
HAL Id: hal-04352384
https://hal.science/hal-04352384v1

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Web Audio API as a Standardized Interface Beyond
Web Browsers

Benjamin Matuszewski, Otto Rottier

To cite this version:
Benjamin Matuszewski, Otto Rottier. The Web Audio API as a Standardized Interface Be-
yond Web Browsers. Journal of the Audio Engineering Society, 2023, 71 (11), pp.790-801.
�10.17743/jaes.2022.0114�. �hal-04352384�

https://hal.science/hal-04352384v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Freely available online PAPERS

B. Matuszewski and O. Rottier, “The Web Audio
API as a Standardized Interface Beyond Web Browsers”
J. Audio Eng. Soc., vol. 71, no. 11, pp. 790–801, (2023 November).
DOI: https://doi.org/10.17743/jaes.2022.0114

The Web Audio API as a Standardized Interface
Beyond Web Browsers

BENJAMIN MATUSZEWSKI,
1

(benjamin.matuszewski@ircam.fr)
AND OTTO ROTTIER

2

(ottorottier@gmail.com)

1STMS Ircam-CNRS-Sorbonne Université, Paris, France
2Software Engineer, Utrecht, The Netherlands

In this paper, the authors present two related libraries, web-audio-api-rs and node-
web-audio-api, that provide a solution for using the Web Audio API outside the Web
browsers. The first project is a low-level implementation of the Web Audio API written in
the Rust language, and the second provides bindings of the core Rust library for the Node.js
platform. The authors’ approach here is to consider Web standards and specifications as
tools for defining standardized APIs across different environments and languages, which
they believe could benefit the audio community in a more general manner. Although such a
proposition presents some portability limitations due to the differences between languages, the
authors think it nevertheless opens up new possibilities in sharing documentation, resources,
and components across a wide range of environments, platforms, and users. The paper first
describes the general design and implementation of the authors’ libraries. Then, it presents
some benchmarks of these libraries against state-of-the-art implementation from Web browsers,
and the performance improvements that have been made over the last year. Finally, it discusses
the current known limitations of these libraries and proposes some directions for future work.
The two projects are open-source, reasonably feature-complete, and ready to use in production
applications.

0 INTRODUCTION

The Web Audio API first proposed by Chris Rogers
in 2011 has received increasing attention by developers,
artists, and researchers in the last decade. The possibility
of doing advanced audio processing and synthesis natively
on the Web platform has unfolded a number of novel pos-
sibilities in different application domains such as music
performance and creation, gaming, or online conferencing.
With its release as a W3C Recommendation in 2021 [1], the
Web Audio API has reached a point at which its growing
community of users, amount of documentation, and tuto-
rials make it an interesting option for someone willing to
develop an audio application.

Despite this increasing interest and the large possible
application domains, the present authors believe that the
adoption of the Web Audio API is limited by the sandboxed
and constrained environments that are Web browsers. Their
hypothesis is that with its stable and standardized speci-
fication, the Web Audio API could provide an interesting
solution for audio application outside Web browsers. This
approach is in line with recent trends and pervasiveness

of using Web technologies and standards outside the Web.
For example, the Node.js1 and Deno2 efforts to implement
standards such as JavaScript modules or the fetch API to
improve interoperability with Web browsers, or the spread
of the Electron3 project that proposes a way to build native
applications from Web-based technologies, can be seen as
going in a similar direction.

In this paper, the authors present two related projects and
libraries that go in such direction and make use of Web
standards as a way to model APIs outside Web browsers.
web-audio-api-rs4 is a low-level implementation of
the Web Audio API written in the Rust programming lan-
guage [2, 3] and node-web-audio-api a library that
provides JavaScript bindings to the Rust implementation
for the Node.js platform.5

1https://nodejs.org/.
2https://deno.land/.
3https://www.electronjs.org/.
4https://github.com/orottier/web-audio-api-rs.
5https://github.com/ircam-ismm/node-web-audio-api.

790 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

https://nodejs.org/
https://deno.land/
https://www.electronjs.org/
https://github.com/orottier/web-audio-api-rs
https://github.com/ircam-ismm/node-web-audio-api


PAPERS THE WEB AUDIO API AS A STANDARDIZED INTERFACE BEYOND WEB BROWSERS

The main objectives for these libraries is to reach full
compliance with the specification and, on its Rust version,
deviate from it only in specific, justified, and predictable
cases. On the Rust side, the authors aim at providing an
API that is both easy to use when coming from a JavaScript
background with only a few adaptations to the Rust coding
style and specificities and, inversely, can leverage on exist-
ing JavaScript documentation and tutorials for Rust users.
For the Node.js bindings, the goal is to provide a drop-in
replacement to run existing Web Audio code and libraries
in a Node.js context without any modifications.

As such, the authors believe their proposal can unfold
interesting possibilities in several application domains. For
example, it could open novel perspectives in several artistic
areas such as distributed music systems [4, 5] or digital mu-
sical instruments creation [6]. For start-ups and industries,
it could provide a novel and standardized tool to support the
path from prototyping to production (e.g., simple prototyp-
ing using JavaScript easily ported to Rust for performance
and deployment) in different domains such as game devel-
opment or sonification of embedded devices.

After a presentation of similar attempts in recent years
(SEC. 1), the authors describe the general design and im-
plementation of their libraries (SEC. 2). In SEC. 3, they
present some benchmarks of their libraries against state-of-
the-art implementation from Web browsers, as well as the
performance improvements that have been made over the
last year. Finally, in SEC. 4, they discuss the current known
limitations of the libraries and propose some directions for
future work.

1 RELATED WORKS

Several attempts have been made over the years to im-
plement the Web Audio API as an autonomous library to
be used outside Web browsers. For example, the LabSound
project [7] proposes an open-source C++ library originally
forked from the Webkit implementation. Although the li-
brary appears to be maintained, the authors acknowledge
in the presentation of the project that “LabSound has de-
liberately deviated from the spec for performance or API
usability reasons,” a standpoint which is “expected to con-
tinue into the future as new functionality is added to the
engine.” Derived from this project, the node-audio library
[8] proposes Node.js bindings built on top of LabSound.
However, the project is presented as in an “extremely ex-
perimental state” and did not receive any update for 5 years.

The web-audio-engine [9] and web-audio-api [10]
projects both propose an implementation of the Web Au-
dio API written in pure JavaScript that could therefore be
used within Node.js applications. However, these two li-
braries are obviously tied to the inherent limitations of the
JavaScript language (e.g., single-thread, interpreted) and
therefore cannot reach any serious performance compari-
son with low-level implementations. Furthermore, the first
project has been archived by its author and no further sup-
port can be expected because the last published version of
the second dates from 7 years ago.

Finally, the authors can cite the servo-media component
[11], created in the context of the Servo project backed-up
by Mozilla, and also implemented in Rust. Although much
larger in its scope, the library contained some promising
steps toward a low-level implementation of the Web Audio
API. However, it can be observed from the examples that the
public Rust API differs in many regards from the JavaScript
API, preventing reuse of acquired knowledge or to easily
port code from one language to the other. Additionally,
because the abandonment of the Servo project by Mozilla
in August 2020, the library does not appear to be actively
developed or maintained.

In the growing Rust ecosystem, a number of audio li-
braries with different scopes and goals have been proposed.
For example, the dasp project [12] offers a number of com-
ponents that provide low-level abstractions for working
with digital audio signals. Inside this suite, the dasp-graph
component aims at creating modular and dynamic audio
graphs. However, the component is very general purpose
and does not provide higher-level building blocks as de-
fined in the Web Audio API.

On the other side of the spectrum, the Rodio project [13]
proposes a high-level, beginner-friendly audio playback li-
brary. The library provides a number of audio sources and
filters, which can be glued together with mixers, delays,
crossfades, etc. It lacks, however, a few important build-
ing blocks for more advanced audio applications such as
allowing multiple input streams per node or automation
events. Additionally, it renders the audio output frame by
frame, which may be a performance issue in constrained
environments.

Inside this general frame, the authors think their pro-
posal has the potential of filling several gaps. First, from
a general Web Audio API perspective, it provides a solu-
tion decoupled from Web browsers, potentially widening its
application areas and community of users. Second, from a
Rust perspective, it proposes an intermediary and extensible
solution that is both tied to an industry standard and is not
yet available in the ecosystem. Finally, from a JavaScript
perspective, it provides a new platform (i.e., Node.js) to
deploy existing Web Audio code.

2 DESIGN AND IMPLEMENTATION

In this section, the authors describe the main design and
implementation aspects of their project considering both
the Rust and JavaScript versions. The choice of the Rust
language for the core library has been motivated by several
reasons. Primarily, Rust is a low-level, memory-efficient
language such as C or C++. Hence, Rust features mem-
ory efficient primitives (float, double, atomic, reference-
counted, etc.) and allows one to choose between stack and
heap allocation and to define custom memory allocators. As
such, the language provides all the characteristics requested
to build real-time audio engines with predictive timing and
high performance.

Additionally, compared to C/C++, Rust introduces the
concept of data ownership, which prevents the entire class
of race conditions and concurrency issues that may arise in

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 791



MATUSZEWSKI AND ROTTIER PAPERS

multi-threaded execution. As such, it can guarantee that the
concurrent execution of the control thread and render thread
is free of data races. This analysis is performed at compile
time, so there is no runtime cost of the memory safety
rules. A drawback is that not all memory safe programs
are allowed by the Rust compiler, forcing the developer to
use sub-optimal solutions in specific cases (e.g., graph data
structures). In these cases, the developer should benchmark
the overhead and resort to unsafe operations when neces-
sary. This has not been the case yet in the authors’ library.
Finally, the Rust ecosystem (e.g., compiler toolchain, de-
pendency management, auto-generated documentation) is
modern, easy-to-use, and beginner-friendly.

2.1 General Architecture
On multi-core processor systems, dynamic audio li-

braries typically split up work between a control thread
and a render thread. This approach can be seen as a varia-
tion of the client/server architecture widely implemented in
computer music–oriented languages and platforms [14–16].
The Web Audio API, constrained also by the specifics of
the JavaScript language, makes no exception and requires
the implementation of this pattern.6

In such an architecture, the render thread has the sole
responsibility of rendering the audio graph and shipping
the samples to the operating system (OS) so they can be
played by the hardware. This thread has, therefore, very
hard real-time constraints: if it is unable to compute the
next block of audio samples within its time budget, around
2.9 ms for blocks of 128 samples (the default render size of
the Web Audio API) at 44.1 kHz, underruns will occur, and
audible artifacts will be produced. On the other hand, the
control thread is user-facing and orchestrates all changes to
the audio graph. It mainly allows users to change the topol-
ogy of the audio graph (i.e., adding and removing nodes,
changing the connections between them) and to access and
update parameters of the nodes. The authors’ implementa-
tion indeed follows this model and uses lock-free message
passing for cross-thread communication.

Each node of the audio graph is therefore composed of
two complementary objects (see Fig. 1) that are always
created as pairs:

• AudioNode: User-facing object that implements
the AudioNode interface from the W3C spec. The
AudioNode does not perform any audio process-
ing but allows the user to change the audio graph
and rendering by sending messages to its related
AudioProcessor.

• AudioProcessor: Object that is placed on the
render thread to produce the actual audio samples.
It cannot be directly manipulated by the user and re-
lies on instructions received from its corresponding
AudioNode to change its behavior.

6https://www.w3.org/TR/2021/REC-webaudio-20210617/
#control-thread-and-rendering-thread.

Fig. 1. General architecture of the library, each component living
in the control thread (audio context and audio nodes) has an as-
sociated counterpart living in the render thread (audio graph and
audio processors).

2.2 The JS Interface as the API Model in Rust
The authors’ Rust implementation follows the API de-

fined by the W3C specification as closely as possible con-
sidering the specificities of the language. Indeed, some
differences are impossible to avoid in translating an API
targeted at JavaScript to Rust. For example, the most ob-
vious deviation is that the authors chose to conform to
the Rust coding style standard, which enforces the use of
snake case for methods and CamelCase for enum
variants.

Beyond this simple adaptation, an important set of dif-
ferences lie in the implementation of object-oriented pro-
gramming concepts that are very common in the specifi-
cation but not supported by the language. First, Rust does
not allow the authors to override property getters and set-
ters. Therefore, instead of directly exposing attributes,7

the authors offer two methods [i.e., attribute() and
set attribute()] as exemplified below:

Similarly, Rust does not provide any mech-
anism for method overloading. In such cases,
rather than providing a single method with sev-
eral Option parameters, the authors chose to
expose several specialized methods. For example,
AudioScheduledSourceNode::start([time])
is derived as start() and start at(time: f64).

Finally, Rust is strongly designed toward composition
and does not provide any inheritance mechanism. There-
fore, to mimic inheritance, the authors use Traits for
parent/extendable interfaces such as AudioNode, Au-
dioScheduledSourceNode, or BaseAudioCon-
text and composition of struct for dictionaries such
as the AudioNodeOptions interface.

7Note that some attribute names such as type and loop are
reserved keywords in Rust, and in these cases, the authors de-
cided to append an underscore to the getter, e.g., Oscilla-
torNode::type .

792 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

https://www.w3.org/TR/2021/REC-webaudio-20210617/#control-thread-and-rendering-thread
https://www.w3.org/TR/2021/REC-webaudio-20210617/#control-thread-and-rendering-thread


PAPERS THE WEB AUDIO API AS A STANDARDIZED INTERFACE BEYOND WEB BROWSERS

The example code in Listing 1, which shows a scrub-
bing effect realized using a granular synthesis approach,
illustrates what the authors think is a representative snippet
of the resulting public Rust API. A given File is decoded
into an AudioBuffer that is then consumed by several
AudioBufferSourceNodes scheduled and configured
to read the AudioBuffer back and forth at half speed.

Listing 1: Example code of a scrubbing effect realized with a
granular synthesis approach written in Rust.

These differences prevent from dropping existing
JavaScript source code into Rust and, thus, impede porta-
bility to some extent. However, the authors think the syntax
and conceptual similarities can help developers to easily
port their existing code to native in a very simple fashion.
Although one could imagine creating some tool to auto-
matically transpile JavaScript Web Audio code to Rust,
providing such a tool would require substantial effort and
is outside the scope of this project. The Node.js bindings
described in SEC. 2.5 provide an intermediate solution to
this particular issue.

2.3 AudioWorklet as the Internal Model
The public Rust API is de facto larger than the API de-

fined by the specification given that the library must expose
some of its internals to users to allow them to implement
their own dedicated nodes. However, the design of the Au-
dioProcessor interface is very much inspired by the
AudioWorkletProcessor interface as defined in the
specification [17]. Hence, AudioProcessors are state-
ful objects that will execute a callback of the following form
on every render tick:

Here, inputs[n][m] and outputs[n][m] follow
a planar layout where arrays of audio samples are stored
in the mth channel of the nth input or output. The pa-
rameters object contains the computed values for each
AudioParam of the AudioProcessor for this render-
ing quantum. The return value corresponds to the tail-
Time behavior, which allows the AudioProcessor to
be dropped by the AudioGraph when 1) its related Au-
dioNode has been dropped itself, 2) it has finished its
rendering, and 3) it has no input connections left.

The additional RenderScope argument is modeled
after the specification of the AudioWorkletGlob-
alScope. It contains the current time, sample frame, and
sample rate, and in the future, it will allow processors to
share data (such as wavetables or Fast Fourier Transform
results) within the render thread.

The AudioRenderQuantum type used for inputs
and outputs is a specialized container type that uses
fixed-sized, reference-counted arrays with copy on write
semantics. It allows for efficient implementation of up-
mixing and down-mixing, fan-in/out of channels, and, in
a general way, moving input and output buffers around
without making copies or allocating memory.

2.4 Control and Render Threads
Method calls on the audio contexts, audio nodes, and

audio params that occur in the control thread, typically
spin off a control message to be handled by the render
thread. These methods, which operate synchronously and
do not block, are therefore safe to use on a UI thread.
Additionally, the concept of control thread itself is more
abstract in this implementation because all AudioNodes
are implemented in a thread-safe way.

The communication between the control thread and ren-
der thread is established through a single asynchronous
communication channel called the control message queue.
The queue is a first-in first-out queue where items are or-
dered by time of insertion, the oldest message being at the
front of the queue. This single message bus ensures that
updates made to the audio graph are applied in the right
order in the render thread.

Render thread–wise, the authors’ implementation does
not directly interface with the system audio backend (e.g.,
ALSA, ASIO) but delegates this functionality to cross-
platform audio libraries. Currently, the default audio mid-
dleware is cpal [18], but the authors also offer experimen-
tal support forcubeb [19]—a backend used by various pro-
grams such as high-profile console emulators, but mostly
developed by Mozilla for Firefox—behind a compiler flag.
Both libraries support a large range of audio backends so

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 793



MATUSZEWSKI AND ROTTIER PAPERS

this library should work on a wide range of operating sys-
tems and hardware. The chosen audio backend will set up a
real-time high priority OS thread to collect the audio sam-
ples. This is the thread in which all AudioProcessors
are running. In a general manner, the entry point of an audio
backend library is a callback that expects the authors to fill
an array of float or integer interleaved audio samples (i.e.,
a FnMut(&mut [f32|u16|i16]) in Rust idiom). Al-
though the desired size of the output array can be specified
(e.g., 128 samples per channel in the Web Audio API spec-
ification), in practice, this value is not always available or
allowed by the underlying system. In such a case, the au-
thors still render the audio graph piecewise in blocks of
128 samples, maintaining the accuracy and regularity of
the computed audio time, but perform internal buffering
to align the buffer sizes. For example, if the audio library
callback data size is 192, two buffers of size 128 will be
rendered on one over two backend calls.

In the render thread, the AudioGraph is responsible
to store the AudioProcessors and render them in the
right order by performing a topological sort of the nodes
as defined in the specification.8 This algorithm ensures that
when node A has an outgoing connection to node B, the
processor of A is called before B. Therefore, when A has
rendered, its resulting samples are copied and mixed ap-
propriately to serve as input for processor B. The ordering
is cleared and recomputed each time a node is added to the
graph or when the connections between them are altered.
Additionally, during this topological sort, a cycle detection
is performed to mute every node that is part of the cycle
unless a DelayNode is present.

Following both the specification and the JavaScript be-
havior, an AudioNode can go out of scope (i.e., to Drop
in Rust idiom) in the control thread, while its processing
counterpart continues to run inside the render thread. In
such a case, the renderer is released only when it has fin-
ished processing (governed by the tailTime behavior).
To implement this dynamic lifetime of the audio nodes,
the AudioGraph, therefore, keeps track of the proces-
sors that have finished their rendering and consequently
cleans up branches of the audio graph that will no longer
emit output. On the contrary, if the AudioContext itself
is dropped in the control thread, the corresponding render
thread is immediately halted, and all resources are released.

2.5 Node.js Bindings
On top of the core Rust implementation, the authors also

provide JavaScript bindings to web-audio-api-rs for
usage within the Node.js platform. The package is available
on the npm registry under the node-web-audio-api
package name. This step backward to JavaScript from the
Rust implementation opens a perspective the authors pro-
pose to call Isomorphic Web Audio. With this library, it is

8https://www.w3.org/TR/webaudio/#rendering-loop. Note that
there are subtle differences in the present authors’ implementation
because they are storing edge information in a different way. The
resulting sort order conforms to the specification though.

indeed possible to write JavaScript Web Audio components
that can run seamlessly in the browser or on the Node.js
platform. As such, the authors believe this approach can
be an interesting contribution in several areas such as dis-
tributed music systems using nano-computer without any
screen (thus without Web browser) [20, 5] and more gen-
erally to the field of the Internet of Musical Things [4].
Additionally, the library opens the possibility for testing
the whole implementation against the test suite from the
web-platform-test project.9

The strategy used to build the library has been to generate
most of the binding code directly from the Interface De-
scription Language extracted from the specification.10 This
automatic approach has the additional benefit of testing and
reinforcing the consistency of the Rust API. Furthermore,
it allows to hide back the specificities of the Rust API de-
scribed in SEC. 2.2 to expose an interface that is exactly
similar to the one provided by Web browsers. As such,
this new package potentially allows to reuse a whole set
of existing higher-level libraries [21, 22] in a Node.js con-
text and opens up possibilities of novel cross-environment
workflows from prototyping to production.

At time of writing, while not completely up-to-date with
the Rust implementation, the library already exposes all the
nodes implemented on the Rust side and allowed to port
an important subset of the existing Rust examples. List-
ing 2 shows a simple example of the usage of the library,
i.e., an amplitude modulation synthesis with a periodic au-
tomation on the modulation frequency, running in a Node.js
environment. It can be seen that, apart from the first im-
port statement, which could be quite simply abstracted
by a dedicated package, the script could perfectly run in a
browser context without any further modifications.

Listing 2: Example code of an amplitude modulation synthesis
realized with the JavaScript bindings in a Node.js context.

9https://github.com/web-platform-tests/wpt.
10https://webaudio.github.io/web-audio-api/#idl-index.

794 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

https://www.w3.org/TR/webaudio/#rendering-loop
https://github.com/web-platform-tests/wpt
https://webaudio.github.io/web-audio-api/#idl-index


PAPERS THE WEB AUDIO API AS A STANDARDIZED INTERFACE BEYOND WEB BROWSERS

Fig. 2. Benchmarks run on a Macbook Pro 2020 (ARM) comparing the performances of the authors’ library in its pure Rust version
and with the Node.js bindings compared to the Firefox and Google Chrome Web browsers. Reported results are the speed-up compared
to real time; therefore, higher values mean better performance. Note that the x axis is reported on a logarithmic scale.

3 PERFORMANCE

Audio processing systems typically face hard real-time
constraints: when the production of new samples exceeds
the time budget for a block (i.e., 128 samples for the Web
Audio API), the rendering lags behind the actual playback,
which produces discontinuities in the signal that are imme-
diately perceived by listeners as “glitches.” On the contrary,
the more the overhead of the audio processing library is
low, the more users can build complex audio graphs with-
out running into issues. Performances of the render thread
of any audio library are therefore a key aspect that must be
carefully audited and optimized.

3.1 Benchmarks
To evaluate the current performances of this implemen-

tation (both in its raw Rust implementation and with the
Node.js bindings) against state-of-the-art implementations
from Web browsers, the authors chose to use the bench-
marks developed by Adenot [23] to audit the performances
of the Firefox Web browser. Although this specific test suite
does not benchmark every single aspect of the Web Audio
API and can therefore produce a biased picture, it still
provides interesting highlights on key aspects of the imple-
mentation and allowed the authors to track their progress
since the previously published results (cf. SEC. 3.2). The
core principle of these benchmarks is to calculate an Au-
dioBuffer (of generally 120 s) offline with different
audio graphs and common synthesis methods. The time
needed to calculate the buffer (i.e., between the start and
end of the rendering) compared to the duration of the buffer
therefore gives an estimation of the performances of the ren-
dering against real time. The authors think this approach is
particularly suited for benchmark comparisons between dif-
ferent languages because it cancels the JavaScript overhead
in browsers and therefore only measures the audio process-
ing time. As such, it allows to compare this implementation

performance against the low-level C++ implementations
from Web browsers.

The benchmarks have been run on two different com-
puters: a MacBook Pro 2020 with an Apple M1 processor
(ARM) and 8 GB of LPDDR4X-4,266 MHz RAM, and a
MacBook Pro 2019 with a 2,3 GHz 8-Core Intel Core i9
processor and 16 GB of 2,400 MHz DDR4 RAM. For each
tested platform, i.e., Google Chrome, Firefox, and the au-
thors’ Rust and Node.js libraries, the benchmarks were run
five times with a dry compilation run for the Rust version
and a full reload on a private browsing window between
each run in the browsers. Reported results are the mean
and standard deviation of these five executions and rep-
resent the speed-up compared to real time (i.e., bufferDu-
ration/processingTime); hence, higher values mean better
performance.

The ARM results presented in Fig. 2 (Intel results are
reported in Fig. 4 in APPENDIX A.111) show that, ex-
cept in some specific cases, this implementation compares
quite well against mature Web browsers’ implementations:
around 1.3 times slower than Google Chrome and 1.8 times
slower than Firefox for the Rust version on the ARM com-
puter if all the benches are taken into account.

A more detailed analysis of the results show that the
authors are noticeably behind only on very specific cases
which gives some hints on where their future efforts should
concentrate: 1) parsing graphs composed of many nodes,
which is clearly visible in the “Granular synthesis” case, and
2) convolution reverberation, which is known as a very hard
and specialized problem that will require important work.
If these specific cases are removed, the comparison gets far
better: around 1.1 times faster than Google Chrome and 1.5
times slower than Firefox, which the authors consider very

11Note that for simplicity, the authors will only consider the
ARM results in the current and following sections. Results from
the Intel computer show a similar global picture.

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 795



MATUSZEWSKI AND ROTTIER PAPERS

Fig. 3. Normalized performance improvements against the previously published version—Macbook Book Pro 2020 (ARM).

promising, considering these implementations have been
optimized for years.

Another point worth mentioning is that, as expected,
the performances of the Node.js version are almost in line
with the Rust ones, which confirms initial assumptions for
benchmarking, i.e., cancellation of the JavaScript overhead.
However, an important discrepancy can be noticed between
the authors’ libraries in the two cases that involve graphs
composed of many nodes, i.e., Granular synthesis and Trig-
ger oscillator with envelope. This difference tends to high-
light an issue in this implementation that will require further
investigation.

3.2 Optimizations
Important work has been done in the last year to improve

the performances of the library (see Fig. 3 for ARM results;
Intel results are reported in Fig. 5 in APPENDIX A.1). For
this purpose, the authors implemented an important set of
optimizations beyond the application of common practices
for audio processing such as avoiding heap allocation, mu-
texes, and thread locks, or simple compiler optimizations.
In this section, the authors describe three points that they
consider the most interesting and representative.

First, results from Fig. 3 show that the Granular and
Trigger oscillator with envelope benches have been im-
proved by a factor of around 3. This gain in performance
is primarily due to improvements in the representation of
the graph itself and improvements made to the algorithm
for its parsing. As discussed above, although encouraging,
results from Fig. 2 show that this critical point is not yet
satisfactory and will require further work.

Second, important work has been done on the processing
of AudioParam. The authors consider this point worth
mentioning because they implemented a strategy that, al-
though compliant with the specification regarding audio
rate and control rate parameters behavior, can be described
as a generalization over these concepts. Indeed, in the cur-
rent implementation, a-rate params produce a value for
each sample of a quantum only when an automation is
occurring and behave as a k-rate param the rest of the
time, producing only one single value for the entire render
quantum. Such a strategy allowed the implementation of a
number of simple optimizations in many nodes. For exam-
ple, a gain node linked to a mute button can simply act as a
pass-through or produce a silent buffer, while still behaving
normally when transitioning from 1 to 0 or inversely.

Finally, because of the planar channel layout required
by the specification and described in SEC. 2.3, the authors
revised their processors to ensure channels are accessed
and written one by one to avoid jumps between different
sections of memory at the sample level. In some nodes,
e.g., AudioScheduledSourceNode or DelayNode,
such an approach required to implement an additional loop
dedicated to compute and store intermediate results (e.g.,
absolute position at the sub-sample level), which may seem
surprising but actually led to better performances.

An untapped source of performance improvements are
fast-math operations. These operations break IEEE com-
pliance for float calculations, such as reordering of instruc-
tions or assuming only finite numbers exist. However they
can enable great performance improvements, such as better
vectorization of float buffer computations, which are uti-
lized a lot in audio processing. In Rust, these fast math flags
can be applied granularly (at the function level) but are un-
fortunately not available in the stable compiler toolchain
yet. In the near future, the authors will experiment with
the nightly compiler toolchain to evaluate the possible per-
formance improvements and when possible, will backport
some of the improvements to work in the stable channel.
This can be done, for example, by unrolling certain loops by
hand and making them suitable for 4- or 8-lane f32 vector
operations.

4 DISCUSSION AND FUTURE WORK

With the recent addition to their implementation of the
features “Access to a different output device”12 and the
AudioRenderCapacity13 interface, the authors are
nearing feature completeness according to the specification.
However, although preliminary work has been conducted
to fully test their implementation against the Web Platform
Test Suite,14 the authors are conscious that a number of im-
portant points still needs to be tackled in order to provide a
fully compliant and more efficient API.

12https://github.com/WebAudio/web-audio-api/issues/2400.
13https://github.com/WebAudio/web-audio-api/issues/2444.
14https://github.com/b-ma/node-web-audio-api-wpt.

796 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

https://github.com/WebAudio/web-audio-api/issues/2400
https://github.com/WebAudio/web-audio-api/issues/2444


PAPERS THE WEB AUDIO API AS A STANDARDIZED INTERFACE BEYOND WEB BROWSERS

4.1 Current Known Limitations
One important concept of the Web Audio API that is

currently missing in the authors’ implementation are asyn-
chronous functions (i.e., methods that return a JavaScript
Promise). The Rust equivalent of a function returning a
Promise is an async function that landed in the core lan-
guage in 2019 [24] and opened the possibility for libraries
that perform input/output to offer asynchronous versions
of their functionality. Although the authors have already
drafted an asynchronous version of some important meth-
ods (i.e., AudioContext.decodeAudioData, Of-
flineAudioContext.startRendering, andAu-
dioContext.resume), their implementation currently
only exposes synchronous versions of the async functions
in the specification. Although asynchronous APIs could be
provided by spawning new threads to turn underlying syn-
chronous APIs into asynchronous APIs, full asynchronous
support is also dependent on downstream libraries (e.g., the
media decoder) because they must support asynchronous
execution before it can be used.

The Web Audio API is rather isolated from other Web
standards, which makes it relatively simple to decouple
it from the Web. However, it interfaces with few other
Web standards that must be considered. Among them,
the MediaStream15 and HTMLMediaElement16 inter-
faces are of great importance.

The MediaStream interface appears in the specifi-
cation through the MediaStreamAudioSourceNode
(input) and the MediaStreamAudioDestinationN-
ode (output) interfaces and allows users to move audio
data, respectively, into or out of the boundary of the au-
dio context. These input/output possibilities are essential
for building rich apps such as digital audio workstations,
video conferencing, or online gaming. For now, the authors
provide a minimal, spec-compliant implementation of the
MediaStream that only allows audio tracks. Advanced
features, such as solutions for clock drift of different media
sources and sinks, or buffering and playback speed adjust-
ments are not provided.

Likewise, the html <media> element, and its related
HTMLMediaElement JavaScript representation, is an es-
sential component of audio applications on the Web. It pro-
vides fetching of external resources, buffering, and different
playback commands. The current implementation is very
minimal because it only supports file-based media play-
back but, however, proposes a compliant interface:

Besides these general and architectural issues, a few other
limitations of this implementation at time of writing are
worth mentioning. First, the PannerNode only supports
mono input signal, multichannel input being downmixed to

15https://www.w3.org/TR/mediacapture-streams/.
16https://www.w3.org/TR/2011/WD-html5-20110113/video.

html#audio.

mono first. The PannerNode HRTF (head-related trans-
fer function) database is relatively old, and the panning
implementation does not perform any interpolation, which
can produce audible artifacts for very fast-moving sound
sources. Second, the ConvolverNode is limited to mono
input as well. It implements a simple on-thread implemen-
tation of frequency-domain delay-lines, which is very in-
efficient and, therefore, only supports short impulse re-
sponses. Important work will need to be done to provide
more efficient approaches such as hybrid direct form and
multi-thread partitioned convolution [25, 26] and support
larger impulse responses. Third, the OscillatorNode
does not fully adhere to the specification: the built-in os-
cillators are not based on PeriodicWave and only apply
rudimentary strategy to prevent aliasing (i.e., polyBLEP).

4.2 Extensibility
The question of extensibility is an important aspect

that has been tackled in the specification with the legacy
ScriptProcessorNode and more recently with the in-
troduction of the AudioWorklet interface [17]. Such an
interface is indeed required in JavaScript because of the
particular nature of the language and of the necessity to be
able to run arbitrary code in the high-priority audio thread.
In a Rust context, this question is, however, posed differ-
ently because these limitations and constraints do not hold
anymore.

Because the authors’ implementation of audio processors
closely resembles the signature of the AudioWorklet-
Processor callback (see SEC. 2.4), they have decided so
far to not implement the entirety of the AudioWorklet
interface on the Rust side (e.g., MessagePort, etc.). In-
stead, the authors expose their AudioProcessor trait in
the public Rust API library, and users are advised to use
it in order to build custom audio nodes. However, regard-
ing the Node.js version of the library, the question comes
back in a similar way as within Web browsers. Therefore,
in a future version of the library, the authors will consider
implementing a compliant interface for AudioWorklet.
Such addition would furthermore allow users to run existing
Web Assembly [27] modules in different environments and
languages, opening new perspectives for community-built
audio modules.

The ScriptProcessorNode, which, contrary to the
AudioWorkletNode, runs the audio callbacks in the
control thread and, as such, is considered flawed by the
specification editors, poses a different question. Indeed,
the authors consider that in specific situations, the bene-
fits of using this node outweigh the complexity of setting
up an AudioWorletNode and handling communication
between threads. More precisely, the authors consider this
node interesting if not used to produce audio samples but
only as a way to access the audio stream, which is not
feasible using the AnalyserNode, to control other pro-
cesses (e.g., to implement an envelope follower). Addition-
ally, it provides a simple way to introduce audio process-
ing in pedagogical situations in which setting up an Au-
dioWorkletNode would also be overwhelming. Hence,

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 797

https://www.w3.org/TR/mediacapture-streams/
https://www.w3.org/TR/2011/WD-html5-20110113/video.html#audio
https://www.w3.org/TR/2011/WD-html5-20110113/video.html#audio


MATUSZEWSKI AND ROTTIER PAPERS

Table 1. Example of benchmarks results obtained with the
Spotify test suite run on a Macbook Book Pro 2019 (Intel).
Results are given in microseconds per second of processed

audio data and node, so lower is faster.

Test Chrome Firefox Node.js

GainAutomation-exp-a-rate 140 641 706
GainAutomation-linear-a-rate 67 182 314
Delay-default 79 819 580
Analyser 43 348 93

the authors have decided to implement this node in the near
future despite the fact that it is considered deprecated in the
specification.

4.3 Performances
To audit and further improve the performances of their

library, the authors have conducted preliminary work to
adapt the test suite proposed by Spotify17 to their Node.js
implementation.18 Because this project focuses on different
aspects of the API compared to the suite used in SEC. 3.1,
first results tend to show a complementary picture from the
results reported above. Table 1 presents a small subset of
the results obtained that the authors think are representative
of these differences. Analyzing these results and improv-
ing the implementation accordingly will therefore require
important future work.

5 CONCLUSION

In this paper, the authors have presented two relates li-
braries: web-audio-api-rs, a novel implementation
of the Web Audio API specification implemented in the
Rust language, and node-web-audio-api, a library
that provides Node.js bindings to the core Rust library. First,
the general design and implementation of the libraries were
described. The authors then presented the current perfor-
mance of the two libraries, compared to the state-of-the-art
implementations provided by Web browsers, and the im-
provements that have been obtained compared to the previ-
ously published results. Finally, the authors discussed the
current known limitations of their implementations and fu-
ture directions for the development of the project.

Although still a work in progress, the two libraries ex-
pose a stabilized API, implement an important part of the
specification, and provide reasonable performances. The
authors consider that their approach of considering Web
standards as a tool for defining standardized APIs across
environments and languages could provide an interesting
contribution to the audio community in a more general
manner. Indeed, one could imagine implementing bindings

17https://github.com/spotify/web-audio-bench.
18https://github.com/b-ma/web-audio-bench.

on top of the core Rust library in other languages such as
Python or Go, allowing users to take advantage of the stan-
dardized nature of the API and extensive documentation to
build audio applications in their language of choice.

As open-source projects, the presented libraries are cur-
rently mainly developed and maintained by the two authors
of the paper, with outside contributions in the form of pull
requests and reported issues. To consolidate the project
further and help to share development efforts, one of the
authors’ next objectives is now to develop a broader com-
munity of users and contributors.

6 ACKNOWLEDGMENT

The authors would like to thank all their contributors
and especially Jerboas86 for their precious contributions to
the project. The authors would also like to thank their col-
leagues at IRCAM for their ideas and support. The project
has received support from the DOTS research project
funded by the French National Research Agency (ANR-
22-CE33-0013-01).

7 REFERENCES

[1] W3C, “Web Audio API Specification,” W3C Recom-
mendation (2021 Jun.). https://www.w3.org/TR/webaudio/.

[2] N. D. Matsakis and F. S. Klock, “The Rust
Language,” ACM SIGAda Ada Letters, vol. 34,
no. 3, pp. 103–104 (2014 Dec.). https://doi.org/
10.1145/2692956.2663188.

[3] O. Rottier and B. Matuszewski, “A Rust Implemen-
tation of the Web Audio API,” in Proceedings of the 7th
Web Audio Conference (Cannes, France), pp. 11 (2022 Jul.).
http://doi.org/10.5281/zenodo.6767674.

[4] L. Turchet, C. Fischione, G. Essl, D. Keller, and
M. Barthet, “Internet of Musical Things: Vision and Chal-
lenges,” IEEE Access, vol. 6, pp. 61994–62017 (2018 Sep.).
http://doi.org/10.1109/ACCESS.2018.2872625.

[5] B. Matuszewski, “A Web-Based Framework for Dis-
tributed Music System Research and Creation,” J. Au-
dio Eng. Soc., vol. 68, no. 10, pp. 717–726 (2020 Oct.).
http://doi.org/10.17743/jaes.2020.0015.

[6] I. Poupyrev, M. J. Lyons, S. Fels, and T. Blaine,
“New Interfaces for Musical Expression,” in Proceedings of
the Human Factors in Computing SystemsHuman Factors
in Computing Systems, pp. 491–492 (Seattle, WA) (2001
Mar.). http://doi.org/10.1145/634067.634348. N

[7] . Porcino and D. Diakopoulos, “Graph-Based Audio
Engine,” https://github.com/LabSound/LabSound (2023
Apr.).

[8] D. Ramirez, “Graph-Based Audio API for
Node.js Based on LabSound and JUCE,” https://github.
com/ramirezd42/node-audio (2018 Apr.).

[9] mohayonao, “Pure JS Implementation of the
Web Audio API,” https://github.com/mohayonao/web-
audio-engine (2018 Jan.).

[10] S. Piquemal, “Node.js Implementation of Web Au-
dio API,” https://github.com/audiojs/web-audio-api (2023
Feb.).

798 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

https://github.com/spotify/web-audio-bench
https://github.com/b-ma/web-audio-bench
https://www.w3.org/TR/webaudio/
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://github.com/LabSound/LabSound
https://github.com/LabSound/LabSound
https://github.com/ramirezd42/node-audio
https://github.com/ramirezd42/node-audio
https://github.com/mohayonao/web-audio-engine
https://github.com/mohayonao/web-audio-engine
https://github.com/audiojs/web-audio-api


PAPERS THE WEB AUDIO API AS A STANDARDIZED INTERFACE BEYOND WEB BROWSERS

[11] Servo, “Media,” https://github.com/servo/media
(2023 Aug.).

[12] RustAudio, “The Fundamentals for Digital Au-
dio Signal Processing,” https://github.com/RustAudio/dasp
(2022 Jul.).

[13] RustAudio, “Rust Playback Library,” https://github.
com/RustAudio/rodio (2023 Jul.).

[14] M. Puckette, “FTS: A Real-Time Monitor for Mul-
tiprocessor Music Synthesis,” Comput. Music J., vol. 15,
no. 3, pp. 58–67 (1991 Autumn).

[15] F. Déchelle, R. Borghesi, M. De Cecco, et al.,
“jMax: An Environment for Real-Time Musical Applica-
tions,” Comput. Music J., vol. 23, no. 3, pp. 50–58 (1999
Sep.).

[16] J. McCartney, “Rethinking the Computer Mu-
sic Language: SuperCollider,” Comput. Music J., vol.
26, no. 4, pp. 61–68 (2002 Dec.). http://doi.org/
10.1162/014892602320991383.

[17] H. Choi, “AudioWorklet: The Future of Web Au-
dio,” in Proceedings of the 44th International Computer
Music Conference (Daegu, South Korea), pp. 110 (2018
Aug.).

[18] RustAudio, “Cross-Platform Audio I/O Library in
Pure Rust,” https://github.com/rustaudio/cpal (2023 Aug.).

[19] Mozilla, “A Cross-Platform Audio Library in Rust,”
https://github.com/mozilla/cubeb-rs (2022 Oct.).

[20] B. Matuszewski and F. Bevilacqua, “Toward a Web
of Audio Things,” in Proceedings of the 15th Sound and
Music Computing Conference, pp. 225–231 (Limassol,
Cyprus) (2018 Jul.).

[21] N. Schnell, V. Saiz, K. Barkati, and S. Goldszmidt,
“Of Time Engines and Masters: An API for Scheduling
and Synchronizing the Generation and Playback of Event
Sequences and Media Streams for the Web Audio API,”
in Proceedings of the 1st Web Audio Conference, paper 19
(Paris, France) (2015 Jan.).

[22] Y. Mann, “Interactive Music With Tone.js,” in Pro-
ceedings of the 1st Web Audio Conference, paper 40 (Paris,
France) (2015 Jan.).

[23] P. Adenot, “Benchmarks for the WebAudio API,”
https://github.com/padenot/webaudio-benchmark (2022
Feb.).

[24] The Rust Release Team, “Announcing Rust
1.39.0,” Rust Blog (2019 Nov.). https://blog.rust-lang.org/
2019/11/07/Rust-1.39.0.html.

[25] W. G. Gardner, “Efficient Convolution Without In-
put/Output Delay,” presented at the 97th Convention of
the Audio Engineering Society (1994 Nov.), paper 3897.
http://www.aes.org/e-lib/browse.cfm?elib=6335.

[26] E. Battenberg and R. Avižienis, “Implementing
Real-Time Partitioned Convolution Algorithms on Conven-
tional Operating Systems,” in Proceedings of the 14th Inter-
national Conference on Digital Audio Effects, pp. 313–320
(Paris, France) (2011 Sep.).

[27] A. Haas, A. Rossberg, D. L. Schuff, et al.,
“Bringing the Web Up to Speed With WebAssem-
bly,” in Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, pp. 185–200 (Barcelona, Spain) (2017 Jun.).
http://doi.org/10.1145/3062341.3062363.

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 799

https://github.com/servo/media
https://github.com/servo/media
https://github.com/RustAudio/dasp
https://github.com/RustAudio/dasp
https://github.com/RustAudio/rodio
https://github.com/RustAudio/rodio
http://doi.org/10.1162/014892602320991383
http://doi.org/10.1162/014892602320991383
https://github.com/rustaudio/cpal
https://github.com/mozilla/cubeb-rs
https://github.com/padenot/webaudio-benchmark
https://github.com/padenot/webaudio-benchmark
https://blog.rust-lang.org/2019/11/07/Rust-1.39.0.html
https://blog.rust-lang.org/2019/11/07/Rust-1.39.0.html
http://www.aes.org/e-lib/browse.cfm?elib=6335


MATUSZEWSKI AND ROTTIER PAPERS

A.1 Performances on Macbook Pro 2019 (Intel)

Fig. 4. Benchmarks run on a Macbook Pro 2019 (Intel) comparing the performances of the library in its pure Rust version and with the
Node.js bindings compared to the Firefox and Google Chrome Web browsers. Reported results are the speed-up compared to real time;
therefore, higher values mean better performance. Note that the x axis is reported on a logarithmic scale.

Fig. 5. Normalized performance improvements against the previously published version—Macbook Book Pro 2019 (Intel).

800 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November



PAPERS THE WEB AUDIO API AS A STANDARDIZED INTERFACE BEYOND WEB BROWSERS

THE AUTHORS

Benjamin Matuszewski Otto Rottier

Benjamin Matuszewski, Ph.D. in Aesthetics, Sciences and
Technologies of the Arts, studied music and musicology
before working several years as a developer in the media
industry. Since 2014, he is a researcher and developer in
the Sound Music Movement Interaction Team at IRCAM,
where he conducts transdisciplinary research between en-
gineering, music, design, and human-computer interaction
on distributed and interactive music systems based on Web
technologies. He also regularly collaborates on artistic
projects.

•

Otto Rottier is a software engineer from Utrecht, The
Netherlands, and is currently employed by the Dutch Gov-
ernment. In 2014, he finished his Master of Science in
Theoretical Physics but has since left the field. He now
applies his knowledge of wave forms and its mathematical
properties in digital signal processing.

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 801


