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A B S T R A C T

Laser acquisition of large-scale point clouds is prone to several categories of measurement errors, which can
lead, in particular, to the presence of undesirable outlier points. Existing outlier detection techniques are
primarily based on analyzing local properties of point distributions to distinguish ‘‘clean’’ from ‘‘noisy’’ data.
In contrast, real-world acquisition often has to deal with reflective surfaces, which can give rise to structured
outliers that can be indistinguishable from clean geometry through purely local analysis. We make several
contributions to address the problem of reflection-induced outlier detection. First, to overcome the scarcity of
annotated data, we introduce a new dataset tailored for this task. Second, to capture non-local dependencies, we
study and demonstrate, for the first time, the utility of deep learning based semantic segmentation architectures
for reflection-induced outlier detection. By doing so, we bring together the fields of shape denoising/repair and
semantic segmentation. Third, we demonstrate that additional non-local cues in the form of laser intensity and
a computed visibility signal help boost the performance considerably. We denote our pipeline as ResUNets with
Visibility and Intensity for Structured Outlier Removal, or ReVISOR, and demonstrate its superior performance
against existing baselines on real-world data.
1. Introduction

Laser acquisition of large-scale point clouds is prone to several cate-
gories of measurement errors. Detecting real-world outliers, such as the
artifacts caused by reflections, is a particularly challenging task. Unlike
unstructured, e.g., Gaussian noise or uniformly distributed outliers,
reflections can lead to wrong acquisitions that closely resemble large
parts of actual geometry, located far away from the real surfaces. This
non-local behavior severely reduces the applicability of local statistical
approaches, and more broadly the vast majority of previous work on
this topic. Unfortunately, non-local outlier detection has rarely been
studied in previous works, first because real-world acquisition data
is lacking, and, second, because labeling is very difficult. Indeed, it
takes about 8 hours for an expert annotator to segment a single laser
scan (Hullo et al., 2015), which translates into months of work for
annotating complex industrial plants.

The presence of structured outliers can hinder many downstream
tasks, from scene reconstruction to performing correct measurements.
For example, if an operator uses the raw 3D point cloud, containing
outliers, to measure a distance between a piping and the viewer as
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illustrated in Fig. 2, picking an outlier point instead of a point from
the actual geometry can lead to a vastly wrong measurement.

In this paper, we propose the first comprehensive investigation
of automated removal of reflection-induced outlier points in complex
industrial 3D scenes. Contrary to the majority of previous works on
outlier removal, this problem setting requires detecting acquisition
artifacts caused by real-world reflective surfaces that can be highly
irregular and non-planar. This setup severely reduces the utility of both
axiomatic approaches, and, as we demonstrate below, existing purely
local learning-based methods.

Specifically, the problem that we consider is challenging for three
main reasons. First, a successful method should adapt to any size of
acquired point cloud for outlier detection in large-scale scenes. Second,
local approaches are not applicable since reflection-induced outliers
can be highly structured and resemble the underlying geometry (see
Fig. 4). Third, only a very limited number of scenes with annotated
ground truth is available, making large-scale learning difficult.

In this context, we demonstrate empirically that previous outlier
detection methods fail on this task, in particular, because they fail to
exploit scene-level contextual information.
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Fig. 1. In this paper, we present the problem of detecting reflection-induced structured
outliers, arising in real-world acquisition (left), compared to more commonly-studied
statistical outliers (right). Clean points are marked in blue, whereas outliers are shown
in yellow. Note that clusters of reflection-induced outliers can closely resemble patches
of clean geometry, rendering purely local approaches ineffective and requiring more
global integrated scene analysis. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

To address this challenge, we propose to formulate outlier detection
as a semantic segmentation problem, unlike a pure labeling problem
as done in most prior works. This reformulation, together with us-
ing an adapted semantic segmentation architecture, enables non-local
interaction between outlier point decisions, which is crucial for our
task.

Lastly, we demonstrate that a visibility signal, provided in addition
to the standard 3D geometry and laser intensity information, both helps
to regularize the training and significantly improves the accuracy of
reflection-induced outlier detection, by injecting additional scene-level
semantic cues to the learning process.

In summary, our contributions are:

• A new dataset for structured outlier detection in industrial scenes;
• An in-depth study highlighting that existing local, patch-based

learning approaches have limited accuracy for reflection-induced
outlier detection;

• A novel approach adapting a semantic segmentation architecture
for reflection-induced outlier detection. Our method, notably, is
capable of capturing long-range information within point clouds,
which is crucial when dealing with real-world structured outliers;

• A further improvement demonstrating that computed visibility as
an input signal allows to regularize structured outlier detection.

Both our code and complete dataset of labeled data (valid points
and reflection-induced outliers) will be publicly released upon final
acceptance of this paper.

The remainder of this paper is organized as follows. We first present
an overview of related work and background on semantic segmentation
of large-scale 3D point clouds (Section 2). We then present our general
approach, including a description of the architecture design and net-
work input in Section 3. Section 4 describes our dataset and compares
it to the datasets for statistical outlier detection. Section 5 is dedicated
to extensive experimental results and comparison of our approach to
baselines, while Section 6 concludes the paper.

2. Related work

Reflection Detection. The detection of reflections in 3D scans has
mostly been addressed from an axiomatic point of view. Yun and Sim
(2018) propose an efficient method for detecting reflections caused by
glass surfaces in architectural scenes, that they evaluate qualitatively
on a dedicated dataset containing eleven scans. Initially limited to a
single reflective plane per scene, this work was extended (Yun and
Sim, 2019) to detect multiple glass planes. The main limitation of
this method is its reliance on a careful parameter setup. Moreover,
185
Fig. 2. Illustration of a measurement error induced by structured outliers (yellow)
between the center of acquisition (light blue dot) and a point on a piping (black lines).
The correct distance corresponds to the green line segment and the erroneous distance to
the red line segment. Correctly acquired points are indicated in purple. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

only glass planes are considered, which limits its applicability to more
general reflective surfaces. Finally, their proposed dataset does not
contain ground-truth annotations of the outlier points, preventing its
use for supervised learning and for quantitative evaluations. A few
recent works tackle the problem of detecting (planar) mirror surfaces
in RGB-D interior scenes (Tan et al., 2021; Mei et al., 2021). Both
approaches introduce new datasets that contain precise segmentation
of planar mirrors in interior RGB-D images. More closely related to
our approach, the detection of ghost targets (i.e. acquisition artifacts
that resemble objects to detect) produced by reflections in scans of
road scenes is addressed in two recent works by leveraging a PointNet-
like (Chamseddine et al., 2021) and a Transformer (Wang et al., 2021;
Gao et al., 2022) architectures. However, these approaches rely on
the combination of multi-modal sensor data to detect ghost targets,
whereas our approach focuses solely on the 3D geometry and laser
scanner’s intensity.

Outlier Removal and denoising. Our task is closely linked to out-
lier detection and point cloud denoising. The topic of outlier detection
has been commonly treated from a statistical perspective (Barnett and
T., 1995; Maimon and Rokach, 2005; Rousseeuw and Hubert, 2011)
by developing robust distribution analysis approaches with strong the-
oretical guaranties. Specific methods for 3D point clouds have been
constructed in the past using adapted axiomatic methods (Fleishman
et al., 2005; Cazals and Pouget, 2005, 2008). More recently, deep
learning-based methods for both denoising and outlier removal have
been formulated first using supervised training over local point cloud
neighborhoods, as in PointCleanNet (Rakotosaona et al., 2020), and
extended in follow-up works, using unsupervised learning (Hermosilla
et al., 2019), manifold reconstruction (Luo and Hu, 2020), exploiting
graph structures (Pistilli et al., 2020; Irfan and Magli, 2021), non-
local information (Huang et al., 2020), encoder–decoder models (Zhang
et al., 2020b) or score-based approaches (Luo and Hu, 2021). Unfortu-
nately, the previously-mentioned approaches are tailored for statistical
noise removal, arising close to the underlying surface. In contrast, our
application scenario involves structured noise, that closely resembles
real surfaces.
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Semantic Segmentation. We rely on a 3D point cloud semantic
segmentation network to solve the binary classification of inlier versus
outlier points. Following the work of Qi et al. on PointNet (Qi et al.,
2017a) and PointNet++ (Qi et al., 2017b), a wealth of methods have
been proposed to produce per-point labeling using raw point coordi-
nates and features as input. These methods are commonly designated
as point-based methods (Zhao et al., 2019; Duan et al., 2019; Yang et al.,
2019; Yan et al., 2020; Hu et al., 2020). Some approaches leverage a
graph structure computed from the point cloud that allows to take ad-
vantage of graph processing techniques and graph convolution (Wang
et al., 2018a, 2019a; Feng et al., 2020; Bazazian and Nahata, 2020; Xu
et al., 2020). Others make use of 2D projections, such as a perspec-
tive (Kundu et al., 2020), a spherical projection (Milioto et al., 2019)
or both (Alnaggar et al., 2021). Point clouds can be encoded within a
regular structure, such as a voxel grid (Wang et al., 2017; Zhou and
Tuzel, 2018; Choy et al., 2019) or a custom layout of points (Wu et al.,
2019; Zhang et al., 2019; Komarichev et al., 2019; Thomas et al., 2019;
Boulch, 2020; Xu et al., 2020, 2021). Hybrid approaches, entangling 2D
and 3D information (Jaritz et al., 2019; Robert et al., 2022) or fusing
voxel and point-based approaches (Zhang et al., 2020a) have also been
developed. Finally, Transformer-like architectures recently highlighted
the interest of transposing self-attention mechanisms to point cloud
segmentation (Lai et al., 2022; Guo et al., 2021; Zhao et al., 2021;
Mazur and Lempitsky, 2021). The main contribution in all these work
lies in the local point operator, acting on neighboring points, used in the
segmentation architecture. Concerning the architecture itself, encoder–
decoder, such as U-Nets (Ronneberger et al., 2015) or DeepLab (Chen
et al., 2017, 2018), and HRNet-like (Wang et al., 2020) are the two
main designs for semantic segmentation in the image domain. More
recently, Vision-Transformers (Dosovitskiy et al., 2020; Zheng et al.,
2021) have been proposed to leverage the ability of Transformer net-
works (Vaswani et al., 2017) to capture long-range relationships. In
the point cloud processing community, the encoder–decoder strategy,
advocated in PointNet++, represents the go-to architecture in the vast
majority of recent semantic segmentation networks. We therefore chose
to focus our study on this type of architecture and use a U-Net design. A
notorious exception to the trend of using encoder–decoder architectures
for semantic segmentation is DGCNN (Wang et al., 2019b), where an
EdgeConv layer recomputes a nearest-neighbor graph on the input
point cloud at each stage to build rich geometric features. DGCNN
is not suited for processing point clouds with more than around a
thousand points due to the expensiveness of the EdgeConv layer. All of
these architectures have so far been used for labeling into semantically
meaningful classes, rather than for outlier detection. One goal of our
study is to highlight that semantic segmentation architectures are well
suited for structured outlier removal.

Statistical outliers/noise datasets. The authors of PointClean-
Net (Rakotosaona et al., 2020) propose a dataset with point clouds
containing statistical outliers that were synthetically generated from
the ground truth surfaces. We highlight the difference of our task
to detecting such statistical noise by showing that a state-of-the-art
denoising architecture, namely ScoreDenoise (Luo and Hu, 2021), fails
at segmenting outliers (see Fig. 6).

Glass pane outliers datasets. The public benchmark proposed by
the authors of Yun and Sim (2018) contains a collection of exterior
large-scale point clouds containing outliers caused by the reflection
of objects on planar glass panes. This setup is related to the problem
targeted by our dataset, with three main differences. First, their dataset
does not contain ground truth annotation, which prevents quantitative
evaluations. Second, the reflective surfaces considered are in glass,
a material that is not opaque as in our scenario. This difference is
important because a transparent reflective material implies that (i)
correctly acquired points can be found after the reflective interface
and (ii) the intensity of the reflection is less pronounced in transparent
material because a large portion of the laser energy actually gets
186

through the glass interface (Yun and Sim, 2018). Finally, the reflective a
surfaces are exclusively planar, in strong contrast with our setup, where
the reflective surfaces consist of piping with highly varying shapes.

Perfect mirror datasets. Our benchmark is also related to the
datasets constructed for the detection of perfect mirrors, as proposed
for RGB-D acquisitions in recent works (Tan et al., 2021; Mei et al.,
2021). To illustrate the inefficiency of architectures targeting the task
of detecting reflections on perfect mirrors, we compare our approach
to a state-of-the-art method, namely the PDNet architecture (Mei et al.,
2021) in Appendix C.

3. Our approach: ReVISOR

As mentioned above, our main goal is to develop a fully automatic
approach for reflection-induced outlier removal. Moreover, as hinted
earlier, and as we show extensively in our results (Section 5), to address
this problem it is important to develop a data-driven solution capable
of exploiting non-local cues for successful structured outlier detection.

Our method is based on three key building blocks: first, we propose
to use a semantic segmentation architecture for outlier detection. Sec-
ondly, we introduce estimated visibility and laser intensity as additional
input signals to the network. Third, we introduce a novel carefully
curated dataset, that enables supervised training and evaluation for
reflection-induced outlier removal. In Section 3.1 we introduce the
problem setting and provide a general motivation and overview of our
approach. In Section 3.2 we present our proposed architecture design,
whereas Section 3.3 describes the input to the network, including the
point cloud decomposition and our proposed visibility signal as an
additional feature input.

3.1. Motivation and overview

Given a point cloud 𝑃 consisting of an unordered set of point 𝑃 =
𝑝𝑖}𝑖=[1..𝑛], where 𝑝𝑖 ∈ R3, the goal of outlier detection is to label each
oint 𝑝𝑖 as either belonging to the real underlying geometry or being
n outlier. A common learning-based approach for outlier detection,
s introduced in Rakotosaona et al. (2020), is to consider the local
eighborhood 𝑖 of every point 𝑝𝑖 within the point cloud 𝑃 , and
o make a prediction of whether 𝑝𝑖 is an outlier, by feeding 𝑖 to
ome trainable predictor 𝛩(𝑖), where 𝛩 are the parameters of the
etwork  . For example, in Rakotosaona et al. (2020) the authors used
ointNet (Qi et al., 2017a) as the backbone network  and 𝑖 was
uilt via 𝑖 = {𝑝𝑗 ∈ 𝑃 , s.t. ‖𝑝𝑗 − 𝑝𝑖‖ < 𝑟}, i.e., all points 𝑝𝑗 within

that are less than some fixed distance 𝑟 away from 𝑝𝑖. Intuitively,
y analyzing the distribution of points in the neighborhood of 𝑝𝑖 it
hould be possible to decide whether 𝑝𝑖 is an outlier. Unfortunately,
espite its simplicity, this method has two fundamental limitations:
irst, the predictions at different points are done independently, since
ach point is simply considered as the centroid of its patch. This both
an lead to discontinuous predictions within the larger point cloud,
nd furthermore can make detecting structured outliers difficult, as such
ecisions might depend on correlations between different points. The
econd limitation of this approach is the limited receptive field size
f  , which only considers a small local patch around each point. As
e demonstrate below, this leads to very poor prediction accuracy of

eflection-induced outlier detection.
To address these issues, we propose to replace the local

lassification-based approach introduced in Rakotosaona et al. (2020)
ith a semantic segmentation network. Thus, we propose to decompose

he input point cloud that represents an industrial scene into a set of
arge overlapping regions. We then feed each region 𝑅𝑚 into a semantic
egmentation network  so that its output 𝑓 = (𝑅𝑚) gives a prediction
core 𝑓 (𝑝𝑖) for every point 𝑝𝑖 in 𝑅𝑚 of whether it is an outlier. The key
ifference from the approach described above is that the predictions
or all the points within 𝑅𝑚 are made jointly, and furthermore, we use
significantly larger receptive field size by decomposing a scene into

small set of overlapping regions rather than associating a local patch
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to each point in the point cloud. Finally, at test time, if
{

𝑅𝑘
}

𝑘∈[0,𝐾]
regions overlap at a given point 𝑝𝑜𝑣𝑒𝑟𝑙𝑎𝑝, we compute the final prediction
𝑓 (𝑝𝑜𝑣𝑒𝑟𝑙𝑎𝑝) by averaging over the predictions in each individual region
{

𝑓𝑘
}

𝑘∈[0,𝐾]: 𝑓 (𝑝𝑜𝑣𝑒𝑟𝑙𝑎𝑝) =
1
𝑘
∑𝐾

𝑘=0 𝑓𝑘(𝑝𝑜𝑣𝑒𝑟𝑙𝑎𝑝).

3.2. Architecture design

As highlighted above, we propose to use a semantic segmentation
architecture to perform the classification of the input point clouds into
inliers and outliers.

Our network architecture, illustrated in Fig. 3, closely follows the
design recently advocated in Liu et al. (2020). It consists in a Residual
U-Net network with the following building blocks:

• A down-sampling block: we combine a strided residual block
with two residual blocks, both leveraging the chosen convolution
operator in their middle layer (see the light-blue box on the right
of Fig. 3). The down-sampling is achieved by performing a grid
sub-sampling.

• An up-sampling block: we use a 1-nearest neighbor upsampling
to project the low-resolution features on the points of the next
resolution, followed by a simple multi-layered perceptron.

A key design decision within our architecture is the choice of
local convolution operator. In our default implementation we use the
pseudo-grid kernel point convolution (Thomas et al., 2019) (Grid.).
This operation is obtained by first placing a kernel of points with
fixed position at each input point. After this, neighboring features,
weighted by their relative distance to the closest kernel point, are
summed to produce a new feature value at each kernel point location.
The contribution of each kernel location is multiplied by a weight to
produce the output feature at each point location. The fact that the
layout of the kernel points is regular, as if the points were lying on a
grid explains the name of this approach.

We have also performed extensive experiments to compare this
choice of convolution operation with alternative approaches, including
more recent ones based on sparse convolution with the
MinkowskiEngine (Choy et al., 2019), PosPool (Liu et al., 2020),
adaptive weights (Wang et al., 2018b), multi-layered perceptrons and
Point Transformer (Zhao et al., 2021). In Appendix A, we present a
comparison of our default implementation with different convolution
operations. Interestingly, most of the conclusions that we draw (e.g., on
the role of the receptive field size) remain independent of the choice
of the convolution operation. However, pseudo-grid kernel point con-
volution produces the best results in practice, which is why we adopt
it throughout our approach.

Layer setup. All layers are followed by batch-normalization with
momentum 0.9, followed by ReLu non-linearity. At each down sam-
pling stage, the radius and the grid subsampling size of the previous
step are multiplied by 2. Conversely, at each up-sampling stage, the
radius and grid subsampling size are divided by 2. The base radius size
is set to 1∕32th of the input radius.

Number of points. The number of sampled points depend on the
characteristics of the dataset considered. In our study, we focus on
a dataset with statistical outliers and a real-world dataset featuring
structured outliers. For statistical outliers, the input number of points
s set to 500 for all receptive fields, following the choice of the authors
f PointCleanNet (Rakotosaona et al., 2020). For structured outliers,
he input number of points is set to 15000 for the largest receptive field
adii (starting at radii ≈ 0.5 m), following the parameter setup of the
uthors of PosPool (Liu et al., 2020). For smaller radii, the number of
oints is linearly decreased down to a minimum number of points of
024. For instance, a patch radius of 0.3 m uses 7500 input points.
Spatial subsampling. To reduce the computational footprint of our

ethod (see Appendix F for our computation hardware details), we
ubsample all our scenes to a 5 mm spatial subsampling.
187
Hierarchical down-sampling and up-sampling. The ResUNet ar-
hitecture design that we employ leverages a U-Net-like structure (Ron-
eberger et al., 2015), that requires to down-sample the input patch of
oints progressively in the left branch of the ‘‘U’’ and to upsample it
ack in its right branch. Different choices are possible to downsample
n input point cloud. The most common options (Hu et al., 2020) are
arthest point sampling (FPS), random sampling and grid subsampling.
or the experiments presented in this paper, we select the latter because
t allows a more natural comparison with voxel-based methods.

.3. Network input

Point cloud decomposition The input of our default network
onsists of the 3D 𝑋𝑌𝑍 coordinates of the points contained within a
pherical neighborhood of the full point cloud (i.e. the coordinates are
entered around the neighborhood’s center). This spherical neighbor-
ood is the receptive field or, as mentioned in Section 3.1, the input
egion 𝑅𝑚 of our network.

During training, we randomly select region centers among ‘‘inlier’’
nd ‘‘outlier’’ points from all training scenes, so that each batch con-
ains an equal number of ‘‘inlier’’ and ‘‘outlier’’ patch centers. This se-
ection ensures that the network is equally exposed to patches contain-
ng both classes of points, even when considering highly imbalanced
atasets.

At test time, we subsample each point cloud using a subsampling
istance of half the diameter of the network’s receptive field and use
he corresponding points as the centers of the patches for which the
etwork will perform a prediction. As described in Section 3.1, we
verage the overlapping predictions as they occur at test time.
Point Visibility as an Additional Input Feature Our setup differs

rom standard statistical outlier removal mainly because local infor-
ation is insufficient to decide whether a patch of points was taken

rom actual geometry or belongs to a cluster of structured outliers
hat resemble the underlying geometry (see Fig. 2 top). In addition
o proposing a novel adapted semantic segmentation architecture, as
escribed above, we also introduce additional non-local features, as

input to the network, that are dependent on the long-range interaction
between points in the 3D point cloud.

Visibility is a non-local property: given a point of view, a point
can be occluded with respect to this point of view by another point,
that can be arbitrarily far away. We observe that in the context of
reflection-induced outliers, visibility is particularly meaningful since the
vast majority of the outlier points should be occluded by points cor-
rectly acquired on the reflective surfaces and are henceforth much more
to likely be tagged as ‘‘invisible’’ than inlier points. See for example
the inset of Fig. 1. Interestingly, we note (and demonstrate empirically
in Section 5) that using a classical non-learning based method to
estimate visibility and using it as an additional signal to the network
boosts the overall performance of our pipeline significantly. Visibility
Computation A widely used approach for determining the visibility
of points in the input point cloud has been introduced by Katz et al.
(2007). In our framework, we exploit it as an additional guiding input
signal for non-local outlier detection.

Indeed, since the visibility computation is conducted on a complete
scene, it leverages non-local information in the sense that more informa-
tion than a point cloud patch is available at the time of its computation.
The approach proposed in Katz et al. (2007) for computing visibility
consists in flipping all points in an input point cloud on the exterior
of a virtual sphere, with fixed radius, centered at a viewpoint and
encompassing the entire point cloud. The points lying on the convex
hull of the resulting point cloud represent the points visible from the
viewpoint considered for the given radius of the sphere. This radius
is the unique hyperparameter of the algorithm. For completeness,
in Appendix D we provide additional details on the visibility feature
computation and parameterization.
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Fig. 3. Illustration of our network architecture following the design adopted in Liu et al. (2020). N and C indicate respectively the number of points and the feature dimensionality,
MLP stands for multi-layered perceptron, Conv. designates the convolution operator employed and Res. stands for residual.
Fig. 4. Illustration of a scanned room, shown from different viewpoints. Figure (a) shows the panoramic view of the acquired scene (i.e. the viewpoint of the acquisition device).
Notice the large quantity of outlier points (yellow). Figure (b), an orthographic view of the room near the scanning device (cyan point) with the trajectory of the laser beam
depicted with arrows. The green solid arrow corresponds to the trajectory of a correctly acquired point, the red solid arrow shows the trajectory of a reflected ray and the red dashed
arrow represents the erroneous trajectory inferred by the acquisition device based on the laser signal it received back. Figure (c) illustrates a global view of the point cloud with
color-coded ground truth annotation, a reconstructed 3D model of walls and floor in gray to provide semantic context, and the real surface of the reflective piping in solid black
line. The location of the acquisition center is shown by a cyan point, and the viewing direction by a cyan arrow. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
4. Datasets

4.1. A real-world structured outlier dataset

As mentioned above, obtaining labeled data for real-world struc-
tured non-local outlier detection is difficult. Therefore, little effort
has been done to assess the quantitative performance of different
approaches for this task. To the best of our knowledge, our dataset is
the first to be specifically designed for benchmarking outlier detection
in an industrial context, that contains reflection-induced artifacts. We
first present the content of the dataset before highlighting the novelty
of our proposed downstream task with respect to existing ones.
188
4.1.1. Overview
Our dataset is composed of a collection of rooms from industrial

power-plants acquired via a fixed TLS (Terrestrial Laser scanning) de-
vice mounted on a tripod that produces large-scale point clouds (around
45 Million points per scene). These rooms contain piping that has the
property of being heat-insulated with a highly reflective material. The
main task is to detect the outliers produced by the deflection of the TLS
system’s laser beam in order to remove them. This setup is especially
challenging compared to traditional indoor or outdoor scenes (Behley
et al., 2019; Hackel et al., 2017; Dai et al., 2017; Armeni et al., 2017;
Song et al., 2015) because industrial facilities are environments in
which objects are highly clustered, as illustrated in Fig. 5. We adopt the
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Fig. 5. Examples of two rooms from our dataset. The top row depicts the ground truth segmentation between Inliers and Outliers. The bottom row presents the normalized
color-coded intensity signal.
Fig. 6. Performance of our approach, two non-learning local outlier removal techniques
Rad. and Stat., PointCleanNet (PCN) and ScoreDenoise, evaluated at increasing input
patch radii for the semantic segmentation network. The evaluation is conducted on the
shapes of the famousthingi test set. The radius is expressed as a percentage of the shape
diameter. PR-AUC stands for precision–recall area under the curve.

following labeling convention: the negative class (0) represents inliers,
while the positive class (1) encodes outliers.

Content. The dataset consists in 21 scans stemming from 14 stations
of 3 different facilities of Électricité de France. The point clouds were
acquired using a Leica Z+F 5010C and a Leica HDS 7000 laser scanners.
Both are high quality laser scanners, and produce point clouds with a
density of at least one point every 3 mm at 5 m of the acquisition center.
The local noise on standard materials is at most of 1 mm in terms of
RMS.

The labeling procedure was conducted by a trained field expert
using the 3D point cloud processing software RealWorks by Trimble.
Additional external cues including panoramic images of the environ-
ments and floor plans of the industrial plants were used for context
during the labeling procedure. In ambiguous cases, the ‘‘inlier’’ label
was assigned by default. Each scan is equipped with estimated normals,
the normalized laser intensity signal and the annotation of the inlier
and outlier points provided by the expert. For our testing set, the data
was cross-validated by a rigorous internal process, that also uses ground
truth floor plans and 2D image views.

Train/Test split: Throughout all comparisons we used 13 scans
from two facilities for training and validation, while the remaining 8 are
used to evaluate the method at test time. Note that the test set contains
stations from an entirely different facility than those used during train-
ing. This makes the problem particularly challenging as a successful
method must not only be able to exploit long-range correlations within
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Table 1
Statistics on our dataset. It consists in 21 scans of 3 facilities of Électricité de France,
across 14 scenes.

Quantity Train Validate Test Total

# points (sum) 15 048 663 6 872 918 2 693 886 38 130 522
# points (mean/scan) 1 504 866 2 290 973 2 026 118 1 815 739
% outliers (mean/scan) 34.6 20.9 20.5 27.2

the input point cloud, but also be sufficiently skilled to generalize to
entirely new, unseen scenes from different industrial facilities.

During preprocessing, each scan is first downsampled to a spatial
resolution of 5 mm. A manual distance thresholding was then performed
along the vertical axis to roughly trim the points lying on different
floors, as well as a distance thresholding, so that points lie within a 5
m sphere around the acquisition device. Table 1 summarizes statistics
on the number of points and the percentage of outliers present in the
dataset.

4.1.2. Novelty of our problem setup
As highlighted above, our setup is novel and challenging because

we consider structured non-local outliers caused by arbitrary and ir-
regular reflective surfaces, which is neither standard (statistical, non-
structured) outlier detection that involves artifacts lying nearby real
geometry, nor reflection detection on planar glass panes or perfect
mirrors. In Section 4.2, we give an overview of the most closely related
dataset to ours, and highlight the difference of our setup.

Although our setup is related to mirror detection in RGB-D data
via 2.5D techniques (i.e. using 2D convolutional neural networks with
depth as an additional channel), our problem is both different and
more challenging because: (i) we have a limited amount of data at our
disposal, as highlighted in Appendix C; (ii) the reflective surfaces that
we consider are not planar and rectangular, but can have a great variety
of configurations (see the illustrations of our dataset in Appendix B);
(iii) we focus on unorganized 3D point clouds, making the resulting
method versatile and independent of the acquisition method.

4.2. Statistical outlier datasets

When considering statistical outliers, we train different methods on
the PointCleanNet dataset for outlier detection introduced in Rakoto-
saona et al. (2020) and evaluate on the dataset FamousThingi (Rakoto-
saona et al., 2021). The first dataset presents a collection of 28 shapes,
sampled in distinct point clouds, each containing 140K points with
40% of outliers. The second dataset consists of 31 shapes, from which
we sample 50K surface points with the same percentage of outliers.
Both datasets share the property of containing exclusively man-made
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Fig. 7. Outlier detection on our statistical outliers test set (at the top left, top right and bottom are respectively the ‘‘Eiffel_Tower_mini’’, ‘‘companion-dodec’’ and ‘‘unicorn’’ shapes),
using either a semantic segmentation ResNet (ResUNet) or PointCleanNet (PCN). TP, TN, FP and TN respectively designate true positives, true negatives, false positives and false
negatives.
Fig. 8. Performance in terms of area under the precision–recall curve (PR-AUC), of our
approach using only raw XYZ coordinates at increasing input patch radii compared to
local denoising approaches on our dataset. The radius is expressed as a percentage of
the maximal scene radius (5 m).

shapes, and only contain synthetic outlier points, unlike our dataset
which is composed of real-world data. The outlier points are gener-
ated by adding points with random coordinates uniformly distributed
in the unit cube that contains each shape. This setting is of course
vastly different from point clouds produced by real-world acquisitions.
This setup is nevertheless common to train and evaluate a denoising
pipeline. We choose to evaluate on FamousThingi instead of the test set
of the PointCleanNet dataset in order to have more evaluation shapes
than this test set contains (10 shapes) and to achieve a greater variety
between the training and testing shapes. Indeed, both datasets have no
shape in common.

4.3. Evaluation metrics

To study the effect of changing the receptive field size and the type
of convolution operator, we leverage the area under the precision–
recall curve (PR-AUC) metric. This metric allows to summarize the
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performance of each tested model under varying decision thresh-
olds. Moreover, the inlier-outlier distribution is imbalanced (there
are roughly 80% inliers for 20% outliers in the dataset) and this
metric is especially suited for imbalanced class distributions (Davis and
Goadrich, 2006).

We also evaluate different designs using standard evaluation met-
rics, namely the accuracy, the precision, recall and mean intersection
over union.

5. Results

5.1. Baselines

In the experiments that we carry on in this section, we consider the
following baselines.

• PointCleanNet (Rakotosaona et al., 2020) (PCN). PointCleanNet
proposes a two-step denoising pipeline: first, the outlier points are
detected by a network that outputs an outlier score, trained with
the 𝐿1 regression loss; second, the remaining ‘‘inlier’’ points are
denoised by estimating an offset vector. Note that both networks
take a patch of points as input and output a score/denoising
offset for the center point of the patch only. For this study, we only
consider the outlier detection part that we retrained using the
same setup as for the other networks.

• ScoreDenoise (Luo and Hu, 2021). This network is a state-of-the-
art denoising architecture that leverages EdgeConv-like (Wang
et al., 2019b) convolution operations. The network predicts a
gradient score that allows to displace noisy points back to their
original position. For our comparison, we retrain the network
to output a per-point probability for the inlier and outlier class,
trained with the cross-entropy loss.

• Statistical outlier removal (Stat.). Points that are further away
from their neighbors than the average distance for the full point
cloud are labeled as outliers. We use Open3D’s implementa-
tion (Zhou et al., 2018) and consider a neighbor number of 4,
16, 128 and 256.

• Radius outlier removal (Rad.). Points that have a number of
neighbors within a spherical neighborhood smaller than a given
threshold are considered as outliers. We also use Open3D’s imple-
mentation for this method with the same number of neighbors.
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Fig. 9. Qualitative illustration of the predictions obtained with ScoreDenoise (𝑘 = 256). We color-code the true negative (TN), true positive (TP), false positive (FP) and false
negative (FN). Note how bad the outlier class is segmented (high rate of false negatives).
Fig. 10. AUC under the precision–recall curve, expressed in percent, of our network
using different sets of features as a function of the patch radius size, expressed in
percent of the maximal scene radius (5 m). The ‘‘Grid’’ local point operator is used.
Note how the combination of visibility and intensity yields the best results.

Note that the two last methods are non-learning and are extremely
close in spirit. Therefore, we only display results using the statistical
outlier removal baseline in our experiments on the real-world dataset
(Section 5.3).

5.2. Pilot study

As a first experiment, we use the statistical outlier dataset pro-
posed by the authors of Rakotosaona et al. (2020) to train a ResNet
with pseudo-grid convolution operator, compared to our baselines (see
Section 5.1).

The evaluation is performed on 31 test shapes of the famousthingi
dataset (Rakotosaona et al., 2021), from which we sampled 50𝐾 points,
with a proportion of 40% outliers, randomly sampled within the unit
cube.

Fig. 6 depicts the outcome of this experiment. First, we note that
the two non-learning approaches Stat. and Rad. are competitive with
the learning-based approaches when selecting the proper 𝑘 parameter
value. Second, the ResNet consistently outperforms ScoreDenoise in
terms of precision–recall AUC (PR-AUC) and is comparable to PCN for
radius values of 20% of shape diameter. Third, the AUC decays for a
radius greater than 20% of the shape’s diameter for both PCN and the
ResNet, which indicates that adding long-range context is unimportant
for statistical denoising. Finally, PCN requires a careful tuning of its
receptive field size to obtain maximal performance, and given such an
appropriately-chosen receptive field size, this architecture does provide
the best overall performance. This problem is thus indeed solvable
using PCN, as claimed by the authors of that work. This last conclusion
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is in strong contrast to the reflection-induced outliers problem as we
will see in the next section.

Fig. 7 qualitatively illustrates the prediction obtained with PCN
and the ResNet on the evaluation dataset. We note that the ResNet’s
predictions are smoother than those of PCN and that the decay in
PR-AUC also translates to worse predictions for both architectures.

5.3. Results on the real-world dataset

5.3.1. Impact of the receptive field size
In order to compare our proposed approach to competing baselines,

we first train and evaluate the different models on our dataset at
increasing receptive fields, up to 7% of the total scene radius (5 m).
The result of this experiment is shown in Fig. 8 in terms of PR-AUC.

We note that the non-learning approach LOF performs poorly, due
to its local and solely density-driven nature. Moreover, the evaluation
clearly highlights the ineffectiveness of traditional denoising pipelines:
neither PCN nor ScoreDenoise provide meaningful predictions in this
context.

On the contrary, our approach vastly outperforms the aforemen-
tioned baseline approaches and we observe an increase in performance
as the receptive field of the network is increased: at 7% of the scene
diameter, the performance of our model is maximal with a PR-AUC of
77.87%. The additional challenge that represent our new dataset can
be seen when comparing this maximal value with the best perform-
ing method of the pilot study (90% of PR-AUC). Fig. 9 provides a
qualitative illustration of ScoreDenoise’s performance on a test scene
with 𝑘 = 256, the best performing version of this network on our
experiments. The prediction is biased towards the inlier class and fails
to accurately predict the outlier class. PCN provides predictions of a
similar quality.

In general, the results obtained on our real-world dataset are in
strong contrast with the outcome of our pilot study (Section 5.2).

Finally, Table 2 compares our method to PCN and ScoreDenoise
when computing an inference on a point cloud with around 2.3M
points. We use the same setting for all networks as for our other
experiments. The comparison shows that our method is faster to com-
pute than our competitors by orders of magnitude. This is due to
the fact that we perform predictions on a full patch of points. On
the contrary, PCN, processes each point in a point cloud individually.
Similarly, ScoreDenoise can only infer a few points per patch due to its
construction of a local graph structure.
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Fig. 11. Qualitative illustration of the interest of adding features on a ‘‘standard’’ scene from our test set. In the left column, we display from top to bottom the ground truth,
the intensity signal and the computed visibility feature. In the right column, we show the true negative (TN), true positive (TP), false positive (FP) and false negative (FN) when
using the different feature sets and the Grid local point operator. The positive class designates the outlier points, and the negative class the inlier points.
Table 2
Inference computation time of PCN, ScoreDenoise and our approach on a point cloud
with around 2.3M points.

Network PCN ScoreDenoise Ours

Execution time 2 days, 34 min 22 s 19 min 31 s 2 min 26 s

5.3.2. Visibility and intensity as input feature: a quantitative study
Input features are paramount to efficiently solve a semantic segmen-

tation task. In our setup, instead of the traditional per-point RGB color
information, the intensity value of the laser acquisition is available at
each point. Our study aims at highlighting that a joint use of inten-
sity and visibility reaches optimal performance. This result is largely
independent of the local point operator used.

The interest of using a combination of visibility and intensity feature
appears clearly when computing the PR-AUC, as can be seen in Fig. 10.
We provide more experimental results on the interest of jointly using
intensity and visibility in Appendix E.

First, we note that in all cases, the PR-AUC value decays after
attaining its maximum and reaches values that are smaller than the
ones observed at 7 % of the scene radius.

Second, we note that the visibility and intensity signals have very
similar behaviors. They perform significantly better than raw coordi-
nates for all receptive field sizes. We also observe that ReVISOR roughly
maintains the same PR-AUC across large receptive fields and that it stays
the best performing design compared to the sole use of intensity or
visibility.
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Our main hypothesis to explain the interest of using both intensity
and visibility for the segmentation of structured outliers lies in the joint
characteristics of these features. More specifically, both features behave
in a ‘‘complementary manner’’ in terms of segmentation performance
when employing a simple thresholding of their value. This is due to
the fact that (i) intensity is low, whereas visibility is high in structured
outlier regions and (ii) intensity is sensitive to physical properties of the
acquired surfaces whereas visibility is not. We provide further analysis
on this matter in Appendix E.

Figs. 11–13 illustrates the use of different input features on the same
test scans of our dataset.

Adding intensity marginally reduces the number of false positives,
at the cost of more false negatives in Fig. 11. The incorporation of
visibility provides fewer false negatives in areas far from the acquisition
center and on slanted surfaces.

We further note in Fig. A.16 that adding intensity alone does not
allow to correctly label as an inlier region the sphere-shaped device
located in the middle of the image, whereas the visibility-enhanced
architectures label this equipment correctly.

As an additional comparison, we also evaluated a classifier that
labels as outliers all points in the scene displayed on Fig. 12: the
resulting PR-AUC is 23.21%, which is significantly lower than the
models that we display.

In Fig. 13, the addition of features does not improve the detection
performance of the large reflective area on the right hand-side of the
image. Nevertheless, the small piping located in the middle of the image
present significantly less false positives and false negatives when using
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Fig. 12. Qualitative illustration of the interest of adding features on a ‘‘standard’’ scene from our test set. In the left column, we display from top to bottom the ground truth,
the intensity signal and the computed visibility feature. In the right column, we show the true negative (TN), true positive (TP), false positive (FP) and false negative (FN) when
using the different feature sets and the Grid local point operator. The positive class designates the outlier points, and the negative class the inlier points.
our ReVISOR feature setup, rather than raw coordinates, intensity alone
or visibility alone. Fig. 13 is a ‘‘difficult’’ setup: the strong reflection on
the right side of the acquisition is associated with a high intensity value.
Moreover, since this region is close to the acquisition device and since
the parts of the piping that were correctly acquired have a small area,
the visibility signal is less effective.

6. Conclusion

In this paper, we studied two setups for outlier detection: (i) ‘‘sta-
tistical’’ outliers generated on synthetic shapes via random local 3D
displacements and (ii) structured, non-local outliers present in real-world
acquisitions of industrial power-plants.

Our study on statistical outliers, that our research community has
mostly focused on, highlighted that learning-based approaches with
small receptive fields are key to produce better results than non-learning
techniques that remain competitive in this setup. A careful choice of
receptive field size is required to obtain maximal performance and the
quality of predictions decays rapidly for large receptive field sizes.

For the second class of outliers, we presented a new dataset, specifi-
cally designed for segmenting reflection-induced outliers in large-scale
3D point clouds. The dataset contains industrial TLS stations with
highly reflective piping, which provides a challenging, real-world use
case scenario for structured outlier detection. The dataset proposes 21
diverse industrial TLS stations, corrupted with structured noise. It is
annotated by experts with many years of experience in this task, and
cross-validated by a rigorous internal process that uses ground truth
floor plans and 2D image views for our testing set.
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We propose the first effective baseline approach for this problem,
based on a semantic segmentation network with adapted features.
It strongly outperforms existing methods for our structured outlier
detection problem. We investigate the role of the receptive field size of
different architectures, and highlight the importance in our context of
medium to large patches, since locally many outlier patches resem-
ble clean geometry. We demonstrate the utility of visibility features,
which help boost the performance, again by providing cues about the
non-local configuration of objects. The best performance is obtained
when using the laser intensity and the point visibility as input signal,
regardless of the convolution operator employed. Hence, we denote
the proposed pipeline as ResUNets with Visibility and Intensity for
Structured Outlier Removal (ReVISOR).

The main limitation of our framework is its supervised nature. La-
beled data is hard to obtain for this class of problem and therefore, the
size of our dataset is limited compared to other 3D point cloud datasets.
New mobile hand-held laser scanning devices are likely to introduce
other types of structured noise, which constitutes an opportunity to
enrich our dataset and apply our methodology to a more general task,
where the acquisition center is not clearly identified anymore.

Another perspective would be to better exploit long-range depen-
dencies without relying on large patches. Making the visibility com-
putation differentiable would be of interest in this regard, as it would
allow to adjust the computation of visibility so that outlier points are
considered as ‘‘invisible’’ in more ambiguous or difficult cases. With an
increased amount of data, other architecture designs than Residual U-
Nets could be considered to efficiently encode large-scale information.
Graph-based approaches with super-points (Landrieu and Simonovsky,
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Fig. 13. Qualitative illustration of the interest of adding features on a ‘‘difficult’’ scene from our test set. In the left column, we display from top to bottom the ground truth,
the intensity signal and the computed visibility feature. In the right column, we show the true negative (TN), true positive (TP), false positive (FP) and false negative (FN) when
using the different feature sets and the Grid local point operator. The positive class designates the outlier points, and the negative class the inlier points.
2018) or Transformer networks (Yu et al., 2022) for example could be
trained on a larger dataset. We see these extensions of our approach as
an exciting direction for future work.
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Appendix A. Comparison of different convolution operations

We have compared a range of different backbone convolution ap-
proaches when implementing our residual U-Net architecture. Specif-
ically we have compared the pseudo-grid kernel point convolution
(Thomas et al., 2019) used in our default implementation with sparse
convolution using the MinkowskiEngine (Choy et al., 2019), PosPool
(Liu et al., 2020), adaptive weights (Wang et al., 2018b), multi-layered
perceptrons and point transformer (Zhao et al., 2021):
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Fig. A.14. Performance in terms of area under the precision–recall curve (PR-AUC),
of a semantic segmentation ResUNet using various local point operator at increasing
input patch radii compared to local denoising approaches on our dataset. The radius
is expressed as a percentage of the maximal scene radius (5 m).
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Fig. A.15. Qualitative evaluation of different local point operators, without features. The ground truth (GT ) is provided in the top left cell, while each following cell depicts
the true negative (TN), true positive (TP), false positive (FP) and false negative (FN) when using MinkowskiEngine (ME), PosPool (PPool), Adaptive weights (Adap.), Pseudo-grid
(Grid.) or multi-layered perceptrons (MLP).
• MinkowskiEngine (Choy et al., 2019) (ME): the input point cloud
is first voxelized. The output feature at each voxel is computed via
a convolution between the features of nearby voxels and sparse
3D grid kernels.

• Adaptive Weights (Wang et al., 2018b) (Adap.): a stack of fully-
connected layers processes the relative point coordinates of each
input point. The output of this operation is multiplied by the
relative point features in a point-wise fashion and summed to
obtain the new feature value.

• Pseudo-grid kernel point convolution (Thomas et al., 2019) (Grid.)
: a kernel of points with fixed positions is placed at each input
point. Closeby neighboring features, weighted by their relative
distance to the closest kernel point, are summed to produce a
new feature value at each kernel point location. The contribution
of each kernel location is multiplied by a weight to produce the
output feature at each point location. The fact that the layout of
the kernel points is regular, as if the points were lying on a grid
explains the name of this approach.

• Multi-layered perceptrons (MLP): at each point, fully connected
layers are applied to the concatenated relative point positions and
neighboring features, followed by a max-pooling operation. This
design is equivalent to Pointnet++ (Qi et al., 2017b).

• Point Transformer (Zhao et al., 2021) (POTR): a local attention
mechanism, based on the relative position of neighboring points
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is employed to weight the contribution of nearby points. The
key, query and value embeddings are computed from the relative
positions via fully connected layers.

Note that the approaches Adap. and MLP are not defining a convo-
lution operation explicitly, but learn a deep function to aggregate
neighboring point representations. Except for ME, where neighboring
voxel positions are used, all relative neighborhoods consist in a sphere
neighborhood with fixed radius.

To choose the local point operator that is best suited to our task,
we train and evaluate these different approaches on our dataset at
increasing input patch radii, with local 3D coordinates as sole input. Our
results are summarized in Fig. A.14.

We observe that all operators behave similarly and attain their best
performance for a patch diameter of 7% of the scene radius (5 m),
that is a patch radius of 0.35 m. Nevertheless, the best PR-AUC score
obtained in this configuration is 0.78, and is attained by the (pseudo-
)Grid local point operator. It empirically justifies our choice of the Grid
local point operator for the ResUNet part of our ReVISOR framework.

Figs. A.15–A.17 provide a qualitative illustration of the different
operators using this optimal parameter setup. We observe that the
tested operators output results that are very close. The outlier points
are well detected for medium-sized pipings, such as in Figs. A.15 and
A.16, and cause more difficulty for extreme reflection cases, such as
in Fig. A.17, where many outliers are missed no the right hand-side of
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Fig. A.16. Qualitative evaluation of different local point operators, without features. The ground truth (GT ) is provided in the top left cell, while each following cell depicts
the true negative (TN), true positive (TP), false positive (FP) and false negative (FN) when using MinkowskiEngine (ME), PosPool (PPool), Adaptive weights (Adap.), Pseudo-grid
(Grid.) or multi-layered perceptrons (MLP).
the image and at the bottom. We note nevertheless that the ‘‘POTR’’,
‘‘Grid’’ and ‘‘PPool’’ operators display fewer segmentation errors.

Appendix B. Illustration of our full dataset

To highlight the diversity of the scenes that we use to train and
evaluate our architecture, we illustrate our complete dataset with our
training scenes presented in Figs. B.18 and B.19 and our test scenes
in Fig. B.20. Notice the variety of shapes and configurations present
in both scenes and the differences between the training set and the
evaluation set.

Appendix C. Comparison with mirror segmentation architectures

Table C.3 provides the quantitative comparison between PDNet
(Mei et al., 2021) and our approach. It highlights that state-of-the-
art RGBD-based mirror segmentation approaches are not successful
on our dataset. We hypothesize that the networks leveraged by these
approaches require more training examples than what we provide.
Moreover, they target planar mirrors, a setting that is less general than
ours: the reflective surfaces are irregular piping in our dataset.

PDNet is trained on our dataset, with each scan converted via
a spherical projection to an RGB image and a depth map of size
3000 × 1500 pixels, for 50 epochs. Each input RGB image is a patch of
size 416 × 416 from the full-resolution image, with the laser intensity
signal in grayscale. Intensity represents indeed the feature closest to
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Table C.3
Evaluation of various convolution operators (Conv.) and a recent mirror
segmentation method (Meth.), namely PDNet (Mei et al., 2021). Since
we use the laser intensity to obtain grayscale images as input for PDNet,
we compare to the semantic segmentation approaches with the intensity
as input feature. PPool stands for PosPool (Liu et al., 2020), Adap. for
Adaptive weights (Wang et al., 2018b), Grid for pseudo-grid kernel-
point convolution (Thomas et al., 2019) and MLP for Multi-Layered
Perceptron. All quantities are expressed in percents.

Conv./Meth. Features Acc. mIoU

Mirror Segmentation

PDNet (Mei et al., 2021) intensity 79.34 0.16

Semantic segmentation ResUNet

PPool intensity 85.67 51.74
Adap. intensity 85.69 50.51
Grid intensity 88.39 57.47
MLP intensity 89.10 59.82

color in our setup. To ensure continuous depth and RGB maps, the
points are rendered as spherical splats of radius 0.005 ×

√

3, 0.005 m
being the spatial sampling rate of the point cloud. The output prediction
is projected back to the original point cloud to compare to the other
approaches.

To conclude, we deduce from this experiment that image-based mir-
ror detection architectures cannot be leveraged on our data, probably
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Fig. A.17. Qualitative evaluation of different local point operators, without features. The ground truth (GT ) is provided in the top left cell, while each following cell depicts
the true negative (TN), true positive (TP), false positive (FP) and false negative (FN) when using MinkowskiEngine (ME), PosPool (PPool), Adaptive weights (Adap.), Pseudo-grid
(Grid.) or multi-layered perceptrons (MLP).
Fig. B.18. Illustration of our training scenes, with color-coded ground truth.
mostly because of the unavailability of a reliable RGB input channel
(we only have access to an intensity signal) and the little amount of
data (the mirror segmentation dataset proposed in Mei et al. (2021)
consists in hundreds of scenes whereas we only have 13 scenes).
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Appendix D. Visibility computation and parameterization

In this appendix, we provide additional details on the computation
of the visibility signal that we use in our method.
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Fig. B.19. Illustration of our training scenes, with color-coded ground truth.
D.1. Computation

Given a point cloud  =
{

𝑝𝑖
}

𝑖∈[1,𝑁] with 𝑁 points and a viewpoint
𝐶 (the acquisition device location in our case), the algorithm developed
in Katz et al. (2007) assigns to each point a label: 0 if the point is
visible and 1 if the point is invisible from 𝐶. The core of this approach
consists in the hidden point removal (HPR) operator, that processes the
point cloud in two steps (see Fig. D.21).

1. Spherical inversion. Given  and a sphere that contains all
the points of  , the spherical inversion consists in reflecting all
𝑝𝑖 ∈  with respect to the sphere. The reflection of 𝑝𝑖 is denoted
as 𝑝𝑖 and is computed as follows:

𝐩𝐢 = 𝐩𝐢 + 2
(

𝑅 − ‖𝐩𝐢‖
)

⋅
𝐩𝐢

‖𝐩𝐢‖
.

2. Convex hull regression. Given the set of all reflected points
̂ =

{

𝐩𝐢
}

𝑖∈[1,𝑁], compute the convex hull of ̂ ∪ {𝐶}.

D.1.1. Parameterization
The computation of the visibility feature relies on a hyper-

parameter, namely the radius of the inversion sphere 𝑅. To observe
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significant changes on the visibility, an exponential change of 𝑅 is
required. We thus reparameterize 𝑅 with 𝛾 as such: 𝑅 ∶= 10𝛾 .

Inspired by the approach of the authors of the visibility computation
method (Katz et al., 2007), we determine 𝛾 as a trade-off between
precision and recall when using the raw feature value as the outlier
segmentation on the training and testing sets of our dataset. Fig. D.22
(purple lines) shows the output of this computation. Intuitively, since
𝑅 ∶= 10𝛾 , where 𝑅 is the radius of the inversion sphere, 𝑅 has
the same variations as 𝛾. Moreover, as displayed on Fig. D.21, small
values for 𝑅, i.e. small values for 𝛾, yield a larger number of invisible
points. Conversely, large values for 𝑅/𝛾 correspond to a small number
of invisible points. Now, recall that invisible points are likely to be
reflected outliers, occluded by inlier points and that we are classifying
invisible points as outliers in this experiment. The decay of the recall
corresponds to a decay in the number of visible points. Extreme values
for 𝛾 are not informative since they correspond to either a ‘‘all points
are outliers’’ or a ‘‘all points are inliers’’ segmentation. The optimal
parameter has to be chosen ‘‘in the middle’’ of these extreme values.
Since the intersection of the precision and recall curves occurs for
𝛾 = 3.2, we select this value as our ‘‘middle value’’ and use it to compute
the visibility feature in the remaining of this paper.
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Fig. B.20. Illustration of our evaluation scenes, with color-coded ground truth.

Fig. D.21. A schematic depiction of the spherical inversion with increasing inversion radii
{

𝑅𝑖
}

𝑖∈[0,3]. The inset figure shows the appearance of the point cloud from the inversion
center and the main figure shows the same scene projected on the (𝑥, 𝑧) plane. We show four different inversion radii to illustrate how the visible areas vary when the inversion
radius varies: greater radii increase the number of visible points because more inverted points get ‘‘squeezed’’ on the convex hull of visible points. At very large radii, the convex
hull is a portion of a sphere, with all points lying on it, i.e. all points are marked as visible. Conversely, at very small radii, the inverted points are ‘‘dragged’’ towards the
acquisition center and only a few number of points lie on the convex hull.
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Fig. D.22. Precision/Recall curves using the thresholded intensity or visibility feature
solely, computed on our training dataset. Both features vary in opposition, which
reinforces their joint use.

Appendix E. Visibility and intensity features with various local
point operators

In order to analyze the different local point operators that behave
best at the optimal receptive field size (40% of the scene diameter),
we feed the intensity and/or the visibility signal in addition to the
raw point coordinate to the network. Fig. E.23 presents the resulting
evaluation in terms of precision/recall and Fig. E.24 in terms of mean
accuracy and mean intersection over union.

The main insight of our study is the similar performance across the
different local point operators: all roughly perform identically, with a
slight advantage for the (pseudo-)Grid local point. Employing intensity
or visibility alone performs better than using raw 3D coordinates.
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Leveraging both features simultaneously leads to the best results for all
operators but ME and POTR. For these two last local point operator,
using intensity or visibility alone or both leads to similar results.

Appendix F. Implementation details and experimental setup

In this section, we provide more details on the implementation and
the experimental setup of the different networks that we use.

For the Adap., Grid, MLP, Pool and POTR local point operators, a
inary mask indicates to the network which points are actual points
nd which are padding points, added to the input to constitute a batch
ith a fixed number of input points (see below). The input feature
imension is fixed to 3. By default, the input features are set to a tensor
illed with ones. When an actual feature channel is used, a column
f the input feature tensor is filled with the feature values. Since we
mploy at most two features simultaneously, the dimensionality of the
rchitecture does not change. In the case where no input features are
sed, we use the local 3D coordinates as features.

All our ResUNet models are trained using the (binary) cross-entropy
oss on 70 epochs, with 2000 input patches per epoch. The starting
earning rate is set at 0.01, with a decay of 0.92 every 10 epoch. A
arm-up of 10 epochs is used with no features to initiate the training
rocedure. We use the stochastic gradient descent optimizer, with 0.01
eight decay to optimize the weights of the network.

For the evaluation, we consider a subsampling of 𝑅𝑝𝑎𝑡𝑐ℎ
4 , where

𝑅𝑝𝑎𝑡𝑐ℎ designates the radius of the patch. During the training, we
monitor the mean validation loss at each epoch and select the weights
at the epoch where the validation loss is the lowest. The validation set
consists in 320 randomly selected patches, that come from 4 different
scenes.

To train and evaluate all our models but the models with a POTR
local operator or ME convolutions, we use a computer with 187 GB
of RAM, a processor with 4 cores at 3.6 GHz and a single GPU with
16 GB of memory, running CUDA version 10.1. For the models using
the POTR local operator or ME, we employ a computer with 376 GB of

AM, a processor with 4 cores at 2.4 GHz and a single GPU with 32 GB

f memory, running CUDA version 11.0.
Fig. E.23. Benchmark of different input feature combinations in terms of precision and recall, for all tested local point operators. Each circle marker corresponds to a test scene
and each diamond marker to the average over all test scenes.

Maks Ovsjanikov



ISPRS Journal of Photogrammetry and Remote Sensing 202 (2023) 184–204M. Kirgo et al.
Fig. E.24. Benchmark of different input feature combination in terms of mean accuracy (mAcc.) and mean intersection over union (mIoU), for all tested local point operators.
Fig. G.25. Distribution of the proportion of points belonging to inliers and outliers. We distinguish between: (i) inlier points that lie on the surface of a heat insulated piping (light
green) and other inliers (dark green), and (ii) outlier points that are caused by reflections (dark red) on heat-insulated piping and other outliers (light red). The vast majority of
points belong to inliers that are not related to heat-insulated surfaces and to outliers that are induced by reflections of the laser beam on heat-insulated surfaces. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Appendix G. Supplementary material on our dataset

G.1. Distribution of points depending on their class

To supplement the presentation of our dataset ( Section 4.1), we
show in Fig. G.25 the percentage of points in each scan that fall
into each classification of points (inliers and outliers) and visualize the
distribution across all scans of the dataset. We differentiate between
reflection-induced outliers and other types of outliers and also distin-
guish inliers associated with a heat insulator from other types of inliers.
The two dominant classes are inliers not related to heat insulated piping
(all scans have more than 50% of their points falling in this category)
and reflection-induced outliers (more than 20% of points in each scan).
It justifies our choice of using only these two classes and discarding the
other two, that are both considered as ‘‘inliers’’ (i.e. points that are not
reflection-induced outliers) in our experiments.

G.2. Point cloud acquisition quality

In order to illustrate the acquisition quality of our scans, we per-
formed the following experiment on a scan from our training dataset
(top left scan in Fig. B.18, see also Fig. G.27 (right) for a photography
of the heat insulator of this room). We reconstructed a piece of the
heat insulated piping and four cylindrical shapes present in the scene,
as illustrated in Fig. G.26. Despite their geometrical similarity (all
regions are cylindrical) and their shared weak intensity (the selected
regions have less than 20% of the maximal intensity recorded by the
acquisition device), we observe that the points acquired in the heat-
insulated section are more distant from the actual surface to which they
belong compared to points in the other selected regions. Fig. G.27 (left)
201
illustrates quantitatively this qualitative assessment with the histogram
of the distances of each point to the surface to which they belong in
logarithmic scale.

G.3. Reflection-induced outliers and intensity feature correlation

The intensity signal represents an important cue for our reflection-
induced outlier detection model. However, intensity alone is insuffi-
cient to accurately segment the acquisitions. A weak intensity signal
can indeed result from two main causes: (i) the laser beam hit a
reflected material and got scattered in the scene ; (ii) the laser beam
hit a dark material and the laser beam got absorbed. Moreover, the
laser beam does not necessarily loose a significant portion of its energy
when hitting a reflective surface (see for instance the intensity map in
Fig. 11, middle section of the heat insulated piping in the foreground).

To further illustrate this limitation, we conduct the following ex-
periment on the acquisitions of our training dataset. We threshold the
intensity signal between 0 and a threshold value. The resulting binary
classification is then used as the reflection-induced outlier prediction.
The experiment is repeated for all scans individually and for 25 thresh-
old values, evenly placed between 0 and 1 (both excluded). We then
compute the accuracy of the resulting segmentations for all scans and
all threshold values. Fig. G.28 shows the value of the best threshold for
each scan. The optimal threshold value varies randomly between scans
and therefore cannot be defined a priori.

Moreover, we consider in Fig. G.29 the Pearson correlation between
the segmentation obtained for each scan at each threshold value. It
highlights that all threshold values lead to a weak to moderate corre-
lation with the reflection-induced outliers, the weak correlation being
dominant.
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Fig. G.26. Illustration of the quality of our laser acquisitions. The top image corresponds to the intensity field as viewed from the acquisition device of the top left scan of
Fig. B.18. The reconstructed shapes of piping are superimposed in black. We consider a horizontal section for the heat-insulated piping (red box) and four cylindrical sections
across the scene (green boxes). All selected areas share a weak intensity signal. For all areas, we display a magnified view of the reconstructed area from a different perspective
and visualize the absolute distance to the reconstructed mesh with a gradient of colors. For the outlier region (red box), the distances ranges from 0.0 m to 1.0 m. For the inlier
regions (green boxes), the distances are displayed between 0.0 m and 0.020 m. The distribution of distances for both regions is illustrated in Fig. G.27 (left). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. G.27. Left: Histograms of the distance to reconstructed geometry for points associated to a heat insulator section (i.e. mostly outliers, in red) and to piping that is not heat
insulated (i.e. only inliers, in green). When the bars of both histograms overlap, they are stacked. Note how the vast majority of points belonging to ‘‘regular’’ piping lies close to
the reconstructed geometry (distance to mesh below 0.025 m), while points belonging to a heat insulated piping are further away (distance to mesh greater than 0.25 m). Right:
Photography of the heat insulator in Fig. G.26. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. G.28. Best threshold value of the intensity signal for each scan in our dataset, when using the intensity signal to segment reflection-induced outliers. The optimal threshold
value is random across scans.
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Fig. G.29. Pearson correlation coefficient between the thresholded intensity and the ground truth reflection-induced outliers for each scan of our training set. Weak intensity
values are moderately correlated with the reflection-induced outliers. Most threshold values lead to a weak correlation with the reflection-induced outliers.
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