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Figure 1: Our proposed approach can produce 3D shape correspondence maps for strongly non-isometric shapes in a zero-shot
manner. Mutual semantic regions are matched and are shown in similar colors, while non-mutual regions that can not be
matched are shown in black.

ABSTRACT
We propose a novel zero-shot approach to computing correspon-
dences between 3D shapes. Existing approaches mainly focus on
isometric and near-isometric shape pairs (e.g., human vs. human),
but less attention has been given to strongly non-isometric and
inter-class shape matching (e.g., human vs. cow). To this end, we
introduce a fully automatic method that exploits the exceptional
reasoning capabilities of recent foundation models in language and
vision to tackle difficult shape correspondence problems. Our ap-
proach comprises multiple stages. First, we classify the 3D shapes in
a zero-shot manner by feeding rendered shape views to a language-
vision model (e.g., BLIP2) to generate a list of class proposals per
shape. These proposals are unified into a single class per shape
by employing the reasoning capabilities of ChatGPT. Second, we
attempt to segment the two shapes in a zero-shot manner, but in
contrast to the co-segmentation problem, we do not require a mu-
tual set of semantic regions. Instead, we propose to exploit the
in-context learning capabilities of ChatGPT to generate two differ-
ent sets of semantic regions for each shape and a semantic mapping
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between them. This enables our approach to match strongly non-
isometric shapes with significant differences in geometric structure.
Finally, we employ the generated semantic mapping to produce
coarse correspondences that can further be refined by the func-
tional maps framework to produce dense point-to-point maps. Our
approach, despite its simplicity, produces highly plausible results
in a zero-shot manner, especially between strongly non-isometric
shapes.
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1 INTRODUCTION
Shape correspondence is a fundamental task in computer vision.
The objective of this task is to match two 3D shapes given some
geometric representation (e.g., point clouds, meshes) to produce
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a region-level or point-level mapping. This mapping can be con-
strained based on the downstream application in terms of defor-
mation type, density, and scope (partial or full). Examples of such
downstream applications are shape interpolation, shape morph-
ing, shape anomaly detection, 3D scan alignment, and motion cap-
ture. While early approaches for shape correspondence mainly
adopted optimization-based algorithms [Van Kaick et al. 2011], the
emergence of deep learning has paved the way for learning-based
approaches that implicitly learn suitable representations, which
can be used for efficiently solving the matching problem. These
approaches can either follow a supervised [Litany et al. 2017], un-
supervised [Cao et al. 2023; Halimi et al. 2019] or a self-supervised
[Cao and Bernard 2023] paradigm depending on the availability
and the diversity of annotated datasets.

Supervised approaches are naturally data-dependent, and they re-
quire large-scale datasets with different classes of shapes for strong
generalization. On the other hand, unsupervised alternatives are
class-agnostic and do not require annotated data, but they still lag
behind their supervised counterparts in terms of performance [Hal-
imi et al. 2019]. Moreover, the majority of these aforementioned
approaches attempt to match near-isometric shapes of the same
class, with less focus on non-isometric shapes (e.g., human v.s. ani-
mal). This is mainly caused by the lack of datasets with inter-class
shape pairs and the complexity of matching dissimilar shapes. To
achieve a deeper understanding of 3D shapes and their relation-
ships, it is desirable to develop methods that can generalize well
both to isometric and non-isometric shape matching.

Recently, several large-scale models were introduced for different
modalities such as language (e.g., GPT3 [Brown et al. 2020], Bloom
[Scao et al. 2022]), and vision (e.g., StableDiffusion [Rombach et al.
2022], DALLE-2 [Ramesh et al. 2022]). These models are usually
referred to as foundation models, and they have a broad knowledge
of their domains since they were trained on large amounts of data.
There are even ongoing efforts to connect these models to build
a bridge between different modalities, such as Visual ChatGPT
[Wu et al. 2023], and MiniGPT-4 [Zhu et al. 2023]. Unfortunately,
it is still challenging to build similar models for modalities with
limited amounts of data, such as 3D shapes. Therefore, a plausible
approach is to employ existing models for language and vision to
solve problems for other data-limited modalities.

Motivated by this, we attempt to exploit existing foundation
models to perform zero-shot shape correspondence with no addi-
tional training or finetuning. To address this problem, we identified
the following three key problems. First, we would like to predict
the class of each of the two shapes in question given only their 3D
meshes. We achieve this through zero-shot shape classification by
feeding rendered views of the two shapes into a language-visual
model, BLIP2 [Li et al. 2023], to obtain object class proposals. Then,
we use ChatGPT to merge these proposals into a single class per
object. Second, we produce a semantic region set per shape, and a
semantic mapping between the sets by exploiting the in-context
learning [Brown et al. 2020] capabilities of ChatGPT [OpenAI 2021].
Afterward, we introduce a zero-shot 3D semantic segmentation
method based on the recent large-scale models DINO [Caron et al.
2021] and Segment-Anything (SAM) [Kirillov et al. 2023], which
we denote as SAM-3D. Our method only requires a shape mesh
and its corresponding semantic region set as input. Finally, the

semantic mapping is used to provide coarse correspondences be-
tween the two shapes and a finer map can be produced, if needed,
by employing the functional map framework [Ovsjanikov et al.
2012]. Remarkably, although functional maps are geared towards
near-isometric shape pairs, we observe that it is possible to obtain
high-quality dense maps given an initialization from SAM-3D, even
across some challenging non-isometric shapes.

Since we propose a new scheme for solving the shape correspon-
dence problem, we introduce several evaluation metrics to evaluate
the performance of different intermediate tasks in our pipeline, such
as zero-shot object classification, semantic region generation, and
semantic segmentation. We also create a new benchmark that in-
cludes strongly non-isometric shape pairs (e.g., humans vs. animals)
that we denote as (SNIS) in order to test the generalization capabili-
ties of our proposed approach. Experiments on the new benchmark
show that our approach, despite being zero-shot, performs very
well on non-isometric shape pairs.
In summary, we make the following contributions:

• We propose a novel solution to 3D shape correspondence
that computes results in a zero-shot manner.

• To the best of our knowledge, we introduce a first zero-shot
joint 3D semantic segmentation technique that does not start
with a mutual set of semantic regions, and it requires only
the shape meshes while exploiting language-vision models
to generate shape-specific semantic regions.

• We introduce a benchmark for shape correspondence which
includes strongly non-isometric shape pairs, as well as eval-
uation metrics for different stages of the proposed pipeline.

2 RELATEDWORK
In this section, we give a brief overview of shape correspon-
dence literature, large-scale models, and 3D semantic segmenta-
tion. For shape correspondence, we focus only on relevant deep
learning-based approaches, and we refer the reader to [Sahillioğlu
2020; Van Kaick et al. 2011] for a comprehensive survey of earlier
registration-based and similarity-based approaches.

2.1 Deep Learning-Based Shape Correspondence
Convolutional Neural Networks (CNNs) by nature are not directly
applicable to non-rigid shapes due to the lack of shift-invariance
property in non-Euclidean domains. Wei et al. [Wei et al. 2016]
circumvented this by training on depth maps of shapes that are
being matched, and produced pixel-wise classification maps for
each point in the object. Wu et al. [Wu et al. 2015] generated vol-
umetric representations from depth maps, and used 3D CNNs to
process them. However, these methods do not capture all shape
deformations, since they treat shapes as Euclidean structures. Alter-
natively, other approaches tried to generalize Convolutional Neural
Networks (CNNs) to non-Euclidean manifolds. Masci et al. [Masci
et al. 2015] introduced Geodesic CNNs that allowed constructing
local geodesic polar coordinates that are analogous to patches in
images. Similarly, Boscaini et al. [Boscaini et al. 2015] proposed
localized spectral CNNs to learn class-specific local descriptors
based on a generalization of windowed Fourier transform. This was
followed by another generalization of CNNs in [Boscaini et al. 2016]



Zero-Shot 3D Shape Correspondence SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Re
nd

er
er

 viewsk BL
IP

2

Person 
Human 

Man 
Person 

… 
Person

k × 1

   
  C

ha
tG

PT

  
{head, leg, torso, arm}

R1

 
{head, wing, body, leg}

R2

  
{head: head, leg: leg, 

arm: wing, torso: body}

M12

Person

Bird

Semantic Regions GenerationZero-Shot 3D Shape Classification

k × 1

Bird 
Dove 

Pigeon 
Dove 

… 
Bird

3D Shape Segmentation & Matching

   
  C

ha
tG

PT SA
M

-3
D

C
or

re
sp

on
de

nc
e 

M
at

ch
in

g

SA
M

-3
D

Figure 2: Our proposed approach has three main components: (1) Zero-shot 3D shape classification: By feeding rendered k
views of each shape to a BLIP2 [Li et al. 2023] model to generate class proposal lists. The proposals are unified using ChatGPT
to produce a single class per shape. (2) Semantic region/mapping generation: In-context learning capabilities of ChatGPT are
employed to produce a semantic region set for each shape and a semantic mapping between them. (3) Zero-shot 3D semantic
segmentation: our proposed SAM-3D uses the semantic regions to segment the shapes, and the mapping is used to produce a
sparse correspondence map that can be densified further using the functional maps framework [Ovsjanikov et al. 2012].

denoted as Anisotropic CNNs that replace the conventional convo-
lutions with a projection operator over a set of oriented anisotropic
diffusion kernels. All these approaches allowed extracting local
descriptors at each point on deformable shapes, and eventually
perform shape correspondence by similarity-matching.

Another category of approaches includes the matching compu-
tations in the learning process and can find shape correspondences
directly from a CNN. Litany et al. [Litany et al. 2017] proposed
a structured prediction model in the functional maps space [Ovs-
janikov et al. 2012] that takes in dense point descriptor for the
two shapes, and produces a soft correspondence map. Halimi et
al. [Halimi et al. 2019] transforms [Litany et al. 2017] into an un-
supervised setting by replacing the point-wise correspondences
with geometric criteria that are optimized, eliminating the need
for annotated data. Donati et al. [Donati et al. 2020] proposed an
end-to-end pipeline that computes local descriptors from the raw
3D shapes, and employs a regularized functional maps to produce
dense point-to-point correspondences. Their method requires less
data to train and generalizes better than its supervised counterparts.
Li et al. [Li et al. 2022a] employed a regularized contrastive learning
approach to learn robust point-wise descriptors that can be used to
match shapes. We deviate from all these approaches, and we tackle
the problem from a peculiar zero-shot perspective that exploits the
emerging large-scale models in language and vision.

2.2 Large-Scale Models
Several models that are trained on large-scale datasets were intro-
duced recently for different modalities, given the advances in deep
architectures design and computational capabilities. For instance,
Large-Scale Language Models (LLMs) such as T5 [Raffel et al. 2020],
BLOOM [Scao et al. 2022], GPT-3 [Brown et al. 2020], and Instruct-
GPT [Ouyang et al. 2022]; vision models StableDiffusion [Rombach
et al. 2022], and DALLE-2 [Ramesh et al. 2022]). LLMs have out-
standing capabilities in understanding textual data, but they lack
any understanding of natural images. Recent methods try to build
cross-modal vision-language models that incorporate the capacities

of both models. Visual-ChatGPT [Wu et al. 2023] is one example
that combines ChatGPT with many vision foundation models that
are managed using a prompt manager that allows better combina-
tion and interaction. MiniGPT-4 [Zhu et al. 2023] pursues a similar
endeavor by attempting to align frozen LLM with a visual encoder
through a projection layer. To further improve language coherence,
they finetune the model on a well-aligned dataset using a conver-
sational template. BLIP2 [Li et al. 2023] bootstraps vision-language
models through efficient pre-training from off-the-shelf models. We
employ these models to achieve zero-shot 3D shape classification
and to generate shape-specific semantic regions that can then be
utilized to perform zero-shot 3D semantic segmentation to find
shape correspondences.

2.3 Zero-shot 3D Semantic Segmentation
Zero-shot 3D semantic segmentation is an active research topic that
attempts to segment volumes or point clouds given some textual
labels or descriptors [Abdelreheem et al. 2022; Chen et al. 2022;
Decatur et al. 2023; Ding et al. 2022; Liu et al. 2022; Michele et al.
2021; Naeem et al. 2021; Zhang et al. 2021; Zhu et al. 2022]. On a
different note, there exist many approaches that are based on Neu-
ral Radiance Fields (NeRFs) [Lombardi et al. 2019; Mildenhall et al.
2020], which try to produce full semantic maps of 3D scenes by ex-
ploiting 3D density fields from NeRFs [Fan et al. 2022; Fu et al. 2022;
Kundu et al. 2022; Siddiqui et al. 2022; Tschernezki et al. 2022; Vora
et al. 2021; Zhi et al. 2021] These two categories of approaches can
be combined to perform zero-shot 3D segmentation of volumetric
scenes by incorporating zero-shot 2D segmentation networks (e.g.,
[Li et al. 2022c]) into NeRFs [Goel et al. 2022; Kobayashi et al. 2022;
Shafiullah et al. 2022] given some textual labels. SATR [Abdelre-
heem et al. 2023] showed that replacing 2D segmentation networks
with 2D object detector networks yields marginally better results.
Inspired by this, we propose to combine the object detector DINO
[Caron et al. 2021] with Segment-Anything (SAM) [Kirillov et al.
2023] to perform zero-shot 3D shape segmentation.
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3 METHOD
In zero-shot 3D shape correspondence, the input is a pair of 3D
shapes (𝑆1, 𝑆2), where each shape 𝑆𝑖 is represented using triangular
meshes with vertices 𝑉 𝑖 ∈ R |𝑉 𝑖 |×3, and faces 𝐹 𝑖 ∈ R |𝐹 𝑖 |×3. The
number of vertices/faces in 𝑆1 are not necessarily equal to that of
𝑆2. The desired output is a point-to-point correspondence map 𝐶 ∈
R |𝑉

2 |× |𝑉 1 | that contains matching scores between vertices of 𝑉 2

and𝑉 1. Note that no other information is provided about the shape
such as the shape class or semantic region names, and it is desired
to perform shape correspondence in a zero-shot manner with no
training or fine-tuning. To this end, we propose a new setting to
tackle this problem that consists of three modules, as illustrated
in Figure 2. First, we perform zero-shot 3D object classification on
the shapes to obtain an object class per shape using a large-scale
visual-language model (3.1). Afterward, a set of semantic region
names per shape is generated using an LLM (3.2). Next, zero-shot
3D semantic segmentation is performed given the semantic region
names (3.3). Finally, dense correspondence maps can be calculated
using functional maps [Ren et al. 2018a] (3.4). We explain these
components in more detail in the following sections.

3.1 Zero-Shot 3D Shape Classification
Initially, we need to identify the classes of the 3D shapes. Existing
zero-shot 3D shape classification approaches [Cheraghian et al.
2020, 2019] can predict a limited set of unseen classes, but do not
generalize when the unseen set is unlimited. In our case, there is
no prior knowledge about the classes of the shapes, and therefore,
existing approaches for zero-shot 3D classification can not be em-
ployed. To alleviate this, we propose to employ a language-vision
foundation model (e.g., BLIP2 [Li et al. 2023]) that exploits the gen-
eralization capabilities of Large-Scale Language Models (LLMs) to
reason about 2D images.

For each shape in the pair (𝑆1, 𝑆2), we render 𝑘 views, where
viewpoints are sampled uniformly around the shape for a wide
coverage.We set the elevation angles to {−45◦, 0◦, 45◦}, the azimuth
angles to {0◦, 90◦, 180◦, 270◦}, and the radius to 2 length units,
where each shape is centered around the origin and scaled to be
inside a unit sphere. Then, we feed these 𝑘 rendered views per shape
to BLIP2 [Li et al. 2023] to obtain 𝑘 object class proposals. A natural
choice would be to perform majority voting on these predictions
to get a single class type. However, it is not straightforward to
achieve this for textual labels, given that the list of class proposals
can include synonyms and adjectives. Figure 2 shows an example
of this situation. Therefore, we exploit the reasoning capabilities of
a ChatGPT agent to unify the responses and obtain a single class
label per shape. We show examples of the used prompts in the
supplementary materials.

3.2 Semantic Region Generation and Matching
Zero-shot 3D semantic segmentation approaches require a set of
semantic labels as an input together with the 3D shape. Our prob-
lem is more difficult than traditional co-segmentation, because the
two input shapes may not share the same region names. For this
reason, We need to obtain two sets (𝑅1, 𝑅2) of the possible names
of semantic regions present in each shape in the input pair (𝑆1, 𝑆2).
Afterward, we attempt to match, whenever possible, between the

semantic regions defined in 𝑅1 and 𝑅2, where a single semantic
region in 𝑅1 can be matched to one or more semantic regions in
𝑅2. For instance, the legs of a dog can be matched to both the arms
and the legs of a person. We exploit the in-context learning [Brown
et al. 2020] capabilities of LLMs to achieve this. In-context learning
is the process by which a model understands a certain task and
provides an adequate response to the required task. LLM models
are indeed good in-context learners, allowing them to perform well
on a wide range of tasks without explicit fine-tuning. The idea is
when asking the model to solve a task given a certain input, we
include a few (input, expected output) pairs as examples in the
input prompt. We employ ChatGPT for this purpose, and we query
two sets of semantic regions (𝑅1, 𝑅2) for the two shape classes in
question, and a mapping between the two sets 𝑀12 : 𝑅1 ↔ 𝑅2.
Figure 2 shows an example of such a mapping. We refer the reader
to the supplementary material for further details on formulating
the textual prompts for ChatGPT.
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Figure 3: Sampling strategy for the 𝑣 rendered views that
are used to perform zero-shot 3D semantic segmentation.
Note that we use three different radii of (2, 1.75, 1.5) from the
origin to produce a total of 180 views.

3.3 Zero-Shot 3D Semantic Segmentation
After generating the two sets of semantic regions (𝑅1, 𝑅2), we can
use them to perform zero-shot 3D semantic segmentation. De-
spite the fact that the recent object segmentation model Segment-
Anything (SAM) [Kirillov et al. 2023] is powerful, its text-guided
segmentation is still limited. The Groudning-DINO object detector
[Liu et al. 2023] on the other hand, can perform 2D object detection
for a large number of classes. Therefore, we propose to combine
Groudning-DINO with SAM to perform zero-shot 3D semantic seg-
mentation, and we denote this hybrid approach as SAM-3D. It is
possible to use other object detectors such as GLIP [Li et al. 2022d]
to obtain bounding boxes of parts, but we employ Gounding-DINO
as it performs better than its counterparts as shown in [Liu et al.
2023].

We start by rendering a large number of viewpoints 𝑣 sampled
uniformly to cover the whole shape as illustrated in Figure 3. For
each rendered view, we feed it to DINO to detect a bounding box
for each semantic region in 𝑅𝑖 . Afterward, we feed the detected
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bounding boxes with the rendered viewpoints to SAM to provide
segmentation maps for each semantic region. We define a matrix
𝑋 𝑖 ∈ R |𝐹 𝑖 |× |𝑅𝑖 | that is initialized with zeros, and we use it to
accumulate scores for each face in 𝐹 𝑖 for each semantic region in
𝑅𝑖 . Finally, each face is assigned a label by selecting the highest
score in each row 𝑗 of 𝑋 𝑖 yielding 𝐹𝐿𝑖 :

𝐹𝐿𝑖 = argmax
𝑗

𝑋 𝑖 [ 𝑗, :] (1)

Once the 3D segmentation vectors 𝐹𝐿𝑖 are computed, the seg-
mentation maps are matched between the two shapes using the
mapping𝑀12 to produce a coarse correspondence map.

3.4 Zero-Shot Dense Shape Correspondence
To produce dense point-to-point shape correspondence, we em-
ploy a functional maps-based approach. We use the overall strat-
egy based on associating functional descriptors with region cor-
respondences, as described in the original functional maps paper
[Ovsjanikov et al. 2012] and then implemented in [Kleiman and
Ovsjanikov 2019] and [Ren et al. 2018b]. Specifically, given region-
wise correspondences, we formulate an optimization problem to
compute a functional map. The optimization problem is obtained
first by formulating functional constraints using the sum of the
WKS descriptor [Aubry et al. 2011] of the points in the segment. We
combine these with the Laplace-Beltrami commutativity regulariza-
tion into a single system and solve it to find the optimal functional
mapping matrix C. Finally, we convert the computed functional
map C to a point-to-point map and iteratively refine it using the
BCICP refinement strategy [Ren et al. 2018b]. All parameters we use
in our approach, including the way we formulate and solve the opti-
mization problem, are exactly the same as in [Ren et al. 2018b] with
the only difference being that the regions that are matched are pro-
duced by our pipeline rather than the ones produced by [Kleiman
and Ovsjanikov 2019]. This gives, as output, a dense point-to-point
correspondence between each 3D shape pair. Interestingly, while
functional maps primarily target near-isometric shapes, our ini-
tialization with SAM-3D allows us to generate high-quality dense
maps even for challenging non-isometric shape pairs, as will be
shown in Figure 5. Nevertheless, artifacts in point-to-point maps
can occur due to the use of the functional map framework, and we
leave the development of a correspondence densification technique
that can adapt to strongly non-isometric shapes, to future work.

4 EXPERIMENTS
In this section, we evaluate our proposed approach, and we intro-
duce our new dataset for strongly non-isometric shape matching
(SNIS). Moreover, since we propose a new strategy for solving shape
correspondence problems, we introduce some evaluation metrics
for different components of the pipeline.

4.1 Strongly Non-Isometric Shapes Dataset
(SNIS)

Existing shape correspondence datasets [Bogo et al. 2014; Zuffi et al.
2017] usually encompass a single category of objects (e.g., humans
or animals), and they employ template models to derive dense cor-
respondences to alleviate annotation workload. To facilitate the

development of approaches that can generalize to non-isometric
shape matching, we introduce a new dataset with mixed shape pairs
from existing isometric datasets, e.g., FAUST [Bogo et al. 2014] (hu-
mans), SMAL [Zuffi et al. 2017] (animals), and DeformingThings4D
[Li et al. 2021] (humanoid objects). For each pair of shapes, we
annotate 34 keypoint correspondences between the shapes as well
as a dense segmentation map. Figure 4 shows an illustration for
these annotations. For the FAUST dataset [Bogo et al. 2014], we
use a similar approach of annotation as described in [Abdelreheem
et al. 2023] that includes segmentation maps for all the available
100 shapes.

Our SNIS dataset includes 250 shape pairs, where the first shape
is either from FAUST or DeformingThings4D, and the second is
from SMAL. The included classes are: {“cougar”, “cow”, “dog”, “fox”,
“hippo”, “horse”, “lion”, “person”, “wolf”}. Note that it is desirable
to include other categories of objects from diverse datasets such
as SHREC09 [Godil et al. 2009]. Unfortunately, we find that this
demands significant manual annotation effort, particularly with
point-to-point dense annotation, which is time-consuming and
labor-intensive. However, we demonstrate the generalization ca-
pabilities of our approach by showing some qualitative examples
from SHREC09 in section 4.8.

4.2 Metrics
For the final dense shape correspondence map, we use the standard
average geodesic error as in [Halimi et al. 2019; Litany et al. 2017].
We describe the newly proposed metrics below.
Zero-Shot Object Classification Accuracy (ZSClassAcc) To
evaluate if the predicted object class in 3.1 is accurate, we compare
it against the ground-truth shape label. However, since LLM-based
approaches can predict several synonyms for each class (e.g., hu-
man and person), the standard classification accuracy becomes
infeasible.

Therefore, we propose to generate a set of synonyms for each
object class in the dataset from WordHoard 1. Whenever a class
prediction matches any of the synonyms, it is counted as a correct
prediction. Eventually, the accuracy is calculated as a standard
binary classification accuracy.
Semantic Regions Generation F1-Score (SRGen-F1) Similar to
the previous metric, we evaluate the generated semantic regions
as a multi-class classification problem. Regions that are matched
with the ground truth count as True Positives (TP), ground truth
regions that were not predicted count as False Negative (FN), and
predicted regions that do not exist in the ground truth count as
False Positives (FP). Finally, a standard F1-Score is calculated as:

SRGen-F1 =
2 · TP

2 · TP + FP + FN
(2)

Semantic Regions Prediction IoU (SRIoU) To evaluate the qual-
ity of semantic segmentation for different semantic regions in 𝑅1

and 𝑅2, we calculate the average intersection-over-union over dif-
ferent regions and shapes as follows:

𝐼12 =
𝐼1 + 𝐼2

2
(3)

1https://wordhoard.readthedocs.io

https://wordhoard.readthedocs.io
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Figure 4: Keypoint correspondences and segmentation maps
for the proposed Strongly Non-Isometric Shapes (SNIS)
dataset. We provide 34 keypoint annotations, but we only
show a few here for clarity.

𝐼 𝑖 =
1
|𝑅𝑖 |

|𝑅𝑖 |∑︁
𝑟=1

𝐼𝑜𝑈 𝑖
𝑟 (4)

where 𝐼𝑜𝑈 𝑖
𝑟 is the intersection-over-union for region 𝑟 in shape 𝑖

compared to the groundtruth segmentation.
Keypoint Label Matching Accuracy (KPLabelAcc) Since we
provide keypoint annotations in our proposed SNIS dataset, we can
evaluate the shape matching accuracy at these keypoints. For each
shape 𝑖 , we define keypoint indices vector 𝑃𝑖 ∈ R34×1, which stores
vertex indices from 𝑉 𝑖 for the annotated keypoints. Given faces
labels 𝐹𝐿𝑖 from (1), we can generate labels for vertices as well that
lie on these faces, and we denote them as 𝑉𝐿𝑖 . The keypoint label
matching accuracy is then calculated between 𝑉𝐿1,𝑉 𝐿2, and the
groundtruth labels 𝑉𝐿𝐺𝑇 as:

KPLabelAcc =
1
|𝑃 |

|𝑃 |∑︁
𝑗=1

𝑉𝐿1 [𝑃1𝑗 ] ∧ 𝑉𝐿2 [𝑃2𝑗 ] ∧ 𝑉𝐿𝐺𝑇 [𝑃𝐺𝑇𝑗 ] (5)

where 𝑗 refers to elements in the vector and ∧ is the semantic AND
operator, which means the three integers should share the same
semantic label. This metric measures if the keypoints are matched
correctly, and that they were assigned the correct label. Next, we
compare our proposed approach against some baselines in terms of
these metrics.

4.3 Zero-Shot 3D Shape Classification Results
Baseline We calculate a majority voting between all classification
proposals generated by BLIP2. Table 1 shows that our proposed
approach based on ChatGPT performs significantly better than the
standard voting.

Method Acc.
Voting 44.80%
ZSM (ours) 73.90%

Table 1: A comparison in terms of Zero-Shot Object Classifi-
cation Accuracy (ZSClassAcc) between our approach and the
standard majority voting.

4.4 Semantic Regions Generation and Matching
Results

Baseline We use BLIP2 [Li et al. 2023] model as a baseline, where
we feed it with the 𝑘 rendered views from section 3.1 to query
semantic regions and mapping.

We report the results in Table 2 for the generated semantic
regions in terms of the SRGen-F1 metric. Surprisingly, our proposed
approach that employs ChatGPT outperforms BLIP2 with a huge
margin despite the fact that our approach does not have access to
the rendered images. This demonstrates the in-context learning
capabilities of ChatGPT.We can also compare the semantic mapping
𝑀12 in the same fashion as the semantic regions by matching the
keys and values of the generated mapping with those of the ground-
truth mapping. However, we did not succeed in obtaining a valid
mapping from BLIP2 as it accepts only one image at a time, and
the prompt is limited to 512 tokens, which can be insufficient for
in-context learning prompts. Therefore, we report only our scores
in Table 2.

4.5 3D Semantic Segmentation Results
We compare against the recently released zero-shot 3D semantic
segmentation approach SATR [Abdelreheem et al. 2023] that em-
ploys only 2D object detectors. SATR differs from our approach
mainly in using a 2D object detector instead of SAM.

Table 3 shows that our approach outperforms SATR in terms
of the SRIoU metric. We believe that is caused by employing 2D
semantic segmentation masks from SAM, which are less prone to
error when transferring the segmentation information to the 3D
space, compared to bounding boxes. We also show selected qual-
itative examples in Figure 8, where it is clear that our proposed
SAM-3D provides a more accurate and well-localized segmenta-
tion compared to SATR. We show in Figure 7 the generalization
capability of SAM-3D on daily objects.

4.6 Keypoints Matching Results
We compare the keypoints matching results from our proposed
approach to those obtained by replacing SAM-3D with SATR [Ab-
delreheem et al. 2023]. Table 3 shows that our approach outperforms
SATR in terms of KPLabelAcc, which demonstrates that it provides
better segmentation maps with more accurate labels.

4.7 Dense Shape Correspondence Comparison
Our approach generally produces sparse shape correspondences,
as illustrated in Figures 1 and 6. However, dense correspondence
maps can be produced by using the functional maps framework as
described in Section 3.4. We provide a comparison for dense shape
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Semantic Regions Mapping
Method Avg. F1-Score Avg. F1-Score
BLIP2 [Li et al. 2023] 41.28% -
ZSM (ours) 80.31% 65.05%

Table 2: A comparison of generated semantic regions and
mapping in terms of SRGen-F1. Our proposed approach based
on ChatGPT outperforms BLIP2 on semantic region genera-
tion. However, we were not able to produce valid mappings
from BLIP2, so we only mention ours.

correspondencemaps when using our proposed SAM-3D in compar-
ison with the segmentation model SEG [Kleiman and Ovsjanikov
2019] to initialize the functional maps framework BCICP [Ren et al.
2018b] Table 5 shows that the use of SAM-3D outperforms SEG
in terms of average geodesic error with a large margin. We also
provide a qualitative comparison in Figure 5, which shows that
our approach provides more accurate correspondences, and does
not suffer from region discontinuities as SEG. Note that existing
supervised approaches are typically trained on objects of the same
category, e.g., humans or animals, where there is enough annotated
training data. Therefore, they cannot be directly evaluated on SNIS
without adapting and retraining these approaches, which might
not always be feasible.

4.8 Generalization to Other Datasets
To examine if our proposed approach generalizes to other datasets
with highly unrelated shapes, we include some objects from the
SHREC09 [Godil et al. 2009], and 3D-CoMPaT [Li et al. 2022b]
datasets. We form pairs of shapes where the first item is from SNIS,
and the second is from SHREC09 or 3D-CoMPaT. Figures 10 and 11
show these examples. Our method was able to produce plausible
results when matching a human with a chair, where the legs were
matched correctly, and the seat was matched to the rest of the
human body. A horse was also matched to a tricycle, where the
horse limbs were matched to the wheels, the head to the handle, and
the tail to the seat. We show in Figure 9 examples where the pairs
are from daily objects [Chang et al. 2015; Xiang et al. 2020]. These
examples demonstrate the reasoning capabilities of our approach,
even when the shape pairs are not related.We provide more detailed
qualitative examples in Figure 11.

4.9 Impact of Varying Number of Viewpoints
We examine the effect of changing the number of rendered views 𝑘 ,
and 𝑣 in the proposed zero-shot 3D object classifier and in SAM-3D,
respectively. Table 4 shows that both the classification and segmen-
tation accuracy improve when increasing the number of views. We
do not consider higher values for computational efficiency.

5 CONCLUSION
We proposed a novel zero-shot approach for 3D shape correspon-
dence. Our approach exploited the capabilities of recently emerged
language and vision foundation models to match challenging non-
isometric shape pairs. There are two key differences in our work
to traditional co-segmentation. First, we do not require the region
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Figure 5: Dense shape correspondences generated by the func-
tional maps framework BCICP [Ren et al. 2018b] when ini-
tialized with our proposed SAM-3D in comparison to SEG
[Kleiman and Ovsjanikov 2019].

Method SRIoU KPLabelAcc
SATR [Abdelreheem et al. 2023] 69.98% 56.60%
SAM-3D (ours) 73.55% 59.72%

Table 3: A comparisonwith an existing zero-shot 3D semantic
segmentation approach in terms of SRIoU and KPLabelAcc

head arm torso leg head torso arm leg

Figure 6: Qualitative results for two input pairs of shapes
within the same class (left and right columns). The shapes are
from DeformingThings4D, FAUST, and SHREC09 datasets.

names to be known in advance. Second, our approach does not re-
quire a mutual set of semantic regions and generates shape-specific
sets, and a semantic mapping between them instead, enabling it to
match diverse shape pairs. We also introduced a new dataset for
strongly non-isometric shapes (SNIS) as well as evaluation metrics
for each stage in our pipeline to facilitate the development and
evaluation of future methods.
Limitations and Future Work Our approach can match coarse
semantic regions such as main body parts (e.g., head, torso, and
legs). In future work, it would be desirable to produce finer regions
in such as eyes, mouth, and hands. This is challenging because the
current image-based segmentation models are not able to provide
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𝑘 ZSClassAcc

1 60.10%
5 62.76%
24 73.90%

𝑣 SRIoU KPLabelAcc

30 69.84% 54.97%
60 72.06% 57.63%
120 73.06% 58.89%
180 73.55% 59.72%

Table 4: Ablation study on the effect of changing the number
of viewpoints on the zero-shot object classification in terms
of ZSClassAcc, and the zero-shot 3D semantic segmentation
in terms of SRIoU and KPLabelAcc.

Method Avg geodesic error

SEG + BCICP [Ren et al. 2018b] 0.41
SATR + BCICP (ours) 0.37
SAM-3D + BCICP (ours) 0.36

Table 5: A comparison for dense shape correspondence in
terms of average geodesic error. Initializing the BCICP frame-
work with segmentation from SAM-3D yields significantly
better results.

fine-grained segmentation for renderings of meshes without tex-
tures. Foundation models in machine learning are helpful for a wide
range of tasks. In the future, it would also be interesting to design
foundation models that can map 3D shapes, images, and text to
a common latent space. Finally, adapting functional maps to han-
dle strongly non-isometric shape pairs, starting from high-quality
segment matches, is another interesting problem for future work.
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Figure 7: Qualitative examples of SAM-3D for zero-shot semantic segmentation of daily objects. The input textual prompts are
provided by ChatGPT. SAM-3D can predict fine-grained parts such as the knobs of a toaster, the cap of a bottle, the flush button
of a toilet, or the cable in the headset.
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Figure 8: Qualitative comparison between our proposed SAM-
3D in comparison with SATR [Abdelreheem et al. 2023]. SAM-
3D provides more accurate and consistent segmentation com-
pared to SATR.

Figure 9: Qualitative examples when matching unrelated
daily objects. Our approach produces plausible correspon-
dences demonstrating its reasoning and generalization capa-
bilities.
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Figure 10: Qualitative examples when matching unrelated shapes. Our approach produces plausible correspondences demon-
strating its reasoning and generalization capabilities.
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Figure 11: Detailed qualitative results for strongly non-isometric pairs of shapes. We show the intermediate predictions from
different components of our proposed approach, including the predicted class labels, proposed semantic regions and mapping,
and the coarse shape-matching output.
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