
HAL Id: hal-04352459
https://hal.science/hal-04352459v1

Submitted on 21 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid Prototyping of Distributed Musical Things using
Web Technologies

Benjamin Matuszewski, Aliénor Golvet

To cite this version:
Benjamin Matuszewski, Aliénor Golvet. Rapid Prototyping of Distributed Musical Things using Web
Technologies. 4th International Symposium on the Internet of Sounds, Oct 2023, Pisa (IT), Italy.
�10.1109/IEEECONF59510.2023.10335368�. �hal-04352459�

https://hal.science/hal-04352459v1
https://hal.archives-ouvertes.fr


Rapid Prototyping of Distributed Musical Things
using Web Technologies

Matuszewski Benjamin
STMS Ircam-CNRS-Sorbonne Université

Paris, France
benjamin.matuszewski@ircam.fr

Golvet Aliénor
STMS Ircam-CNRS-Sorbonne Université

Paris, France
alienor.golvet@ircam.fr

Abstract—This short paper reports on recent advances in the
development of an open-source prototyping platform for the
creation of distributed and embedded musical systems based
on Web technologies. The proposed architecture is based on
user-grade hardware and open-source software and aims at
fostering rapid-prototyping and experimentation in the context
of colocated distributed systems for musical research, creation
and performance. After a short review of related works, the
paper describes the general design and the different building
blocks of the system. Then, it exposes a first characterization
of the proposed design, and concludes with the description of a
prototype that highlights different features of the platform.

Index Terms—Sound and music computing, Distributed appli-
cations, Web standards, Prototyping platform

I. INTRODUCTION

Recent development of Web technologies–in particular the
Web Audio API specification [1]–and of Internet of Things
(IoT) technologies have enabled new avenues for researchers,
designers and artists relying on distributed multimedia envi-
ronments and collaborative interaction. Indeed, by democratiz-
ing the access of both software and hardware, the combination
of these technologies can unfold novel possibilities in several
areas such as multisource electro-acoustic music [2] or new
interfaces for musical expression [3].

However, the inherent complexity of such distributed sys-
tems, particularly regarding the real-time, synchronized and
multimodal interactions required for music and performing
arts, opens novel questions on designing interaction modalities
that enable practitioners to use and to creatively appropriate
these technologies. Another challenge stands in the difficulty
of designing and implementing a distributed platform that is
both stable in terms of hardware and software, while being
also simple to manipulate and open to modification in order
to be adapted to specific experimental projects [4].

In this paper, we present recent advances in the development
of an open-source prototyping platform for the creation of
distributed and embedded musical systems based on Web
technologies [5], [6]. The platform aims at supporting the
development of a wide range of musical applications, such
as audio installations, live performances or dedicated tools for
composers and performers. Within the broader field of the
Internet of Sound (IoS) [7], our approach focuses on fostering
rapid-prototyping and experimental practices in the context of

colocated distributed systems for musical research, creation
and performance.

After a short and non-exhaustive review of similar ap-
proaches in Section II, we describe the general design of our
system in Section III. Then, we report on some characteri-
zation of the proposed design regarding latencies in Section
IV. Finally, we conclude with the description of a prototype
highlighting several features of our platform in Section V.

II. RELATED WORK

Several environments dedicated to music and artistic cre-
ation, and targeted at embedded devices and single-board
computers have been proposed over the years. These environ-
ments can be broadly separated into two categories: the ones
that propose a combination of software running on top of a
dedicated hardware and the ones that only rely on software
that can be executed on generic consumer grade hardware.

In the first category, probably most famous example is
the Bela platform [8], which is an environment composed
of an extension board for the BeagleBone Black focused on
processing audio and data signals at very low latency, and
of a dedicated Linux distribution with a real-time kernel. For
the end-user, the platform can be programmed using C++ or
PureData. Focused on the creation of new instruments, the
Bela has been used in numerous artistic and research projects
[9].

In the other category, the Satellite CCRMA [10] proposed
a dedicated Linux distribution specifically designed for the
Raspberry Pi. The distribution featured a real-time kernel
specifically configured for interactive multimedia applications.
However, even if some projects using the Satellite CCRMA has
been proposed recently [11], the last published version of the
Satellite CCRMA Distribution only targets the Raspberry Pi 2
and has not been updated since then1. This project exemplifies
the difficulty of maintaining such a project in the long term
due to the rapid evolution of the technologies and of the highly
particular knowledge and skills that maintaining a distribution
requires.

More recently, Elk OS [12], [13] proposed an interesting al-
ternative in the form of a very efficient and dedicated operating

1Note that the first version of the Raspberry Pi 3 was proposed in February
2016



Author manuscript

system. Compared to the Satellite CCRMA, Elk OS is oriented
toward the use of de facto audio industry standards such as the
VST plugin format to ease the development of new instruments
and dedicated hardware [14]. However, we consider this focus
on such a limited number of technologies and formats comes
with a drawback regarding more experimental and exploratory
practices with other technologies.

Compared to these projects, our approach is to build on
top of very common and accessible technologies. This choice
aims at minimizing the risk of obsolescence by using generic
hardware and software at the low-level, and to accept their po-
tential drawbacks (e.g. in terms of efficiency). On the contrary,
this choice enables the creation of a versatile environment
within which each individual component is rather low-cost,
easily replaceable and benefits from a large community of
users and resources (e.g. softwares, tutorials, documentation,
etc.). Additionally, as our focus is on building distributed
systems composed of numerous devices, some tradeoffs that
are not acceptable when creating a Digital Musical Instruments
(DMI), e.g. according to latencies [15], can be reconsidered
according to this specific context. For example, in a generative
system composed of tens or hundreds of devices, the question
is more about their synchronization than on their individual
latency.

III. GENERAL DESIGN

As introduced in the previous section, our goal is to build
an environment that is both easily adaptable and resilient to
the rapid evolution of software and hardware. To that end
the core of our system is built around Web technologies,
standardized by the World Wide Web Consortium (W3C) and
on the Node.js JavaScript runtime, which while not per se
a standard, is backed by the Open JS Fundation2 (see Fig 1).
Such an approach, which indeed comes with some drawbacks,
introduces a layer of abstraction between the software and
the hardware which we think should help to maintain our
environment while fostering rapid prototyping and versatility
of the system, which we consider crucial in experimental
artistic practices.

Fig. 1. Hardware and software stack

A. Hardware

Following these main design principles, we therefore chose
to build our environment on top of the widespread Raspberry
Pi platform [16]. In our view, using this platform has two
main benefits: first, it is rather low cost which is of primary

2https://openjsf.org/

importance when building a fleet of devices composed of
numerous devices, second, it benefits from a large community
of users and of important documentation and support. In its
version 4, the Raspberry Pi offers the following features: a
quad core Cortex-A72 (ARM v8) 64-bit processor at 1.8GHz;
up to 8GB of LPDDR4-3200 SDRAM; two USB 2.0 and two
USB 3.0 ports; 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless,
Bluetooth 5.0 and BLE Gigabit Ethernet for networking and
communications, and a 40 pin GPIO header to interface with
external electronic devices.

Additionally, we chose to extend the platform with a Hi-
FiBerry DAC+ ADC Pro sound card 3 which features stereo
input and output, support up to 192kHz sample rate and
communicate with the Raspberry Pi through the I2S bus.

Fig. 2. Illustration of the ”standard” hardware used in our environment: a
Raspberry Pi 4 with a HiFiBerry DAC+ ADC Pro

Depending on the project, this ”standard” minimal setup can
then be easily extended or adapted. For example, the Raspberry
Pi can easily work together with microcontrollers such as the
Arduino platform for the prototyping of more traditional DMI.
The whole setup can run on batteries, which may simplify
the deployment of a system in unconventional spaces (e.g.
gardens) for performances. Furthermore, for more constrained
or less demanding projects, the environment can run with only
few configuration modifications on other boards, such as the
Raspberry Pi Zero W 4 or with different sound cards5, e.g. for
sound installations that would only require audio output.

B. Software

In terms of software, we aim to keep the whole system
architecture simple to facilitate its appropriation by users such
as artists, makers and researchers. Hence, we chose for now
to rely on a stock Raspberry Pi operating system, which
therefore does not feature a real-time kernel. To facilitate the
configuration and maintenance of fleets of similar devices (e.g.
management of SSH keys, hostnames), and adapt the system
to our software stack (e.g. to install Node.jsand the Jack audio
server [17]), we only rely on a few configuration scripts and on

3https://www.hifiberry.com/shop/boards/hifiberry-dac-adc-pro/
4https://www.raspberrypi.com/products/raspberry-pi-zero-w/
5e.g. https://www.hifiberry.com/shop/boards/hifiberry-dac-light/

https://openjsf.org/
https://www.hifiberry.com/shop/boards/hifiberry-dac-adc-pro/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.hifiberry.com/shop/boards/hifiberry-dac-light/


Author manuscript

a dedicated application, we call the dotpi environment6. Hence,
this environment should be compatible with any Debian based
operating system.

From this point, we solely rely on JavaScript and Web
technologies, running our applications in the Node.js runtime
which adds yet another layer of abstraction between our
software stack and the underlying platform. Such approach
both simplifies the prototyping of new applications which are
not tightly tied to a particular platform and can therefore be
developed on any machine, as well as maintenance and de-
ployment as applications can seamlessly run on any available
hardware that is able to run a Node.js runtime.

To develop our distributed applications, we rely on sound-
works [6], [18], a framework dedicated to the rapid proto-
typing of applications written in JavaScript. The framework
aims at fostering very rapid loops of trial and error, which
is of primary importance in creative workflows, in systems
composed of possibly tens of devices. To that end, it provides
a set of tools dedicated to help developers to manage some of
the complexities of distributed applications, such as distributed
state management or synchronization.

Finally, the audio processing in embedded platforms is
delegated to the node-web-audio-api library, which pro-
vides Node.js bindings on top an implementation of the Web
Audio API written in the Rust programming language [19],
[20]7. This approach enables us to write audio engines and
applications that can run seamlessly in Web browsers and
embedded hardware in the Node.js runtime. As such, it fosters
code reuse and opens new doors for experimenting novel forms
of collective and distributed applications mixing human and
synthetic agents.

IV. CHARACTERIZATION

In this section, we report on measurements conducted to
characterize a baseline of what can be achieved within our
environment considering both network and audio latencies.
Please note these numbers are indicative and only reported
here to give an order of magnitude of what can be obtained
under particular circumstances.

A. Network latencies

To characterize network latencies, the following experimen-
tal setup has been implemented. A soundworks Node.js client
running on a Raspberry Pi sends a packet of fixed size to
the server which immediately sends it back to the client. Two
variables have been tested: 1) the size of the packet: 10B,
100B, 1kB, 10kB, 100kB and 2) the type of network: an entry
level WiFi Access Point (AP) (TP Link TL-MR30208), a more
professional grade AP (Unifi Nano HD9), and direct cabled
connection between the Raspberry Pi and the server through

6https://github.com/ircam-ismm/dotpi-manager (at time of writing, these
tools are still under active development.)

7The Node.js bindings can be found in the https://github.com/ircam-ismm/
node-web-audio-api/ repository, the underlying Rust implementation can be
found at https://github.com/orottier/web-audio-api-rs/

8https://static.tp-link.com/res/down/doc/TL-MR3020 1.0 1 .pdf
9https://dl.ubnt.com/datasheets/unifi/UniFi nanoHD AP DS.pdf

RJ45. For each case 250 packets have been sent at a fixed
interval of 50ms.

Fig. 3. Network round trip duration for different packet sizes measured on
three different network configurations.

The box plots in Fig. 3 report the estimated round trip
duration for each tested case. While not surprising, these
results interestingly show that 1) close to negligible latency
(≈2ms) with cabled setup can be achieved for very constrained
situations such as experimental studies and that 2) the entry-
grade AP, while surprisingly performant, rapidly degrades
with the increase of packet size, when compared to the more
professional one. Complementary measurements should be
done to complete these results with more realistic setups
composed of multiple devices concurrently sending messages.

B. Audio latency

To measure the round trip audio latency, we looped back
the audio output to input with an audio cable and config-
ured the Jack backend with the following setup (which has
been manually found as the minimim configuration to avoid
dropouts): realtime: on, frame/periods: 128, period: 2, sample
rate: 48kHz, priority: 95. The calculation of the audio round
trip is done using a small utility written in Rust10 which allows
it to be in the exact same audio toolchain as in our final
software stack. The tool basically emits a dirac impulse to
the output every second and computes the duration until a
non zero value is found in the incoming signal.

The round trip latency reported by the tool is of
≈14.3ms. Compared to the result of 9.05ms reported by
jack_iodelay, it shows that our software stack introduces
an additional latency of 256 samples, which can be explained
by the lack of duplex support of the audio backend we use11.
All things considered, while important work still needs to be
conducted to improve further these results (for example by
applying a PREEMPT RT patch on the OS kernel [12]), we
consider such result as low enough to be usable in many kinds
of musical applications, except the most latency sensitive ones
(e.g. augmented instruments).

10See the roundtrip_latency_test example in the
web-audio-api-rs repository

11https://github.com/RustAudio/cpal/issues/349

https://github.com/ircam-ismm/dotpi-manager
https://github.com/ircam-ismm/node-web-audio-api/
https://github.com/ircam-ismm/node-web-audio-api/
https://github.com/orottier/web-audio-api-rs/
https://dl.ubnt.com/datasheets/unifi/UniFi_nanoHD_AP_DS.pdf
https://github.com/RustAudio/cpal/issues/349


Author manuscript

V. EXAMPLE USE

To illustrate some of the possibilities of our environment we
developed a prototype application that showcases the potential
for fast prototyping, modification and deployment of audio
effects on a fleet of devices. In this prototype, each device
is equipped with a microphone and speakers, and the audio
is processed locally on each device. Scripting, control and
monitoring of the devices are done remotely in real-time.

Fig. 4. The application interface in a web browser. On the left, a text editor
to create and edit scripts in real time. On the right, different controls and
monitoring for three devices connected to the application.

The application’s control interface shown in Fig. 4 is
accessible within a Web browser. It is composed of two main
parts:

• A text editor that allows you to create and to edit audio
scripts in JavaScript. Using the Web Audio API, users can
write their own audio graphs connecting the audio input
to the output on the device. These user defined scripts
are then shared over the network to be executed by the
connected devices. Upon update of a script, any device
associated with that script will instantly transition to the
new version of the script with a crossfade.

• A control and monitoring zone for each device connected
to the application that gives the possibility to remotely 1)
set which script, i.e. audio effect, is used by said device,
2) change the input and output volumes and 3) monitor
input (dry) signal and output (wet) signal.

Since the interface is built on top of web technologies,
it can be accessed simultaneously on any device equipped
with a web browser and connected to the local network of
devices. Moreover, since audio scripts are written using Web
Audio code, they can be interpreted on both web browsers
with the Web Audio API or embedded devices with the
node-web-audio-api library. This allows the use of an
heterogeneous fleet of devices composed of, for example,
mobile phones handled by human beings, Raspberry Pi with
portable speakers spread over the performance space or laptop
computers connected to larger speakers.

Since script updates are automatically distributed to all
devices, this application fosters a trial-and-error workflow for
prototyping experimental setups on fleets of devices. It also
lowers the boundaries for appropriation by users with different
skills and backgrounds, as they do not have to understand all
the internals of the system. Finally, while the application has
been tested only with a small number of concurrent devices,
our previous works have shown that it should simply scale to
dozens or hundreds of connected devices.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have reported on the ongoing development
of an open-source prototyping platform for the creation of
distributed and embedded applications based on Web tech-
nologies. We have first described the main design aspects of
the system, presented some elements of characterization of
the system, and concluded with the description of a prototype
application that highlights several features of the proposed
environment. While these results are encouraging, important
work of design, research and development still needs to
be achieved in order to provide an environment that can
be appropriated by expert users (e.g. researchers, designers,
artists) from different backgrounds and different programming
skills. To that end, we will conduct in the near future re-
search/creation residencies with musicians and composers to
better understand the current possibilities and limitations of
our platform in a more ecological context.

ACKNOWLEDGMENT

We would like to thank our colleagues at IRCAM for their
precious contributions to the project. This project has received
support from the DOTS research project funded by the French
National Research Agency (ANR-22-CE33-0013-01).

REFERENCES

[1] “Web Audio API Specification,” 2021. [Online]. Available: https:
//www.w3.org/TR/webaudio/

[2] B. Taylor, “A History of the Audience as a Speaker Array,” in
Proceedings of the NIME’17 Conference, 2017. [Online]. Available:
http://homes.create.aau.dk/dano/nime17/papers/0091/paper0091.pdf

[3] I. Poupyrev, M. J. Lyons, S. Fels, and T. Blaine (Bean), “New interfaces
for musical expression,” in CHI ’01 Extended Abstracts on Human
Factors in Computing Systems, ser. CHI EA ’01. Seattle, Washington:
Association for Computing Machinery, Mar. 2001, pp. 491–492.

[4] H.-J. Rheinberger, “Consistency from the perspective of an experimental
systems approach to the sciences and their epistemic objects,”
Manuscrito, vol. 34, no. 1, pp. 307–321, Jun. 2011. [Online]. Available:
http://dx.doi.org/10.1590/S0100-60452011000100014.

[5] B. Matuszewski and F. Bevilacqua, “Toward a Web of Audio Things,”
in Proceedings of the 2018 Sound and Music Computing Conference,
Limassol, Cyprus, 2018.

[6] B. Matuszewski, “A Web-Based Framework for Distributed Music
System Research and Creation,” Journal of Audio Engineering Society,
vol. 68, no. 10, pp. 717–726, Oct. 2020.

[7] L. Turchet, M. Lagrange, C. Rottondi, G. Fazekas, N. Peters,
J. Østergaard, F. Font, T. Bäckström, and C. Fischione, “The Internet
of Sounds: Convergent Trends, Insights, and Future Directions,” IEEE
Internet of Things Journal, vol. 10, no. 13, pp. 11 264–11 292, Jul. 2023.
[Online]. Available: https://ieeexplore.ieee.org/document/10061604/

[8] A. McPherson and V. Zappi, “An environment for submillisecond-
latency audio and sensor processing on BeagleBone Black,” in Audio
Engineering Society Convention 138. Warsaw, Poland: Audio Engi-
neering Society, 2015.

[9] V. Zappi and A. McPherson, “Hackable Instruments: Supporting
Appropriation and Modification in Digital Musical Interaction,”
Frontiers in ICT, vol. 5, p. 26, Oct. 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fict.2018.00026/full

[10] E. Berdahl, S. Salazar, and M. Borins, in Proceedings of the Interna-
tional Conference on New Interfaces for Musical Expression, Daejeon,
Korea, 2013.

[11] J. Sullivan, J. Vanasse, M. M. Wanderley, and C. Guastavino, “Rein-
venting the Noisebox: Designing Embedded Instruments for Active
Musicians,” in Proceedings of the International Conference on New
Interfaces for Musical Expression, Birmingham, United Kingdom, 2020.

https://www.w3.org/TR/webaudio/
https://www.w3.org/TR/webaudio/
http://homes.create.aau.dk/dano/nime17/papers/0091/paper0091.pdf
http://dx.doi.org/10.1590/S0100-60452011000100014.
https://ieeexplore.ieee.org/document/10061604/
https://www.frontiersin.org/article/10.3389/fict.2018.00026/full


Author manuscript

[12] L. Turchet and C. Fischione, “Elk Audio OS: An Open Source Operating
System for the Internet of Musical Things,” ACM Transactions on
Internet of Things, vol. 2, no. 2, pp. 1–18, May 2021. [Online].
Available: https://dl.acm.org/doi/10.1145/3446393

[13] L. Vignati, S. Zambon, and L. Turchet, “A Comparison of Real-
Time Linux-Based Architectures for Embedded Musical Applications,”
Journal of the Audio Engineering Society, vol. 70, no. 1/2, pp. 83–93,
Jan. 2021. [Online]. Available: https://www.aes.org/e-lib/browse.cfm?
elib=21553

[14] D. Stefani and L. Turchet, “On the challenges of embedded real-
time music information retrieval,” in Proceedings of the International
Conference on Digital Audio Effects, Vienna, Austria, 2022.

[15] A. P. McPherson, R. H. Jack, and G. Moro, “Action-Sound Latency: Are
Our Tools Fast Enough?” in Proceedings of the International Conference
on New Interfaces for Musical Expression, 2016.

[16] J. D. Brock, R. F. Bruce, and M. E. Cameron, “Changing the world with
a Raspberry Pi,” Journal of Computing Sciences in Colleges, vol. 29,
no. 2, pp. 151–153, Dec. 2013.

[17] S. Letz, Y. Orlarey, and D. Fober, “Jack audio server for multi-
processor machines,” in Proceedings of the International Computer
Music Conference, Barcelona, Spain, 2005.

[18] B. Matuszewski, “Soundworks - A Framework for Networked Music
Systems on the Web,” in Proceedings of the 5th Web Audio Conference,
Throndheim, Norway, 2019.

[19] O. Rottier and B. Matuszewski, “A Rust Implementation of the Web
Audio API,” in Proceedings of the 7th Web Audio Conference, Cannes,
France, 2022.

[20] B. Matuszewski and O. Rottier, “The Web Audio API as a standardized
interface beyond Web browsers,” Journal of Audio Engineering Society,
2023, in press.

https://dl.acm.org/doi/10.1145/3446393
https://www.aes.org/e-lib/browse.cfm?elib=21553
https://www.aes.org/e-lib/browse.cfm?elib=21553

	Introduction
	Related Work
	General Design
	Hardware
	Software

	Characterization
	Network latencies
	Audio latency

	Example Use
	Conclusion and Future Work
	References

