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High-frequency permeability of wedge-shaped porous media.

High-frequency permeability of porous media with thin constrictions: I.

Wedge-shaped porous media
V. Langlois1, a)

Navier, Univ Gustave Eiffel, Ecole des Ponts, CNRS, F-77454 Marne-la-Vallée, France

(Dated: 26 August 2022)

In this series of publications, the high-frequency behavior of the dynamic permeability of porous media with thin
constriction is investigated. In part I, the classical theory of Johnson et al. [J. Fluid Mech. 176, 379 (1987)] for
soft-curved pore geometries is recalled. For wedge-shaped pore geometries, numerical computations (by finite element
method) and analysis by Cortis et al. [Physics of Fluids 15, 1766 (2003)] are revisited and confirmed, while leading
to important new conclusions. Because the electric field is singular at the tip of wedges, the original model developed
by Johnson et al., which links the viscous fluid flow problem to the electrical conduction problem, is inappropriate for
describing the high-frequency behavior of the viscous fluid flow through wedge-shaped porous media. In particular, in
the case of small wedge angles, we show that the real part of the dynamic permeability behaves in the high-frequency
regime as ℜ(k (ω)) ∝ ω−(3/2) (ln(ω)+ constant), which differs from the predictions of the Johnson et al. model
[ℜ(k (ω)) ∝ ω−(3/2)]. However, our results show that the classical Johnson et al. high frequency limit can be a good
approximation of the viscous fluid flow if the electrical conduction problem is solved over a fluid domain truncated by
a boundary layer having a thickness comparable to the viscous skin depth. In Part II, we consider foam with perforated
membranes involving different microstructural characteristic lengths: pore size, membrane aperture size and membrane
thickness. We assess the validity domain of the Johnson et al. approximation and test our modified high-frequency
approximation for such porous materials.

I. INTRODUCTION

The Darcy permeability k0 of porous media is of interest
in many fields: hydrology, petroleum engineering, acoustics,
and environment (subsurface contamination). Numerous stud-
ies have focused on linking this macroscopic property to geo-
metrical parameters of the porous structure. For example, the
well-known Kozeny Carman formula,3 which relates the per-
meability to the specific surface, is well established for partic-
ulate media. Although this formula is sometimes considered
for solid foam,17,22 an alternative approach modeling foam as
a network of pores connected by flow conductances (depend-
ing on the aperture sizes of throat separating neighbor pores)
can give an accurate estimate of foam permeability.8,20,21,23 In
this approach, the permeability is deduced from the equivalent
conductance of the pore network calculated as for the equiva-
lent conductance of a network of electrical conductances. In
the last decades, Johnson et al.,14 from their work on dynamic
permeability, suggested a formula that links the Darcy perme-
ability, also called static permeability, to the porous micro-
structural parameters associated with the high-frequency be-
havior of the viscous fluid flow. The dynamic permeabil-
ity k(ω) describes the linear relationship between the macro-
scopic velocity U of an incompressible fluid flowing through
a porous medium subjected to an oscillatory pressure gradient
∇P (where ω is the angular frequency). If the dependence in
time is assumed to be harmonic (eiωt ), the Darcy equation is
transformed into a complex-valued relationship:

φU =−k (ω)

µ
∇P, (1)

a)Electronic mail: vincent.langlois@univ-eiffel.fr.

where φ is the open porosity and µ is the dynamic viscosity
of the fluid.

The dynamic permeability is linked to the dynamic tortuos-
ity α (ω), which is a measure of the increase in the dynamic
effective density of the fluid:

ρ (ω) = ρ0α (ω) = µφ/(iωk (ω)) , (2)

where ρ0 is the fluid density.
In viscous fluid flow, the no-slip condition at the pore sur-

face leads the fluid velocity to cancel, from bulk pore vol-
ume to the pore surface, over a length called viscous skin
depth δ . This length depends on the angular frequency ω ,
δ =

√
2µ/ρ0ω , and corresponds to the wavelength and the

depth penetration of the shear wave generated at the pore sur-
face in the case of an oscillating solid body immersed in a
viscous fluid.18,24 This viscous skin depth defines a fluid area
located in the vicinity of the pore surface, hereafter called the
viscous boundary layer. As shown by Johnson et al.,14 it is
possible, for soft-curved pores [Fig. 1(a)], to approximate the
dynamic permeability in the high-frequency limit by:

lim
ω→∞

k (ω) =
δ 2

2i
φ

α∞

(1− (1− i)δ/Λ) , (3)

where Λ is the viscous characteristic length and is defined
as a velocity-weighted pore volume (V)-to-pore surface (S)
ratio:10,14

Λ = 2
∫

V f

‖vp‖2dVf

/∫
Sp

‖vp‖2dSp; (4)

and α∞ is the high-frequency tortuosity:10,14

α∞ =Vf

∫
V f

‖vp‖2dVf

/∥∥∥∫
V f

vpdVf

∥∥∥2
, (5)
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where vp is the velocity pattern of an inviscid incompressible
fluid, and Vf is the fluid volume. An example of such field
pattern is the scaled electric field E′ in a conducting fluid fill-
ing the pore space of the insulating porous medium subjected
to a unit macroscopic electric field ez, [see Eqs. (12), (19) and
(20) in Sec. II].

In particular, the Johnson et al. high-frequency limit pre-
dicts that the real part of the dynamic permeability is given by
(leading to ℜ(k) ∝ ω−3/2):

lim
ω→∞

ℜ(k (ω)) =
φ

2Λα∞

δ
3. (6)

From the high- and low-frequency asymptotic solutions (in-
volving the parameters α∞, Λ and k0), Johnson et al.14 sug-
gested an ad-hoc expression for the dynamic permeability,
k (ω):

k0

k (ω)
=

(
1+ i

M
2

ω

ωc

)1/2

+ i
ω

ωc
, (7)

where ωc = µφ/(ρ0k0α∞) and M = 8k0α∞

φΛ2 . This expres-
sion was experimentally confirmed on porous media having
a smooth geometry by Charlaix et al.4 and by Smeulders et
al.26. Note that, Pride et al.25 modified this expression to
correct the predictions of the imaginary part of k(ω) in the
low-frequency limit. However, by construction, the leading
term in Eq. 7 is correct in the low-frequency regime, as
k(ω)/k0 = 1− iβP(ω/ωc) with βP = o(1) (see Pride et al.25

for the exact definition of βP).
Wedge-shaped pores are common in solid foam media

that are typically used as sound or thermal insulators. In-
deed, in these porous materials, the constrictions between
the pores can be sharp as in mineral foams [as illustrated
in Fig. 1(b)],5,19 or contain open membranes as in polymer
foams.9,12,13,27. Moreover, during the last decades, different
authors have studied, from a theoretical point of view, the
dynamic permeability of these porous materials.1,7,11,16 They
have shown that a sharp wedge leads to a singularity of the
electric field at the end of the wedge, and even, to a zero vis-
cous characteristic length Λ in the case of an infinitely thin
wedge (similar to a membrane of zero thickness). Therefore,
the fact that, on the one hand, the electric field presents singu-
larities on the pore surface and the fluid velocity does none,
and that, on the other hand, the high-frequency regime of
the fluid flow can be approximated by electrical conduction
is questionable.

In this paper, we are interested in the effects of the sharp
shape of inter-pore constrictions on the high-frequency dy-
namic behavior of the permeability. In the first section, we
recall the microscopic description of the fluid velocity field
leading to the expected high-frequency behavior for smoothly
curved pores. Then, we focus on the modeling of corru-
gated pore channels and revisit the numerical calculations per-
formed by Cortis et al.7 to clarify some remaining details.
Our results show that the real part of the dynamic perme-
ability behaves in the high-frequency regime as ℜ(k (ω)) ∝

ω−3/2 (ln(ω)+ constant), which differs from the predictions
of the Johnson et al. model.

FIG. 1. Typical pore microstructures: (a) smoothly curved pores like
particulate media, (b) and wedge-shaped pores like solid foam.23

II. THE MICROSCOPIC EQUATIONS FOR FLOW
THROUGH SOFT-CURVED PORES

We consider a porous medium and denote by Ω0 the cell
that repeats periodically throughout the porous domain (with
a period Dz in the direction defined by the unit vector ez), Ω f
the fluid domain, Ωs the solid domain and ∂Ωp the pore sur-
face. With a time-harmonic macroscopic pressure gradient,
the Stokes equations for the velocity field v of an incompress-
ible viscous fluid saturating the porous medium are:

iωρ0v =−∇p+µ∇
2v+λpez, (8a)

∇ ·v = 0, (8b)

v = 0, on the pore surface ∂Ωp, (8c)

where λpez is the macroscopic pressure gradient. Equations
(8b) and (8c) correspond respectively to the mass conservation
equation for incompressible fluid and the no-slip condition at
the solid boundary for viscous fluid.

The pressure p represents the local pressure fluctuations
around the mean value. The total fluid pressure is then equal
to p+ λpz (within one additive constant). The macroscopic
dynamic permeability can be derived from the microscopic
fluid velocity (assuming isotropic behavior):

k (ω) =
φ µ

λp
〈v · ez〉 , (9)

where 〈·〉= 1
V f

∫
V f
·dVf .

The limit of the dynamic permeability k (ω) for ω → 0 is
the steady-state Darcy permeability k0, which is real-valued.

By setting v′ = (iωρ0/λp)v and ε2 = µ/iωρ0 = −iδ 2/2,
Eqs. (8) transform as follows:

0 = ε
2
∇

2v′−v′−∇(p/λp)+ ez, (10a)
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∇ ·v′ = 0, (10b)

v′ = 0, on the pore surface ∂Ωp. (10c)

In the high-frequency regime, ε/Dz→ 0, the Stokes equa-
tions [Eq. (10)] become:

0 =−v′∞−∇(p/λp)+ ez, (11a)

∇ ·v′∞ = 0, (11b)

v′∞ = 0, on the pore surface ∂Ωp. (11c)

Therefore, in the high-frequency regime, the governing
equations of the dynamic fluid flow are similar to the equa-
tions governing electrical conduction, everywhere except in
the viscous boundary layer "BL" [Fig. 2(a)]:

0 =−E′−∇V + ez, (12a)

∇ ·E′ = 0, (12b)

E′ ·n = 0, on the pore surface ∂Ωp, (12c)

where n is the unit vector normal to the pore surface, E′ the
electric field and V the perturbed electric potential. Here, ez
represents the forcing term, i.e. the macroscopic unit gradient
of electric potential. Note that the electric field E′ is dimen-
sionless. Equations. (12) can also be interpreted as the equa-
tions describing the flow of an inviscid and incompressible
fluid (where the scaled electrical field E′ would correspond to
the scaled velocity field of the inviscid flow v′p). Eq. (12c)
corresponds to the no-penetration condition for inviscid flow,
and is less restrictive than the no-slip condition [Eq. (8c)].

Outside the viscous boundary layer, the fluid velocity can
be calculated from the electric field at O

(
ε2
)

order:

v =
λp

µ
ε

2E′. (13)

Cortis et al.7 showed that another electric field εN must be
added to E′ to have a higher order approximation of the ve-
locity field O

(
ε3
)
. This contribution is due to the normal

components of the velocity created at the interface between
the bulk potential flow region and the viscous boundary layer,
and caused by the curvature of the pore surface. Moreover, an
important property of this field is that it is orthogonal to E′ on
average : 1

V f

∫
V f

N ·E′dVf = 0.
Inside the boundary layer, for a frequency such that the pore

surface can be considered flat (curvature radius� δ ), the fluid
velocity located at the distance β from the pore surface can be
approximated by:7,18

v(xp,yp,β ) =
λp

µ
ε

2 (1− exp(−β/ε))E′(xp,yp,0), (14)

where xp and yp are the Gauss coordinates on the pore sur-
face and, β is the distance to the pore surface (Fig. 2a). Fur-
thermore, within the boundary layer, the electric field at the
distance β from the pore surface can be approximated by the
electric field at the pore surface corrected by a factor involving
the ratio between β to the curvature radius of the pore surface
R(xp,yp) [see Fig. 2(b), and Appendix for full justification]:

E′(xp,yp,β )≈ [1− (β/R(xp,yp))]E′(xp,yp,0), (15)

and consequently, in the case of soft-curved pores (β < δ �
R):

E′(xp,yp,β )≈ E′(xp,yp,0). (16)

For any divergence-free vector field w that has zero normal
components on the pore surface, Cortis et al. showed the iden-
tity:

〈w · ez〉=
〈
w ·E′

〉
. (17)

Therefore, by considering the fluid velocity v as the
divergence-free vector field in Eq. (17) and Eqs. (13)-(16),
we find:∫

V f

v · ez dVf =
∫

V f

v ·E′ dVf

≈
λp

µ
ε

2
[∫

V f

‖E′‖2dVf −
∫

BL
‖E′‖2 exp

(
−β

ε

)
dVf

]
,(18)

where, the integral over the boundary layer can be approxi-
mated by

∫
BL ‖E′‖2 exp

(
−β

ε

)
dVf ≈ ε

∫
Sp
‖E′‖2dSp.

Finally, for soft-curved pores, the dynamic permeability in
the high-frequency regime can be approximated by:

k (ω) =
φε2

Vf

∫
V f

‖E′‖2dVf

[
1−

∫
Sp
‖E′‖2dSp∫

V f
‖E′‖2dVf

ε

]
. (19)

Two important parameters, introduced by Johnson et al.,14

are involved in Eq. (19):

• the tortuosity, α∞:

α∞ =
Vf∫

V f
‖E′‖2dVf

=
1

〈‖E′‖2〉 , (20)

• the viscous characteristic length, Λ:

Λ =
2
∫

V f
‖E′‖2dVf∫

Sp
‖E′‖2dSp

. (21)

By using Eq. (17) with w = E′, another expression for the
tortuosity can be derived: α∞ = 1/〈ez ·E′〉. In this expres-
sion, 〈ez ·E′〉 can be interpreted as the ratio of the macroscopic
electrical current density J to the electrical conductivity of the
fluid σ f multiplied by the porosity φ . Therefore, as shown by
Brown,2 the tortuosity can be related to the effective electrical
conductivity (σe = J.ez = J) of the porous medium (assuming
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FIG. 2. (a) Local coordinates inside the viscous boundary layer. (b)
Details of the electrical field in the vicinity of the pore surface.

that the solid phase is insulating): α∞ = φσ f /σe. In addition,
the viscous characteristic length, Λ, can be calculated from
small variations in pore volume (i.e. by a uniform growth of
the insulating solid phase into the pore space):15,26

Λ =
2
∫

V f
‖E′‖2dVf

∂

∂δs

∫
V f
‖E′‖2dVf

, (22)

where (∂/∂δs)G denotes the derivative of some quantity G
with respect to outward virtual displacement δs of the pore
walls.

Finally, the real and imaginary part of the dynamic perme-
ability in high-frequency regime can be derived from Eq. (19):

ℜ(k (ω)) =
φδ 3

4Vf
Is, (23a)

ℑ(k (ω)) =−φδ 2

2Vf

[
Iv−

δ

2
Is

]
, (23b)

where Is =
∫

Sp
‖E′‖2dSp and Iv =

∫
V f
‖E′‖2dVf .

III. WEDGE-SHAPED PORE CHANNEL

In this section, we consider a corrugated pore channel made
from a succession of wedges (Fig. 3), and we are particularly
interested in the case of very sharp edges.

A. E�ect of the wedge-shape on the electric �eld

In the ideal case of sharp wedges, the curvature radius of the
pore walls is zero at the tip of the wedge, and consequently,
the electric field is singular at the tip [see from Eq. (A.2) that
∂E(M)/∂β → ∞ when the curvature radius tends to zero].
More precisely, the electric field is given by:18

‖E′‖ ∝ nrn−1, (24)

where r is the distance of a point located in the pore to the tip,
and n = π/(2π−γ)< 1 with γ the interior angle of the wedge
(Fig. 3).

The calculation of the tortuosity α∞ requires an integration
over the pore volume which is perfectly defined even with
the singularity of the electric field at the tip:

∫
V f
‖E′‖2dVf ∝

n
2 r2n. The calculation of the viscous characteristic length re-
quires an integration over the pore surface

∫
Sp
‖E′‖2dSp ∝

n2 ∫ r
r0

r′2(n−1)dr′. This integral is defined if n > 1/2. For
n = 1/2 (γ = 0), the wedge is infinitely sharp and the sur-
face integral is not defined

∫
Sp
‖E′‖2dSp ∝ [lnr′]rr0→0→ +∞.

These results involving the singularity of the electric field
around the tip, will make the Johnson et al. model inappro-
priate to predict the high-frequency regime of the dynamic
permeability of wedge-shaped pore channels.

B. Numerical computations

We solve the boundary value problems for viscous fluid
flow [Eq. (8)] and electrical conduction [Eq. (12)] by using
the finite element method. Second order Lagrange elements
are used for the velocity components and first order for the
pressure field. The dynamic permeability k (ω) is calculated
from the viscous flow solution by using Eq. (9), and the tortu-
osity α∞ from the electrical conduction solution by using Eq.
(20). To reduce the lack of accuracy in the numerical calcu-
lations, special care was taken to refine the mesh around the
wedge tip [Fig. 3(b)]. Since the calculation of the dynamic
permeability for this pore geometry has been carefully solved
previously by Cortis et al.,7 we have checked that our results
are identical to theirs.

Figure 4 shows the real and imaginary parts of the dynamic
permeability for two wedge angles (b = tan(γ/2) = 0.025 and
0.8) as a function of ω/ωc. It appears that the wedge angle
has little effect on the dynamic permeability. Note that the
characteristic frequency ωc changes little between b = 0.025
and b = 0.8. Indeed, k0α∞/(φL2

w)≈ 0.098 for b = 0.025, and
0.105 for b = 0.8.

From our numerical simulations, we revisit the analysis
performed by Cortis et al..7 They proposed that the high-
frequency limit derived by Johnson et al. be complemented
by the addition of a corrective term (see below for the case of
the real part ℜ(k), Eq. (25)). Section III C presents the nu-
merical results and highlights how they confirm convergence
toward the Cortis et al.7 high-frequency limit, and not toward
that of the Johnson et al. model. Then, we propose a new
approach to approximate the high-frequency permeability.
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O

A A'

FIG. 3. Wedge-shaped pore channel. (a) Definition of the pore ge-
ometry. (b) Details concerning the mesh (the case b = 0.1 is used for
illustration.): a maximal element size equal to Lw/105 is imposed
along the line BOB’ located in the vicinity of the tip ; the maximum
element growth rate is equal to 1.035 in the circular area around the
tip, and to 1.015 along the lines BA and B’A’.
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FIG. 4. Real and imaginary parts of the dynamic permeability for
two wedge angles (b = tan(γ/2) = 0.025 and 0.8) as a function of
ω/ωc. Dots correspond to FEM results, line to the predictions of Eq.
(26).

C. Results and discussion

1. High-frequency limit of the real part of k(ω)

By a detailed study of this special case, Cortis et al.7 calcu-
lated the corrective term to add to the high-frequency Johnson
et al. limit to rectify its predictions:

ℜ

(
k (ω)

k0

)
→

ω→+∞

√
M
2

(
ω

ωc

)− 3
2
[

1+C1

(
ω

ωc

) 1−w
2
]
, (25)

where C1 is a numerical constant, and the exponent w is re-
lated to the wedge angle γ . Note that Eq. (25) was previously
suggested by Achdou and Avellaneda.1

With C1 = 0 and M = 8k0α∞

φΛ2 , Eq. (25) corresponds to
the expression obtained by Johnson et al. [Eq. (6) or Eq.
(23a)]. The term C1 (ω/ωc)

(1−w)/2 corresponds to the cor-
rective term. From considerations of the magnitude order of
the tip effect on the dynamic permeability, Cortis et al.7 es-
tablished the theoretical relationship between the exponent w
and the wedge angle γ: w = 2π/(2π− γ) (> 1). To check the
validity of the proposed corrective term, Cortis et al.7 deter-
mined the values of w, M and C1 in Eq. (25) by an inverse
method applied to the results of numerical simulations metic-
ulously performed for various wedge angles. They found,
from the numerical simulations, values for M and w similar
to the theoretical values, and concluded that Eq. (25) is cor-
rect. To assess their findings, we have reproduced the same
inverse method to our numerical FEM results and found the
same agreement between the theoretical values and the values
obtained by the inverse method, as shown in Fig. 5. Equation
(25) combined with the values of w, M and C1 calculated from
FEM results gives very accurate predictions of the real part of
k (ω) as shown in Fig. 6 (and previously by Cortis et al.).7 In
comparison, when the wedge angle is small, the original John-
son et al. model [Eq. (7)] and its high-frequency expansion
[Eq. (23a)] are unable to predict the real part of k (ω) in the
frequency range used in the FEM simulations.

However, as (ω/ωc)
(1−w)/2 → 0 when ω → +∞ [see Eq.

(25)], one would expect the high frequency Johnson et al.
limit to be a good approximation of the dynamic permeability
once the corrective term introduced by Cortis et al. is neg-
ligible, i.e. |C1|(ω/ωc)

(1−w)/2 � 1. To further investigate
the convergence of ℜ(k) predicted by Eq. (25) to the high-
frequency Johnson et al. limit, we need to know the values
of C1 that were not provided by Cortis et al.7. As shown in
Fig. 5(a), C1 depends on the wedge angle and is close to −1
for small wedge angles. To illustrate the extreme slowness
of the convergence, consider for example that γ = 0.1 (i.e.,
1−w ≈ −0.016) and |C1|(ω/ωc)

(1−w)/2 < 0.1. Therefore,
this condition requires ω/ωc & 5.10125. For smaller wedge
angles, the condition is more restrictive. In fact, in the expan-
sion [Eq. (25)], the "leading" and "corrective" terms are of the
same magnitude. Therefore, it is reasonable to ask whether
the high-frequency behavior could be described in any other
way than by seeking to correct the high frequency Johnson et
al. limit.
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FIG. 5. Parameters w, M and C1 [see Eq. (25)], obtained by an
inverse method proposed by Cortis et al.7 and applied to FEM results
with various wedge angles. In (a), the values of w are compared to
the theoretical values wth = 2π/(2π− γ). In (b), crosses correspond
to the theoretical values calculated by Cortis et al.6 with Schwartz-
Christoffel transformations.

An interesting result emerges when one considers the case
of small wedge angles. In that case, from numerical simula-
tions and theoretical considerations, the parameters M, w and
C1, can be expanded as: M ≈ CMγ−2 [see Fig. 5(b)], w =
1+Cwγ +o(γ) and C1 =−1+CC1γ +o(γ) (where Cw ≈ 0.17,
CC1 ≈ 0.69 and CM ≈ 1.15, values determined from the re-
sults of our numerical simulations). Therefore, in the high-
frequency regime, the expansion of Eq. (25) is:

ℜ

(
k (ω)

k0

)
→

ω→+∞

√
CM

2

(
ω

ωc

)− 3
2
[
CC1 +

Cw

2
ln

ω

ωc

]
. (26)

Contrary to C1 in Eq. (25), the coefficients CM , CC1 and
Cw, are now constant and independent on the wedge angle
γ (for small values of γ). As shown in Fig. 4, Eq. (26)
gives very accurate predictions of the real part of the dynamic
permeability in the high-frequency range (and even, for large
wedge angles). Since the link with Johnson’s model cancels
in the calculation process leading to Eq. (26), a justifica-
tion of this equation should be found elsewhere than in this
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FIG. 6. Real part of the dynamic permeability for two wedge angles
as a function of ω/ωc: (a) b = 0.8, (b) b = 0.025. Dots correspond
to FEM results, full red lines to the predictions of the high-frequency
approximation given by Johnson et al. [Eq. (23a)], dashed red lines
to the predictions of Johnson et al. model [Eq. (7)] and thick blue
lines to the predictions of the Cortis et al. expression [Eq. (25].

model. Recall that, in Johnson’s model, the real part of the
dynamic permeability in the high-frequency regime is given
by: ℜ(k (ω)) = φδ 3

4V f

∫
Sp
‖E′‖2dSp [see Eq. (23a)]. This ex-

pression is valid for soft-curved pores for which (i) the pore
surface can be assumed to be flat for the shear wave propagat-
ing in the viscous boundary layer, i.e. δ �curvature radius;
(ii) the electrical field does not change on the scale of the vis-
cous skin depth [see Eq. (16)]. For porous media with sharp
wedges, these conditions are achieved everywhere except at
the wedge tip. Since the electric field is singular at the tip, the
dynamic permeability predicted by the Johnson et al. model is
influenced by the singularity of the electric field. As this sin-
gularity is specific to the electrical conduction and should not
affect the dynamic fluid flow, the Johnson et al. model is in-
appropriate for predicting the high-frequency behavior of the
dynamic permeability of wedge-shaped porous media. Note
that, in Eq. (23a), the integration is over the pore wall sur-
face. For soft-curved pores, since the electric field remains
nearly constant at the scale of the viscous skin depth [see Eq.
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FIG. 7. Definitions of the truncated fluid domain Ω f ,δ and the virtual
pore surface ∂Ωp,δ .

(16)], the integration could also be done (without loss of ac-
curacy) over a virtual surface deduced by a small displace-
ment of the pore wall toward the pore volume. Therefore,
from these considerations, we propose an alternative way to
approximate the high-frequency behavior of the dynamic per-
meability based on a pore wall shift [similar to the one used
for the calculation of Λ in Eq. (22)], which allows us to define
a virtual pore volume on which we solve the electrical con-
duction problem. The truncated fluid domain Ω f ,δ is defined
by excluding a boundary layer of thickness δs from the pore
space and smoothing the virtual pore wall to obtain a minimal
curvature radius equal to δs as illustrated in Fig. 7. The vir-
tual shift δs is expected to be of the same order of magnitude
as δ : δs = sδ where s = o(1). Finally, the real part behav-
ior of the dynamic permeability is calculated by the following
expression:

ℜ(k (ω)) =
φδ 3

4Vf
IS,δ (ssδ ) , (27)

where IS,δ (δs) =
∫

Sp,δ
‖E′‖2dSp,δ is the surface integral per-

formed over the smooth shifted pore surface.
Note that, by using this smooth shifted pore surface, any

singularity of the electric field occurring at the real pore sur-
face is removed. Moreover, this approximation is compatible
with the Johnson et al. model in the case of soft-curved pores
since the electric field varies at the scale of the pore in this
specific case, and ∂Ωp,δ → ∂Ωp when ω → ∞.

Figure 8(a) shows that the relationship between the surface
integral of ‖E′‖2 over the virtual pore surface ∂Ωp,δ and the
thickness δs is in the form: IS,δ ≈As ln(δs)+Bs when δs/Lw <
0.01. Combining this relationship with Eq. (27), we find a
result which is very similar to Eq. (26). This result is a strong
argument to validate the proposed approach. Moreover, as
shown in Fig. 9(a), the predictions of Eq. (27) by using ss =
0.5 are in perfect agreement with FEM results with b= 0.0125
(the relative gap is lower than 2% in the range ss = 0.5±0.05).

2. High-frequency limit of the imaginary part of k(ω)

With respect to the imaginary part of k (ω), Fig. 10 shows
again, that the Johnson et al. model does not predict the high
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FIG. 8. (a) Surface integral IS,δ of ‖E′‖2 over the virtual pore sur-
face ∂Ωp,δ as a function of the thickness δs of the truncated bound-
ary layer. Crosses show the FEM results. Line is plotted by us-
ing IS,δ /Lw ≈ −0.578ln(δs

/
Lw) + 1.396, and (b) volume integral

IV,δ of ‖E′‖2 over the virtual pore volume Ω f ,δ as a function of
the thickness δs of the truncated boundary layer. Crosses show the
FEM results. Line is plotted by using IV,δ /L2

w ≈ 3.816(δs
/

Lw)
2−

3.800(δs
/

Lw)+1.411. The same data are used in (b) and its inset.

frequency regime when the wedge angle is small. Therefore,
we are interested in how our virtual fluid domain based ap-
proach can be used to estimate the imaginary part of k(ω).
From Eq. (23b) established for soft-curved pores, we could
consider two possibilities:

ℑ(k (ω)) =−φδ 2

2Vf

[
IV,δ (svδ )− δ

2
IS,δ (ssδ )

]
, or (28a)

ℑ(k (ω)) =−φδ 2

2Vf
IV,δ (svδ ) , (28b)

where IV,δ (δs) =
∫

V f ,δ
‖E′‖2dVf ,δ .

Equation (28b) is derived from Eq. (23b) by retaining only
the leading order. Eq. (28a) is similar to Eq. (23b), except
that it involves both the surface integral IS,δ introduced ear-
lier,and the volume integral IV,δ calculated over the truncated
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FIG. 9. (a) Real part of the dynamic permeability: FEM results with
b = 0.0125 (dots), predictions of Eq. (27) with ss = 0.5 (thick blue
line). (b) Imaginary part of the dynamic permeability: FEM results
with b = 0.0125 (dots), predictions of Eq. (28a) with sv = ss = 0.5
(red thin line) or with ss = 0.5 and sv = 0.12 (red dashed line), and
predictions of Eq. (28b) with sv = ss = 0.5 (blue thick line). Lo is the
aperture size defined in Fig.3. Note that (Lo/δ )2 ∝ ω . The transition
frequency between low and high-frequency regimes corresponds to
δ ≈ Lo.

pore volume Ω f ,δ . Figure 8(b) shows that IV,δ decreases as the
thickness δs of the truncated boundary layer increases. This
trend results from the progressive closure of the truncated pore
volume aperture size as δs increases (IV,δ = 0 when δs = Lo).
From the inset graph of Fig. 8(b), it appears that the inte-
gral IV,δ can be approximated by an expression of the form:
IV,δ ≈ Av (δs)

2 +Bv (δs)
2 +Cv. Now, since the coefficient ss is

found to be equal to 0.5 (value determined from the real part
of k), it remains to determine the value of the coefficient sv
in Eqs. (28). Figure 9(b) compares our FEM results obtained
for a small wedge angle to the predictions of Eqs. (28) calcu-
lated with different assumptions for sv: (i) sv = ss = 0.5 and
(ii) sv = 0.12 [this value is adjusted to fit the predictions of
Eq. (28a) to the FEM results]. Surprisingly, it appears that
Eq. (28a) requires an adjustment of the value of sv to obtain
accurate predictions of ℑ(k(ω)), whereas the accuracy of the
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FIG. 10. Imaginary part of the dynamic permeability as a function
of ω/ωc for two wedge angles: (a) b = 0.8, (b) b = 0.025. Dots
correspond to FEM results, dashed red lines to the predictions of the
high-frequency approximation given by Johnson et al. [Eq. (23b)],
and full red lines to the predictions of Johnson et al. model [Eq.
(23)].

predictions of ℑ(k(ω)) given by Eq. (28b) with sv = ss = 0.5
is remarkable over a wide range of frequencies (even when δ

is close to the aperture size Lo).

3. Application to the case of cylindrical tubes

Since our approach seems appropriate for predicting the in-
termediate and high-frequency behavior of k(ω) for wedged-
shaped porous media, it should also be suitable for soft-curved
pores. Consider the case of fluid-saturated cylindrical tubes
of radius R and length L for which the solution of k(ω) is
known:28

k (ω) =
R2

iκ2

(
1− 2J1(i3/2κ)

i3/2κJ0(i3/2κ)

)
, (29)

where J0 and J1 are the Bessel functions of the zeroth and first
order, respectively, and κ =

√
2R/δ . In the high-frequency
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limit, this expression can be approximated by:

k (ω) =

(
δ 3

2R

)(
1− δ

2R

)
− i
(

δ 2

2

)(
1− δ

R

)
+o(δ 4).

(30)
For this simple case, as ‖E′‖2 = 1, IS,δ and IV,δ can be cal-
culated easily: IS,δ/Vf = (2/R)(1− (δs/R)) and IV,δ/Vf =

(1− (δs/R))2 = 1−2(δs/R)+(δs/R)2. Equations (27), (28a)
and (28b) gives respectively:

ℜ(k (ω)) =
δ 3

2R

(
1− ss

δ

R

)
,

ℑ(k (ω)) =−δ 2

2

[
1− (2sv +1)

δ

R

]
+o((δ/R)3),

ℑ(k (ω)) =−δ 2

2

[
1−2sv

δ

R

]
+o((δ/R)3).

From these expressions, it is straightforward to show that
Eqs. (27) and (28) are consistent with Eq. (30) when using
ss = 1/2 and sv = 0 with Eqs. (27) and (28a), or ss = sv = 1/2
with Eqs. (27) and (28b). These values are in agreement
with the results obtained for the corrugated pore channel [es-
pecially when using ss = sv = 1/2 with Eqs. (27) and (28b)].

IV. CONCLUSION

The ability of the dynamic permeability model of John-
son et al.14 to predict the high-frequency behavior of wedge-
shaped porous media has been investigated. The main steps
leading to the high-frequency limit derived by Johnson et al.14

in the case of soft-curved pores have been recalled. We have
also revisited the numerical computations and the analysis by
Cortis et al.7 regarding the dynamic permeability of corru-
gated pore channels with sharp wedges. In such a pore geom-
etry, the electric field has tip singularities, and, the use of the
Johnson et al. model, which links the dynamic permeability
to parameters defined from the electrical conduction problem,
leads to a contradiction: the predicted dynamic permeability
would depend on the contribution of the tip singularities of
the electric field while the actual dynamic viscous flow does
not. Consequently, the Johnson et al. model is inappropriate
to predict the high-frequency limit of porous media with sharp
wedges. We propose a modification of the classical Johnson
et al. model to remove this apparent contradiction. It consists
in solving the electrical conduction problem by considering
a fluid domain Ω f ,δ truncated by a boundary layer having a
thickness δs comparable to the viscous skin depth, δs ≈ δ/2.
As the viscous skin depth tends to zero when ω → ∞, our
approach does not alter the classical high-frequency limit of
Johnson et al. for soft-curved pores. For such pore geometry,
our approximation would lead to a frequency-dependent vis-
cous characteristic length which tends to the classical Johnson
viscous length when ω → ∞. Nevertheless, a complete theo-
retical justification of the proposed approximation remains to
be done.

In the case of small wedge angles, we have shown that the
real part of the dynamic permeability behaves in the high-
frequency regime as ℜ(k (ω)) ∝ ω−3/2 (ln(ω)+ constant),
which differs from the predictions of the Johnson et al. model.
Experimental confirmation of this high-frequency approxima-
tion should require the use of porous media with very sharp
wedges, such as monodisperse solid foams with a solid frac-
tion between 0.12 and 0.3.23

In Part II of this series of publications, we will focus on test-
ing our approach on soft-curved pores having multiple micro-
structure sizes li, such that l1� l2� ....

Appendix: Relationship between the electrical �eld and the
curvature radius

In this appendix, we focus on the justification of Eq. (15).
We consider a point M located on the soft-curved pore sur-
face [Fig (11)]. We use the plane defined by the normal vector
to the pore surface and the electric field at point M (which is
tangent to the pore surface), and define the local Cartesian co-
ordinates, noted y and z in this appendix. In this plane, the
surface of the pore is described by a function zp(y). We as-
sume that the pore surface is smooth, and thus, the curvature
radius RM of zp in M is non-zero. We consider a porous mate-
rial subjected to a macroscopic gradient of potential electric,
and a local electrical field derived from a potential Ψ. From
all these considerations, we can write in M:

dzp

dy
(M) = 0, Ez(M) = 0, and R−1

M =−
d2zp

dy2 (M). (A.1)

Moreover, the fact that the electric field is tangent to the pore
surface leads to:

dzp

dy
=−∂Ψ

∂y
(y,zp(y))

/[
∂Ψ

∂ z
(y,zp(y))

]
,

and, after derivation to:

d2zp

dy2 =

[
∂Ψ

∂y

(
∂ 2Ψ

∂y∂ z
+

∂ 2Ψ

∂ z2
dzp

dy

)

−∂Ψ

∂ z

(
∂ 2Ψ

∂y2 +
∂ 2Ψ

∂ z∂y
dzp

dy

)](
∂Ψ

∂y

)−2

=

[
Ey

(
∂Ey

∂ z
+

∂Ez

∂ z
dzp

dy

)
−Ez

(
∂Ey

∂y
+

∂Ey

∂ z
dzp

dy

)]
E−2

y .

Then, by considering the point M (on the pore surface) and
Eqs. A.1, we find:

Ey(M)R−1
M =−

∂Ey

∂ z
(M). (A.2)

Finally, by using a Taylor expansion at point M for large
curvature radius (β/RM� 1), we find Eq. (15).
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FIG. 11. Definition of the local Cartesian coordinates used for the
justification of Eq. (15).
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