On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs

Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud

To cite this version:

Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud. On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs. WG 2023 - International Workshop on Graph-Theoretic Concepts in Computer Science, Jun 2023, Fribourg, Switzerland. pp.376-387, 10.1007/978-3-031-43380-1_27. hal-04352253

HAL Id: hal-04352253

https://hal.science/hal-04352253

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the minimum number of arcs in 4-dicritical oriented graphs*

Frédéric Havet ${ }^{1}$, Lucas Picasarri-Arrieta ${ }^{1}$, and Clément Rambaud ${ }^{1,2}$
${ }^{1}$ Université Côte d'Azur, CNRS, Inria, I3S, Sophia Antipolis, France
${ }^{2}$ DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France
\{frederic.havet, lucas.picasarri-arrieta\}@inria.fr
clement.rambaud@ens.psl.eu

Abstract

The dichromatic number $\vec{\chi}(D)$ of a digraph D is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph D is k-dicritical if $\vec{\chi}(D)=k$ and each proper subdigraph H of D satisfies $\vec{\chi}(H)<k$.

For integers k and n, we define $d_{k}(n)$ (respectively $o_{k}(n)$) as the minimum number of arcs possible in a k-dicritical digraph (respectively oriented graph). Kostochka and Stiebitz have shown [10] that $d_{4}(n) \geqslant \frac{10}{3} n-\frac{4}{3}$. They also conjectured that there is a constant c such that $o_{k}(n) \geqslant c d_{k}(n)$ for $k \geqslant 3$ and n large enough. This conjecture is known to be true for $k=3$ (Aboulker et al. [2]).

In this work, we prove that every 4 -dicritical oriented graph on n vertices has at least $\left(\frac{10}{3}+\frac{1}{51}\right) n-1$ arcs, showing the conjecture for $k=4$. We also characterise exactly the k-dicritical digraphs on n vertices with exactly $\frac{10}{3} n-\frac{4}{3}$ arcs.

1 Introduction

Let G be a graph. We denote by $V(G)$ its vertex set and by $E(G)$ its edge set; we set $n(G)=$ $|V(G)|$ and $m(G)=|E(G)|$. A k-colouring of G is a function $\varphi: V(G) \rightarrow[k]$. It is proper if for every edge $u v \in E(G), \varphi(u) \neq \varphi(v)$. The smallest integer k such that G has a proper k-colouring is the chromatic number, and is denoted by $\chi(G)$. Since χ is non decreasing with respect to the subgraph relation, it is natural to consider the minimal graphs (for this relation) which are not $(k-1)$-colourable. Following this idea, Dirac defined k-critical graphs as the graphs G with $\chi(G)=k$ and $\chi(H)<k$ for every proper subgraph H of G. A first property of k-critical graph is

[^0]that their minimum degree is at least $k-1$. Indeed, if a vertex v has degree at most $k-2$, then a $(k-1)$-colouring of $G-v$ can be easily extended to G, contradicting the fact that $\chi(G)=k$. As a consequence, the number of edges in a k-critical graph is at least $\frac{k-1}{2} n$. This bound is tight for complete graphs and odd cycles, but Dirac [4] proved an inequality of the form $m \geqslant \frac{k-1+\varepsilon_{k}}{2} n-c_{k}$ for every n-vertex k-critical graph with m edges, for some c_{k} and $\varepsilon_{k}>0$. This shows that, for n sufficiently large, the average degree of a k-critical graph is at least $k-1+\varepsilon_{k}$. This initiated the quest after the best lower bound on the number of edges in n-vertex k-critical graphs. This problem was almost completely solved by Kostochka and Yancey in 2014 [11].

Theorem 1 (Kostochka and Yancey [11]).
Every k-critical graph on n vertices has at least $\frac{1}{2}\left(k-\frac{2}{k-1}\right) n-\frac{k(k-3)}{2(k-1)}$ edges. For every k, this bound is tight for infinitely many values of n.

Kostochka and Yancey [12] also characterised k-critical graphs for which this inequality is an equality, and all of them contain a copy of K_{k-2}, the complete graph on $k-2$ vertices. This motivated the following conjecture of Postle [13].

Conjecture 2 (Postle [13]). For every integer $k \geqslant 4$, there exists $\varepsilon_{k}>0$ such that every k-critical K_{k-2}-free graph G on n vertices has at least $\frac{1}{2}\left(k-\frac{2}{k-1}+\varepsilon_{k}\right) n-\frac{k(k-3)}{2(k-1)}$ edges.

For $k=4$, the conjecture trivially holds as there is no K_{2}-free 4 -critical graph. Moreover, this conjecture has been confirmed for $k=5$ by Postle [13], for $k=6$ by Gao and Postle [6], and for $k \geqslant 33$ by Gould, Larsen, and Postle [7].

Let D be a digraph. We denote by $V(D)$ its vertex set and by $A(D)$ its arc set; we set $n(D)=$ $|V(D)|$ and $m(D)=|E(D)|$. A k-colouring of D is a function $\varphi: V(D) \rightarrow[k]$. It is a k dicolouring if every directed cycle C in D is not monochromatic for φ (that is $|\varphi(V(C))|>1$). Equivalently, it is a k-dicolouring if every colour class induces an acyclic subdigraph. The smallest integer k such that D has a k-dicolouring is the dichromatic number of D and is denoted by $\vec{\chi}(D)$.

A digon in D is a pair of opposite arcs between two vertices. Such a pair of arcs $\{u v, v u\}$ is denoted by $[u, v]$. We say that D is a bidirected graph if every pair of adjacent vertices forms a digon. In this case, D can be viewed as obtained from an undirected graph G by replacing each edge $\{u, v\}$ of G by the digon $[u, v]$. We say that D is a bidirected G, and we denote it by \overleftrightarrow{G}. Observe that $\chi(G)=\vec{\chi}(\overleftrightarrow{G})$. Thus every statement on proper colouring of undirected graphs can be seen as a statement on dicolouring of bidirected graphs.

Exactly as in the undirected case, one can define k-dicritical digraphs to be digraphs D with $\vec{\chi}(D)=k$ and $\vec{\chi}(H)<k$ for every proper subdigraph H of D. It is easy to check that if G is a k-critical graph, then \overleftrightarrow{G} is k-dicritical. Kostochka and Stiebitz [10] conjectured that the k dicritical digraphs with the minimum number of arcs are bidirected graphs. Thus they conjectured the following generalisation of Theorem 1 to digraphs.

Conjecture 3 (Kostochka and Stiebitz [10]). Let $k \geqslant 2$. Every k-dicritical digraph on n vertices has at least $\left(k-\frac{2}{k-1}\right) n-\frac{k(k-3)}{k-1}$ arcs. Moreover, equality holds only if D is bidirected.

In the case $k=2$, this conjecture is easy and weak as it states that a 2-dicritical digraph on n vertices has at least two arcs, while, for all $n \geqslant 2$, the unique 2 -dicritical digraph of order n is the directed n-cycle which has n arcs. The case $k=3$ of the conjecture has been confirmed by Kostochka and Stiebitz [10]. Using a Brooks-type result for digraphs due to Harutyunyan and Mohar [8], they proved the following: if D is a 3-dicritical digraph of order $n \geqslant 3$, then $m(D) \geqslant$ $2 n$ and equality holds if and only if n is odd and D is a bidirected odd cycle. The conjecture has also been proved for $k=4$ by Kostochka and Stiebitz [10]. However, the conjecture is open for every $k \geqslant 5$. Recently, this problem has been investigated by Aboulker and Vermande [3] who proved the weaker bound $\left(k-\frac{1}{2}-\frac{2}{k-1}\right) n-\frac{k(k-3)}{k-1}$ for the number of arcs in an n-vertex k-dicritical digraph.

For integers k and n, let $d_{k}(n)$ denote the minimum number of arcs in a k-dicritical digraph of order n. By the above observations, $d_{2}(n)=n$ for all $n \geqslant 2$, and $d_{3}(n) \geqslant 2 n$ for all possible n, and equality holds if and only if n is odd and $n \geqslant 3$. Moreover, if n is even then $d_{3}(n)=2 n+1$ (see [2]).

Kostochka and Stiebitz [9] showed that if a k-critical graph G is triangle-free (that is has no cycle of length 3), then $m(G) / n(G) \geqslant k-o(k)$ as $k \rightarrow+\infty$. Informally, this means that the minimum average degree of a k-critical triangle-free graph is (asymptotically) twice the minimum average degree of a k-critical graph. Similarly to this undirected case, it is expected that the minimum number of arcs in a k-dicritical digraph of order n is larger than $d_{k}(n)$ if we impose this digraph to have no short directed cycles, and in particular if the digraph is an oriented graph, that is a digraph with no digon. Let $o_{k}(n)$ denote the minimum number of arcs in a k-dicritical oriented graph of order n (with the convention $o_{k}(n)=+\infty$ if there is no k-dicritical oriented graph of order n). Clearly $o_{k}(n) \geqslant d_{k}(n)$.

Conjecture 4 (Kostochka and Stiebitz [10]). For any $k \geqslant 3$, there is a constant $\alpha_{k}>0$ such that $o_{k}(n)>\left(1+\alpha_{k}\right) d_{k}(n)$ for n sufficiently large.

For $k=3$, this conjecture has been recently confirmed by Aboulker, Bellitto, Havet, and Rambaud [2] who proved that $o_{3}(n) \geqslant\left(2+\frac{1}{3}\right) n+\frac{2}{3}$.

In view of Conjecture 2, Conjecture 4 can be generalized to $\overleftrightarrow{K_{k-2}}$-free digraphs.
Conjecture 5. For any $k \geqslant 4$, there is a constant $\beta_{k}>0$ such that every k-dicritical $\overleftrightarrow{K_{k-2}}$-free digraph D on n vertices has at least $\left(1+\beta_{k}\right) d_{k}(n)$ arcs.

Together with Conjecture 3, this conjecture would imply the following generalisation of Conjecture 2 .

Conjecture 6. For every integer $k \geqslant 4$, there exists $\varepsilon_{k}>0$ such that every k-dicritical $\overleftrightarrow{K_{k-2}}$-free digraph D on n vertices has at least $\left(k-\frac{2}{k-1}+\varepsilon_{k}\right) n-\frac{k(k-3)}{k-1}$ arcs.

A $\overleftrightarrow{K_{2}}$-free digraph is an oriented graph, and there are infinitely many 4-dicritical oriented graphs. Thus, while Conjecture 2 holds vacuously for $k=4$, this is not the case for Conjecture 6 . In this paper, we prove that Conjectures 4, 5, and 6hold for $k=4$.

Theorem 7. If \vec{G} is a 4-dicritical oriented graph, then

$$
m(\vec{G}) \geqslant\left(\frac{10}{3}+\frac{1}{51}\right) n(\vec{G})-1
$$

To prove Theorem 7, we use an approach similar to the proof of the case $k=5$ of Conjecture 2 by Postle [13]. This proof is based on the potential method, which was first popularised by Kostochka and Yancey [11] when they proved Theorem 1. The idea is to prove a more general result on every 4 -dicritical digraphs that takes into account the digons.

With a slight abuse, we call digon a subdigraph isomorphic to $\overleftrightarrow{K_{2}}$, the bidirected complete graph on two vertices. We also call bidirected triangle a subdigraph isomorphic to $\overleftrightarrow{K_{3}}$, the bidirected complete graph on three vertices. A packing of digons and bidirected triangles is a set of vertex-disjoint digons and bidirected triangles. To take into account the digons, we define a parameter $T(D)$ as follows.

$$
T(D)=\max \{d+2 t \mid \text { there exists a packing of } d \text { digons and } t \text { bidirected triangles }\}
$$

Clearly, $T(D)=0$ if and only if D is an oriented graph.
Let ε, δ be fixed non-negative real numbers. We define the potential (with respect to ε and δ) of a digraph D to be

$$
\rho(D)=\left(\frac{10}{3}+\varepsilon\right) n(D)-m(D)-\delta T(D) .
$$

Thus Theorem 7 can be rephrased as follows.
Theorem 7. Set $\varepsilon=\frac{1}{51}$ and $\delta=6 \varepsilon=\frac{2}{17}$. If \vec{G} is a 4 -dicritical oriented graph, then $\rho(\vec{G}) \leqslant 1$.
In fact, we prove a more general statement which holds for every 4-dicritical digraph (with or without digons), except for some exceptions called the 4 -Ore digraphs. Those digraphs, which are formally defined in Section 2, are the bidirected graphs whose underlying graph is one of the 4 -critical graphs reaching equality in Theorem 1. In particular, every 4-Ore digraph D has $\frac{10}{3} n(D)-\frac{4}{3}$ arcs. Moreover, the statement holds for all non-negative constants ε and δ satisfying the following inequalities:

- $\delta \geqslant 6 \varepsilon$;
- $3 \delta-\varepsilon \leqslant \frac{1}{3}$;

Theorem 8. Let $\varepsilon, \delta \geqslant 0$ be constants satisfying the aforementioned inequalities. If D is a 4dicritical digraph with n vertices, then
(i) $\rho(D) \leqslant \frac{4}{3}+\varepsilon n-\delta \frac{2(n-1)}{3}$ if D is 4-Ore, and
(ii) $\rho(D) \leqslant 1$ otherwise.

In order to provide some intuition to the reader, let us briefly describe the main ideas of our proof. We will consider a minimum counterexample D to Theorem 8 , and show that every subdigraph of D must have large potential. To do so, we need to construct some smaller 4-dicritical digraphs to leverage the minimality of D. These smaller 4-dicritical digraphs will be constructed by identifying some vertices of D. This is why, in the definition of the potential, we consider $T(D)$ instead of the number of digons: when identifying a set of vertices, the number of digons may be arbitrary larger in the resulting digraph, but $T(D)$ increases at most by 1 . Using the fact that every subdigraph of D has large potential, we will prove that some subdigraphs are forbidden in D. Using this, we get the final contradiction by a discharging argument.

In addition to Theorem 7, Theorem 8 has also the following consequence when we take $\varepsilon=$ $\delta=0$.

Corollary 9. If D is a 4-dicritical digraph, then $m(D) \geqslant \frac{10}{3} n(D)-\frac{4}{3}$. Moreover, equality holds if and only if D is 4-Ore, otherwise $m(D) \geqslant \frac{10}{3} n(D)-1$.

This is a slight improvement on a result of Kostochka and Stiebitz [10] who proved the inequality $m(D) \geqslant \frac{10}{3} n(D)-\frac{4}{3}$ without characterising the equality case.

Another interesting consequence of our result is the following bound on the number of vertices in a 4 -dicritical oriented graph embedded on a fixed surface. Since a graph on n vertices embedded on a surface of Euler characteristic c has at most $3 n-3 c$ edges, we immediately deduce the following from Theorem 7 .
Corollary 10. If \vec{G} is a 4-dicritical oriented graph embedded on a surface of Euler characteristic c, then $n(\vec{G}) \leqslant \frac{17}{6}(1-3 c)$.

The previous best upper bound was $n(\vec{G}) \leqslant 4-9 c$ [10].
In Section 2 we prove some first preliminary results on 4-Ore digraphs, before proving Theorem 8 in Section 3 . In Section 4 , we show that $o_{k}(n) \leqslant\left(2 k-\frac{7}{2}\right) n$ for every fixed k and infinitely many values of n. The proof is strongly based on the proof of [2, Theorem 4.4], which shows $o_{k}(n) \leqslant(2 k-3) n$ for every fixed k, n (with n large enough). For $k=4$, the construction implies in particular that there is a 4-dicritical oriented graph with 76 vertices and 330 arcs, and there are infinitely many 4 -dicritical oriented graphs with $m / n \leqslant 9 / 2$.

2 The 4-Ore digraphs and their properties

We start with a few notations. We denote by $\llbracket x_{1}, \ldots, x_{n} \rrbracket$ the bidirected path with vertex set $\left\{x_{1}, \ldots, x_{n}\right\}$ in this order. If $x_{1}=x_{n}, \llbracket x_{1}, \ldots, x_{n} \rrbracket$ denotes the bidirected cycle of order n with cyclic order x_{1}, \ldots, x_{n}. If D is a digraph, for any $X \subseteq V(D), D-X$ is the subdigraph induced by $V(D) \backslash X$. We abbreviate $D-\{x\}$ into $D-x$. Moreover, for any $F \subseteq V(D) \times V(D), D \backslash F$ is the subdigraph $(V(D), A(D) \backslash F)$ and $D \cup F$ is the digraph $(V(D), A(D) \cup F)$

Let D_{1}, D_{2} be two bidirected graphs, $[x, y] \subseteq A\left(D_{1}\right)$, and $z \in V\left(D_{2}\right)$. An Ore-composition D of D_{1} and D_{2} with replaced digon $[x, y]$ and split vertex z is a digraph obtained by removing $[x, y]$ of D_{1} and z of D_{2}, and adding the set of $\operatorname{arcs}\left\{x z_{1} \mid z z_{1} \in A\left(D_{2}\right)\right.$ and $\left.z_{1} \in Z_{1}\right\},\left\{z_{1} x \mid\right.$

Figure 1: An example of a 4-Ore digraph obtained by an Ore-composition of two smaller 4-Ore digraphs, with replaced digon $[x, y]$ and split vertex z.
$z_{1} z \in A\left(D_{2}\right)$ and $\left.z_{1} \in Z_{1}\right\},\left\{y z_{2} \mid z z_{2} \in A\left(D_{2}\right)\right.$ and $\left.z_{2} \in Z_{2}\right\},\left\{z_{2} y \mid z_{2} z \in A\left(D_{2}\right)\right.$ and $\left.z_{2} \in Z_{2}\right\}$, where $\left(Z_{1}, Z_{2}\right)$ is a partition of $N_{D_{2}}(z)$ into non-empty sets. We call D_{1} the digon side and D_{2} the split side of the Ore-composition. The class of the 4-Ore digraphs is the smallest class containing $\overleftrightarrow{K_{4}}$ which is stable under Ore-composition. See Figure 1 for an example of a 4-Ore digraph. Observe that all the 4-Ore-digraphs are bidirected.

Proposition 11 (Dirac [5], see also [12]). 4-Ore digraphs are 4-dicritical.
Proof. One can easily show that a bidirected digraph is 4 -dicritical if and only if its undirected underlying graph is 4 -critical. Then the result follows from the undirected analogous proved by [5].

Lemma 12. Let D be a 4-dicritical bidirected digraph and $v \in V(D)$. Let $\left(N_{1}^{+}, N_{2}^{+}\right)$and $\left(N_{1}^{-}, N_{2}^{-}\right)$be two partitions of $N(v)$. Consider D^{\prime} the digraph with vertex set $V(D) \backslash\{v\} \cup\left\{v_{1}, v_{2}\right\}$ with $N^{+}\left(v_{i}\right)=N_{i}^{+}, N^{-}\left(v_{i}\right)=N_{i}^{-}$for $i=1,2$ and $D^{\prime}\langle V(D) \backslash\{v\}\rangle=D-v$. Then D^{\prime} has a 3 -dicolouring with v_{1} and v_{2} coloured the same except if $N_{1}^{+}=N_{1}^{-}$(that is D^{\prime} is bidirected).

Proof. Suppose that D^{\prime} is not bidirected. Consider a vertex $u \in N_{D}(v)$ such that $v_{1} u, u v_{2} \in A\left(D^{\prime}\right)$ or $v_{2} u$, $u v_{1} \in A\left(D^{\prime}\right)$. Without loss of generality, suppose $v_{1} u, u v_{2} \in A\left(D^{\prime}\right)$. As D is 4-dicritical, $D \backslash[u, v]$ has a proper 3-dicolouring φ. We set $\varphi\left(v_{1}\right)=\varphi\left(v_{2}\right)=\varphi(v)$ and claim that φ is a 3dicolouring of D^{\prime}. To show that, observe that φ is a proper 3 -colouring of the underlying undirected graph of $D^{\prime} \backslash\left\{v_{1} u, u v_{2}\right\}$, and so φ is a 3 -dicolouring of D^{\prime} as wanted.

Lemma 13. Let D be a digraph. If v is a vertex of D, then $T(D-v) \geqslant T(D)-1$.
Proof. Let M be a packing of d digons and t bidirected triangles in H such that $d+2 t=T(D)$. If v belongs to a digon $[u, v]$ in M, then $M \backslash\{[u, v]\}$ witnesses the fact that $T(D-v) \geqslant T(D)-1$. If v belongs to a bidirected triangle $\llbracket u, v, w, u \rrbracket$, then $M \backslash\{\llbracket u, v, w, u \rrbracket\} \cup[u, v]$ witnesses the fact that $T(D-v) \geqslant T(D)-2+1$. Otherwise $T(D-v) \geqslant T(D)$.

Lemma 14. If D_{1}, D_{2} are two digraphs, and D is an Ore-composition of D_{1} and D_{2}, then $T(D) \geqslant$ $T\left(D_{1}\right)+T\left(D_{2}\right)-2$. Moreover, if D_{1} or D_{2} is isomorphic to $\overleftrightarrow{K_{4}}$, then $T(D) \geqslant T\left(D_{1}\right)+T\left(D_{2}\right)-1$.

Proof. Let D be the Ore-composition of D_{1} (the digon side with replaced digon $[x, y]$) and D_{2} (the split side with split vertex z). One can easily see that $T(D) \geqslant T\left(D_{1}-x\right)+T(D-z) \geqslant T\left(D_{1}\right)+$ $T\left(D_{2}\right)-2$ by Lemma 13. Moreover, if D_{1} (resp. $\left.D_{2}\right)$ is a copy of $\overleftrightarrow{K_{4}}$, then $T\left(D_{1}-x\right)=2=T\left(D_{1}\right)$ (resp. $T\left(D_{2}-z\right)=2=T\left(D_{2}\right)$) and therefore $T(D) \geqslant T\left(D_{1}\right)+T\left(D_{2}\right)-1$.

Lemma 15. If D is 4 -Ore, then $T(D) \geqslant \frac{2}{3}(n(D)-1)$.
Proof. If D is $\overleftrightarrow{K_{4}}$, then the result is clear. Suppose now that D is an Ore-composition of D_{1} and D_{2}. Then $n(D)=n\left(D_{1}\right)+n\left(D_{2}\right)-1$ and, by Lemma 14, $T(D) \geqslant T\left(D_{1}\right)+T\left(D_{2}\right)-2$. By induction, $T\left(D_{1}\right) \geqslant \frac{2}{3}\left(n\left(D_{1}\right)-1\right)$ and $T\left(D_{2}\right) \geqslant \frac{2}{3}\left(n\left(D_{2}\right)-1\right)$, and so $T(D) \geqslant \frac{2}{3}\left(n\left(D_{1}\right)+n\left(D_{2}\right)-1-1\right)=$ $\frac{2}{3}(n(D)-1)$.

Let D be a digraph. A diamond in D is a subdigraph isomorphic to $\overleftrightarrow{K_{4}}$ minus a digon $[u, v]$, with vertices different from u and v having degree 6 in D. An emerald in D is a subdigraph isomorphic to $\overleftrightarrow{K_{3}}$ whose vertices have degree 6 in D.

Let R be an induced subdigraph of D with $n(R)<n(D)$. The boundary of R in D, denoted by $\partial_{D}(R)$, or simply $\partial(R)$ when D is clear from the context, is the set of vertices of R having a neighbour in $V(D) \backslash R$. We say that R is Ore-collapsible if the boundary of R contains exactly two vertices u and v and $R \cup[u, v]$ is 4-Ore.

Lemma 16. If D is 4 -Ore and $v \in V(D)$, then there exists either an Ore-collapsible subdigraph of D disjoint from v or an emerald of D disjoint from v.

Proof. If D is a copy of $\overleftrightarrow{K_{4}}$, then $D-v$ is an emerald. Otherwise, D is the Ore-composition of two 4-Ore digraphs: D_{1} the digon side with replaced digon $[x, y]$, and D_{2} the split side with split vertex z. If $v \in V\left(D_{2}-z\right)$, then $D_{1} \backslash\{x, y\}$ is an Ore-collapsible subdigraph with boundary $\{y, z\}$. Otherwise $v \in V\left(D_{1}\right)$ and we apply induction on D_{2} to find an emerald or an Ore-collapsible subdigraph in D_{2} disjoint from z.

Lemma 17. If $D \neq \overleftrightarrow{K_{4}}$ is 4-Ore and T is a copy of $\overleftrightarrow{K_{3}}$ in D, then there exists either an Orecollapsible subdigraph of D disjoint from T or an emerald of D disjoint from T.

Proof. As D is not $\overleftrightarrow{K_{4}}$, it is an Ore-composition of two 4-Ore digraphs: D_{1} the digon side with replaced digon $[x, y]$, and D_{2} the split side with split vertex z. As x and y are non adjacent, we have either $T \subseteq D_{1}, T \subseteq D_{2}-z$, or T contains a vertex $w \in\{x, y\}$ and two vertices in $V\left(D_{2}-z\right)$.

If $T \subseteq D_{1}$, then by Lemma 16, in D_{2} there exists either an Ore-collapsible subdigraph O or an emerald E disjoint from z. In the former case O is an Ore-collapsible subdigraph of D disjoint from T, and in the later one E is an emerald in D disjoint from T.

If $T \subseteq D_{2}-z$, then $D_{1} \backslash\{x, y\}$ is an Ore-collapsible subdigraph disjoint from T.
Assume now that T contains a vertex $w \in\{x, y\}$ and two vertices in $V\left(D_{2}-z\right)$. Without loss of generality, we may assume that $y \notin T$. Let z_{1} and z_{2} be the two vertices of T disjoint from w. Then $\left\{z, z_{1}, z_{2}\right\}$ induces a bidirected triangle T^{\prime} in D_{2}. If $D_{2} \neq \vec{K}_{4}$, then by induction in D_{2}, there exists either an Ore-collapsible subdigraph O or an emerald E disjoint from T^{\prime}. In the former case
O is an Ore-collapsible subdigraph of D disjoint from T, and in the later one E is an emerald in D disjoint from T.

Henceforth we may assume that $D_{2}=\overleftrightarrow{K_{4}}$. This implies that y has exactly one neighbour in $D_{2}-z$ and so its degree is the same in D_{1} and D. By Lemma 16, in D_{1} there exists either an Ore-collapsible subdigraph O or an emerald E disjoint from x. In the former case O is an Orecollapsible subdigraph of D disjoint from T, and in the later one E is an emerald in D disjoint from T even if $y \in V(E)$ because y has the same degree in D_{1} and D.

Lemma 18. If R is an Ore-collapsible induced subdigraph of a 4-Ore digraph D, then there exists a diamond or an emerald of D whose vertices lie in $V(R)$.

Proof. Let D be a digraph. Let R be a minimal counterexample to this lemma, and let $\partial(R)=$ $\{u, v\}$ and $H=D\langle R\rangle \cup[u, v]$. If $H=\overleftrightarrow{K_{4}}$, then R is a diamond in D. Suppose now that H is the Ore-composition of two 4-Ore digraphs H_{1} (the digon side with replaced digon $[x, y]$) and H_{2} (the split side with split vertex z). If $\{u, v\} \not \subset V\left(H_{2}\right)$, then by Lemma 16 there exists an Orecollapsible subdigraph in H_{2} disjoint from z. As it is smaller than H, it contains an emerald or a diamond as desired, a contradiction.

Now assume that $\{u, v\} \subset V\left(H_{2}\right)$, then H_{1} is an Ore-collapsible subdigraph of D smaller than H, and by induction, H_{1} contains a diamond or an emerald in D.

Lemma 19. If D is a 4-Ore digraph and v is a vertex in D, then D contains a diamond or an emerald disjoint from v.

Proof. Follows from Lemmas 16 and 18 .
Lemma 20. If D is a 4-Ore digraph and T is a bidirected triangle in D, then either $D=\overleftrightarrow{K_{4}}$ or D contains a diamond or an emerald disjoint from T.

Proof. Follows from Lemmas 17 and 18 .
The following theorem was formulated for undirected graphs, but by replacing every edge by a digon, it can be restated as follows:

Theorem 21 (Kostochka and Yancey [12], Theorem 6). Let D be a 4-dicritical bidirected digraph. If $\frac{10}{3} n(D)-m(D)>1$, then D is 4 -Ore and $\frac{10}{3} n(D)-m(D)=\frac{4}{3}$.
Lemma 22. If D is a 4-Ore digraph with n vertices, then $\rho(D) \leqslant \frac{4}{3}+\varepsilon n-\delta \frac{2(n-1)}{3}$.
Proof. Follows from Theorem 21 and Lemma 15 .
Lemma 23 (Kostochka and Yancey [12], Claim 16). Let D be a 4-Ore digraph. If $R \subseteq D$ and $0<n(R)<n(D)$, then $\frac{10}{3} n(R)-m(R) \geqslant \frac{10}{3}$.

Lemma 24. Let D be a 4-Ore digraph obtained from a copy J of $\overleftrightarrow{K}_{4}$ by successive Orecompositions with 4-Ore digraphs, vertices and digons in J being always on the digon side. Let $[u, v]$ be a digon in $D\langle V(J)\rangle$. For every 3-dicolouring φ of $D \backslash[u, v]$, vertices in $V(J)$ receive distinct colours except u and v.

Proof. We proceed by induction on $n(D)$, the result holding trivially when D is $\overleftrightarrow{K_{4}}$. Now assume that D is the Ore-composition of D_{1}, the digon side containing J, and D_{2}, with D_{1} and D_{2} being 4-Ore digraphs. Let $[x, y] \subseteq A\left(D_{1}\right)$ be the replaced digon in this Ore-composition, and let $z \in$ $V\left(D_{2}\right)$ be the split vertex. Let φ be a 3-dicolouring of $D \backslash[u, v]$. Then φ induces a 3-dicolouring of $D\left\langle V\left(D_{2}-z\right) \cup\{x, y\}\right\rangle$. Necessarily $\varphi(x) \neq \varphi(y)$, for otherwise φ_{2} defined by $\varphi_{2}(v)=\varphi(v)$ if $v \in V\left(D_{2}-z\right)$ and $\varphi_{2}(z)=\varphi(x)$ is a 3-dicolouring of D_{2}, contradicting the fact that 4-Ore digraphs have dichromatic number 4 by Lemma 11 . Hence φ induces a 3 -dicolouring of $D_{1} \backslash[u, v]$. So, by the induction hypothesis, vertices in $V(J)$ have distinct colours in φ, except u and v.

Lemma 25. Let D be a 4-Ore digraph obtained from a copy J of $\overleftrightarrow{K_{4}}$ by successive Orecompositions with 4-Ore digraphs, vertices and digons in J being always on the digon side. Let v be a vertex in $V(J)$. For every 3-dicolouring φ of $D-v$, vertices in J receive distinct colours.
Proof. We proceed by induction on $n(D)$, the result holding trivially when D is $\overleftrightarrow{K_{4}}$. Now assume that D is the Ore-composition of D_{1}, the digon side containing J, and D_{2}, with D_{1} and D_{2} being 4-Ore digraphs. Let $[x, y] \subseteq A\left(D_{1}\right)$ be the replaced digon in this Ore-composition, and let $z \in$ $V\left(D_{2}\right)$ be the split vertex. Let φ be a 3 -dicolouring of $D-v$. If $v \in\{x, y\}$, then φ is a 3dicolouring of $D_{1}-v$ and the result follows by induction. Now assume $v \notin\{x, y\}$. Then φ induces a 3-dicolouring of $D\left\langle V\left(D_{2}-z\right) \cup\{x, y\}\right\rangle$. Necessarily $\varphi(x) \neq \varphi(y)$, for otherwise φ_{2} defined by $\varphi_{2}(v)=\varphi(v)$ if $v \in V\left(D_{2}-z\right)$ and $\varphi_{2}(z)=\varphi(x)$ is a 3-dicolouring of D_{2}, contradicting the fact that 4-Ore digraphs have dichromatic number 4 by Lemma 11 . Hence φ induces a 3-dicolouring of $D_{1}-v$. So, by the induction hypothesis, vertices in $V(J)$ have distinct colours in φ.

3 Proof of Theorem 8

Let D be a 4-dicritical digraph, R be an induced subdigraph of D with $4 \leqslant n(R)<n(D)$ and φ a 3-dicolouring of R. The φ-identification of R in D, denoted by $D_{\varphi}(R)$ is the digraph obtained from D by identifying for each $i \in[3]$ the vertices coloured i in $V(R)$ to a vertex x_{i}, adding the digons $\left[x_{i}, x_{j}\right]$ for all $1 \leqslant i<j \leqslant 3$. Observe that $D_{\varphi}(R)$ is not 3 -dicolourable. Indeed, assume for a contradiction that $D_{\varphi}(R)$ has a 3 -dicolouring φ^{\prime}. Since $\left\{x_{1}, x_{2}, x_{3}\right\}$ induces a $\overleftrightarrow{K_{3}}$, we may assume without loss of generality that $\varphi^{\prime}\left(x_{i}\right)=i$ for $i \in[3]$. Consider the 3 -colouring $\varphi^{\prime \prime}$ of D defined by $\varphi^{\prime \prime}(v)=\varphi^{\prime}(v)$ if $v \notin R$ and $\varphi^{\prime \prime}(v)=\varphi(v)$ if $v \in R$. One easily checks that $\varphi^{\prime \prime}$ is a 3-dicolouring of D, a contradiction to the fact that $\vec{\chi}(D)=4$.

Now let W be a 4-dicritical subdigraph of $D_{\varphi}(R)$ and $X=\left\{x_{1}, x_{2}, x_{3}\right\}$. Then we say that $R^{\prime}=D\langle(V(W) \backslash X) \cup R\rangle$ is the dicritical extension of R with extender W. We call $X_{W}=$ $X \cap V(W)$ the core of the extension. Note that X_{W} is not empty, because W is not a subdigraph of D. Thus $1 \leqslant\left|X_{W}\right| \leqslant 3$. See Figure 2 for an example of a φ-identification and a dicritical extension.

Let D be a counterexample to Theorem 8 with minimum number of vertices. By Lemma 22 , D is not 4-Ore. Thus $\rho(D)>1$.

Claim 1. If \tilde{D} is a 4-dicritical digraph with $n(\tilde{D})<n(D)$, then $\rho(\tilde{D}) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$.

Figure 2: A 4-dicritical digraph D together with an induced subdigraph R of D and φ a 3dicolouring of R, the φ-identification $D_{\varphi}(R)$ of R in D and the dicritical extension R^{\prime} of R with extender W and core X_{W}. For clarity, the digons are represented by undirected edges.

Proof of claim. If \tilde{D} is not 4-Ore, then $\rho(\tilde{D}) \leqslant 1$ by minimality of D. Thus $\rho(\tilde{D}) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ because $4 \varepsilon-2 \delta \geqslant \frac{-1}{3}$. Otherwise, by Lemma 22, $\rho(\tilde{D}) \leqslant \frac{4}{3}+\varepsilon n(\tilde{D})-\delta \frac{2(n(\tilde{D})-1)}{3} \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ because $\delta \geqslant \frac{3}{2} \varepsilon$ and $n(\tilde{D}) \geqslant 4$.

Claim 2. Let R be a subdigraph of D with $4 \leqslant n(R)<n(D)$. If R^{\prime} is a dicritical extension of R with extender W and core X_{W}, then

$$
\rho\left(R^{\prime}\right) \leqslant \rho(W)+\rho(R)-\left(\rho\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)+\delta \cdot T\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)\right)+\delta \cdot\left(T(W)-T\left(W-X_{W}\right)\right)
$$

and in particular

$$
\rho\left(R^{\prime}\right) \leqslant \rho(W)+\rho(R)-\frac{10}{3}-\varepsilon+\delta
$$

Proof of claim. We have

- $n\left(R^{\prime}\right)=n(W)-\left|X_{W}\right|+n(R)$,
- $m\left(R^{\prime}\right) \geqslant m(W)+m(R)-m\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)$,
- $T\left(R^{\prime}\right) \geqslant T\left(W-X_{W}\right)+T(R)$
and by summing these inequalities, we get the first result.
Now observe that $T(W)-T\left(W-X_{W}\right) \leqslant\left|X_{W}\right|$ by Lemma 13, and that the maximum of $-\left(\rho\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)+\delta T\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)\right)+\delta\left|X_{W}\right|$ is reached when $\left|X_{W}\right|=1$, in which case it is equal to $-\frac{10}{3}-\varepsilon+\delta$. The second inequality follows.

Claim 3. If R is a subdigraph of D with $4 \leqslant n(R)<n(D)$, then $\rho(R) \geqslant \rho(D)+2-3 \varepsilon+\delta>$ $3-3 \varepsilon+\delta$.

Proof of claim. We proceed by induction on $n-n(R)$. Let R^{\prime} be a dicritical extension of R with extender W and core X_{W}. By Claim 2, we have

$$
\rho\left(R^{\prime}\right) \leqslant \rho(W)+\rho(R)-\frac{10}{3}-\varepsilon+\delta
$$

Either $V\left(R^{\prime}\right)=V(D)$ and so $\rho\left(R^{\prime}\right) \geqslant \rho(D)$ or $V\left(R^{\prime}\right)$ is a proper subset of $V(D)$ and, since R is a proper subdigraph of R^{\prime}, by induction $\rho\left(R^{\prime}\right) \geqslant \rho(D)+2-3 \varepsilon+\delta \geqslant \rho(D)$. In both cases, $\rho\left(R^{\prime}\right) \geqslant \rho(D)$. Now W is smaller than D so $\rho(W) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ by Claim 1 . Thus

$$
\rho(D) \leqslant \rho\left(R^{\prime}\right) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta+\rho(R)-\frac{10}{3}-\varepsilon+\delta .
$$

This gives $\rho(R) \geqslant \rho(D)+2-3 \varepsilon+\delta>3-3 \varepsilon+\delta$, because $\rho(D)>1$.
As a consequence of Claim 3, any subdigraph (proper or not) of size at least 4 has potential at least $\rho(D)$.

We say that an induced subdigraph R of D is collapsible if, for every 3-dicolouring φ of R, its dicritical extension R^{\prime} (with extender W and core X_{W}) is D, has core of size 1 (i.e. $\left|X_{W}\right|=1$), and the border $\partial_{D}(R)$ of R is monochromatic in φ.

Claim 4. Let R be an induced subdigraph of D and φ a 3-dicolouring of R such that $\partial(R)$ is not monochromatic in φ. If D is a dicritical extension of R dicoloured by φ with extender W and core X_{W} with $\left|X_{W}\right|=1$, then

$$
\rho(R) \geqslant \rho(D)+3-3 \varepsilon+\delta .
$$

Proof of claim. Assume D is a dicritical extension of R dicoloured by φ with extender W and core X_{W} with $\left|X_{W}\right|=1$. Observe that each of the following inequalities holds:

- $n(D)=n(W)-\left|X_{W}\right|+n(R)=n(X)+n(R)-1$,
- $m(D) \geqslant m(W)+m(R)-m\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)+1=m(W)+m(R)+1$ because $\partial_{D}(R)$ is not monochromatic in φ, and
- $T(D) \geqslant T\left(W-X_{W}\right)+T(R) \geqslant T(W)+T(R)-1$ by Lemma 13 .

By Claim 1, we have

$$
\rho(D) \leqslant \rho(W)+\rho(R)-\left(\frac{10}{3}+\varepsilon\right)-1+\delta \leqslant\left(\frac{4}{3}+4 \varepsilon-2 \delta\right)+\rho(R)-\frac{13}{3}-\varepsilon+\delta
$$

and so $\rho(R) \geqslant \rho(D)+3-3 \varepsilon+\delta$.

Claim 5. If R is a subdigraph of D with $4 \leqslant n(R)<n(D)$ and R is not collapsible, then $\rho(R) \geqslant \rho(D)+\frac{8}{3}-\varepsilon-\delta>\frac{11}{3}-\varepsilon-\delta$.

Proof of claim. Let R^{\prime} be a dicritical extension of R dicoloured by φ with extender W and core X_{W}.
(i) If R^{\prime} is not D, then it has a dicritical extension $R^{\prime \prime}$ with extender W^{\prime}. By (the consequence of) Claim 3, we have $\rho(D) \leqslant \rho\left(R^{\prime \prime}\right)$; by Claim 2 (applied twice), $\rho\left(R^{\prime \prime}\right) \leqslant \rho(R)+\rho\left(W^{\prime}\right)+\rho(W)+$ $2\left(-\frac{10}{3}-\varepsilon+\delta\right)$; both W and W^{\prime} are smaller than D, so, by Claim $1, \rho(W), \rho\left(W^{\prime}\right) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$. Those three inequalities imply

$$
\rho(D) \leqslant \rho\left(R^{\prime \prime}\right) \leqslant \rho(R)+2\left(\frac{4}{3}+4 \varepsilon-2 \delta\right)+2\left(-\frac{10}{3}-\varepsilon+\delta\right)=\rho(R)-4+6 \varepsilon-2 \delta
$$

and so $\rho(R) \geqslant \rho(D)+4-6 \varepsilon+2 \delta \geqslant \rho(D)+\frac{8}{3}-\varepsilon-\delta$.
(ii) If $R^{\prime}=D$ and $\left|X_{W}\right|=2$, then $\rho\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)+\delta T\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)=\frac{14}{3}+2 \varepsilon$, and, by Lemma 13 , $T(W)-T\left(W-X_{W}\right) \leqslant\left|X_{w}\right|=2$. Thus, by Claim 2 ,

$$
\rho(D) \leqslant \rho(W)+\rho(R)-\frac{14}{3}-2 \varepsilon+2 \delta
$$

Now, since W is smaller than $D, \rho(W) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ by Claim 1 . Thus

$$
\rho(D) \leqslant \rho(R)+\frac{4}{3}+4 \varepsilon-2 \delta-\frac{14}{3}-2 \varepsilon+2 \delta=\rho(R)-\frac{10}{3}+2 \varepsilon
$$

and so $\rho(R) \geqslant \rho(D)+\frac{10}{3}-2 \varepsilon \geqslant \rho(D)+\frac{8}{3}-\varepsilon-\delta$.
(iii) If $R^{\prime}=D$ and $\left|X_{W}\right|=3$, then $\rho\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)+\delta T\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)=4+3 \varepsilon$, and, by Lemma 13 , $T(W)-T\left(W-X_{W}\right) \leqslant\left|X_{w}\right|=3$. Thus, by Claim2,

$$
\rho(D) \leqslant \rho(W)+\rho(R)-4-3 \varepsilon+3 \delta .
$$

Now, since W is smaller than $D, \rho(W) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ by Claim 1 . Thus

$$
\rho(D) \leqslant \rho(R)+\frac{4}{3}+4 \varepsilon-2 \delta-4-3 \varepsilon+3 \delta=\rho(R)-\frac{8}{3}+\varepsilon+\delta
$$

and so $\rho(R) \geqslant \rho(D)+\frac{8}{3}-\varepsilon-\delta$.
(iv) If $R^{\prime}=D,\left|X_{W}\right|=1$ and $\partial(R)$ is not monochromatic in φ, then, by Claim 4, we have $\rho(R) \geqslant \rho(D)+3-3 \varepsilon+\delta \geqslant \rho(D)+\frac{8}{3}-\varepsilon-\delta$.

If R is not collapsible, then, by definition, it has a dicritical extension R^{\prime} satisfying the hypothesis of one of the cases (i)-(iv). In any case, $\rho(R) \geqslant \rho(D)+\frac{8}{3}-\varepsilon-\delta$.

Recall that a k-cutset in a graph G is a set S of k vertices such that $G-S$ is not connected. A graph is k-connected if it has more than k vertices and has no $(k-1)$-cutset. A k-cutset in a digraph is a k-cutset in its underlying graph, and a digraph is k-connected if its underlying graph is k-connected.

Claim 6. D is 2-connected.
Proof of claim. Suppose for contradiction that $\{x\}$ is a 1-cutset in D. Let $\left(A_{0}, B_{0}\right)$ be a partition of $V(D-x)$ into non-empty sets such that there is no edge between A_{0} and B_{0}, and set $A=A_{0} \cup\{x\}$ and $B=B_{0} \cup\{x\}$.

Since D is 4-dicritical, there exist a 3-dicolouring φ_{A} of $D\langle A\rangle$ and a 3-dicolouring φ_{B} of $D\langle B\rangle$. Free to swap the colours, we may assume $\varphi_{A}(x)=\varphi_{B}(x)$. Let φ be defined by $\varphi(v)=\varphi_{A}(v)$ if $v \in A$ and $\varphi(v)=\varphi_{B}(v)$ if $v \in B$. Since $\vec{\chi}(D)=4, D$, coloured with φ, must contain a monochromatic directed cycle. Such a directed cycle must be contained in $D\langle A\rangle$ or $D\langle B\rangle$, a contradiction.

Claim 7. D is 3 -connected. In particular, D contains no diamond.
Proof of claim. Suppose for contradiction that $\{x, y\}$ is a 2-cutset of D. Let $\left(A_{0}, B_{0}\right)$ be a partition of $V(D) \backslash\{x, y\}$ into non-empty sets such that there is no edge between A_{0} and B_{0}, and set $A=A_{0} \cup\{x, y\}$ and $B=B_{0} \cup\{x, y\}$.

Assume for a contradiction that there exists a 3-dicolouring φ_{A} of $D\langle A\rangle$ and a 3-dicolouring φ_{B} of $D\langle B\rangle$ such that $\varphi_{A}(x) \neq \varphi_{A}(y)$ and $\varphi_{B}(x) \neq \varphi_{B}(y)$. Free to swap the colours, we may assume $\varphi_{A}(x)=\varphi_{B}(x)$ and $\varphi_{A}(y)=\varphi_{B}(y)$. Let φ be defined by $\varphi(v)=\varphi_{A}(v)$ if $v \in A$ and $\varphi(v)=\varphi_{B}(v)$ if $v \in B$. Every directed cycle either is in $D\langle A\rangle$, or is in $D\langle B\rangle$ or contains both x and y. Therefore it cannot be monochromatic with φ because φ_{A} and φ_{B} are 3-dicolourings of $D\langle A\rangle$ and $D\langle B\rangle$ respectively, and $\varphi(x) \neq \varphi(y)$. Thus φ is a 3-dicolouring of D, a contradiction. Henceforth either $D\langle A\rangle$ or $D\langle B\rangle$ has no 3-dicolouring φ such that $\varphi(x) \neq \varphi(y)$. Suppose without loss of generality that it is $D\langle A\rangle$.

Let $D_{A}=D\langle A\rangle \cup[x, y] . D_{A}$ is not 3-dicolourable because in every 3-dicolouring of $D\langle A\rangle$, x and y are coloured the same. Let D_{B} be the digraph obtained from $D\langle B\rangle$ by identifying x and y into a vertex z. Assume for a contradiction that D_{B} has a 3 -dicolouring ψ_{B}. Set $\psi(x)=$ $\psi(y)=\psi_{B}(z)$, and $\psi(u)=\psi_{B}(u)$ for every $u \in B \backslash\{x, y\}$. Then consider a 3-dicolouring ψ_{A} of $D\langle A\rangle$ such that $\psi_{A}(x)=\psi(x)=\psi_{A}(y)=\psi(y)$ (such a colouring exists because A is a proper subdigraph of D) and we set $\psi(u)=\psi_{A}(u)$ for ever $u \in V(A) \backslash\{x, y\}$. As D is not 3-dicolourable, it contains a monochromatic directed cycle C (with respect to ψ). The cycle C is not included in $D\langle A\rangle$ nor in D_{B}. As a consequence, there is a monochromatic directed path from $\{x, y\}$ to $\{x, y\}$ in B, and so there is a monochromatic directed cycle in D_{B} for ψ_{B}, a contradiction. Therefore D_{B} is not 3 -dicolourable

Now D_{A} has a 4-dicritical subdigraph W_{A} which necessarily contains $\{x, y\}$, and D_{B} has a 4-dicritical subdigraph W_{B} which necessarily contains z. As W_{A} and W_{B} are 4-dicritical digraphs smaller than D, we have $\rho\left(W_{A}\right), \rho\left(W_{B}\right) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ by Claim 1 . Let H be the subdigraph of D induced by $V\left(W_{A}\right) \cup V\left(W_{B}-z\right)$.

Note that $n(H)=n\left(W_{A}\right)+n\left(W_{B}\right)-1$ and $m(H) \geqslant m\left(W_{A}\right)+m\left(W_{B}\right)-2$. Moreover $T(H) \geqslant T\left(W_{A}-x\right)+T\left(W_{B}-z\right) \geqslant T\left(W_{A}\right)+T\left(W_{B}\right)-2$, by Lemma 13. Hence we have

$$
\begin{align*}
\rho(H) & \leqslant \rho\left(W_{A}\right)+\rho\left(W_{B}\right)-\left(\frac{10}{3}+\varepsilon\right)+\left(m\left(W_{A}\right)+m\left(W_{B}\right)-m(H)\right)+2 \delta \\
& \leqslant \rho\left(W_{A}\right)+\rho\left(W_{B}\right)-\frac{10}{3}-\varepsilon+2+2 \delta \\
& =\rho\left(W_{A}\right)+\rho\left(W_{B}\right)-\frac{4}{3}-\varepsilon+2 \delta \tag{1}\\
& \leqslant 2\left(\frac{4}{3}+4 \varepsilon-2 \delta\right)-\frac{4}{3}-\varepsilon+2 \delta \\
& =\frac{4}{3}+7 \varepsilon-2 \delta
\end{align*}
$$

By Claim 3. if $n(H)<n(D)$ then $\rho(H)>3-3 \varepsilon+\delta$. As $10 \varepsilon-3 \delta \leqslant \frac{5}{3}$, we deduce that $H=D$. Hence $1<\rho(D)=\rho(H) \leqslant \frac{4}{3}+7 \varepsilon-2 \delta+\left(m\left(W_{A}\right)+m\left(W_{B}\right)-m(H)-2\right)$ and so $m(H)=m\left(W_{A}\right)+m\left(W_{B}\right)-2$ because $2 \delta-7 \varepsilon \leqslant \frac{2}{3}$. In particular, there is no arc between x and y in D. Moreover, no arc was suppressed when identifying x and y into z to obtain D_{B}, so x and y have no common out-neighbour (resp. in-neighbour) in B_{0}.

We first show that either W_{A} or W_{B} is not 4-Ore. Assume for contradiction that both W_{A} and W_{B} are 4-Ore. If $H=D$ is not bidirected, then by Lemma 12, $D\langle B\rangle$ admits a 3-dicolouring φ_{B} such that $\varphi_{B}(x)=\varphi_{B}(y)$. Now let φ_{A} be a 3-dicolouring of $D\langle A\rangle$. We have $\varphi_{A}(x)=\varphi_{A}(y)$. Free to exchange colour we may assume, $\varphi_{A}(x)=\varphi_{A}(y)=\varphi_{B}(x)=\varphi_{B}(y)$. Hence we can define the 3 -colouring φ of D by $\varphi(v)=\varphi_{A}(v)$ if $v \in A$, and $\varphi(v)=\varphi_{B}(v)$ if $v \in B$. Observe that, since A is bidirected, all neighbours of x and y in $D\langle A\rangle$ have a colour distinct from $\varphi(x)$. Therefore there is no monochromatic directed cycle in D coloured by φ. Thus φ is a 3-dicolouring of D, a contradiction. Therefore, $H=D$ is bidirected, and so H is an Ore-composition of W_{A} and W_{B} (because D is 2-connected by Claim 6), and so D is 4-Ore, a contradiction. Henceforth, we may assume that either W_{A} or W_{B} is not 4-Ore.

If none of W_{A} and W_{B} are is a 4-Ore, then by minimality of $D, \rho\left(W_{A}\right) \leqslant 1$ and $\rho\left(W_{B}\right) \leqslant 1$. Together with Equation (1), this yields

$$
\rho(H) \leqslant \frac{2}{3}-\varepsilon+2 \delta \leqslant 1
$$

because $2 \delta-\varepsilon \leqslant \frac{1}{3}$, a contradiction.
If none of W_{A} and W_{B} is $\overleftrightarrow{K_{4}}$, then $\rho\left(W_{A}\right)+\rho\left(W_{B}\right) \leqslant 1+\left(\frac{4}{3}+7 \varepsilon-4 \delta\right)$ (recall that if a digraph is 4-Ore but not $\overleftrightarrow{K_{4}}$, then it has potential at most $\frac{4}{3}+7 \varepsilon-4 \delta$ by Lemma 22. Thus, with Equation (1), we get

$$
\rho(H) \leqslant 1+\left(\frac{4}{3}+7 \varepsilon-4 \delta\right)-\frac{4}{3}-\varepsilon+2 \delta=1+6 \varepsilon-2 \delta \leqslant 1
$$

because $\delta \geqslant 3 \varepsilon$.

Finally, if exactly one of W_{A} or W_{B} is isomorphic to $\overleftrightarrow{K_{4}}$, then either $T\left(W_{A}-x\right)=T\left(W_{A}\right)=2$ (if $W_{A}=\overleftrightarrow{K_{4}}$) or $T\left(W_{B}-z\right)=T\left(W_{B}\right)=2$ (if $W_{B}=\overleftrightarrow{K_{4}}$). Therefore $T(H) \geqslant T\left(W_{A}-x\right)+$ $T\left(W_{B}-z\right) \geqslant T\left(W_{A}\right)+T\left(W_{B}\right)-1$ by Lemma 13, and so

$$
\rho(H) \leqslant \rho\left(W_{A}\right)+\rho\left(W_{B}\right)-\left(\frac{10}{3}+\varepsilon\right)+2+\delta .
$$

Now the non 4-Ore digraph among W_{A}, W_{B} has potential at most 1 and the other has potential $\rho\left(\overleftrightarrow{K_{4}}\right)=\frac{4}{3}+4 \varepsilon-2 \delta$. Thus

$$
\rho(H) \leqslant 1+\left(\frac{4}{3}+4 \varepsilon-2 \delta\right)-\left(\frac{10}{3}+\varepsilon\right)+2+\delta=1+3 \varepsilon-\delta \leqslant 1
$$

because $\delta \geqslant 3 \varepsilon$.
In all three cases, $\rho(D)=\rho(H) \leqslant 1$, which is a contradiction. Hence D is 3-connected.

Claim 8. If R is a collapsible subdigraph of D, u, v are in the boundary of R and $D\langle R\rangle \cup[u, v]$ is 4-Ore, then there exists $R^{\prime} \subseteq R$ such that
(i) either R^{\prime} is an Ore-collapsible subdigraph of D, or
(ii) R^{\prime} is an induced subdigraph of $R, n\left(R^{\prime}\right)<n(R)$, and there exist u^{\prime}, v^{\prime} in $\partial_{D}\left(R^{\prime}\right)$ such that $R^{\prime} \cup\left[u^{\prime}, v^{\prime}\right]$ is 4-Ore.

Proof of claim. If $\partial(R)=\{u, v\}$, then R is Ore-collapsible and we are done. Suppose now that there exists $w \in \partial(R)$ distinct from u and v. Let $H=D\langle R\rangle \cup[u, v]$. Observe that $H \neq \overleftrightarrow{K_{4}}$ as u, v and w receive the same colour in any 3 -dicolouring of $D\langle R\rangle$ because R is collapsible. Hence H is the Ore-composition of two 4-Ore digraphs H_{1} (the digon side with replaced digon [$\left.x, y\right]$) and H_{2} (the split side with split vertex z).

If u or v is in $V\left(H_{2}\right)$, then $R^{\prime}=D\left\langle V\left(H_{1}\right)\right\rangle$ with $u^{\prime}=x, v^{\prime}=y$ satisfies (ii). Now we assume that $u, v \in V\left(H_{1}\right) \backslash V\left(H_{2}\right)$. By repeating this argument successively on H_{1}, and then on the digonside of H_{1}, etc, either we find a subdigraph R^{\prime} satisfying (ii) or u and v are in a copy J of $\overleftrightarrow{K}_{4}$ such that H is obtained by Ore-compositions between J and some 4-Ore digraphs with J being always in the digon side.

Observe that $w \notin V(J)$ because in any 3-dicolouring of $H \backslash[u, v]$, vertices in J receive different colours by Lemma 24, except u and v. Hence at one step in the succession of Ore-compositions, w was in the split-side S when a digon e in J has been replaced. However $e \neq[u, v]$, so either u or v is not in e. Suppose without loss of generality that e is not incident to v.

We claim that $H^{\prime}=R-v \cup[u, w]$ is not 3-dicolourable. Otherwise, let φ be a 3-dicolouring of H^{\prime}. Then φ is a 3-dicolouring of $H-v$ with $H 4$-Ore, so vertices in $J-v$ must receive pairwise different colours by Lemma 25, Let φ^{\prime} be a 3-dicolouring of R. Without loss of generality, we may assume that $\varphi(x)=\varphi^{\prime}(x)$ for every $x \in V(J-v)$. If $y \in S$, let $\varphi^{\prime \prime}(y)=\varphi(y)$, and let $\varphi^{\prime \prime}(y)=\varphi^{\prime}(y)$ if $y \notin S$. Then $\varphi^{\prime \prime}$ is a 3-dicolouring of R but with $\varphi(u) \neq \varphi(w)$, contradicting the fact that R is collapsible. This shows that $H^{\prime}=R-v \cup[u, w]$ is not 3-dicolourable.

Hence $R-v \cup[u, w]$ contains a 4-dicritical digraph K. By Lemma 23, $R^{\prime}=D\langle V(K)\rangle$, as a subdigraph of H which is a 4-Ore, satisfies $\frac{10}{3} n\left(R^{\prime}\right)-m\left(R^{\prime}\right) \geqslant \frac{10}{3}$. This implies that $\frac{10}{3} n(K)-$ $m(K) \geqslant \frac{4}{3}$. Note also that K is bidirected because $R-v$ is bidirected. Thus, by Theorem 21, K is 4-Ore. Hence R^{\prime} with u, w satisfies (ii).

Claim 9. If R is a subdigraph of D with $n(R)<n(D)$ and $u, v \in V(R)$, then $R \cup[u, v]$ is 3-dicolourable. As a consequence, there is no collapsible subdigraph in D.

Proof of claim. Assume for a contradiction that the statement is false. Consider a smallest induced subdigraph R for which the statement does not hold. Then $K=R \cup[u, v]$ is 4-vertex-dicritical, that is for every vertex $v \in V(K), \vec{\chi}(K-v)<4=\vec{\chi}(K)$. Note that 4-vertex-dicritical digraphs smaller than D satisfy the outcome of Theorem 8 since adding arcs does not increase the potential. Note that $\rho(R) \leqslant \rho(K)+2+\delta$.

If R is not collapsible, then, by Claim $5, \rho(R) \geqslant \rho(D)+\frac{8}{3}-\varepsilon-\delta>\frac{11}{3}-\varepsilon-\delta$. But we also have $\rho(R) \leqslant \rho(K)+2+\delta \leqslant \frac{10}{3}+4 \varepsilon-\delta$ by Claim 1 , which is a contradiction because $5 \varepsilon \leqslant \frac{1}{3}$. Hence R is collapsible.

Let φ be a 3-dicolouring of R. Observe that $\varphi(u)=\varphi(v)$ for otherwise $R \cup[u, v]$ would be 3 -dicolourable. Let R^{\prime} be the dicritical extension of R with extender W and core X_{W}. We have $R^{\prime}=D$ and $\left|X_{W}\right|=1$. Since R is collapsible, for every two vertices u^{\prime}, v^{\prime} on the boundary of R, $R \cup\left[u^{\prime}, v^{\prime}\right]$ is not 3 -dicolourable. Hence, free to consider u^{\prime}, v^{\prime} instead of u, v, we can suppose that u and v are on the boundary of R. If K is 4 -Ore, then, by Claim 8 and by minimality of R, we have that R is Ore-collapsible, and so has boundary of size 2 . This contradicts the fact that D is 3 -connected. Hence K is not 4-Ore.

By Claim 2, we have

$$
\begin{aligned}
1<\rho(D)=\rho\left(R^{\prime}\right) & \leqslant \rho(W)+\rho(R)-\frac{10}{3}-\varepsilon+\delta \\
& \leqslant \rho(W)+(\rho(K)+2+\delta)-\frac{10}{3}-\varepsilon+\delta
\end{aligned}
$$

and as $\rho(K) \leqslant 1$ (because it is not 4-Ore and by minimality of D) we get

$$
1<1+\rho(W)-\left(\frac{4}{3}+\varepsilon-2 \delta\right)
$$

that is $\rho(W)>\frac{4}{3}+\varepsilon-2 \delta$. But as W is smaller than D, it satisfies Theorem 8 . Thus, since $\varepsilon-2 \delta \geqslant \frac{-1}{3}, W$ must be 4-Ore. Moreover, W must be isomorphic to $\overleftrightarrow{K_{4}}$, for otherwise $\rho(W)$ would be at most $\frac{4}{3}+7 \varepsilon-4 \delta$, and $\frac{4}{3}+7 \varepsilon-4 \delta \geqslant \rho(W)>\frac{4}{3}+\varepsilon-2 \delta$ would contradict $\delta \geqslant 3 \varepsilon$. Hence $\rho(W)=\rho\left(\overleftrightarrow{K_{4}}\right)=\frac{4}{3}+4 \varepsilon-2 \delta$ and $T\left(W-X_{W}\right)=2=T(W)$. Thus, by Claim 2 and because $\delta \geqslant 3 \varepsilon$, we have

$$
1<\rho(D) \leqslant \rho(W)+\rho(K)+2+\delta-\frac{10}{3}-\varepsilon \leqslant \rho(K)+3 \varepsilon-\delta \leqslant \rho(K) \leqslant 1
$$

a contradiction.

This implies that D does not contain any collapsible subdigraph. Indeed, assume for a contradiction that D contains a collapsible subdigraph R, and let u, v be two vertices in its boundary. Then there exists a 3-dicolouring φ of $R \cup[u, v]$, for which $\partial(R)$ is not monochromatic, a contradiction.

Claim 10. If R is a subdigraph of D with $n(R)<n(D)$ and $u, v, u^{\prime}, v^{\prime} \in R$, then $R \cup\left\{u v, u^{\prime} v^{\prime}\right\}$ is 3-dicolourable. In particular, D contains no copy of $\overleftrightarrow{K}_{4}$ minus two arcs.

Proof of claim. Assume for a contradiction that the statement is false. Consider a smallest subdigraph R for which the statement does not hold. Then $K=R \cup\left\{u v, u^{\prime} v^{\prime}\right\}$ is 4-dicritical and smaller than D, so $\rho(K) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ by Claim 1. By Claim $9, R$ is not collapsible, so, by Claim5. we have $\rho(R) \geqslant \rho(D)+\frac{8}{3}-\varepsilon-\delta>\frac{11}{3}-\varepsilon-\delta$. But $\rho(R) \leqslant \rho(K)+2+2 \delta \leqslant \frac{10}{3}+4 \varepsilon$, which is a contradiction as $5 \varepsilon+\delta \leqslant \frac{1}{3}$.

For any $v \in V(D)$, we denote by $n(v)$ its number of neighbours, that is $n(v)=\mid N^{+}(u) \cup$ $N^{-}(v) \mid$, and by $d(v)$ its number of incident arcs, that is $d(v)=d^{+}(v)+d^{-}(v)$.

Claim 11. Vertices of degree 6 in D have either three or six neighbours.
Proof of claim. Let x be a vertex of degree 6 .
If $n(x)=4$, then let a, b, c, d be its neighbours such that $N^{+}(x)=\{a, b, c\}$ and $N^{-}(x)=$ $\{a, b, d\}$. Consider $D^{\prime}=D-x \cup d c$. By Claim 10, D^{\prime} has a 3-dicolouring φ. If $\left|\varphi\left(N^{-}(x)\right)\right|<3$, then choosing $\varphi(x)$ in $\{1,2,3\} \backslash \varphi\left(N^{-}(x)\right)$, we obtain a 3 -dicolouring of D, a contradiction. Hence $\varphi\left(N^{-}(x)\right)=\{1,2,3\}$. We set $\varphi(x)=\varphi(d)$. As D is not 3 -dicolourable, D contains a monochromatic directed cycle C. This cycle C must contain the arc $d x$, and an out-neighbour z of x. Since $\varphi(a), \varphi(b)$ and $\varphi(d)$ are all distinct, necessarily $z=c$. But then $C-x \cup d c$ is a monochromatic directed cycle in D^{\prime}, a contradiction.

Similarly, if $n(v)=5$, let $N^{+}(x)=\{a, b, c\}$ and $N^{-}(x)=\{a, d, e\}$, and consider $D^{\prime}=$ $D-x \cup d b \cup d c$. By Claim 10, D^{\prime} has a 3-dicolouring φ. If $\left|\varphi\left(N^{-}(x)\right)\right|<3$, then choosing $\varphi(x)$ in $\{1,2,3\} \backslash \varphi\left(N^{-}(x)\right)$, we obtain a 3 -dicolouring of D, a contradiction. Hence $\varphi\left(N^{-}(x)\right)=$ $\{1,2,3\}$. We set $\varphi(x)=\varphi(d)$. As D is not 3 -dicolourable, there is a monochromatic directed cycle C, which must contain the arc $d x$ and an out-neighbour z of x. Note that z must be b or c because $\varphi(a) \neq \varphi(d)$. Then $C-x \cup d z$ is a monochromatic directed cycle in D^{\prime}, a contradiction.

Claim 12. There is no bidirected triangle containing two vertices of degree 6. In particular, D contains no emerald.

Proof of claim. Suppose that $D\langle\{x, y, z\}\rangle=\overleftrightarrow{K_{3}}$ and $d(x)=d(y)=6$. By Claim 11 , x and y have exactly three neighbours, and $N[x] \neq N[y]$ because D contains no copy of $\overleftarrow{K_{4}}$ minus two arcs by Claim 10. Let u (resp. v) be the unique neighbour of x distinct from y and z (resp. x and z). Consider $D^{\prime}=D-\{x, y\} \cup[u, v]$. By Claim $9, D^{\prime}$ has a 3-dicolouring φ. Without loss of generality, suppose that $\varphi(u)=1$ and $\varphi(v)=2$. If $\varphi(z)=1$ (resp. $\varphi(z)=2, \varphi(z)=3$), we set
$\varphi(x)=2$ and $\varphi(y)=3($ resp. $\varphi(x)=3$ and $\varphi(y)=1, \varphi(x)=2$ and $\varphi(y)=1)$. In each case, this yields a 3 -dicolouring of D, a contradiction.

So now we know that D contains no emerald, and no diamond by Claim 7 .
Claim 13. If R is an induced subdigraph of D with $4 \leqslant n(R)<n(D)$, then $\rho(R) \geqslant \rho(D)+3+$ $3 \varepsilon-3 \delta$, except if $D-R$ contains a single vertex which has degree 6 in D.

Proof of claim. Let R be an induced subdigraph of D with $4 \leqslant n(R)<n(D)$. By Claim $9, R$ is not collapsible. Let φ be a 3-dicolouring of R, R^{\prime} be a dicritical extension of R with extender W and core X_{W} (with respect to φ). By (the consequence of) Claim 3 , we know that $\rho\left(R^{\prime}\right) \geqslant \rho(D)$.

Assume first that $R^{\prime} \neq D$. Then, by Claims 3 and 2 ,

$$
\rho(D)+2-3 \varepsilon+\delta \leqslant \rho\left(R^{\prime}\right) \leqslant \rho(W)+\rho(R)-\frac{10}{3}-\varepsilon+\delta .
$$

Since $\rho(W) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ by Claim 1 , we have $\rho(R) \geqslant \rho(D)+4-6 \varepsilon+2 \delta \geqslant \rho(D)+3+3 \varepsilon-3 \delta$, because $1 \geqslant 9 \varepsilon-5 \delta$. In the following we suppose that $R^{\prime}=D$. We distinguish three cases depending on the cardinality of $\left|X_{W}\right|$.

- Assume first that $\left|X_{W}\right|=2$. Then, by Claim 2 and Lemma 13 ,

$$
\rho(D) \leqslant \rho\left(R^{\prime}\right) \leqslant \rho(W)+\rho(R)-\frac{20}{3}-2 \varepsilon+2+2 \delta
$$

and, as $\rho(W) \leqslant \frac{4}{3}+4 \varepsilon-2 \delta$ by Claim 1, we have $\rho(R) \geqslant \rho(D)+\frac{10}{3}-2 \varepsilon \geqslant \rho(D)+3+3 \varepsilon-3 \delta$ because $5 \varepsilon-3 \delta \leqslant \frac{1}{3}$.

- Assume now that $\left|X_{W}\right|=3$. If there is a vertex $v \in V(D-R)$ with two out-neighbours (resp. two in-neighbours) in $V(R)$ with the same colour for φ, then
- $n\left(R^{\prime}\right)=n(W)-\left|X_{W}\right|+n(R)$,
- $m\left(R^{\prime}\right) \geqslant m(W)+m(R)-m\left(\overleftrightarrow{K_{\left|X_{W}\right|}}\right)+1$ because v has two in- or out-neighbour in $V(R)$ with the same colour for φ,
- $T\left(R^{\prime}\right) \geqslant T\left(W-X_{W}\right)+T(R)$.

It follows that

$$
\rho(D) \leqslant \rho\left(R^{\prime}\right) \leqslant \rho(W)+\rho(R)-(10+3 \varepsilon-6)+3 \delta-1
$$

and so $\rho(R) \geqslant \rho(D)-\frac{4}{3}-4 \varepsilon+2 \delta+5+3 \varepsilon-3 \delta \geqslant \rho(D)+\frac{11}{3}-\varepsilon-\delta \geqslant \rho(D)+3+3 \varepsilon-3 \delta$ because $4 \varepsilon-2 \delta \leqslant \frac{2}{3}$. Now we assume that there is no vertex with two out-neighbours (resp. two in-neighbours) in R with the same colour for φ. In other words, the in-degrees and out-degrees of vertices in $D-R$ are the same in D and in W.

If W is not 4 -Ore, then by Claim 2

$$
\rho(D) \leqslant \rho\left(R^{\prime}\right) \leqslant \rho(W)+\rho(R)-(10+3 \varepsilon-6)+3 \delta
$$

and, as $\rho(W) \leqslant 1$, we have $\rho(R) \geqslant \rho(D)+3+3 \varepsilon-3 \delta$.
Now suppose W is 4-Ore. If $W \neq \overleftrightarrow{K}_{4}$, then, by Lemma 20, W contains a diamond or an emerald disjoint from X, and this gives a diamond or an emerald in D because the degrees of vertices in $D-R$ are the same in D and in W, which is a contradiction.
Now suppose that $W=\overleftrightarrow{K_{4}}$. Then $D-R$ has a single vertex of degree 6 in D.

- Assume finally that $\left|X_{W}\right|=1$. Since R is not collapsible by Claim $9, \varphi$ may have been chosen so that $\partial(R)$ is not monochromatic in φ. Then, by Claim $4, \rho(R) \geqslant \rho(D)+3-3 \varepsilon+$ $\delta \geqslant \rho(D)+3+3 \varepsilon-3 \delta$, because $6 \varepsilon-4 \delta \leqslant 0$.

In D, we say that a vertex v is a simple in-neighbour (resp. simple out-neighbour) if v is a in-neighbour (resp. out-neighbour) of u and $[u, v]$ is not a digon in D. If v is a simple in-neighbour or simple out-neighbour of u, we simply say that v is a simple neighbour of u.

Claim 14. Vertices of degree 7 have seven neighbours. In other words, every vertex of degree 7 has only simple neighbours.

Proof of claim. Let x be a vertex of degree 7 . We suppose, without loss of generality, that $d^{-}(x)=$ 3 and $d^{+}(x)=4$.

If $n(x)=4$, then x has a unique simple out-neighbour a. As D is 4 -dicritical, $D \backslash x a$ has a 3 -dicolouring φ. But then every directed cycle is either in $D \backslash x a$ or it contains $x a$ and thus an inneighbour t of x. In the first case, it is not monochromatic because φ is a 3-dicolouring of $D \backslash x a$, and in the second case, it is not monochromatic because $[t, x]$ is a digon and so $\varphi(t) \neq \varphi(x)$. Hence φ is a 3 -dicolouring of D, a contradiction.

If $n(x)=5$, let $N^{-}(x)=\{a, b, c\}$ and $N^{+}(x)=\{a, b, d, e\}$. By Claim 10, $D^{\prime}=D-x \cup$ $\{c d, c e\}$ has a 3 -dicolouring φ. If $\left|\varphi\left(N^{-}(x)\right)\right|<3$, then choosing $\varphi(x)$ in $\{1,2,3\} \backslash \varphi\left(N^{-}(x)\right)$ gives a 3 -dicolouring of D, a contradiction. If $\left|\varphi\left(N^{-}(x)\right)\right|=3$, then we set $\varphi(x)=\varphi(c)$. Suppose for a contradiction that there is a monochromatic directed cycle C in D (with φ). Necessarily C contains x (since φ is a 3-dicolouring of $D-x$) and so it must contain c and one vertex y in $\{d, e\}$ because $\varphi(a), \varphi(b)$, and $\varphi(c)$ are all distinct. Then $C-x \cup c y$ is a monochromatic directed cycle in D^{\prime}, a contradiction. Therefore φ is a 3 -dicolouring of D, a contradiction.

If $n(x)=6$, let $N^{-}(x)=\{a, b, c\}$ and $N^{+}(x)=\{a, d, e, f\}$. Consider $D^{\prime}=D-x \cup$ $\{b d, b e, b f\}$.

We first show that D^{\prime} is not 3 -dicolourable. Assume for a contradiction that there is a 3dicolouring φ of D^{\prime}. If $\left|\varphi\left(N^{-}(x)\right)\right|<3$, then choosing $\varphi(x)$ in $\{1,2,3\} \backslash \varphi\left(N^{-}(x)\right)$ gives a 3 -dicolouring of D, a contradiction. Hence $\left|\varphi\left(N^{-}(x)\right)\right|=3$. We set $\varphi(x)=\varphi(b)$. Since D is not 3 -dicolourable, there exists a monochromatic directed cycle C in D (with φ). Necessarily
C contains x (since φ is a 3-dicolouring of $D-x$) and so it must contain b and one vertex y in $\{d, e, f\}$ because $\varphi(a), \varphi(b)$, and $\varphi(c)$ are all distinct. Then $C-x \cup b y$ is a monochromatic directed cycle in D^{\prime}, a contradiction. This gives a 3 -dicolouring of D, a contradiction.

Henceforth D^{\prime} is not 3 -dicolourable, and so it contains a 4 -dicritical digraph \tilde{D}, smaller than D. If \tilde{D} does not contain the three arcs $b d, b e, b f$, then it can be obtained from a proper induced subdigraph of D by adding at most two arcs, and so it is 3 -dicolourable by Claim 10, a contradiction.

Hence $\{b, d, e, f\} \subseteq V(\tilde{D})$. Now consider $U=D\langle V(\tilde{D}) \cup\{x\}\rangle$.

- Assume first that $a \notin V(U)$ or $c \notin V(U)$. Then we have
- $n(U)=n(\tilde{D})+1$,
- $m(U) \geqslant m(\tilde{D})+1$ and
- $T(U) \geqslant T(\tilde{D}-b) \geqslant T(\tilde{D})-1$ by Lemma 13 .

Hence

$$
\begin{array}{rlr}
\rho(U) & \leqslant \rho(\tilde{D})+\frac{10}{3}+\varepsilon-1+\delta & \\
& \leqslant \frac{4}{3}+4 \varepsilon-2 \delta+\frac{10}{3}+\varepsilon-1+\delta \quad \text { by Claim } 1 \\
& =1+\frac{8}{3}+5 \varepsilon-\delta & \\
& <\rho(D)+\frac{8}{3}+5 \varepsilon-\delta & \\
& \leqslant \rho(D)+3+3 \varepsilon-3 \delta \quad \text { because } \frac{1}{3} \geqslant 2 \delta+2 \varepsilon
\end{array}
$$

Hence by Claim 13, $D-U$ has a single vertex of degree 6 (in D), which must be either a or c. Then we have

- $n(D)=n(\tilde{D})+2$,
- $m(D) \geqslant m(\tilde{D})-3+11$ and
- $T(D) \geqslant T(\tilde{D}-b) \geqslant T(\tilde{D})-1$.

Thus

$$
\begin{array}{rlrl}
\rho(D) & \leqslant \rho(\tilde{D})+2\left(\frac{10}{3}+\varepsilon\right)-8+\delta & \\
& \leqslant\left(\frac{4}{3}+4 \varepsilon-2 \delta\right)-\frac{4}{3}+2 \varepsilon+\delta & & \text { by Claim } 1 \\
& \leqslant 1 & & \text { because } 6 \varepsilon-\delta \leqslant 1 .
\end{array}
$$

This is a contradiction.

- Assume now that $a, c \in V(U)$, then we have
- $n(U)=n(\tilde{D})+1$,
- $m(U) \geqslant m(\tilde{D})+4$ and
- $T(U) \geqslant T(\tilde{D}-b) \geqslant T(\tilde{D})-1$ by Lemma 13 .

Thus

$$
\begin{array}{rlrl}
\rho(U) & \leqslant \rho(\tilde{D})+\frac{10}{3}+\varepsilon-4+\delta & \\
& \leqslant\left(\frac{4}{3}+4 \varepsilon-2 \delta\right)+\frac{10}{3}+\varepsilon-4+\delta & & \text { by Claim } 1, \\
& \leqslant 1 & & \text { because } 5 \varepsilon-\delta \leqslant \frac{1}{3} .
\end{array}
$$

Together with the consequence of Claim 3 , we get that $\rho(D) \leqslant \rho(U) \leqslant 1$, a contradiction.
The 8^{+}-valency of a vertex v, denoted by $\nu(v)$, is the number of arcs incident to v and a vertex of degree at least 8 .

Let D_{6} be the subdigraph of D induced by the vertices of degree 6 incident to digons. Let us describe the connected components of D_{6} and their neighbourhoods. Remember that vertices of degree 7 are incident to no digon by Claim 14, and so they do not have neighbours in $V\left(D_{6}\right)$. If v is a vertex in D_{6}, we define its neighbourhood valency to be the sum of the 8^{+}-valency of its neighbours of degree at least 8 . We denote the neighbourhood valency of v by $\nu_{N}(v)$.

Claim 15. If $[x, y]$ is a digon and both x and y have degree 6 , then either
(i) the two neighbours of y distinct from x have degree at least 8 , or
(ii) the two neighbours of x distinct from y have degree at least 8 and $\nu_{N}(x) \geqslant 4$.

Proof of claim. Let $[x, y]$ be a digon in D with $d(x)=d(y)=6$. By Claim $11 n(x)=n(y)=3$. Let u and v be the two neighbours of x different from y. By Claim 14, u and v have degree 6 or at least 8 .

If u and v are linked by a digon, then by Claim 12, u and v do not have degree 6 , so they have degree 8 . Moreover $\nu(u) \geqslant 2$ and $\nu(v) \geqslant 2$. Thus $\nu_{N}(x)=\nu(u)+\nu(v) \geqslant 4$ and (ii) holds. Henceforth, we may assume that u and v are not linked by a digon.

Let D^{\prime} the digraph obtained by removing x and y and identifying u and v into a single vertex $u \star v$. We claim that D^{\prime} is not 3-dicolourable. To see that, suppose for contradiction that there exists a 3-dicolouring φ of D^{\prime}. Then set $\varphi(u)=\varphi(v)=\varphi(u \star v)$, choose $\varphi(y)$ in $\{1,2,3\} \backslash \varphi(N(y) \backslash\{x\})$, and finally choose $\varphi(x)$ in $\{1,2,3\} \backslash\{\varphi(u \star v), \varphi(y)\}$. One can easily see that φ is now a 3dicolouring of D, a contradiction. This proves that D^{\prime} is not 3 -dicolourable and so it contains a 4-dicritical digraph \tilde{D}, which must contain $u \star v$ because every subdigraph of D is 3-dicolourable. Let R be the subdigraph of D induced by $(V(\tilde{D}) \backslash\{u \star v\}) \cup\{u, v, x\}$. We have

- $n(R)=n(\tilde{D})+2$,
- $m(R) \geqslant m(\tilde{D})+4$ and
- $T(R) \geqslant T(\tilde{D}-u \star v)+1 \geqslant T(\tilde{D})$ because $[x, u]$ is a digon, and by Lemma 13 .

If \tilde{D} is not 4-Ore, then $\rho(\tilde{D}) \leqslant 1$ by minimality of D, and so

$$
\begin{aligned}
\rho(R) & \leqslant \rho(\tilde{D})+2\left(\frac{10}{3}+\varepsilon\right)-4 \\
& \leqslant 1+\frac{8}{3}+2 \varepsilon \\
& <\rho(D)+3+3 \varepsilon-3 \delta \quad \text { because } \varepsilon-3 \delta \geqslant-\frac{1}{3} .
\end{aligned}
$$

Similarly, if \tilde{D} is 4-Ore but not $\overleftrightarrow{K_{4}}$, then

$$
\begin{aligned}
\rho(R) & \leqslant \rho(\tilde{D})+2\left(\frac{10}{3}+\varepsilon\right)-4 \\
& \leqslant\left(\frac{4}{3}+7 \varepsilon-4 \delta\right)+\frac{8}{3}+2 \varepsilon \quad \text { by Lemma } 22, \\
& =1+3+9 \varepsilon-4 \delta \\
& <\rho(D)+3+9 \varepsilon-4 \delta \\
& \leqslant \rho(D)+3+3 \varepsilon-3 \delta \quad \text { because } \delta \geqslant 6 \varepsilon .
\end{aligned}
$$

In both cases (that is when \tilde{D} is not $\overleftrightarrow{K_{4}}$), by Claim $13, D-R$ is a single vertex of degree 6 , namely y. Then every neighbour w of y different from x has degree at least 6 in \tilde{D} (because \tilde{D} is 3 -dicritical) and so has degree at least 8 in D and (i) holds.

Assume now that \tilde{D} is a copy of $\overleftrightarrow{K_{4}}$. Let us denote by a, b, c the vertices of \tilde{D} different from $u \star v$. Suppose for a contradiction that u has degree 6 . Then u has exactly three neighbours by Claim 11. If $|N(u) \cap\{a, b, c\}|=2$, then $D\langle\{u, a, b, c\}\rangle$ is a copy of \vec{K}_{4} minus a digon, contradicting Claim 9 . If $|N(u) \cap\{a, b, c\}| \leqslant 1$, then v must be adjacent to at least two vertices of $\{a, b, c\}$ with a digon, and so $D\langle\{v, a, b, c\}\rangle$ contains a copy of $\overleftrightarrow{K_{4}}$ minus a digon, contradicting Claim 9 . Hence u has degree at least 8 , and by symmetry so does v. Moreover $D\langle\{a, b, c\}\rangle$ is a bidirected triangle, and so by Claim 12, at least two of these vertices have degree at least 8 (remember that vertices of degree 7 are in no digon by Claim 14). Hence at least four arcs between $\{u, v\}$ and $\{a, b, c\}$ are incident to two vertices of degree at least 8 . In other word, $\nu_{N}(x)=$ $\nu(u)+\nu(v) \geqslant 4$, so (ii) holds.

Claim 16. Let C be a connected component of D_{6}. Then C is one of the following (see Figure 3):
(i) a single vertex, or
(ii) a bidirected path on two vertices, or

Figure 3: The possible connected components of D_{6}.

Figure 4: An example of an out-chelou arc $x y$.
(iii) a bidirected path on three vertices, whose extremities have neighbourhood valency at least 4, or
(iv) a star on four vertices, whose non-central vertices have neighbourhood valency at least 4.

Proof of claim. First observe that C does not contain a bidirected path $\llbracket x, y, z, w \rrbracket$ on four vertices, because otherwise, by Claim 15 applied on $[y, z]$, either y or z has two neighbours of degree at least 8, a contradiction. Observe also that C contains no bidirected triangle by Claim 12 .

Moreover, if $\llbracket x, y, z \rrbracket$ is a bidirected path in C on three vertices, then by Claim 15 applied both on $[y, z]$ and $[z, y], x$ and z have both neighbourhood valency at least 4 . The statement of the claim follows.

An arc $x y$ is said to be out-chelou if
(i) $y x \notin A(D)$, and
(ii) $d^{+}(x)=3$, and
(iii) $d^{-}(y)=3$, and
(iv) there exists $z \in N^{-}(y) \backslash N^{+}(y)$ distinct from x.

Symmetrically, we say that an arc $x y$ is in-chelou if $y x$ is out-chelou in the digraph obtained from D by reversing every arc. See Figure 4 for an example of an out-chelou arc.

Claim 17. There is no out-chelou arc and no in-chelou arc in D.
Proof of claim. By directional duality, it suffices to prove that D has no out-chelou arcs.
Let $x y$ be an out-chelou arc with $z \in N^{-}(y) \backslash\left(N^{+}(y) \cup\{x\}\right)$. Consider $D^{\prime}=D-\{x, y\} \cup$ $\left\{z z^{\prime} \mid z^{\prime} \in N^{+}(y) \backslash N^{-}(y)\right\}$. We claim that D^{\prime} is not 3-dicolourable. To see that, suppose
for contradiction that there is a 3 -dicolouring φ of D^{\prime}. As $d^{+}(x)=3$, we can choose $\varphi(x)$ in $\{1,2,3\} \backslash \varphi\left(N^{+}(x) \backslash\{y\}\right)$ to obtain a 3-dicolouring of $D-y$. If $\left|\varphi\left(N^{-}(y)\right)\right|<3$, then choosing $\varphi(y)$ in $\{1,2,3\} \backslash \varphi\left(N^{-}(y)\right)$ gives a 3 -dicolouring of D, a contradiction. Hence $\mid \varphi\left(N^{-}(y) \mid=3\right.$. Set $\varphi(x)=\varphi(z)$. Suppose there is a monochromatic directed cycle C in D. It must contain y and thus z, its unique in-neighbour with its colour. Let z^{\prime} be the out-neighbour of y in C. It must be in $N^{+}(y) \backslash N^{-}(y)$, so $z z^{\prime}$ is an arc in D^{\prime}. Thus $C-y \cup z z^{\prime}$ is a monochromatic directed cycle in D^{\prime}, a contradiction. Therefore φ is a 3 -dicolouring of D, a contradiction. Hence D^{\prime} is not 3 -dicolourable.

Consequently, D^{\prime} contains a 3 -dicritical digraph \tilde{D}, which is smaller than D and contains z, for otherwise \tilde{D} would be a subdigraph of D. Consider $U=D\langle V(\tilde{D}) \cup\{y\}\rangle$. We have

- $n(U)=n(\tilde{D})+1$,
- $m(U) \geqslant m(\tilde{D})+1$ and
- $T(U) \geqslant T(\tilde{D}-z) \geqslant T(\tilde{D})-1$ by Lemma 13

First if \tilde{D} is not 4-Ore, then by minimality of D we have $\rho(\tilde{D}) \leqslant 1$, so

$$
\rho(U) \leqslant \rho(\tilde{D})+\frac{10}{3}+\varepsilon-1+\delta \leqslant \frac{10}{3}+\varepsilon+\delta \leqslant \frac{11}{3}-\varepsilon-\delta
$$

$2 \varepsilon+2 \delta \leqslant \frac{1}{3}$.
Next if \tilde{D} is 4-Ore, but not isomorphic to $\overleftrightarrow{K_{4}}$, then $\rho(\tilde{D}) \leqslant \frac{4}{3}+7 \varepsilon-4 \delta$ by Lemma 22, and

$$
\rho(U) \leqslant \rho(\tilde{D})+\frac{10}{3}+\varepsilon-1+\delta \leqslant \frac{11}{3}+8 \varepsilon-3 \delta \leqslant \frac{11}{3}-\varepsilon-\delta
$$

because $9 \varepsilon-2 \delta \leqslant 0$.
Finally if \tilde{D} is isomorphic to $\overleftrightarrow{K_{4}}$, then we have $T(U) \geqslant T(\tilde{D}-z) \geqslant T(\tilde{D})$ and $\rho(\tilde{D})=$ $\frac{4}{3}+4 \varepsilon-2 \delta$. So the same computation yields

$$
\rho(U) \leqslant \rho(\tilde{D})+\frac{10}{3}+\varepsilon-1 \leqslant \frac{11}{3}+5 \varepsilon-2 \delta \leqslant \frac{11}{3}-\varepsilon-\delta
$$

because $6 \varepsilon-\delta \leqslant 0$.
In all cases, we have $\rho(U) \leqslant \frac{11}{3}-\varepsilon-\delta$. This contradicts Claim 5 because U is not collapsible by Claim 9 .

We now use the discharging method. For every vertex v, let $\sigma(v)=\frac{\delta}{|C|}$ if v has degree 6 and is in a component C of D_{6} of size at least 2 , and $\sigma(v)=0$ otherwise. Clearly $T(D)$ is at least the number of connected components of size at least 2 of D_{6} so $\sum_{v \in V(D)} \sigma(v) \leqslant \delta T(D)$. We define the initial charge of v to be $w(v)=\frac{10}{3}+\varepsilon-\frac{d(v)}{2}-\sigma(v)$. We have

$$
\rho(D) \leqslant \sum_{v \in V(D)} w(v) .
$$

We now redistribute this total charge according to the following rules:
(R1) A vertex of degree 6 incident to no digon sends $\frac{1}{12}-\frac{\varepsilon}{8}$ to each of its neighbours.
(R2) A vertex of degree 6 incident to digons sends $\frac{2}{d(v)-\nu(v)}\left(-\frac{10}{3}+\frac{d(v)}{2}-\varepsilon\right)$ to each neighbour v of degree at least 8 (so $\frac{1}{d(v)-\nu(v)}\left(-\frac{10}{3}+\frac{d(v)}{2}-\varepsilon\right)$ via each arc of the digon).
(R3) A vertex of degree 7 with $d^{-}(v)=3$ (resp. $d^{+}(v)=3$) sends $\frac{1}{12}-\frac{\varepsilon}{8}$ to each of its inneighbours (resp. out-neighbours).
For every vertex v, let $w^{*}(v)$ be the final charge of v.
Claim 18. If v has degree at least 8 , then $w^{*}(v) \leqslant 0$.
Proof of claim. Let v be a vertex of degree at least 8 . If v is not adjacent to a vertex of degree at most 7 , then $w^{*}(v)=w(v)=\frac{10}{3}+\varepsilon-\frac{d(v)}{2} \leqslant 0$ (because $\varepsilon \leqslant \frac{2}{3}$). Otherwise, $d(v)-\nu(v) \geqslant 1$ and

$$
\begin{aligned}
\frac{1}{d(v)-\nu(v)}\left(-\frac{10}{3}+\frac{d(v)}{2}-\varepsilon\right) & \geqslant \frac{1}{d(v)}\left(-\frac{10}{3}+\frac{d(v)}{2}-\varepsilon\right) \\
& \geqslant \frac{1}{12}-\frac{\varepsilon}{8}
\end{aligned}
$$

Thus v receives at most $\frac{1}{d(v)-\nu(v)}\left(-\frac{10}{3}+\frac{d(v)}{2}-\varepsilon\right)$ per arc incident with a vertex of degree 6 or 7 . Since there are $d(v)-\nu(v)$ such arcs, $w^{*}(v) \leqslant w(v)-\frac{10}{3}-\varepsilon+\frac{d(v)}{2}=0$.

Claim 19. If v has degree 7 , then $w^{*}(v) \leqslant 0$.
Proof of claim. By Claim 14, v has seven neighbours. Without loss of generality, let us suppose that $d^{-}(v)=3$ and $d^{+}(v)=4$. By Claim 17, the in-neighbours of v can not have out-degree 3 . In particular, they do not have degree 6 , and if they have degree 7 , they do not send anything to v by Rule (R3). Hence v receives at most four times the charge $\frac{1}{12}-\frac{\varepsilon}{8}$ by (R1) or (R3), and it sends three times this charge by (R3). Hence

$$
\begin{aligned}
w^{*}(v) & \leqslant w(v)+\frac{1}{12}-\frac{\varepsilon}{8} \\
& =-\frac{1}{12}+\frac{7}{8} \varepsilon
\end{aligned}
$$

and the result comes because $\varepsilon \leqslant \frac{2}{21}$.
Claim 20. If v is a vertex of degree 6 incident to no digon, then $w^{*}(v) \leqslant 0$.
Proof of claim. The vertex v sends $\frac{1}{12}-\frac{\varepsilon}{8}$ to each of its neighbours, and it receives no charge as all its in-neighbours (resp. out-neighbours) have out-degree (resp. in-degree) at least 4, by Claim 17 . As a consequence,

$$
w^{*}(v)=w(v)-6\left(\frac{1}{12}-\frac{\varepsilon}{8}\right)=-\frac{1}{6}+\frac{7 \varepsilon}{4}
$$

and the result comes because $\varepsilon \leqslant \frac{2}{21}$.

Claim 21. Let v be a vertex in D_{6} having at least two neighbours of degree at least 8. Then $w^{*}(v) \leqslant 0$. Moreover, if v is not an isolated vertex in D_{6} and $\nu_{N}(v) \geqslant 4$, then $w^{*}(v) \leqslant-\frac{1}{9}+\frac{5}{3} \varepsilon-\frac{\delta}{4}$.

Proof of claim. Observe that v receives no charge and sends the following charge to each of its neighbour u with degree at least 8 :

$$
\begin{aligned}
\frac{2}{d(u)-\nu(u)}\left(-\frac{10}{3}-\varepsilon+\frac{d(u)}{2}\right) & \geqslant \frac{2}{d(u)}\left(-\frac{10}{3}-\varepsilon+\frac{d(u)}{2}\right) \\
& =1-\frac{2}{d(u)}\left(\frac{10}{3}+\varepsilon\right) \\
& \geqslant \frac{2}{8}\left(-\frac{10}{3}-\varepsilon+4\right) \\
& =\frac{1}{6}-\frac{\varepsilon}{4} .
\end{aligned}
$$

Assume first that v is isolated in D_{6}. By Claim 14, its three neighbours do not have degree 7, and so have degree at least 8 . Thus v sends three times at least $\frac{1}{6}-\frac{\varepsilon}{4}$, and so

$$
w^{*}(v) \leqslant w(v)-3\left(\frac{1}{6}-\frac{\varepsilon}{4}\right)=-\frac{1}{6}+\frac{7}{4} \varepsilon
$$

and the result comes because $\varepsilon \leqslant \frac{2}{21}$.
Assume now that v is in a connected component C of D_{6} of size at least 2. By Claim 16, $\sigma(v) \geqslant \frac{\delta}{4}$, so $w(v) \leqslant \frac{1}{3}+\varepsilon-\frac{\delta}{4}$. Moreover it sends two times at least $\frac{1}{6}-\frac{\varepsilon}{4}$. Hence

$$
w^{*}(v) \leqslant\left(\frac{1}{3}+\varepsilon-\frac{\delta}{4}\right)-2\left(\frac{1}{6}-\frac{\varepsilon}{4}\right)=\frac{3}{2} \varepsilon-\frac{\delta}{4}
$$

and the result comes because $\delta \geqslant 6 \varepsilon$. This shows the first part of the statement.
We will now prove the second part of the statement. Assume that v is not an isolated vertex in D_{6} and $\nu_{N}(v) \geqslant 4$. Let u_{1} and u_{2} be the two neighbours of v with degree at least 8 . For every $i \in\{1,2\}$ we have

$$
\frac{2}{d\left(u_{i}\right)-\nu\left(u_{i}\right)}\left(-\frac{10}{3}-\varepsilon+\frac{d\left(u_{i}\right)}{2}\right)=1-\frac{1}{d\left(u_{i}\right)-\nu\left(u_{i}\right)}\left(\frac{20}{3}+2 \varepsilon-\nu\left(u_{i}\right)\right)
$$

Case 1: $\nu\left(u_{i}\right) \geqslant 7$ for some $i \in\{1,2\}$. Without loss of generality suppose $i=1$. Then we have

$$
1-\frac{1}{d\left(u_{1}\right)-\nu\left(u_{1}\right)}\left(\frac{20}{3}+2 \varepsilon-\nu\left(u_{1}\right)\right) \geqslant 1
$$

because $\nu\left(u_{1}\right) \geqslant 7 \geqslant \frac{20}{3}+2 \varepsilon$ as $\varepsilon \leqslant \frac{1}{6}$. Then the total charge sent by v is at least 1 , and thus

$$
w^{*}(v) \leqslant w(v)-1 \leqslant\left(\frac{1}{3}+\varepsilon-\frac{\delta}{4}\right)-1=-\frac{2}{3}+\varepsilon-\frac{\delta}{4}
$$

Thus, we have $w^{*}(v) \leqslant-\frac{1}{9}+\frac{5}{3} \varepsilon-\frac{\delta}{4}$ because $\varepsilon, \delta \geqslant 0$.
Case 2: $\nu\left(u_{1}\right), \nu\left(u_{2}\right) \leqslant 6$. Let $f:[0,6] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=\frac{2}{8-x}\left(-\frac{10}{3}-\varepsilon+\frac{8}{2}\right)=1-\frac{1}{8-x}\left(\frac{20}{3}-2 \varepsilon-x\right)
$$

for every $x \in[0,6]$. Observe that f is non decreasing and convex on $[0,6]$ because $-\frac{10}{3}-\varepsilon+\frac{8}{2} \geqslant 0$. For $i=1,2$, we have

$$
\frac{2}{d\left(u_{i}\right)-\nu\left(u_{i}\right)}\left(-\frac{10}{3}-\varepsilon+\frac{d\left(u_{i}\right)}{2}\right) \geqslant f\left(\nu\left(u_{i}\right)\right)
$$

because the function $d \mapsto 1-\frac{1}{d-\nu\left(u_{i}\right)}\left(\frac{20}{3}+2 \varepsilon-\nu\left(u_{i}\right)\right)$ is non decreasing on $\left[8,+\infty\left[\right.\right.$ as $\nu\left(u_{i}\right) \leqslant$ $6 \leqslant \frac{20}{3}+2 \varepsilon$. Hence the charge sent by v to u_{i} is at least $f\left(\nu\left(u_{i}\right)\right)$. By hypothesis we have $\nu_{N}(v)=\nu\left(u_{1}\right)+\nu\left(u_{2}\right) \geqslant 4$. It follows that the total charge sent by v is at least

$$
\begin{aligned}
f\left(\nu\left(u_{1}\right)\right)+f\left(\nu\left(u_{2}\right)\right) & \geqslant 2 f\left(\frac{\nu\left(u_{1}\right)+\nu\left(u_{2}\right)}{2}\right) & & \text { by convexity of } f \\
& \geqslant 2 f(2) & & \text { because } f \text { is non decreasing } \\
& =\frac{4}{9}-\frac{2}{3} \varepsilon . & &
\end{aligned}
$$

Hence

$$
w^{*}(v) \leqslant w(v)-\left(\frac{4}{9}-\frac{2}{3} \varepsilon\right) \leqslant\left(\frac{1}{3}+\varepsilon-\frac{\delta}{4}\right)-\frac{4}{9}+\frac{2}{3} \varepsilon=-\frac{1}{9}+\frac{5}{3} \varepsilon-\frac{\delta}{4}
$$

showing the second part of the statement.
Claim 22. If C is a connected component of D_{6}, then $\sum_{v \in V(C)} w^{*}(v) \leqslant 0$.
Proof of claim. If C has a unique vertex v, then, by Claim 21, we have $w^{*}(v) \leqslant 0$ as wanted.
If C has two vertices x and y, then, again by Claim 21, $w^{*}(x), w^{*}(y) \leqslant 0$, and so $w^{*}(x)+$ $w^{*}(y) \leqslant 0$.

If C is a bidirected path $[x, y, z]$, then, by Claim $16, x$ and z have both neighbourhood valency at least 4 and so by Claim $21 w^{*}(x), w^{*}(z) \leqslant-\frac{1}{9}-\frac{\varepsilon}{6}$. Moreover, y sends at least $\frac{2}{8}\left(-\frac{10}{3}+4-\varepsilon\right)=$ $\frac{1}{6}-\frac{\varepsilon}{4}$ to its neighbour out of C. Hence

$$
w^{*}(y) \leqslant w(y)-\left(\frac{1}{6}-\frac{\varepsilon}{4}\right) \leqslant \frac{1}{3}+\varepsilon-\frac{\delta}{3}-\frac{1}{6}+\frac{\varepsilon}{4}=\frac{1}{6}+\frac{5}{4} \varepsilon-\frac{\delta}{3} .
$$

Altogether, we get that

$$
w^{*}(x)+w^{*}(y)+w^{*}(z) \leqslant \frac{1}{6}+\frac{5}{4} \varepsilon-\frac{\delta}{3}+2\left(-\frac{1}{9}-\frac{\varepsilon}{6}\right)=-\frac{1}{18}+\frac{11}{12} \varepsilon-\frac{\delta}{3} \leqslant 0
$$

because $\delta \geqslant 6 \varepsilon$.
Finally, if C is a bidirected star with centre x and three other vertices y, z, w, then $w^{*}(x) \leqslant$ $w(x)=\frac{1}{3}+\varepsilon-\frac{\delta}{4}$. Moreover, each of y, z, w has neighbourhood valency at least 4 by Claim 16 and so has final charge at most $-\frac{1}{9}+\frac{5}{3} \varepsilon-\frac{\delta}{4}$ by Claim 21. Hence

$$
w^{*}(x)+w^{*}(y)+w^{*}(z)+w^{*}(w) \leqslant \frac{1}{3}+\varepsilon-\frac{\delta}{4}+3\left(-\frac{1}{9}+\frac{5}{3} \varepsilon-\frac{\delta}{4}\right) \leqslant 6 \varepsilon-\delta \leqslant 0
$$

because $\delta \geqslant 6 \varepsilon$.
As a consequence of these last claims, we have $\rho(D) \leqslant \sum_{v \in V(D)} w(v)=\sum_{v \in V(D)} w^{*}(v) \leqslant$ $0 \leqslant 1$, a contradiction. This proves Theorem 8 .

4 An upper bound on $o_{k}(n)$

In this section, we show that, for every fixed k, there are infinitely many values of n such that $o_{k}(n) \leqslant\left(2 k-\frac{7}{2}\right) n$. The proof is strongly based on the proof of [2], Theorem 4.4], which shows $o_{k}(n) \leqslant(2 k-3) n$ for every k, n (with n large enough). For $k=4$, the construction implies in particular that there is a 4 -dicritical oriented graph with 76 vertices and 330 arcs, and there are infinitely many 4 -dicritical oriented graphs with $m / n \leqslant 9 / 2$.

Proposition 26. Let $k \geqslant 3$ be an integer. For infinitely many values of $n \in \mathbb{N}$, there exists a k-dicritical oriented graph \vec{G}_{k} on n vertices with at most $\left(2 k-\frac{7}{2}\right) n$ arcs.

Proof. Let us fix $n_{0} \in \mathbb{N}$. We will show, by induction on k, that there exists a k-dicritical oriented graph \vec{G}_{k} on n vertices with at most $\left(2 k-\frac{7}{2}\right) n$ arcs, such that $n \geqslant n_{0}$.

When $k=3$, the result is known ([2, Corollary 4.3]). We briefly describe the construction for completeness. Start from any orientation of an odd cycle on $2 n_{0}+1$ vertices. Then for each arc $x y$ in this orientation, add a directed triangle \vec{C}_{3} and every arc from y to $V\left(\vec{C}_{3}\right)$ and every arc from $V\left(\vec{C}_{3}\right)$ to x (see Figure 5). This gadget forces x and y to have different colours in every 2 -dicolouring. Since we started from an orientation of an odd cycle, the result is a 3-dicritical oriented graph on $4\left(2 n_{0}+1\right)$ vertices and $10\left(2 n_{0}+1\right)$ arcs.

Let us fix $k \geqslant 4$ and assume that there exists such a $(k-1)$-dicritical oriented graph \vec{G}_{k-1} on $n_{k-1} \geqslant n_{0}$ vertices with $m_{k-1} \leqslant\left(2(k-1)-\frac{7}{2}\right) n_{k-1}$ arcs. We start from any tournament T on k vertices. Then we add, for each arc $x y$ of T, a copy $\vec{G}_{k-1}^{x y}$ of \vec{G}_{k-1}, all arcs from y to $\vec{G}_{k-1}^{x y}$ and all arcs from $\vec{G}_{k-1}^{x y}$ to x. Figure 6 illustrates a possible construction of \vec{G}_{4}, where T is the transitive tournament on 4 vertices.

Let \vec{G}_{k} be the resulting oriented graph. By construction, $n_{k}=\left|V\left(\vec{G}_{k}\right)\right|$ and $m_{k}=\left|A\left(\vec{G}_{k}\right)\right|$

Figure 5: A 3-dicritical oriented graph with $\frac{5}{2} n$ arcs.

Figure 6: A 4-dicritical oriented graph with at most $\frac{9}{2} n$ arcs.
satisfy:

$$
\begin{aligned}
n_{k} & =k+\binom{k}{2} n_{k-1} \\
m_{k} & =\binom{k}{2}+\binom{k}{2} \times 2 \times n_{k-1}+\binom{k}{2} \times m_{k-1} \\
& \leqslant\binom{ k}{2}+\binom{k}{2}\left(2+2(k-1)-\frac{7}{2}\right) n_{k-1} \\
& =\binom{k}{2}+\binom{k}{2}\left(2 k-\frac{7}{2}\right) n_{k-1} \\
& =\binom{k}{2}+\left(2 k-\frac{7}{2}\right)\left(n_{k}-k\right) \\
& \leqslant\left(2 k-\frac{7}{2}\right) n_{k}
\end{aligned}
$$

where in the last inequality we used $k\left(2 k-\frac{7}{2}\right) \geqslant\binom{ k}{2}$, which holds when $k \geqslant 2$. We will now prove that \vec{G}_{k} is indeed k-dicritical.

We first prove that $\vec{\chi}\left(\vec{G}_{k}\right)=k$. Assume that there exists a $(k-1)$-dicolouring α of \vec{G}_{k}. Then there exist $x, y \in V(T)$ such that $\alpha(x)=\alpha(y)$. Since $\vec{\chi}\left(\vec{G}_{k-1}\right)=k-1$, there exists
$z \in V\left(\vec{G}_{k-1}^{x y}\right)$ such that $\alpha(z)=\alpha(x)$. But then (x, y, z, x) is a monochromatic directed triangle in α : a contradiction.

Let us now prove that $\vec{\chi}\left(\vec{G}_{k} \backslash\{u v\}\right) \leqslant k-1$ for every arc $u v \in A\left(\vec{G}_{k}\right)$. This implies immediately that $\vec{\chi}\left(\vec{G}_{k}=k\right.$ and shows the result.

Consider first an arc $u v$ in $A(T)$. We colour each copy $\vec{G}_{k-1}^{x y}$ of \vec{G}_{k-1} with a $(k-1)$-dicolouring of \vec{G}_{k-1}. We then choose a distinct colour for every vertex in T, except u and v which receive the same colour. This results in a $(k-1)$-dicolouring of $\vec{G}_{k} \backslash\{u v\}$.

Consider now an arc $u v$ of $\vec{G}_{k-1}^{x y}$ for some $x y \in A(T)$. Because \vec{G}_{k-1} is $(k-1)$-dicritical, there exists a $(k-2)$-dicolouring ξ of $\vec{G}_{k-1}^{x y} \backslash\{u v\}$. Hence we colour $\vec{G}_{k-1}^{x y} \backslash\{u v\}$ with ξ, every other copy of \vec{G}_{k-1} a $(k-1)$-dicolouring of \vec{G}_{k-1}, and we choose a distinct colour for every vertex in T, except x and y which both receive colour $k-1$. This results in a $(k-1)$-dicolouring of $\vec{G}_{k} \backslash\{u v\}$.

Consider finally an arc $u v$ arc from $u \in V(T)$ to $v \in V\left(\vec{G}_{k-1}^{u y}\right)$ (the case of $u \in V\left(\vec{G}_{k-1}^{x v}\right)$ and $v \in V(T)$ being symmetric). Because \vec{G}_{k-1} is dicritical, there exists a $(k-1)$-dicolouring γ of $\vec{G}_{k-1}^{u y}$ in which v is the only vertex coloured $k-1$. Hence, we colour $\vec{G}_{k-1}^{u y}$ with γ, every other copy of \vec{G}_{k-1} with a $(k-1)$-dicolouring of \vec{G}_{k-1}, and we choose a distinct colour for every vertex in T, except u and y which both receive colour $k-1$. This results in a $(k-1)$-dicolouring of $\vec{G}_{k} \backslash\{u v\}$.

References

[1] On the minimum number of arcs in 4-dicritical oriented graphs, 2023.
[2] Pierre Aboulker, Thomas Bellitto, Frédéric Havet, and Clément Rambaud. On the minimum number of arcs in k-dicritical oriented graphs. arXiv preprint arXiv:2207.01051, 2022.
[3] Pierre Aboulker and Quentin Vermande. Various bounds on the minimum number of arcs in a k-dicritical digraph. arXiv preprint arXiv:2208.02112, 2022.
[4] G. A. Dirac. A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proceedings of the London Mathematical Society, s3-7(1):161-195, 1957.
[5] G. A. Dirac. On the structure of 5-and 6-chromatic abstract graphs. Journal für die reine und angewandte Mathematik (Crelles Journal), 1964(214-215):43-52, 1964.
[6] Wenbo Gao and Luke Postle. On the minimal edge density of K_{4}-free 6-critical graphs. arXiv:1811.02940 [math], November 2018.
[7] Ronald J. Gould, Victor Larsen, and Luke Postle. Structure in sparse k-critical graphs. Journal of Combinatorial Theory, Series B, 156:194-222, 2022.
[8] Ararat Harutyunyan and Bojan Mohar. Gallai's theorem for list coloring of digraphs. SIAM Journal on Discrete Mathematics, 25(1):170-180, 2011.
[9] Alexandr Kostochka and Michael Stiebitz. On the number of edges in colour-critical graphs and hypergraphs. Combinatorica, 20(4):521-530, April 2000.
[10] Alexandr Kostochka and Michael Stiebitz. The minimum number of edges in 4-critical digraphs of given order. Graphs and Combinatorics, 36(3):703-718, May 2020.
[11] Alexandr Kostochka and Matthew Yancey. Ore's conjecture on color-critical graphs is almost true. Journal of Combinatorial Theory, Series B, 109:73-101, November 2014.
[12] Alexandr Kostochka and Matthew Yancey. A Brooks-type result for sparse critical graphs. Combinatorica, 38(4):887-934, 2018.
[13] Luke Postle. On the minimum number of edges in triangle-free 5-critical graphs. European Journal of Combinatorics, 66:264-280, 2017. Selected papers of EuroComb15.

[^0]: *A 12-page extended abstract of this paper has been published in the proceedings of WG 2023 [1].
 Research supported by research grant DIGRAPHS ANR-19-CE48-0013 and by the French government, through the EUR DS4H Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-17-EURE-0004.

