgruppe), a chain
that starts from o and finishes with g ;

• the definition of the length of the group, given as a theorem stating that
in a finite Modulgruppe M, all complete chains are of the same length,
which is named the length of the group M.

These two notions are not defined in (Dedekind, 1900). Finally, Dedekind defines
“levels” and the “number of levels”, that is:

This results in the following arrangement of all modules m in a finite
group M into levels, whose number is greater by 1 than the length of
M. After one chooses an arbitrary rational integer o (e.g., zero), one
must understand as number of levels of the module m, the number
s(m)[=]o+ l, where l is the length of the group Mo,m.99 (Cod. Ms.
Dedekind XI 1, p. 31v)

99If a, b, c, . . . are modules in the group M, then Ma,b,c,... designates the group of all the
modules m in M such that a+ b+ c+ . . . < m < a− b− c . . .
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He then gives and proves the following theorem:

If a, b arbitrary modules in the group M, then we have

s(a) + s(b) = s(a + b) + s(a− b)

(Cod. Ms. Dedekind XI 1, p. 31v)100

In the rightside column, Dedekind gives several alternative notations for the
result. The notions of levels, number of levels and the theorem constitute the
content of the §7 “Levels in finite Modulgruppen” of (Dedekind, 1900) (in which
he also gives an application of the result to the Dualgruppe generated by three
modules).

4.5.2 “On the dualism in module theory”

Despite its initial title, “On the dualism in module theory” seems to try to
dissociate the investigation from the specific nature of modules and adopt a
more general approach.

I have often noticed a curious dualism, which appears in the theory
of modules.∗ The same is repeated so frequently in other domains
of research, that it seems beneficial to understand the general laws
of combinations [Verknüpfungs-Gesetze] which prevail in this theory
independently of the initial premises on which it is grounded. If such
is the case, and that we replace the signs + and − used to designate
the greatest common divisor and the least common multiple of two
modules, by ϕ, ψ, then only the following hypotheses remain:
In a finite or infinite system S of elements a, b, c, . . . whose meaning is
left completely indeterminate, there are two kinds of combinations ϕ
and ψ, which from any two identical or distinct elements a, b always
produce two completely determined elements of the same system S
designated by aϕb, aψb. They obey the following six laws

aϕa = a (1)
aϕb = bϕa (2) (1)

(aϕb)ϕc = aϕ(bϕc) (3) (2)
aψa = a (1′)

aψb = bψa (2′) (1′)
(aψb)ψc = aψ(bψc) (3′) (2′)
aψ(aϕb) (aϕb)ψa = a (4) (3)
aϕ(aψb) (aψb)ϕa = a (4′) (3′).

(Cod. Ms. Dedekind XI 1, p. 1r-2r)

100An early version of these results can be found in Cod. Ms. Dedekind X 9, p. 21v (where
the length is named “Distanz ”).

∗Dirichlet’s Vorlesungen über Zahlentheorie, fourth edition, §169.
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For Modulgruppen, the closure was the defining property. Here, the six laws
verified by the “combinations” are the defining property.

There are several things to point out, here. Firstly, the crossed out laws
show us the exact moment when Dedekind realized that the idempotence could
be deduced from the absorption law and was, thus, not a fundamental property,
as he explains in a note on the back of the page:

The two last laws (3) and (3′) contain [. . . ] a connection between
the operations ϕ, ψ and their combination leads — without relation
to the earlier laws — to the two consequences

aϕa = a (4)
aψa = a; (4′)

when we replace the arbitrary element b in (3′) by aϕb, in (3) by
aψb. (Cod. Ms. Dedekind XI 1, p. 3v)

Secondly, this first quote illustrates clearly the move initiated towards a
more general conception of operations. Dedekind, here, explicitly dissociates
the operations from the module-theoretic interpretation. This move is indeed
made explicit by changing the signs used, and abstracting the operations from
their module-theoretic context.103

Thirdly, the notation and layout for the laws put forward, as I mentioned
previously, their dualism, and it is very explicitly stated by Dedekind:

Two of these laws, designated by (α) and (α′), correspond to each
other dualistically in the sense that they can be changed one into the
other by switching ϕ and ψ. Consequently, the dual transformation
of the conditions of any proposition of our research always results in
a second proposition, which is the dual equivalent of the first one,
which itself, reciprocally, results from the second one in the same
way, or can also very well be identical to it. (Cod. Ms. Dedekind XI
1, p. 2r)

Duality appears, in this text, as an essential property of the operations, and
as such, it is considered at the center of the theory. Its status, however, stays
relatively unclear. The initial title suggests that Dedekind set out to study the
dualism itself, or at least that he would tell his reader how or maybe why it is
significant. In fact, Dedekind is interested by the systems and the order. The
dualism, while present and indeed important for the said systems, is barely
addressed. Throughout the text, the duality of the definitions and theorems is
underlined by stating systematically each law for both operations and numbering
them (α) and (α′).

It is important for Dedekind to put forward how his general concept can be
instantiated by many examples. These concrete cases, so to speak, are for him
103It is interesting to observe, here, how Dedekind, who wrote against the use of so-called

Darstellungsformen, put the emphasis on replacing the signs of the operations to carry out
their generalisation.
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a testimony of the usefulness of the concept, they show “how diverse are the
domains to which our research can be applied” (Cod. Ms. Dedekind XI 1, p. 3,
the same is written in (Dedekind, 1897b, p. 113)). Dedekind’s position is con-
sistent with his usual statements: while it is best to give a definition as general
as possible, the possible applications (e.g., in number theory) are what gives
a concept its usefulness. In this draft, Dedekind lists the following examples:
modules, groups (Abelian, Galois), sets, and points of a number-space, which
all appear also in (Dedekind, 1897b).

As the order is defined by the operations, the dualism can be observed here
again:

The two statements

mϕd = d (5)
mψd = m (5′)

are equivalent, i.e., each is a consequence of the other.
If (5) is valid, then follows (5′) from (3) when one sets a = m, b = d;
and when (5′) is valid, then (5) follows from (3′) when one sets a = d,
b = m.
These relations between two elements m, d designated by (5) or (5′)
appear so often that it is convenient to name express them in a
simpler way; here I chose the two notations that I use in module
theory†

m < d (6)
m > d (6’)

which are completely equivalent to each other, as can be seen with
(5) and (5′). Likewise, we will call m a multiple (Vielfaches oder
Multiplum) of d, and reciprocally d a divisor (Theiler oder Divisor)
of m. From these definitions follow the theorems whose dualistic
character obviously comes from the fact that the inversion of ϕ, ψ
always results in the same for the signs >, <. (Cod. Ms. Dedekind,
XI 1, p. 5r-6r)

Note that Dedekind chooses to keep the terminology used in module theory. He
also justifies introducing the designation of ϕ and ψ as GCD and LCM in a note
added in the margin.104

Dedekind proves a series of properties for <, starting with

aϕb < a (7)
aψb > a (7′)

†In many other domains of application, the two signs >, < would be reversed, which would
correspond better to the meaning otherwise attached to them.
104The justification is similar to the one given in his number-theoretical works.
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and the reflexive, antisymmetric and transitive properties.
He then sets out to prove :

mϕ(aψd) > (mϕa)ψd (16)
(aϕb)ψ(bϕc) > bϕ(aψ(bϕc)) (17)
(aψb)ϕ(bψc) > bψ(aϕ(bψc)) (17′)

(aϕb)ψ(bϕc) > bϕ(aψc) (18)
(aϕb)ψ(bϕc) > bψ(aϕc) (18′)

Dedekind notes that (17) and (17′) can be deduced from (16) with the appro-
priate substitution, and that “reciprocally, the theorem (16) follows as well from
(17) and also from (17′)” with similar substitutions, and “the theorem (16) cor-
responds to itself dualistically” (Cod. Ms. Dedekind XI 1, p. 9). We recognize,
here, the inequalities which correspond to the Modulgesetz (16) and Idealgesetz
(18).

And finally, Dedekind proves these two inequalities:

bϕ(aψ(bϕc)) < bϕ(aψc) (19)
bψ(aϕ(bψc)) < bψ(aϕc) (19′)

Dedekind endeavors to keep a general (not related to modules) approach
throughout his manuscript. The properties of the operations and of the order
relation are defined and proved mostly without references to the nature of the
operations or operands. Module theory is often referred to as an example, but
Dedekind’s considerations on the so-called Modulgesetz suggest that it might
be, here, more than a simple example:

We want now to consider again the theorem (16). In the module
theory (and as well in the three domains of application mentioned
in §1), it is possible to prove that from the premise m > d, this
theorem also follows

(mϕa)ψd > mϕ(aψd) (20)

from which, with respect to the theorem III, it follows that

mϕ(aψd) = (mϕa)ψd (21)

For this proof, I have explicitly emphasized‡ that the previous the-
orems, which are all based on the six fundamental laws stated in §1,
do not suffice, and that it is rather required to go back, once again,
to the concept of module. To justify this claim, we want now to set
ourselves the task of finding the simplest example of a system S of
elements in which the operations ϕ,ψ verify the fundamental laws
of §1, but in which the premise m > d does not by any means entail
(20). (Cod. Ms. Dedekind XI 1, p. 10r)

‡Dirichlet’s Vorlesungen über Zahlentheorie, fourth edition, §169, p. 499.
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So as to find the “simplest” system not verifying (20), Dedekind adopts the
same strategy as in the draft presented on p. 61: he considers three elements a,
m, d without the hypothesis on the divisibility of m by d, and defines the two
elements

m′ = aψd (22)
d′ = mϕa (23)

from which he deduces a series of order conditions for

dψd′ > mϕm′105 (20)

to be valid. Since he wants to build a system in which (20) is not valid, he looks
for a system of elements for which the said conditions are not valid. He shows
that such a system (and indeed the “simplest” one) can be the one constituted
of a, m, d, a′ and m′ such that

a m d m′ d′

a d′ d′ a d′

m m′ d m d′

d m′ m d d′

m′ m′ m′ m′ d′

d′ a m d m′

(in which the upper right part is constituted by the elements xϕy, the lower
left part by the elements xψy, and the empty diagonal is for the idempotence
property).

As it should be clear, since he worked in a more general setting, Dedekind
did not see the Modulgesetz as either “indispensable” or “the source of dualism”
anymore. Instead, he came to see it a property specific to modules — and later,
the defining property for module-like Dualgruppen. While he hasn’t, yet, named
the property the Modulgesetz, there are a few sheets following this text106 and
several more elsewhere107 that investigate “non-modular” (nicht modulartige)
and “modular” (modulartige) systems. Note, however, that there remains a cer-
tain imprecision in how this law is conceived, as it is not the same to simply
state that this law is verified by modules, and to state that to prove this law
one should “go back to” module theory. This imprecision is eventually lifted,
in the additional research on the “general theory” which I will consider in the
next section. In the published papers, Dedekind does not speak about modular
systems, but of systems “of module type”.

The last paragraph of this text deals with the following:
105This is indeed equivalent to the inequality (20) given the definition of d′ and m′.
106Cod. Ms. Dedekind XI 1, p. 25 (http://eman-archives.org/Dedekind/items/show/
176).
107In particular, Cod. Ms. Dedekind XI 2, p. 47-50, written on the back of a draft of
(Dedekind, 1895).

http://eman-archives.org/Dedekind/items/show/176
http://eman-archives.org/Dedekind/items/show/176
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The two operations ϕ and ψ in a system S are evidently completely
defined if the combinations aϕb, aψb are given for any two distinct
elements a, b in S. Let us assume that they satisfy the laws of sym-
metry (1) and (1′) and also the laws (4), (4′), then these definitions
can be represented in a (finite or infinite) table of the same form as
in the example at the end of §3. But if the cells of this table are
arbitrarily occupied by elements of the system S, the verification of
whether the associativity laws (2), (2′) and the laws (3), (3′) are
really satisfied will require laborious work, even for a finite system S
of a moderate number of elements. Or, if one insists on the correct-
ness of these arbitrarily arranged tables, the demand that the last
four laws should also apply will usually have the consequence that
elements with different names should be identical with each other.
(Cod. Ms. Dedekind XI 1, p. 15r)

Dedekind thus reformulates the laws of the order in set-theoretical terms and
considers “for each element a of the system S the system aϕ′ of all divisors of a”
(that is, all the elements d such that d < a), thus not involving the operations
themselves:

α. Each a of the system S corresponds to a fully determined sys-
tem aϕ′, which is a part of S.

β. The element a is contained in aϕ′, and so is an element of the
system aϕ′. [. . . ]

γ. From aϕ′ = bϕ′ follows a = b. Then according to β., a is in
aϕ′, and so also in bϕ′, i.e., a < b, and since it ensues b < a as
well, it follows that a = b. [. . . ]

δ. If d is an element of aϕ′, then dϕ′ is a part of aϕ′. Then,
according to the hypothesis, we have d < a, and since each
element in dϕ′ is e < d, it follows that e < a. [. . . ]

ε. If a, b are arbitrary elements, there exists one (and according
to γ only one) element d such that the system dϕ′ is the in-
tersection of aϕ′ and bϕ′, i.e., the collection of all the elements
common to both systems. [. . . ]

ζ. If a, b are two arbitrary elements, then there always exist el-
ements n such that aϕ′ and bϕ′ are parts of nϕ′, and among
these elements n, we find a single m such that each such system
nϕ′ forms a part of mϕ′ mϕ′ forms a part of each such system
nϕ′.

(Cod. Ms. Dedekind XI 1, p. 16r-17r)

Dedekind deduces, from the fundamental laws of the operations ϕ and ψ given
in §1, the existence of systems aϕ′ verifying the laws α, β, γ, δ, ε, ζ, and a re-
formulation of the laws of the order given in §2 “without any mention of the
operations ϕ and ψ”. His aim is, then, to “define these operations backwards”.
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Note that only one side was studied, here, so the next step is “to show that on
the basis of the six laws α, β, γ, δ, ε, ζ, one can always oppose the systems aϕ′
there occuring a dualistically corresponding second class of systems aψ′, which
obey exactly the same laws” (Cod. Ms. Dedekind XI 1, p. 17r).

If d is an arbitrary element, then according to β. there exists always
at least one element m which has the property of being contained
in the system mϕ′, and we want to define the system dψ′ as the
collection of all these elements m. The two statements

d is an element of mϕ′

m is an element of dψ′

}
(31)

are therefore perfectly equivalent. (Cod. Ms. Dedekind XI 1, p. 17r-
18r)

Dedekind then defines six laws α′, β′, γ′, δ′, ε′, ζ ′ for systems mψ′ similarly to
what he did previously, which he concludes by

Since these laws α′, β′, γ′, δ′, ε′, ζ ′ derived from the laws α, β, γ, δ, ε, ζ
differ from those essentially only in that the place of the signs ϕ′
and ψ′ are inverted, then it is obvious that reciprocally, the first
can originate from the latter in the same way, when one considers
that, following (31), the system mϕ′ reciprocally is the collection of
all these elements d which have the property that m is contained in
dψ′. (Cod. Ms. Dedekind XI 1, p. 20r)

On this ground, he (re)defines two operations ϕ and ψ, showing that if he took

a system S of elements a, b, . . . in which the laws α, β, γ, δ, ε, ζ (and
consequently also the laws α′, β′, γ′, δ′, ε′, ζ ′), then it is possible, as
we wanted to prove conversely, to define one and only one pair of
operations ϕ, ψ, which verify the six laws of §1 and from which
originate, in the above manner, the systems aϕ′ (und aψ′), now
considered as given. (Cod. Ms. Dedekind XI 1, p. 21r)

The manuscript ends with the proof of the unicity of the operations ϕ and ψ.
The considerations of this last paragraph are not in (Dedekind, 1897b; Dedekind,
1900).

The definition given in this text is about a system in which are defined
internal operations (or “combinations”). It is not equivalent to defining a system
by the property that it is closed under internal operations, which is the case
in the definition of a Dualgruppe. This is accomplished by joining together his
investigations on the operations — as above — with those around “groups of
modules”, which he eventually named Modulgruppen.

The work presented by Dedekind in this text is rooted in module theory.
However, the text itself does not seem to pertain to module theory itself. It is
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unclear whether the text is complete, so there is a possibility that the following
parts would have been dedicated to module theory and Modulgruppen, but we
do not have any textual proof of that. What we do know is that Dedekind
eventually wanted to write a text composed of the two texts on Modulgrup-
pen and on the dualism in module theory. This suggests that he wanted to
merge the two following aspects: firstly, a very general theory based on the du-
ality of operations defined between two sets (whose nature is indifferent, since,
even though the links to module theory are still strong, the definitions and
properties are general and Dedekind emphasizes the possibility of applications
to other domains); secondly, an investigation into the theory of modules and
groups formed by modules, which clearly builds on Dedekind’s previous (not
necessarily published) works on module theory and defines the concept of Mod-
ulgruppe. Dedekind’s Dualgruppen are the result of this fusion: on one hand,
the generalisation from modules to any elements satisfying the fundamental
laws, and on the other hand, the passage to the level of sets. But before that,
Dedekind goes through a last step of generalisation of his research, which allows
him to effectively relate these with parts of his work.

4.5.3 “More general (logical) theory”
Dedekind’s research accelerates after “On the dualism in module theory”. In
the year or two following its writing, he investigated more closely a possible
“generalisation” and eventually introduced the concept of Dualgruppe.

In Cod. Ms. Dedekind X-11-2, pp. 53, 54, 59 and (probably) 60,108 which
seem to have been written after “On the dualism in module theory”,109 Dedekind
very explicitly reveals his generalisation strategy. He starts with three modules
a, b, c, on which he imposes conditions of divisibility, such that the generated
group only has eight elements. He then states the following:

There are thus only eight modules left, that is, a, b, c and
b′′′ = a+ c ; c3 = a− b

c′′′ = a+ b ; b3 = a− c

}
and d′ = d1 = (a+ b)− c = (a− c) + b

= (b+ a)− c = b+ (a− c)

}
in the module theory.

108Dedekind wrote on the back of a large re-used university schedule, folded in two, with
several folios inside it:

— p. 53r is one of the inner folios, but the third page of Dedekind’s notes;

— p. 53v is the first part of the outer folio;

— p.54r, on a separate sheet, is the first page of Dedekind’s notes, it was written on what
seems to be an old letter (p. 54v);

— pp. 55-58 are related studies, but most of them can be dated from before p. 54 (in
particular, the pages studied in 4.4.4 and a case study);

— p. 59r is the second part of the outer folio;

— p. 59v, the second inner folio, is the second page of Dedekind’s notes;

— p. 60 is also a separate sheet, and continues the studies from p. 53r.
The pages should be read in this order: p. 54r, p. 59v, p. 53r, p. 60.
109Indeed, Dedekind uses the absorption property as a fundamental law and deduces the
idempotence property from it.
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Here, the Modulgesetz is clearly identified as a property of module theory.
Dedekind goes on to the first step of a generalisation:

One replaces +, −, a, b, c, b′′′, c′′′, b3, c3, d′ = d1
by ϕ, ψ, a, m, d, d′′′, d′, m′, m′′′, d′′ = m′′

}
NB! Consequence of the
special module theory

The “Nota Bene” refers only to the underlined property which is a consequence
of the Modulgesetz.

Changing the notation of the operations clearly sets this generalisation as an
abstraction from module theory. Immediately below the passage just quoted,
Dedekind starts what he calls a “more general (logical) theory”. He introduces
the operations as indeterminate binary operations, a way to combine elements
whose individual nature is also left indeterminate.

General (logical) theory.
Three elements a, b, c ; laws (general)

(1) aϕb = bϕa ; (1′) aψb = bψa

(2) (aϕb)ϕc = aϕ(bϕc) ; (2′) (aψb)ψc = aψ(bψc)

(3) aψ(aϕb) = a ; (3′) aϕ(aψb) = a


from which (when b in (3′) is
replaced by aϕb, and in (3)
by aψb).
(4) aϕa = a ; (4′) aψa = a.

Dedekind defines the elements of the group, studies order properties, unfolds
the laws for the group generated by the three elements a, b, c. As he needs to
check which elements are equal to each other (e.g. a′′′ is defined as bϕc but is
also equal to a number of other combinations such as b′ϕc′, b′ϕc′′. . . ), he works
in a very systematic, almost combinatorial way for three pages.110 I will not get
into the details of his systematic checking but would like to mention that the
layout of these pages follows Dedekind’s usual use of small frames organised in
such a way that the dualism between the elements is clearly visible. In addition,
he himself underlines the duality:

b′ϕc′ = bϕb3ϕcϕa = (bϕc3)ϕ(cϕb3) = bϕc = a′′′ and since a′′′ <
b′′ < b′, a′′′ < c′′ < c′, it follows also b′′ϕc′′ = a′′′, b′′ϕc′ = a′′′, so
together and dually

b′ϕc′ = a′′′ b′ϕc′′ = a′′′ c′ϕb′′ = a′′′ b′′ϕc′′ = a′′′

c′ϕa′ = b′′′ c′ϕa′′ = b′′′ a′ϕc′′ = b′′′ c′′ϕa′′ = b′′′

a′ϕb′ = c′′′ a′ϕb′′ = c′′′ b′ϕa′′ = c′′′ a′′ϕb′′ = c′′′

b1ψc1 = a3 b1ψc2 = a3 c1ψb2 = a3 b2ψc2 = a3
c1ψa1 = b3 c1ψa2 = b3 a1ψc2 = b3 c2ψa2 = b3
a1ψb1 = c3 a1ψb2 = c3 b1ψa2 = c3 a2ψb2 = c3

These pages show clearly how Dedekind abstracted his general theory from
module theory, as it was already taking shape in some of the earlier drafts we
studied. We see, here, that Dedekind indeed completely merged the various
aspects of his research: Modulgruppen, the general theory sketched in “On the
dualism in module theory”, the “logical” theory which he studied apparently
prompted by Schröder’s work. The dualism seems to have been, here, fully
integrated as a property of the operations.
110https://eman-archives.org/Dedekind/items/show/303

https://eman-archives.org/Dedekind/items/show/303
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4.5.4 Dualgruppen, finally

Unfortunately, there are no datable textual traces of what could with certainty
be pointed as the first named definition for Dualgruppen. There are several drafts
in which we find “Dual-Gruppe” and one in which Dedekind uses the word “Dual-
Modulgruppe”, two words that display the process of concept formation. We see
in such pages that Dedekind’s investigation stabilized around the study of a
system as defined in “On the dualism in module theory”. In the earliest drafts
that use the words “Dual-Gruppe” or “Dualgruppe”, Dedekind starts by naming
the operations (ϕ and ψ) and states the six dual laws defining these operations
(with the usual dual presentation). He then proves the idempotence property,
defines divisibility, studies laws as he did in “On the dualism in module theory”,
considers the conditions of validity for the Modulgesetz, the Idealgesetz, etc.

Since we can’t identify the very first written definition of a Dualgruppe —
maybe because it was sufficient for Dedekind, in his drafts, to state the oper-
ations and their laws, rather than give a fully written definition — I propose
a translation of the definition as given in the first draft of (Dedekind, 1900)111
as one of the first definition of a Dualgruppe.112 After referring to Dirichlet’s
Vorlesungen über Zahlentheorie in which he made several footnotes on Modul-
gruppen, Dedekind writes:

Let us designate (as in D[irichlet’s Vorlesungen über Zahlentheorie]
§169) with a + b the greatest common divisor (or the sum), and with
a− b the least common multiple (or the intersection [Durchschnitt ])
of two modules a, b, then for each of these two operations ± the
commutative and associative laws hold:

a + b = b + a , a− b = b− a (1)
(a + b) + c = a + (b + c) , (a− b)− c = a− (b− c) (2)

with the known consequences that they hold for an arbitrary num-
ber of elements a, b, c (D[irichlet’s Vorlesungen über Zahlentheorie]
§2).113 The two operations ± are moreover linked to each other by
the two laws

a + (a− b) = a , a− (a + b) = a (3)

from which it follows, without using (1) and (2)

a + a = a , a− a = a (4)

111As mentioned above, the drafts of (Dedekind, 1897b) do not provide us with a definition
of Dualgruppen.
112For a more detailed analysis of the first pages of that draft, see my paper upcoming in
the 2024 issue of Genesis on scientific manuscripts. Below is a linearised translation, omitting
some of the less significant corrections (e.g. a changed into b) for readability reasons. Passages
between angle brackets were added in the margin.
113This is, again, a reference to the section generalising the properties of the multiplication
to an arbitrary number of integers.
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If we designate namely the first and second member of a double
equation (n) with (n′) and (n′′), then (4′) follows when we replace
b in (3′) by (a + b) using (3′′), and as well, (4′′) follows when we
replace b in (3′′) by (a− b) using (3′).

When two operations ± of any two elements a, b of a (finite or
infinite) system MG generate two elements a±b of the same system
MG and at the same time satisfy the laws (1), (2), (3), then MG
is to be called a Dualgruppe with respect to these two operations ±
<whatever these elements may be>.

The totality of all modules is therefore a Dualgruppe with respect
to the two operations which consist of the formation of greatest
common divisors and least common multiples. <First, however, let
us consider some properties which belong to each Dualgruppe G.>

Following (4), each module element114 a of a Dualgruppe G builds a
Dualgruppe by itself.

For any two modules elements a, b if follows also from (2) and (4)
that

a + (a + b) = a + b , a− (a− b) = a− b (5)

Moreover, if we replace c by (a − b) in (2′) and by (a + b) in (2′′),
then it follows also, using (3)

(a + b) + (a− b) = a + b , (a− b)− (a + b) = a− b (6)

Therefore, the four modules elements a, b, a+ b, a− b form a Dual-
gruppe, and the question is raised of how many are distinct from each
other. Let us assume that a + b = a− b, then it follows from (5′)
and (3′) that a + b = a, and since the hypotheses are symmetrical
in a and b, it follows that a + b = b, hence a = b. And reciprocally,
when a = b, then the <all> four modules elements are identical with
each other.

If we make now the (more general) assumption that a+b is identical
with one of the two modules elements a, b, e.g. a + b = a, then it
follows from (3′′), by exchanging a and b, also that a − b = b, and
reciprocally, when the latter is the case, then from (3′) it follows
also that a + b = b. <Since this case often occurs, we transfer the
usual way of expressing and naming of module theory (D[irichlet’s
Vorlesungen über Zahlentheorie] §169) to all Dualgruppen MG and
we say that the element b> is divisible by the module element a,
or b is called a multiple of a and a a divisor of b. This divisibility

114Dedekind’s almost constant correction of the word “module” with “element” in these para-
graphs is particularly interesting, as it is very telling about Dedekind’s initial intent for his
paper, and reflects his path to and conception of Dualgruppen.
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(which does not exclude the identity of a and b) will be denoted by
a < b or b > a. And then, each of the four statements

a + b = a , a− b = b , a < b , a > b (7)

is synonymous with the three others. Two such modules elements a,
b build by themselves a Dualgruppe. (Cod. Ms. Dedekind X 11-2,
p. 18-19)

4.6 Conclusion

The road from defining two operations for modules to defining Dualgruppen was
long. I tried to show, in this chapter, how duality between the operations
defined for modules, which prompted Dedekind’s interest in the properties of
these operations, was a leading thread in his research. We followed the slow
emergence of Dedekind’s Dualgruppen through four steps, which were broadly
chronologically organized.

The first step studied Dedekind’s earliest observations of duality in module
theory, in the mid-1870s. Duality first appeared as an interesting property of
GCDs and LCMs modules. Dedekind’s drafts show that he took notice of it,
in particular compiling his first observations in a table clearly displaying this
duality. These early observations seem to have been compelling enough for
Dedekind to pursue research in this direction.

The second step showed several aspects crucial to the genesis of Dualgruppen,
in that it studied various aspects of Dedekind’s research practices as displayed
by his drafts. These investigations seem to have lasted well into the 1880s. I
showed that duality played a prominent role in the research process, as it was
a key component of Dedekind’s choices in devising notations, tools and written
artefacts, and in organising writing on the paper (in columns, little frames, etc.,
showcasing duality), all of which accompanied and even helped his investigation.
It also explored a number of moments in the conceptual clarification of the
theory of modules and groupes of modules, and I showed the intricate relations
between the dualism and the (to-be-called) Modulgesetz, which was difficult for
Dedekind to unknot. These are largely invisible in his publications, yet they are
constitutive of the research process, crucial for the conceptual exploration and
indeed show how important duality was for Dedekind’s investigation.

The third step was that of the generalisation of Dedekind’s research and
mostly took place in the 1890s. It is a very important part of the genesis of the
concept of Dualgruppe, a key aspect that only takes place very progressively. The
major moments, which the drafts allowed me to identify, were a more general
module theory, the study of the links with group theory, the study of (Schröder,
1890), and the generalisation of “a part of module theory” to a more abstract
one working with indeterminate objects. It showed clearly what can be seen
as a second step of conceptual development, the generalisation of the research
from module theory to a more general, abstract and what Dedekind later called
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“logical” theory. Although duality was not as present, here, as it was in the
previous step, it hovers over the research and Dedekind refers to it regularly.

The fourth and last step led us to Dualgruppen properly speaking and hap-
pened between 1896 and 1897. The two next-to-last drafts of fully written
texts showed that Dedekind arrived at the concept of Dualgruppe by merging
to aspects of his investigation: the groups of modules and the generalisation of
module theory, with a strong emphasis on the dualism in the theory. In doing
so, Dedekind went from studying the duality of operations in module theory to
defining a new concept of group presenting an internal duality – and which is
thus named Dualgruppe. The resulting theory is not about a duality of opera-
tions anymore, but about a certain group whose operations present a property
of dualism. This leads to Dedekind’s last step of research, in which he develops
the general “logical” theory that effectively merges these two aspects.

Dedekind’s drafts are very rich, and offer us an outstanding view of his
mathematics as he was doing them. Analyzing how Dedekind chose to write and
organise his writing, the steps of the textual and conceptual development of his
research, allows us to not only better understand the genesis of Dualgruppen,
but also to put forward how decisive and essential duality was for it.
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