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Introduction

Contract terms play a crucial role in various matching problems. In labor markets, workers are assigned shift schedules and receive salaries. Similarly, doctors are assigned positions in hospitals, and cadets are assigned branches in the army. These terms are typically provided by firms, hospitals, or the military, often with limited involvement from decision-makers. However, these terms significantly impact the welfare of the market's participants, raising questions, especially concerning doctors and hospitals: Can hospitals manipulate the allocation based on the terms they offer? Does offering more terms to doctors improve their welfare? This paper contributes to addressing these questions.

Our approach can be applied to many real-life scenarios, but we focus on the context stable allocations for a given problem. Theorem 3 states that the set of stable allocations for the problem π is included in the union of the sets of stable allocations for the sub-problems π ′ and π ′′ . The consequence of this result is that the stable allocations of the main problem are also stable in one of the two sub-problems. Moreover, even if there is no lattice structure on the union of the two sub-problems, the lattice structure appears in the main problem π. The consequence is that if the doctor-optimal stable allocations of the two sub-problems are not Pareto comparable, then at least one of them is no longer stable in the problem π (Corollary 1). Finally, if an allocation is stable in both sub-problems, then this allocation is stable in the main problem (Theorem 3).

We then consider variations in doctor welfare according to the term vector evolution.

One of our main results shows that if an allocation is stable in a problem, and a hospital does not use all the terms available in this allocation, then it is possible to consider a problem where the set of terms for this hospital is shrunk, and the allocation remains stable (Theorem 4). We can, therefore, consider a vector of terms strictly included in the vector of the main problem, such that the doctor-optimal stable allocation is also stable in the new problem. As a result, the new doctor-optimal stable allocation is weakly preferred by doctors to the former (Corollary 2) and may be strictly preferred by some doctors. 6 This result suggests that reducing the number of terms offered by hospitals could improve doctor welfare when considering the doctor-optimal stable allocation. However, reducing the term vector is restricted to a weak increase in doctor welfare. Theorem 5 states that there are no terms vector strictly included in the initial vector such that each doctor is strictly better off. 7We then present several possible applications of our results. Following the approach of [START_REF] Echenique | Contracts versus salaries in matching[END_REF], we consider the salary matching. By offering a higher wage, the hospital pays a lower salary to its doctor in the doctor-optimal stable allocation. We then consider work schedules, leading to hospitals being better off when more terms are offered.

In the last section, we study hospital incentives in offering possible terms. When considering the doctor-optimal stable allocation, there is no clear answer for the evolution of hospital welfare. If one doctor is worse off, then at least one hospital is better off, as Theorem 1 shows. In contrast, doctors can be better off, and it is impossible to say how the welfare of hospitals changes. However, when we consider the hospital-optimal stable allocation, we show that it is always profitable for a hospital to individually add terms (Theorem 6). There is no clear conclusion on the impact of this strategy on other hospitals. 8 The intuition is that terms create competition between doctors, which favors the best doctors for the hospitals.

Related Literature

Our paper is related to a growing literature that investigates stable allocations in the matching with contract framework. [START_REF] Hatfield | Matching with contracts[END_REF] first show the existence of stable allocation by introducing the concept of substitute preferences (Crawford andKnoer, 1981, Kelso and[START_REF] Kelso | Job matching, coalition formation, and gross substitutes[END_REF] in contracts. [START_REF] Aygün | Matching with contracts: Comment[END_REF] add the condition of the irrelevance of rejected contracts. [START_REF] Hatfield | Substitutes and stability for matching with contracts[END_REF] weakened the substitute conditions and proved the existence of stable allocations when preferences satisfy bilateral substitutes.9 These contributions provide valuable insights into the structure of preferences, ensuring the existence of stable allocations. In this article, we study sets of stable allocations using the contracts available on the market.

To our knowledge, this is the first contribution to limit the terms used in contracts to study the stable allocation set.

Many applications to contracts are analyzed in the literature. Contract terms are used to represent contract opportunities for agents. [START_REF] Sönmez | Matching with (branch-of-choice) contracts at the united states military academy[END_REF] and [START_REF] Sönmez | Bidding for army career specialties: Improving the rotc branching mechanism[END_REF] model the multiple options for cadets over the duration of their enlistment in the U.S. Army. [START_REF] Hatfield | Hidden substitutes[END_REF] investigates the choices of interns in hospital departments. [START_REF] Kominers | Matching with slot-specific priorities: Theory[END_REF] consider airline upgrades. [START_REF] Echenique | Contracts versus salaries in matching[END_REF] shows that when firm preferences satisfy substitutes, it is possible to consider matching with salaries in the labor market. However, none of these papers concentrate on the design of the terms and their importance to the market's welfare. [START_REF] Hatfield | Contract design and stability in many-tomany matching[END_REF] contribute by investigating the possibility of forming multiple contracts with the same agents. Their results highlight the importance of contract design. In our approach, we restrict the terms offered that make the doctors better off in a stable allocation, while [START_REF] Hatfield | Contract design and stability in many-tomany matching[END_REF] restrict the set of contracts. This difference allows us to compare stable allocations and consider doctor welfare, which is absent from their study.

Lastly, we are also interested in market welfare and incentives. The literature mainly focuses on choice functions, which are used in the framework of matching with contracts. [START_REF] Chambers | Choice and matching[END_REF] and [START_REF] Yenmez | A college admissions clearinghouse[END_REF] study choice functions for changing stable allocations. More specifically, they focus on choice functions that improve the allocation of doctors. We examine the different contract terms available for doctors in the market, rather than concentrating on the choices made by hospitals to enhance the allocation of doctors.

The structure of the paper is as follows: In Section 2, we introduce the model and its properties. Section 3 presents the cumulative offer process. Our preliminary results and an illustrative example are presented in Section 4. Section 5 presents our main results.

In Section 6, we address hospital strategy. We conclude in Section 7.

Model

Allocation Problem

There are finite sets D = {d 1 , d 2 , ..., d n } and H = {h 1 , h 2 , ..., h m } of doctors and hospitals, and a finite set T = {t 1 , t 2 , ..., t l } of contractual terms. There is a set X of contracts specifying relationships between doctor-hospital pairs, X takes the form X = D ×H ×T .

Each contract x ∈ X is associated with a doctor x d ∈ D, a hospital x h ∈ H, and a term of their match x t ∈ T . For a set of contracts X ′ ⊆ X, we let X ′ d be the set of contracts that concern doctor d, formally X ′ d ≡ {x ∈ X ′ : x d = d}. Similarly, we let X ′ h ≡ {x ∈ X ′ : x h = h} for each hospital. Each doctor can sign a maximum of one contract. The null contract, meaning that the doctor has no contract, is denoted by ∅.

Each hospital h has a subset of available terms T h ⊆ T . Let T ≡ (T h ) h∈H be the terms vector. To make our problem relevant, we assume that for each hospital T h ̸ = ∅. 

Choice Functions and Properties

A contract x is unacceptable to doctor d if d prefers the null contract to x (i.e.,∅ ≻ d x). A contract x ′ is acceptable to d if it is preferred to the null contract that is x ′ ⪰ d ∅. The choice of doctor d from X ′ ⊆ X, denoted as C d (X ′ ), is ∅ if each contract in X ′ d is unacceptable to d. Otherwise, it is the most preferred contract for d in X ′ under preference relation ≻ d . Formally, C d (X ′ ) ≡ max ≻ d {x ∈ X ′ : x ∈ X ′ d }. 10 We denote by R d (X ′ ) ≡ X ′ -C d (X ′ ) the set of contracts rejected from X ′ by d.
Similarly, for each hospital, a contract x is unacceptable for hospital h if h prefers the null contract to x (i.e., ∅P h x). A contract x ′ is acceptable to h if it is preferred to the null contract that is

x ′ P h ∅. The choice of hospital h from X ′ ⊆ X, denoted as C h (X ′ ), is ∅ if each contract in X ′
h is unacceptable to h. Otherwise, it is the set of most preferred contracts for h in X ′ under preference relation P h . Formally:

C h (X ′ ) ≡ max P h {X ′′ ⊆ X ′ h : ∀x ∈ X ′′ , x t ∈ T h and (x, x ′ ∈ X ′′ , x ̸ = x ′ ⇒ x d ̸ = x ′ d )}. We denote by R h (X ′ ) ≡ X ′ -C h (X ′ ) the set of contracts rejected from X ′ by h. Let C D (X ′ ) ≡ d∈D C d (X ′ ) be the set of contracts chosen from X ′ by doctors. Let C H (X ′ ) ≡ h∈H C h (X ′
) be the set of contracts chosen from X ′ by hospitals. We can now introduce the stability notion for allocations.

Definition 1. An allocation X ′ ⊆ X is stable if (i) C D (X ′ ) = C H (X ′ ) = X ′ ,
(ii) there exists no hospital h, term t, and set of contracts

X ′′ ̸ = C h (X ′ ) such that X ′′ = C h (X ′ ∪ X ′′ ) ⊆ C D (X ′ ∪ X ′′ ).
When (ii) is violated by some X ′′ , we say that X ′′ blocks X ′ or X ′′ is a block of X ′ for h. We denote by S(π) the set of stable allocations for problem π.

A mechanism φ maps any problem to an allocation, formally, φ :

π ∈ Π → φ(π) ⊆ X.
Mechanism φ is stable if, for each π ∈ Π, we have φ(π) ∈ S(π). Another desirable property for an allocation is Pareto-efficiency (or efficiency). An allocation X ′ ⊆ X Pareto dominates (for doctors) an allocation X ′′ ⊆ X if each doctor prefers X ′ to X ′′ and there is at least one doctor who strictly prefers X ′ to X ′′ . Formally,

X ′ Pareto dominates X ′′ if for each d ∈ D, X ′ d ⪰ d X ′′ d and for some d ′ ∈ D, X ′ d ′ ≻ d ′ X ′′ d ′ .
An allocation is Pareto-efficient(or efficient) if it is not Pareto-dominated by any other allocation. Finally, we say that allocations X ′ and X ′′ are not Pareto comparable if some doctors prefer X ′ and others X ′′ . Formally, X ′ is not Pareto comparable (or

comparable) to X ′′ if for some d ∈ D, X ′ d ≻ d X ′′ d and for some d ′ ∈ D, X ′′ d ′ ≻ d ′ X ′ d ′ .
We can now introduce the notion of lattice structure. We say that an allocation X ′ is the doctor-optimal stable allocation if each doctor weakly prefers X ′ to every other stable allocation. Similarly, an allocation X ′′ is said hospital-optimal stable allocation if each hospital weakly prefers X ′′ to every other stable allocation.

Cumulative Offer Process with Terms

We assume two standard conditions for hospital preferences. The first condition imposed is contract substitutability.

Definition 2 [START_REF] Hatfield | Matching with contracts[END_REF]. Contracts are substitutes for h if there do not exist contracts x, x ′ ∈ X and a set of contracts

X ′ ⊆ X such that x ′ / ∈ C h (X ′ ∪ {x ′ }) and x ′ ∈ C h (X ′ ∪ {x, x ′ }).
The substitute condition guarantees the monotonicity of the doctor-proposing algorithm, and renegotiation is unnecessary. To guarantee the exitance of stable allocation and lattice structure, we add the condition introduced by [START_REF] Aygün | Matching with contracts: Comment[END_REF].

Definition 3 [START_REF] Aygün | Matching with contracts: Comment[END_REF]. Given a set of contracts X, a choice function

C : 2 X → 2 X satisfies the irrelevance of rejected contracts (IRC) if ∀X ′ ⊂ X, ∀x ′ ∈ X \ X ′ , x ′ / ∈ C(X ′ ∪ {x ′ }) ⇒ C(X ′ ) = C(X ′ ∪ {x ′ }).
We can now introduce the Cumulative Offer Process (COP hereafter) with terms:

Cumulative Offer Process.

Step 0. For each d ∈ D, let X d (0) ≡ X d ∪ ∅ be the set of contracts available for d.

Step s =1, 2, ...

Each d ∈ D chooses a contract from X d (s -1) using C d (•). Let x d (s) ≡ C d (X d (s -1)) be the chosen contract. Let X(s) ≡ d∈D C d (X d (s -1)
) be the set of all chosen contracts. Each doctor d proposes to hospital x d (s) h under term

x d (s) t . For each h ∈ H, let X h (s) ≡ {x d (s) ∈ X(s) : x d (s) h = h} be the set of contracts proposed to h. Each hospital h chooses contracts from X h (s) using C h (•). Let R(s) be rejected contract set in Step s. If R(s) = ∅, then stop. Otherwise, for each d ∈ D, with x d (s) ∈ R(s), we let X d (s) ≡ X d (s -1) \ {x d (s)} and for each d ∈ D such that x d (s) / ∈ R(s), we let X d (s) ≡ X d (s -1)
, and proceed to Step s+1.

The algorithm continues until

Step k, where

R(k) = ∅. The final allocation is COP (π) ≡ X ′ .
Since there are finitely many doctors, hospitals, and possible contracts for each doctorhospital pair, the COP terminates in a finite number of steps. The allocation suggested by COP is the doctor-optimal stable allocation under terms T .11 

Claim 1. (stated as Theorem 3 by [START_REF] Hatfield | Matching with contracts[END_REF] and Theorem 1 by [START_REF] Aygün | Matching with contracts: Comment[END_REF]) Suppose that the preferences satisfy the substitutes condition and IRC condition. Then, for a given term vector T , S(π) is non-empty and forms a lattice structure. In addition, COP generates the doctor-optimal stable allocation.

In the rest of the article, we assume that hospital preferences satisfy the substitutes and the IRC conditions.

Preliminary Results and Illustrative Example

Preliminary Results

In the matching literature, it is known that adding an agent affects other agents on the market. Proposition 2 of [START_REF] Gale | Ms. machiavelli and the stable matching problem[END_REF] states that in the marriage problem, if a woman is added, then each man weakly prefers the new man-optimal stable matching (or M-optimal). 12 The intuition is that men have more possible partners. By contrast, in matching with contracts, we show this does not apply to terms. Adding an available term does not constantly improve the optimal assignment. This is formulated in our Theorem 1 and illustrated in Example 1. In this subsection, we set two problems such that:

• π(D, H, T, ≻ D , P H ) is a problem and X is the doctor-optimal stable allocation,

such that X = COP (π), • π ′ (D, H, (T ′ h , T -h ), ≻ D , P H ) is a problem with T h ⊂ T ′ h and X ′ is the doctor-optimal stable allocation, such that X ′ = COP (π ′ ).
The two problems are similar. 13 The difference is that hospital h offers more terms in problem π ′ than in problem π.

Theorem 1. For some problems, with the structure of π and π ′ , there exists a nonempty subset of doctor

D ′ ⊆ D such that for each d ∈ D ′ , X d ≻ d X ′ d .
Moreover, there exists a non-empty subset of hospital

H ′ ⊆ H such that for each h ∈ H ′ , X ′ h P h X h .
Proof. For the first part of the theorem, we use Example 1, using T and T ′ in which we have T ′ h 2 ⊂ T h 2 and d 1 and d 2 are worse off. For the second part, we use strict preference and stability. We know that there exists some

d ′ ∈ D ′ such that X d ′ ≻ d ′ X ′ d ′ suppose by contradiction that for each h such that X d ′ = (d ′ , h, t), X h P h X ′ h or X h = X ′ h . Using strict preference, we know that X h ̸ = X ′ h because X d ′ ≻ d ′ X ′ d ′ .
We use the definition of stability to show that X h cannot be preferred by h to X ′ h . If d ′ and h prefer X to X ′ then, X ′ is not stable because there exists a contract x = (d ′ , h, t) that block X ′ . Then,

X ′ h P h X h . ■ It is important to note that hospitals to which each d ′ ∈ D ′ is allocated in X are in H ′ .
The consequence is that when the allocation deteriorates for doctors, the hospitals to which these doctors are allocated prefer their new allocation.14 

Therefore, adding an available term for a hospital does not always improve doctor allocations. Theorem 1 formulates a result on hospital welfare. 15 The welfare result presented here is also connected to Theorem 2.26 of [START_REF] Roth | Handbook of game theory with economic applications[END_REF]. In particular, [START_REF] Roth | Handbook of game theory with economic applications[END_REF] formulates that if a woman is added to the market and is not single in the M-optimal allocation, then there exists a non-empty subset of men who prefer the new M-optimal to the former one. Similarly, the women assigned to these men prefer the former assignment to the new one. As suggested in Theorem 2, this does not hold for the contract. We consider a new problem:

• π ′′ (D, H, (T ′′ h , T -h ), ≻ D , P H ) is a problem with T ′′ h = T h ∪ {t 0 } and t 0 / ∈ T h , X ′′
is the doctor-optimal stable allocation, such that X ′′ = COP (π ′′ ), and there exists

d ∈ D such that X ′′ d = (d, h, t 0 ).
Theorem 2. There may be an empty set of doctors who prefer X ′′ to X.

Proof. Consider problems π(D, H, T, ≻ D , P H ) and π ′ (D, H, (T ′ h 1 , T -h 1 ), ≻ D , P H ) such that: D = {d 1 , d 2 }, H = {h 1 , h 2 }. The set of available terms are given by T = (T h 1 = {t}, T h 2 = {t}) and T ′ h 1 = {t, t ′ }.
The following tables give the preferences on acceptable contracts:

Doctor d 1 (h 1 , t) (h 1 , t ′ ) (h 2 , t) d 2 (h 1 , t) (h 1 , t ′ ) (h 2 , t) Table 1: Preference lists of doctors Hospital h 1 (d 1 , t ′ ) (d 2 , t ′ ) (d 1 , t) (d 2 , t) h 2 (d 2 , t)
Table 2: Preference lists of hospitals

COP (π) = X : (h 1 , t) (h 2 , t) d 1 d 2 COP (π ′ ) = X ′ : (h 1 , t ′ ) (h 2 , t) d 1 d 2 Thus, even if X ′ d 1 = (d 1 , h 1 , t ′
) there are no doctors who prefer X ′ to X. ■ Therefore, even if the new term is used, some doctors may be worse off.

Illustrative Example

Before introducing our main results, we present an illustrative example. Its purpose is to study the modification of stable allocation sets when a term is added or removed. We only consider contracts that are acceptable in the preferences. Contracts that are not ranked are considered unacceptable for the agents.

Example 1. Consider a problem π(D, H, T, ≻ D , P H ), in which

D = {d 1 , d 2 , d 3 }, H = {h 1 , h 2 , h 3 }, and T = {t, t ′ }.
Preferences are given as follows:

Doctor d 1 (h 1 , t) (h 2 , t) (h 1 , t ′ ) (h 2 , t ′ ) (h 3 , t) (h 3 , t ′ ) d 2 (h 2 , t) (h 1 , t) (h 3 , t) (h 2 , t ′ ) (h 1 , t ′ ) (h 3 , t ′ ) d 3 (h 2 , t) (h 2 , t ′ ) (h 3 , t) (h 1 , t) (h 3 , t ′ ) (h 1 , t ′ ) Table 3: Preference lists of doctors Hospital h 1 (d 3 , t ′ ) (d 3 , t) (d 2 , t ′ ) (d 1 , t ′ ) (d 2 , t) (d 1 , t) h 2 (d 1 , t ′ ) (d 1 , t) (d 3 , t ′ ) (d 2 , t ′ ) (d 2 , t) (d 3 , t) h 3 (d 2 , t ′ ) (d 3 , t ′ ) (d 2 , t) (d 1 , t ′ ) (d 3 , t) (d 1 , t)
Table 4: Preference lists of hospitals First, we consider T given by

T h 1 = {t, t ′ }, T h 2 = {t, t ′ } and T h 3 = {t, t ′ }.
We denote by X the doctor-optimal stable allocation under problem π(T ) by using COP (π): 16

X : (h 1 , t) (h 2 , t) (h 3 , t) d 2 d 1 d 3 We consider T ′ such that T ′ h 1 = {t, t ′ }, T ′ h 2 = {t} and T ′ h 3 = {t, t ′ }.
We have T ′ ⊂ T by removing t ′ from the set of terms for hospital h 2 . Let us denote the problem by π ′ (T ′ ) and we denote by X ′ the doctor-optimal stable allocation:

X ′ : (h 1 , t) (h 2 , t) (h 3 , t) d 1 d 2 d 3
We finally consider T ′′ such that

T ′′ h 1 = {t, t ′ }, T ′′ h 2 = {t ′ } and T ′′ h 3 = {t, t ′ }.
We have T ′′ ⊂ T by removing t from the set of terms for hospital h 2 . In addition, T = T ′ ∪ T ′′ . Let us denote the problem by π ′′ (T ′′ ) and we denote by X ′′ the doctor-optimal stable allocation under π ′′ :

X ′′ : (h 1 , t ′ ) (h 2 , t ′ ) (h 3 , t) d 1 d 3 d 2
16 Appendix B provides the COP steps.

Main Results

Set of Stable Allocation

This section generalizes observations from Example 1. The three terms vectors T, T ′ , and T ′′ are similar. Indeed, T is the union of T ′ and T ′′ . Moreover, the set of terms is identical for hospitals h 1 and h 3 . Despite this similarity, these three vectors lead to three different optimal allocations. Our first observation is that the doctor-optimal stable allocation is modified by adding t ′ to T ′ h 2 or t to T ′′ h 2 . The two allocations X ′ and X ′′ are not Pareto comparable. Yet,

X ′ d 1 ≻ d 1 X ′′ d 1 , X ′ d 2 ≻ d 2 X ′′ d 2 and X ′′ d 3 ≻ d 3 X ′ d 3 .
Similarly, X and X ′′ are not Pareto comparable. This is due to the fact that d 2 cannot propose t to h 2 under T ′′ .

If we consider terms T , then X ′ and X ′′ are no longer stable. We have:

• For X ′ / ∈ S(π): doctor d 3 prefer (h 2 , t ′ ) to (h 3 , t) and hospital h 2 prefer (d 3 , t ′ ) to (d 2 , t).

• For X ′′ / ∈ S(π): doctor d 2 prefer (h 1 , t) to (h 3 , t) and hospital h 1 prefer (d 2 , t) to d 1 , t). We generalize this reasoning in Proposition 1. Before introducing our results, we define three problems π, π ′ , π ′′ ∈ Π in this subsection, as follows:17 

• π ′ (D, H, T ′ , ≻ D , P H ), • π ′′ (D, H, T ′′ , ≻ D , P H ), such that ∀h ′ ∈ H \ {h}, T ′ h ′ = T ′′ h ′ , and T ′ h ̸ = T ′′ h , and • π(D, H, T, ≻ D , P H ) with T = T ′ ∪ T ′′ . Proposition 1. Suppose X ′ ∈ S(π ′ ) and X ′ / ∈ S(π) then there exist d ∈ D, with t ∈ T h and t / ∈ T ′ h and X such that (d, h, t) ≻ d X ′ d and X h P h X ′ h with (d, h, t) ∈ X. Proof.
Consider the stability definition and the construction of π and π ′ . By construction, we know that the term that blocks X ′ is t, otherwise X ′ / ∈ S(π ′ ). By (ii) in the stability definition, we know that there exists

h such that X = C h (X ′ ∪ X) with (d, h, t) in X such that X ⊆ C D (X ′ ∪ X). ■
Suppose a stable allocation is no longer stable by adding an available term. In that case, there is an allocation X that blocks the allocation X ′ . 18 By looking at stable allocations, the Pareto comparability criterion can be used.

Corollary 1. Suppose X ′ = COP (π ′ ) and X ′′ = COP (π ′′ ). If X ′ and X ′′ are not comparable, then either X ′ or X ′′ or both are not in S(π).

Proof. By contradiction, suppose that X ′ and X ′′ are not comparable and X ′ , X ′′ ∈ S(π). Using Claim 1, we know that S(π) forms a lattice with a unique maximal element given by COP for doctors. From Theorem 3 we know that S(π) ⊆ S(π ′ ) ∪ S(π ′′ ).

Therefore, the maximum element of S(π) is in S(π ′ ) ∪ S(π ′′ ). Knowing that X ′ and X ′′

are not comparable and are maximal elements of S(π ′ ) and S(π ′′ ) respectively, and by unicity, we have a contradiction. ■

Proposition 1 and Corollary 1 show how stable allocations can become unstable when terms are added. The following observation concerns allocations that are still stable when a term is added. In Example 1, we know that X ′ and X ′′ are not stable in problem π. While allocation X is not feasible in problem π ′′ , because t / ∈ T ′′ h 2 , X is feasible in problem π ′ and X ∈ S(π ′ ). Using the lattice structure of the set of stable allocations and Corollary 1, we complete Theorem 3. Theorem 3. Suppose three problems are designed as described with π, π ′ and π ′′ . Then

S(π) ⊆ S(π ′ ) ∪ S(π ′′ ) and S(π ′ ) ∩ S(π ′′ ) ⊆ S(π).
Proof. For the union: By contradiction, suppose S(π) ⊈ S(π ′ )∪S(π ′′ ). Then there exists X ∈ S(π) and X / ∈ S(π ′ ) neither X / ∈ S(π ′′ ). Using the definition of stable allocation, we know that in π, no contract blocks allocation X. While in π ′ or π ′′ there exist X ′ and X ′′ that blocks allocation X. The difference between these three problems is the vector of terms. Meaning that there exist t ∈ T ′ and t ′ ∈ T ′′ such that t and t ′ block. By construction of π, we know that T = T ′ ∪ T ′′ . Then, t, t ′ ∈ T , leads to a contradiction.

For the intersection: Consider X such that X ∈ S(π ′ ) and X ∈ S(π ′′ ), we know that there is no t ′ ∈ T ′ or t ′′ ∈ T ′′ that block X. We know that T = T ′ ∪ T ′′ , then, there is no t ∈ T that blocks X. ■

Note that there is a lattice structure over S(π) (from Claim 1) while it is not always the case over S(π ′ ) ∪ S(π ′′ ) and S(π ′ ) ∩ S(π ′′ ) (see for instance Example 1). It is, therefore, direct that the terms can block allocations.

The consequence of Theorem 3 is that if an allocation is stable in the problem π, then this allocation is stable in problem π ′ or π ′′ . Moreover, if an allocation is stable in π ′ and π ′′ , then it is stable in π. We present additional results on the structure of the set of stable allocations in Appendix A.

Doctor Welfare

In this section, we use the results of Section 5.1 to study doctor welfare in a general setting. Consider a stable allocation X in a problem π and a vector of available terms T .

If at least one of the terms is not used in X, we can consider another vector of available terms T ′ such that T ′ ⊂ T . Theorem 4 states that X is stable with term vector T ′ . To illustrate this theorem, consider the problems π and π ′ with the respective vectors of available terms in Example 1. As mentioned, allocation X is stable in π ′ .

Theorem 4. For any problem π ∈ Π, suppose X ∈ S(π(T )) and there exists h ∈ H, such that h has at least one term not used in the allocation X. Then, there exists

π ′ (T ′ ) ∈ Π with T ′ ⊂ T such that X ∈ S(π ′ (T ′ )).
Proof. Suppose there exists h ∈ H such that ∃t ∈ T h , ∄x ∈ X h , X(d, h) = t, meaning that there exists t ∈ T h such that there is no doctor d assigned to h under term t at X.

Then we can consider T and T ′ such that for each h ′ ∈ H, T h ′ = T ′ h ′ and T ′ h = T h \ {t}. We thus have T ′ ⊂ T . We know that X ∈ S(π) means no allocation blocks X. By removing t from T h and using Theorem 3, we have that X ∈ S(π(T ′ )). ■

The converse of Theorem 4 is false. 19 We can determine the stability of an allocation when the vector of terms shrinks. Theorem 4 is similar to Proposition 2 of [START_REF] Hatfield | Contract design and stability in many-tomany matching[END_REF]. While Hatfield and Kominers (2017) consider a subset of contracts, we only consider a subset of terms to guarantee the stability of an allocation. The advantage here is that we can identify the term vector needed for the stability of X, which is absent from their formulations.

Suppose the set of terms that hospitals can offer to doctors shrinks. In that case, some stable allocations may no longer be feasible without adding new stable allocations. 20

This is also true for the doctor-optimal stable allocation. Our approach then involves reducing the set of possible hospital terms to maintain the desired doctor-optimal stable allocation. The consequence of Theorem 4 is that we can modify the vector of terms to maintain the stability of an allocation. By shrinking the sets of possible terms, it is also possible to guarantee stability under terms of allocation that weakly Pareto dominates the doctor-optimal stable allocation we consider. In Example 1, X ′ Pareto dominates 20 If a stable allocation uses a removed term, then this allocation will not be stable in the new problem. In addition, removing a term does not guarantee the expansion of the set of stable allocations. This is suggested in Theorem 3.

X. We know that X is stable in π ′ , and the doctor-optimal stable allocation is X ′ ̸ = X. Corollary 2 generalizes Example 1.

Corollary 2. For any problem π ∈ Π, suppose π(T ) is a problem, and there exists h ∈ H, such that h has at least one term not used in the allocation COP (π). Then, there exists a problem π ′ (T ′ ) ∈ Π with T ′ ⊂ T such that for each doctor d ∈ D, we have

COP (π ′ ) ⪰ d COP (π).
Changing from T h 2 = {t, t ′ } to T ′ h 2 = {t} leads every doctor to weakly prefer the doctoroptimal stable allocation. By contrast, if we change from T ′′ h 2 = {t ′ } to T h 2 = {t, t ′ }, we cannot compare allocation. This illustrates that S(π ′ ) ∪ S(π ′′ ) does not form a lattice while it is the case in S(π).

By decomposing the COP steps in Appendix B, we understand why T h 2 = {t, t ′ } prevents the existence of the stable allocation X ′ under vector T . The doctor d 3 proposition to hospital h 2 under term t ′ can be considered as an interrupter in COP following the approach of [START_REF] Kesten | School choice with consent[END_REF].

All that raises a question: Is it possible to determine a T such that each doctor prefers the doctor-optimal stable allocation to the doctor-optimal stable allocation of any other possible vector? It might happen that the doctor-optimal stable allocation is not comparable and does not form a lattice. In this case, it would not be possible to guarantee that a Pareto-dominant stable allocation exists. To illustrate, consider the allocations X and X ′′ , which are not comparable in Example 1. When term t is removed from T h 2 , doctor d 3 is better off, and doctors d 1 and d 2 are worse off. The term vector can then be designed to favor specific doctors. However, using the different results, it is possible to guarantee that the doctor-optimal stable allocation is at least as preferred as the one we aim for as suggested by Corollary 2.

The Design of a Term Vector

In this sub-section, we study the design of the term vector. In Corollary 2, we show that reducing the term vector by eliminating non-used terms makes doctors weakly better off when considering doctor-optimal stable allocation. There are, however, problems where it is not possible to have at least one doctor strictly better. Consider Example 2.

Example 2. Consider problems π(D, H, T, ≻ D , P H ) and π

′ (D, H, (T ′ h 1 , T -h 1 ), ≻ D , P H ) such that: D = {d 1 , d 2 }, H = {h 1 , h 2 }. The set of available terms are given by T = (T h 1 = {t, t ′ }, T h 2 = {t}) and T ′ h 1 ⊂ T h 1 .
The following tables give the preferences:

Doctor d 1 (h 1 , t) (h 1 , t ′ ) d 2 (h 1 , t) (h 2 , t)
Table 5: Preference lists of doctors

Hospital h 1 (d 1 , t ′ ) (d 2 , t) (d 1 , t) h 2 (d 2 , t)
Table 6: Preference lists of hospitals

COP (π) = X : (h 1 , t ′ ) (h 2 , t) d 1 d 2
There is only one allocation X ′ that Pareto dominates X, such that

X ′ : (h 1 , t) (h 2 , t) d 1 d 2
Although X ′ dominates X, and is efficient there is no

T ′ ⊂ T such that X ′ ∈ S(π(T ′ )).
This is because the term to remove is t for hospital h 1 . However, this would prevent the allocation of X ′ because doctor d 1 is assigned to h 1 with term t. The solution would be to modify the terms proposed to each doctor. Doctor d 2 would be unable to use t at hospital h 1 , whereas doctor d 1 would.21 

The existence of a term vector strictly included in the initial vector such that at least one doctor is strictly better is not always possible. Theorem 5 completes this result by stating that no vector is strictly included in the initial vector such that every doctor is strictly better in a stable allocation.

Theorem 5. There is no

T ′ ⊂ T such that for each d ∈ D, COP (π(T ′ )) ≻ d COP (π(T )).
Proof. Let X denote COP (π(T )) and

X ′ denote COP (π ′ (T ′ )) with T ′ ⊂ T . Suppose X ′ d ≻ d X d for each d ∈ D.
As X ′ is stable in π ′ , we know that some terms in T \ T ′ are used in blocking allocations that block X ′ in π. We use the IRC condition and the construction of the COP . Let COP s (π) denote the step s of the COP in problem π. We know, by IRC, that at some step t with t < s and COP s

(π) = X that COP t (π) = X ′ . As X ′ is blocked, we have d ∈ D such that ∃X ′′ d such that X ′′ d ≻ d X ′ d .
However, by the construction of the COP, we know that for each ∀s ′ < s, we have COP s ′ (π) d ⪰ d COP s ′ +1 (π) d , i.e., the temporary allocation of doctors is less and less preferred in the COP. This contradicts the blocking allocation X ′′ d . ■

Another limit to term vector reduction is presented in Proposition 2. If the allocation of hospital h does not change when h can offer fewer terms, then the doctor-optimal stable allocation is identical to the initial allocation. The consequence is that the hospital's allocation must be affected by the reduction in terms offered. This reinforces the interest in studying the strategy of hospitals in offering terms.

Proposition 2. Suppose T h ⊂ T ′ h for a given h. Let X = COP (π(T )) and X ′ = COP (π ′ (T ′ h , T -h )) the doctor-optimal sable allocation respectively. If X h = X ′ h then X = X ′ .
Proof. By contradiction: Suppose X h = X ′ h and X ̸ = X ′ . The difference between the two problems is that terms have been added only for the hospital h. We know that

X h = X ′
h , so even if other doctors were tentatively assigned to h with a new term, they were rejected at a later step of COP. By being rejected, they proposed their next contracts in their preferences and preserved the same allocation. ■

Terms and Salaries

Before discussing hospital strategy for offering terms, we present two examples to illustrate potential applications. In this section, we illustrate the impact of new terms on salaries. [START_REF] Echenique | Contracts versus salaries in matching[END_REF] shows that matching with contracts is equivalent to matching with salaries if hospital preferences satisfy substitutes. 22

Example 3. Consider a problem π(D, H, T, ≻ D , P H ), in which D = {d 1 , d 2 }, H = {h 1 , h 2 }, and terms are salaries such that T = {90, 100, 110} with T = (T h 1 = {90, 100}, T h 2 = {100}) and T ′ h 1 = {90, 100, 110}. Preferences are given as follows:

Doctor d 1 (h 1 , 110) (h 1 , 100) (h 1 , 90) d 2 (h 1 , 110) (h 2 , 100)
Table 7: Preference lists of doctors 22 This result is presented in Theorem 1 of [START_REF] Echenique | Contracts versus salaries in matching[END_REF].

Hospital h 1 (d 1 , 90) (d 2 , 110) (d 1 , 100) (d 1 , 110) h 2 (d 2 , 100)
Table 8: Preference lists of hospitals Consider the problem π(T ). The doctor-optimal stable allocation is given by:

X : (h 1 , 100) (h 2 , 100) d 1 d 2 .
Suppose that hospital h 1 now offers a new salary of 110 and consider problem π ′ (T ′ h 1 , T -h 1 ). In this case, the new doctor-optimal stable allocation is given by:

X ′ : (h 1 , 90) (h 2 , 100) d 1 d 2 .
Although the hospital offers a higher salary, d 1 's wage is now 90. This example illustrates the importance of available terms and wages, even when considering the optimal doctor stable allocation. The new doctor-optimal stable allocation is X ′ if we consider T ′′ h 1 = {110, 90}. One interpretation is the increase in salary following negotiations between the doctors and the hospital. However, this is beyond our framework since T and T ′′ are not comparable. In addition, the vector (T ′ h 1 , T -h 1 ) and (T ′′ h 1 , T -h 1 ) cannot lead to the same allocation due to a shrinking of the term vector. For the vector (T ′′ h 1 , T -h 1 ) there is no vector

T ′ ⊂ (T ′′ h 1 , T -h 1 ) such that X ∈ S(π(T ′ )) while with vector (T ′ h 1 , T -h 1 ) it is possible using T h .
Example 3 has strong policy implications. By offering a salary of 110, hospitals h 1 can emphasize that it sets a higher salary than other hospitals. In addition, we consider the stable allocation preferred by doctors, which strengthens a positive image of the hospital.

However, the allocation is preferred by h 1 without changing the doctor assigned to it.

The interpretation for doctors is that the hospital offers a higher salary, so the demand from doctors for this salary creates competition. This competition forces d 1 to accept a lower salary to secure her job. 23Finally, one strategy for hospitals might be to cooperate in setting doctor salaries at a level that would be profitable for them. Example 3 shows that without cooperation, it is still possible individually. We study hospital strategy in Section 6.

Terms and Working Hours

In Example 3, the terms are ranked in preferences. For a given hospital, each doctor prefers a higher salary. In comparison, hospitals prefer to pay the lowest salary possible for a doctor. Our results show that we do not need this opposition in the market to observe the negative effects of adding terms. We illustrate this point in Example 4. Doctor

d 1 (h, f ) (h, a) (h, m) d 2 (h, f ) (h, a)
Table 9: Preference lists of doctors

Hospital h ((d 1 , m), (d 2 , f )) (d 1 , m) (d 2 , f ) ((d 1 , a), (d 2 , a)) (d 2 , a) (d 1 , a) (d 1 , f )
Table 10: Preference list of hospital Consider the problem π(T ). The doctor-optimal stable allocation is given by:

X : (h, a) (h, a) d 1 d 2 .
Suppose that hospital h now offers a new term, which is full-time, and consider problem π ′ (T ′ h ). In this problem, the new optimal doctor stable allocation is given by:

X ′ : (h, m) (h, f ) d 1 d 2 .
Hospital h has eliminated stable allocation X by offering a full-time job. Furthermore, the doctor-optimal stable allocation is now the hospital's preferred choice. The hospital's goal is to have doctor d 1 work in the morning and doctor d 2 work full time. To achieve this, the hospital is offering an additional term to block the doctor-optimal stable allocation. Allocations X and X ′ are not comparable for the doctors.

Hospitals Welfare

From the literature, it is known that when using COP, hospitals may have an interest in misreporting their preferences. There is no stable mechanism that is strategy-proof [START_REF] Dubins | Machiavelli and the gale-shapley algorithm[END_REF][START_REF] Roth | The economics of matching: Stability and incentives[END_REF]. We assume that hospital preferences are fixed. A question might be: Do hospitals improve their allocations when their available terms expand? Let us answer this question with several approaches. If we consider the hospital-optimal stable allocation, the results are similar to those previously mentioned.

Consider the two problems π and π ′ presented in Section 4. The set of terms offered by h in problem π is extended in problem π ′ . The sets of terms of other hospitals are unchanged.

Theorem 6. Hospital h weakly prefers the hospital-optimal stable allocation of problem π ′ to the one of the problem π.

Proof. We denote X and X ′ as the hospital-optimal stable allocations of problem π and π ′ , respectively. By contradiction, suppose X h P h X ′ h . We know that h offers more terms in π ′ than in π and for each other hospital h ′ ∈ H \ {h}, T h ′ = T ′ h ′ . As X h P h X ′ h , we know that in π ′ , allocation X is blocked by some terms. Since the terms have only changed for h, hospital h offers a new term such that X is blocked. Denote X ′′ h this allocation. By definition of stability, X ′′ h is preferred to X h by h. We distinguish two cases: • Case 1: X ′′ is not stable. Then another allocation blocks X ′′ , and the hospitaloptimal stable allocation is at least as preferred by h as X ′ h . • Case 2: X ′′ is stable. Then, using the lattice structure by Claim 1, we know that hospitals unanimously prefer X ′′ to any other stable allocation. Therefore we have

X ′′ h = X ′ h and X ′ h R h X h . ■
However, it is essential to note that this only concerns h, and in Theorem 6, we fix the vector for the other hospitals. Let us consider the hospital-optimal stable allocation of other hospital h ′ ̸ = h under the two problems. We have three possible scenarios in which we denote the hospital-optimal stable allocations by X under problem π and X ′ under problem π ′ :

• We have X ′ h ′ P h ′ X h ′ . This is because by improving its allocation, h has made an allocation accessible to h ′ .

• We have X h

′ P h ′ X ′ h ′ . This is because h now blocks the allocation of h ′ in X ′ or that h has a doctor in X h ′ assigned to it in X ′ h . • We have X ′ h ′ = X h ′ . The allocation of h ′ remains unchanged.
We cannot give a clear answer to the question concerning the hospital-optimal stable allocation for the other hospitals.

Considering the doctor-optimal stable allocation, a similar analysis is possible. From

Example 1, we can see that by comparing π, π ′ and π ′′ :

• For hospital h 1 we have that X h 1 P h 1 X ′ h 1 but at the same time X ′′ h 1 P h 1 X h 1 . • For hospital h 3 we have that X h 3 = X ′ h 3 and X ′′ h 3 P h 3 X h 3 . We cannot conclude anything about the hospital welfare when T h 2 is modified. Furthermore, the following example shows that adding a term to T h does not always improve the allocation of h when considering the doctor-optimal stable allocation.

Example 5. Consider problems π(D, H, T, ≻ D , P H ) and π ′ (D, H, T ′ , ≻ D , P H ) such that

D = {d}, H = {h}, T = (T h = {t}), T ′ = (t ′ h = {t, t ′ })
and the following tables give the preferences: We cannot conclude whether hospitals are better off when the set of available terms expands. [START_REF] Roth | The college admissions problem is not equivalent to the marriage problem[END_REF] demonstrates that, even when considering a mechanism that yields the hospital-optimal stable allocation, this mechanism is not strategy-proof for hospitals. Suppose the policymaker sets hospital preferences to prevent manipulation.

Doctor d 1 (h 1 , t) (h 1 , t ′ )
In our approach, we show that hospitals can add terms to block specific allocations.

Moreover, adding a term does not always create a new stable allocation. As a result, it is possible to consider sets of terms for each hospital that lead to a favorable allocation for the hospitals. Potentially, the hospital-optimal stable allocation. Furthermore, as illustrated in Example 3, hospitals do not need to cooperate to manipulate. We can define a strategy for a hospital. Definition 4. A strategy for a hospital h consists of reporting preferences P h and a set of available terms T h ⊆ T . Hospital strategies are naturally transferred to the preference profile P H and the vector of available terms T .

In many problems, preferences are fixed and are referred to as priorities. This is the case for schools in school choice or branches in the approach by [START_REF] Sönmez | Matching with (branch-of-choice) contracts at the united states military academy[END_REF].

Although priorities are considered, some schools may offer additional terms of education to have better students assigned to them.24 Similarly, branches could offer alternative durations of enlistment to get better cadets. While [START_REF] Sönmez | Matching with (branch-of-choice) contracts at the united states military academy[END_REF] only consider two possible terms, branches could be incentivized to offer more possible terms.

Proposition 3. Suppose that for each hospital h, P h is fixed. Then, there exist problems π in which some hospitals are incentivized to misreport their set of available terms T h .

One possible manipulation for hospitals is to modify the ranking of doctors in their preferences. By introducing the option to report another set of terms T , additional manipulation possibilities arise. A straightforward interpretation is that by removing an available term, all contracts using it will be considered unacceptable to the hospital.

However, the difference lies in the fact that the hospital may have an incentive to report terms that are not acceptable to it. This can be illustrated by considering salary 110 as unacceptable in Example 3.

Conclusion

In this paper, we analyze the importance of contract terms in allocation stability. We show that when the terms offered to doctors expand, the doctor-optimal stable allocation may be less preferred by some doctors. This is true even if the new term is used.

Theorem 1 and 2 contribute to the literature on matching with contracts. The matching with contracts framework cannot adopt the results of the marriage problem literature (Gale and[START_REF] Gale | College admissions and the stability of marriage[END_REF]Roth and[START_REF] Roth | Handbook of game theory with economic applications[END_REF].

We then study the structure of stable allocation sets and propose a method for increasing doctor welfare. We suggest to reduce the number of terms proposed by hospitals when some terms are not in use. Shrinking the set of terms prevents potential blocking allocations. However, this method cannot make each doctor strictly better off. If a doctor is worse off when a term is added, then at least a hospital is strictly better. We, therefore, discuss the incentives for hospitals to offer terms. We show that hospitals can manipulate via terms. Moreover, when the hospital-optimal stable allocation is considered, hospitals always have the incentive to offer more terms, regardless of the strategy of other hospitals. A restriction in the terms that can be offered could benefit doctors.

These political implications concern many markets, for instance, labor, education, and housing. In addition, the design of the terms offered by the hospitals can lead to allocations that are not Pareto-comparable. 25 A design that favors a certain population segment is then possible.

Future work may study the strategy of hospitals in other stable allocations, in particular, the doctor-optimal stable allocation. The terms blocking allocations to restrict the set of stable allocations to a singleton is then possible. Further studies may also investigate allocations that are efficient and dominate optimal allocations.

• X h 2 (2) = {(d 2 , h 2 , t), (d 3 , h 2 , t ′ )}, we have C h 2 (X h 2 (2)) = {(d 3 , h 2 , t ′ )} and, (d 2 , h 2 , t) is rejected.

• X h 3 (2) = ∅. Thus, R(2) = {(d 2 , h 2 , t)} ̸ = ∅. Then, X d 1 (2) = X d 1 (1) and X d 3 (2) = X d 3 (1) . Finally

X d 2 (2) = X d 2 (1) \ (d 2 , h 2 , t).
We proceed to Step 3.

Step 3. Each doctor d ∈ D chooses the most preferred contract in X d (2):

• • X s 3 (3) = ∅.

d 1 chooses C d 1 (X d 1 (2)) = (d 1 ,
Thus, R(3) = {(d 1 , h 1 , t)} ̸ = ∅. Then, X d 2 (3) = X d 2 (2) and X d 3 (3) = X d 3 (2). Finally X d 1 (3) = X d 1 (2) \ (d 1 , h 1 , t).
We proceed to Step 4.

Step 4. Each doctor d ∈ D chooses the most preferred contract in X d (3):

• d 1 chooses C d 1 (X d 1 (3)) = (d 1 , h 2 , t) and thus proposes term t to h 2 .

• d 2 chooses C d 2 (X d 2 (3)) = (d 2 , h 1 , t) and thus proposes term t to h 1 .

• d 3 chooses C d 3 (X d 3 (3)) = (d 3 , h 2 , t ′ ) and thus proposes term t ′ to h 2 .

Each hospital h ∈ H chooses its most preferred set of contacts in X h (4) we have:

• X h 1 (4) = {(d 2 , h 1 , t)}, we have C h 1 (X h 1 (4)) = {(d 2 , h 1 , t)} and, no contract is rejected by h 1 .

• X h 2 (4) = {(d 1 , h 2 , t), (d 3 , h 2 , t ′ )}, we have C h 2 (X h 2 (4)) = {(d 1 , h 2 , t)} and, (d 3 , h 2 , t ′ ) is rejected.

• X h 3 (4) = ∅.

Thus, R(4) = {(d 3 , h 2 , t ′ )} ̸ = ∅. Then, X d 1 (4) = X d 1 (3) and X d 2 (4) = X d 2 (3). Finally

X d 3 (4) = X d 3 (3) \ (d 3 , h 2 , t ′ ).
We proceed to Step 5.

Step 5. Each doctor d ∈ D chooses the most preferred contract in X d (4):

• d 1 chooses C d 1 (X d 1 (4)) = (d 1 , h 2 , t) and thus proposes term t to h 2 .

• d 2 chooses C d 2 (X d 2 (4)) = (d 2 , h 1 , t) and thus proposes term t to h 1 .

• d 3 chooses C d 3 (X d 3 (4)) = (d 3 , h 3 , t) and thus proposes term t to h 3 .

Example 4 .

 4 Consider a problem π(D, H, T, ≻ D , P H ), in which D = {d 1 , d 2 }, H = {h}, and terms are working the morning shift (denote m), working the afternoon shift (denote a) or working full-time (denote f ), then, T = {m, a, f }. Suppose T = T h = {m, a} and T ′ h = {m, a, f }. Preferences are given as follows:

  Each doctor d ∈ D has strict preferences ≻ d over hospital-terms bundles, therefore contracts, and the outside option, namely X ∪ {∅}. For each doctor d ∈ D, let ⪰ d denote the weak preference relation associated with ≻ d . Bundle (h, t) means be employed by h with contractual term t. By (h, t) ≻ d (h ′ , t ′ ) we mean that doctor d prefers (h, t) to (h ′ , t ′ ), and by (h, t) ⪰ d (h ′ , t ′ ) we mean that doctor d finds (h, t) at least as desirable as (h ′ , t ′ ). Let ≻ D ≡ (≻ d ) d∈D be the preference profile of doctors. Preferences on hospital-Each hospital h ∈ H has strict preferences P h over contracts set X and the ouside op-tion, namely 2 X ∪ {∅}. For simplification, preferences over contracts can be considered as preferences over every doctor and terms. For each hospital h ∈ H, let R h denote the weak preference relation associated with P h . By (d, t)P h (d ′ , t ′ ) we mean that hospital h prefers (d, t) to (d ′ , t ′ ), and by (d, t)R h (d ′ , t ′ ) we mean that hospital h finds (d, t) at least as desirable as (d ′ , t ′ ). Let P H ≡ (P h ) h∈H be the preference profile of hospitals. Preferences on doctor-term bundles are naturally transferred to preferences over contracts. If a hospital h orders a contract x in its preferences, then x h = h.A problem is a tuple π ≡ (D, H, T, ≻ D , P H ). Let Π be the set of all problems. A set of contracts X ′ ⊆ X is an allocation if each doctor d ∈ D appears in at most one contract, formally, |X ′ d | ≤ 1. Given an allocation X ′ ⊆ X we say that d is assigned if X ′ d ̸ = ∅ and unassigned otherwise. Let X ′ (d, h) = t be the term at which d is employed at h. When all sets (D, H) and preferences (≻ D , P H ) are fixed, we denote the problem as π(T ).

	term bundles are naturally transferred to preferences over contracts. If a doctor d orders
	a contract x in her preferences, then x d = d.

Table 11 :

 11 Preference list of doctor

	Hospital	
	h 1	(d 1 , t) (d 1 , t ′ )

Table 12 :

 12 Preference list of hospitalThus we have COP (π)P h COP (π ′ ) even if T ′ h ⊃ T h . In this allocation, the hospital h has no interest in offering the term t ′ to doctor d.

  h 1 , t) and thus proposes term t to h 1 .• d 2 chooses C d 2 (X d 2 (2)) = (d 2 , h 1 , t) and thus proposes term t to h 1 . • d 3 chooses C d 3 (X d 3 (2)) = (d 3 , h 2 , t ′ ) and thus proposes term t ′ to h 2 .Each hospital h ∈ H chooses its most preferred set of contacts in X h (3) we have:• X h 1 (3) = {(d 1 , h 1 , t), (d 2 , h 1 , t)}, we have C h 1 (X h 1 (3)) = {(d 2 , h 1 , t)} and, (d 1 , h 1 , t) is rejected. • X h 2 (3) = {(d 2 , h 2 , t), (d 3 , h 2 , t ′ )}, we have C h 2 (X h 2 (3)) = {(d 3 , h 2 , t ′ )}and, no contract is rejected by h 2 .

By removing terms, there are fewer blocking allocations as suggested in our Proposition 1. Similarly, competition is reduced.

[START_REF] Roth | Handbook of game theory with economic applications[END_REF] show in Theorem 2.27 that there is no individually rational allocation that each man strictly prefer an allocation to men-optimal stable matching. In our approach, considering a vector strictly included in the initial vector, we show that there is no stable allocation where all doctors are better off.

We show that hospitals can benefit from misreporting terms (Proposition 3). Hospitals can, therefore, cooperate.

 9 They also introduce the unilateral substitute condition to ensure the existence of the doctor-optimal stable allocation.

We use the notation max≻ d to indicate that the maximization is taken with respect to the preferences of doctor d.

Our proposed algorithm provides term importance at step 0. The rest of the algorithm is identical to the cumulative offer process introduced by[START_REF] Hatfield | Matching with contracts[END_REF].

This proposition is also known as Theorem 2.25 of[START_REF] Roth | Handbook of game theory with economic applications[END_REF].

We restrict the type of problem for the simplicity of notation, yet this does not compromise the robustness of our results. Our restriction implies that we are considering a problem in which at least one term can be added for a hospital.

Otherwise, they prefer to rematch, which contradicts the stability property.

Theorem 2.25, formulated by[START_REF] Roth | Handbook of game theory with economic applications[END_REF], consider the woman optimal stable assignment. We consider the hospital-optimal stable allocation in Section 6.

We set the problems for ease of notation. However, any problem can be considered as long as at least one term is offered. As stated in Section 2, we assume that T h is non-empty for each h ∈ H.

Note that there may be no stable allocation such that d is assigned to h under term t in S(π).

The reasoning is similar to the one of[START_REF] Kesten | School choice with consent[END_REF], which neutralizes applications that create inefficiency.

This interpretation is related to the concept of the Reserve army of labour introduced by Engels and theorized by[START_REF] Marx | Das kapital[END_REF].

This could be terms on course selection, program duration, or tuition fees, for instance.

This is the case in Example 1 with allocation X ′ and X ′′ .

Appendix A: Decomposition of Stable Allocations Set

In this Appendix A we study the structure of the set of stable allocations. Theorem 7 complements Theorem 3 by decomposing the set of stable allocations.

Theorem 7. We can decompose the set of stable allocations such that for a problem π with T , the set of stable allocations of π(T ) is the intersection, for each h ∈ H, of the union of each term in T h by fixing the set of terms for other hospital T -h . Formally:

Proof. We proceed with two claims:

Proof. We use the reasoning from Theorem 3. Suppose there is an allocation X ∈ h∈H t∈T h S(π(t, T -h )) and X / ∈ S(π). Since X / ∈ S(π) we know that there is a contract that blocks X in π. However, if we consider the intersection of all stable allocations, we know that no contract blocks this allocation. This leads to a contradiction.

Proof. By contradiction: Suppose that there exist X ∈ S(π) and X / ∈ h∈H t∈T h S(π(t, T -h )) . This implies that there is at least one hospital h for which X / ∈ t∈T h S(π(t, T -h )). This contradict Theorem 3, and therefore, X ∈ t∈T h S(π(t, T -h )). ■

Together, Claim 2 and 3 complete the proof.

■

To illustrate Theorem 7, we use Example 3. Consider problem π(T ) such that T =

By decomposing the set of stable allocations, we can identify the hospital or term blocking an allocation.

Appendix B: COP Steps from Example 1

Considering t ′ we have for each d ∈ D,

Step 0. For each d ∈ D, we have

Step 1. Each doctor d ∈ D chooses the most preferred contract in X d (0):

and thus proposes term t to h 2 .

Each hospital h ∈ H chooses its most preferred set of contacts in X h (1) we have:

We proceed to Step 2.

Step 2. Each doctor d ∈ D chooses the most preferred contract in X d (1):

and thus proposes term t to h 2 .

•

) and thus proposes term t ′ to h 2 .

Each hospital h ∈ H chooses its most preferred set of contacts in X h (2) we have:

Each hospital h ∈ H chooses its most preferred set of contacts in X h (5) we have: