
HAL Id: hal-04352165
https://hal.science/hal-04352165

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting and Computing Join-Endomorphisms in
Lattices

Santiago Quintero, Sergio Ramirez, Camilo Rueda, Frank Valencia

To cite this version:
Santiago Quintero, Sergio Ramirez, Camilo Rueda, Frank Valencia. Counting and Computing Join-
Endomorphisms in Lattices. Relational and Algebraic Methods in Computer Science - 18th Inter-
national Conference, RAMiCS 2020, Apr 2020, Palaiseau, France. pp.253-269, �10.1007/978-3-030-
43520-2_16�. �hal-04352165�

https://hal.science/hal-04352165
https://hal.archives-ouvertes.fr

Counting and Computing Join-Endomorphisms
in Lattices ?

Santiago Quintero2, Sergio Ramirez1, Camilo Rueda1, Frank Valencia1,3

1 Pontificia Universidad Javeriana Cali
2 LIX, École Polytechnique de Paris

3 CNRS-LIX, École Polytechnique de Paris

Abstract. Structures involving a lattice and join-endomorphisms on it
are ubiquitous in computer science. We study the cardinality of the set
E(L) of all join-endomorphisms of a given finite lattice L. In particular,
we show that when L is Mn, the discrete order of n elements extended
with top and bottom, |E(L)| = n!Ln(−1) + (n+ 1)2 where Ln(x) is the
Laguerre polynomial of degree n. We also study the following problem:
Given a lattice L of size n and a set S ⊆ E(L) of size m, find the great-
est lower bound

d
E(L)

S. The join-endomorphism
d

E(L)
S has meaning-

ful interpretations in epistemic logic, distributed systems, and Aumann
structures. We show that this problem can be solved with worst-case
time complexity in O(n+m logn) for powerset lattices, O(mn2) for lat-
tices of sets, and O(mn + n3) for arbitrary lattices. The complexity is
expressed in terms of the basic binary lattice operations performed by
the algorithm.

Keywords: join-endomorphisms · lattice cardinality · lattice algorithms.

1 Introduction

There is a long established tradition of using lattices to model structural enti-
ties in many fields of mathematics and computer science. For example, lattices
are used in concurrency theory to represent the hierarchical organization of the
information resulting from agent’s interactions [12]. Mathematical morphology
(MM), a well-established theory for the analysis and processing of geometrical
structures, is founded upon lattice theory [2,14]. Lattices are also used as alge-
braic structures for modal and epistemic logics as well as Aumann structures
(e.g., modal algebras and constraint systems [7]).

In all these and many other applications, lattice join-endomorphisms appear
as fundamental. A join-endomorphism is a function from a lattice to itself that
preserves finite joins. In MM, join-endomorphisms correspond to one of its fun-
damental operations; dilations. In modal algebra, they correspond via duality to
the box modal operator. In epistemic settings, they represent belief or knowl-
edge of agents. In fact, our own interest in lattice theory derives from using

? This work has been partially supported by the ECOS-NORD project FACTS
(C19M03)

2 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

join-endomorphisms to model the perception that agents may have of a state-
ment in a lattice of partial information [7].

For finite lattices, devising suitable algorithms to compute lattice maps with
some given properties would thus be of great utility. We are interested in con-
structing algorithms for computing lattice morphisms. This requires, first, a
careful study of the space of such maps to have a clear idea of how particular
lattice structures impact on the size of the space. We are, moreover, particularly
interested in computing the maximum join-endomorphism below a given collec-
tion of join-morphisms. This turns out to be important, among others, in spatial
computation (and in epistemic logic) to model the distributed information (resp.
distributed knowledge) available to a set of agents as conforming a group [8]. It
could also be regarded as the maximum perception consistent with (or derivable
from) a collection of perceptions of a group of agents.

Problem. Consider the set E(L) of all join-endomorphisms of a finite lat-
tice L. The set E(L) can be made into a lattice by ordering join-endomorphisms
point-wise wrt the order of L. We investigate the following maximization prob-
lem: Given a lattice L of size n and a set S ⊆ E(L) of size m, find in E(L)
the greatest lower bound of S, i.e.,

d
E(L)

S. Simply taking σ : L → L with

σ(e)
def
=

d
L
{f(e) | f ∈ S} does not solve the problem as σ may not be a join-

endomorphism. Furthermore, since E(L) can be seen as the search space, we
also consider the problem of determining its cardinality. Our main results are
the following.

This paper. We present characterizations of the exact cardinality of E(L)
for some fundamental lattices. Our contribution is to establish the cardinality
of E(L) for the stereotypical non-distributive lattice L = Mn. We show that
|E(Mn)| equals rn0 +. . .+rnn+rn+1

1 = n!Ln(−1)+(n+1)2 where rmk is the number
of ways to place k non-attacking rooks on an m × m board and Ln(x) is the
Laguerre polynomial of degree n. We also present cardinality results for powerset
and linear lattices that are part of the lattice theory folklore: The number of join-
endomorphisms is nlog2 n for powerset lattices of size n and

(
2n
n

)
for linear lattices

of size n+ 1. Furthermore, we provide algorithms that, given a lattice L of size
n and a set S ⊆ E(L) of size m, compute

d
E(L)

S. Our contribution is to show
that

d
E(L)

S can be computed with worst-case time complexity in O(n+mlog n)

for powerset lattices, O(mn2) for lattices of sets, and O(nm+ n3) for arbitrary
lattices.

Due to space restrictions we only include the main proofs. The missing proofs
can be found in the technical report of this paper [13].

2 Background: Join-Endomorphisms and Their Space

We presuppose basic knowledge of order theory [3] and use the following notions.
Let (L,v) be a partially ordered set (poset), and let S ⊆ L. We use

⊔
L
S to

denote the least upper bound (or supremum or join) of S in L, if it exists.
Dually,

d
L
S is the greatest lower bound (glb) (infimum or meet) of S in L, if

it exists. We shall often omit the index L from
⊔

L
and

d
L

when no confusion

Counting and Computing Join-Endomorphisms in Lattices 3

arises. As usual, if S = {c, d}, ctd and cud represent
⊔
S and

d
S, respectively.

If L has a greatest element (top) >, and a least element (bottom) ⊥, we have⊔
∅ = ⊥ and

d
∅ = >. The poset L is distributive iff for every a, b, c ∈ L,

a t (b u c) = (a t b) u (a t c).
The poset L is a lattice iff each finite nonempty subset of L has a supremum

and infimum in L, and it is a complete lattice iff each subset of L has a supremum
and infimum in L. A self-map on L is a function f : L → L. A self-map f is
monotonic if a v b implies f(a) v f(b). We say that f preserves the join of
S ⊆ L iff f(

⊔
S) =

⊔
{f(c) | c ∈ S}. We shall use the following posets and

notation. Given n, we use n to denote the poset {1, . . . , n} with the linear order
x v y iff x ≤ y. The poset n̄ is the set {1, . . . , n} with the discrete order x v y
iff x = y. Given a poset L, we use L⊥ for the poset that results from adding a
bottom element to L. The poset L> is similarly defined. The lattice 2n is the
n-fold Cartesian product of 2 ordered coordinate-wise. We define Mn as the
lattice (n̄⊥)>. A lattice of sets is a set of sets ordered by inclusion and closed
under finite unions and intersections. A powerset lattice is a lattice of sets that
includes all the subsets of its top element.

We shall investigate the set of all join-endomorphisms of a given lattice or-
dered point-wise. Notice that every finite lattice is a complete lattice.

Definition 1 (Join-endomorphisms and their space). Let L be a com-
plete lattice. We say that a self-map is a (lattice) join-endomorphism iff it
preserves the join of every finite subset of L. Define E(L) as the set of all
join-endomorphisms of L. Furthermore, given f, g ∈ E(L), define f vE g iff
f(a) v g(a) for every a ∈ L.

The following are immediate consequences of the above definition.

Proposition 1. Let L be a complete lattice. f ∈ E(L) iff f(⊥) = ⊥ and f(a t
b) = f(a) t f(b) for all a, b ∈ L. If f is a join-endomorphism of L then f is
monotonic.

Given a set S ⊆ E(L), where L is a finite lattice, we are interested in finding
the greatest join-endomorphism in E(L) below the elements of S, i.e.,

d
E(L)

S.
Since every finite lattice is also a complete lattice, the existence of

d
E(L)

S is
guaranteed by the following proposition.

Proposition 2 ([6]). If (L,v) is a complete lattice, (E(L),vE) is a complete
lattice.

In the following sections we study the cardinality of E(L) for some funda-
mental lattices and provide efficient algorithms to compute

d
E(L)

S.

3 The Size of the Function Space

The main result of this section is Theorem 1. It states the size of E(Mn). Propo-
sitions 3 and 4 state, respectively, the size of E(L) for the cases when L is a

4 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

powerset lattice and when L is a total order. These propositions follow from
simple observations and they are part of the lattice theory folklore [1,10,16]. We
include our original proofs of these propositions in the technical report of this
paper [13].

3.1 Distributive Lattices

We begin with lattices isomorphic to 2n. They include finite boolean algebras
and powerset lattices [3]. The size of these lattices are easy to infer from the
observation that the join-preserving functions on them are determined by their
action on the lattices’ atoms.

Proposition 3. Suppose that m ≥ 0. Let L be any lattice isomorphic to the
product lattice 2m. Then |E(L)| = nlog2 n where n = 2m is the size of L.

Thus powerset lattices and boolean algebras have a super-polynomial, sub-
exponential number of join-endomorphisms. Nevertheless, linear order lattices
allow for an exponential number of join-endomorphisms given by the central
binomial coefficient. The following proposition is also easy to prove from the
observation that the join-endomorphisms over a linear order are also monotonic
functions. In fact, this result appears in [1] and it is well-known among the
RAMICS community [10,16].

Proposition 4. Suppose that n ≥ 0. Let L be any lattice isomorphic to the
linear order lattice n⊥. Then |E(L)| =

(
2n
n

)
.

It is easy to prove that 4n

2
√
n
≤
(
2n
n

)
≤ 4n for n ≥ 1. Together with Prop.4,

this gives us explicit exponential lower and upper bounds for |E(L)| when L is a
linear lattice.

3.2 Non-distributive Case

The number of join-endomorphisms for some non-distributive lattices of a given
size can be much bigger than that for those distributive lattices of the same
size in the previous section. We will characterize this number for an archetypal
non-distributive lattice in terms of Laguerre (and rook) polynomials.

Laguerre polynomials are solutions to Laguerre’s second-order linear differ-
ential equation xy′′ + (1 − x)y′ + ny = 0 where y′ and y′′ are the first and
second derivatives of an unknown function y of the variable x, and n is a non-
negative integer. The Laguerre polynomial of degree n in x, Ln(x) is given by

the summation
∑n

k=0

(
n
k

) (−1)k
k! xk.

The lattice Mn is non-distributive for any n ≥ 3. The size of E(Mn) can be
succinctly expressed as follows.

Theorem 1. |E(Mn)| = (n+ 1)2 + n!Ln(−1).

Counting and Computing Join-Endomorphisms in Lattices 5

In combinatorics rook polynomials are generating functions of the number
of ways to place non-attacking rooks on a board. A rook polynomial (for square
boards) Rn(x) has the form

∑n
k=0 x

kr(k, n) where the (rook) coefficient r(k, n)
represents the number of ways to place k non-attacking rooks on an n × n
chessboard. For instance, r(0, n) = 1, r(1, n) = n2 and r(n, n) = n!. In general

r(k, n) =
(
n
k

)2
k!.

Rook polynomials are related to Laguerre polynomials by the equationRn(x) =
n!xnLn(−x−1). Therefore, as a direct consequence of the above theorem, we can
also characterize |E(Mn)| in combinatorial terms as the following sum of rook
coefficients.

Corollary 1. Let r′(n+ 1, n) = r(1, n+ 1) and r′(k, n) = r(k, n) if k ≤ n.

Then |E(Mn)| =
∑n+1

k=0 r
′(k, n).

We conclude this section with another pleasant correspondence between the
endomorphisms in E(Mn) and Rn(x). Let f : L→ L be a function over a lattice
(L,v). We say that f is non-reducing in L iff it does not map any value to a
smaller one; i.e., there is no e ∈ L such that f(e) @ e. The number of join-
endomorphisms that are non-reducing in Mn is exactly the value of the rook
polynomial Rn(x) for x = 1.

Corollary 2. Rn(1) = |{ f ∈ E(Mn) | f is non-reducing in Mn }|.

Table 1 illustrates the join-endomorphisms over the lattice Mn as a union⋃4
i=1 Fi. Corollary 2 follows from the observation that the set of non-reducing

functions in Mn is equal to F4 whose size is Rn(1) as shown in the following
proof of Th. 1.

Proof of Theorem 1. We show that |E(Mn)| can be expressed in terms of
Laguerre polynomials: |E(Mn)| = (n+ 1)2 + n!Ln(−1).

Let F =
⋃4

i=1 Fi where the mutually exclusive Fi’s are defined in Table 1,
and I = {1, . . . , n}. The proof is divided in two parts: (I) F = E(Mn) and (II)
|F| = (n+ 1)2 + n!Ln(−1).

Part (I) For F ⊆ E(Mn), it is easy to verify that each f ∈ F is a join-
endomorphism.

For E(Mn) ⊆ F we show that for any function f from Mn to Mn if f 6∈ F ,
then f 6∈ E(Mn). Immediately, if f(⊥) 6= ⊥ then f 6∈ E(Mn).

Suppose f(⊥) = ⊥. Let J,K,H be disjoint possibly empty sets such that
I = J ∪K ∪H and let j = |J |, k = |K| and h = |H|. The sets J,K,H represent
the elements of I mapped by f to>, to elements of I, and to⊥, respectively. More
precisely, Img(f�J) = {>}, Img(f�K) ⊆ I and Img(f�H) = {⊥}. Furthermore,
for every f either (1) f(>) = ⊥, (2) f(>) ∈ I or (3) f(>) = >. We show that
f 6∈ E(Mn) for case (3), proofs of cases (1) and (2) are included in [13].

Suppose k = 0. Notice that f 6∈ F3 and f 6∈ F4 hence h 6= 1 and h 6= 0. Thus
h > 1 implies that there are at least two e1, e2 ∈ H such that f(e1) = f(e2) = ⊥.
But then f(e1 t e2) = f(>) = > 6= ⊥ = f(e1) t f(e2), hence f 6∈ E(Mn).

6 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

⊥

1 2 3 4 5

>

⊥

1 2 3 4 5

>

Let F1 be the family of functions f that
for all e ∈Mn, f(e) = ⊥.

Let F2 be the family of bottom preserving
functions f such that for some e, e′ ∈ I:
(a) f(>) = e, (b) f(e′) = ⊥ or f(e′) = e,
and (c) f(e′′) = e for all e′′ ∈ I \ {e′}.

⊥

1 2 3 4 5

>

⊥

1 2 3 4 5

>

Let F3 be the family of top and bottom
preserving functions f such that for some
e ∈ I: (a) f(e) = ⊥, and (b) f(e′) = >
for all e′ ∈ I \ {e}.

Let F4 be the family of top and bottom
preserving functions f that for some J ⊆
I:
(a) f(e) = > for every e ∈ J , (b) f�I\J is
injective, and (c) Img(f�I\J) ⊆ I.

Table 1: Families F1, . . . ,F4 of join-endomorphisms of Mn. I = {1, . . . , n}. f�A
is the restriction of f to a subset A of its domain. Img(f) is the image of f . A
function from each Fi for M5 is depicted with blue arrows.

Suppose k > 0. Assume h = 0. Notice thatK = I\J and Img(f�K) ⊆ I. Since
f is a ⊥ and > preserving function and it satisfies conditions (a) and (c) of F4 but
f 6∈ F4, then f must violate condition (b). Thus f�K is not injective. Then there
are a, b ∈ K such that a 6= b but f(a) = f(b). Then f(a) t f(b) 6= > = f(a t b).
Consequently, f 6∈ E(Mn).

Assume h > 0. There must be e1, e2, e3 ∈ I such that f(e1) = ⊥ and f(e2) =
e3. Notice that f(e1) t f(e2) = e3 6= > = f(>) = f(e1 t e2). Therefore, f 6∈
E(Mn).

Part (II) We prove that |F| =
∑4

i=1 |Fi| = (n + 1)2 + n!Ln(−1). Recall that
n = |I|. It is easy to prove that |F1| = 1, |F2| = n2 +n and |F3| = n. The reader
is referred to [13] for details. Here we prove that |F4| = n!Ln(−1).

Let f ∈ F4 and let J ⊆ I be a possibly empty set such that Img(f�J) = {>}
and Img(f�I\J) ⊆ I, where f�I\J is an injective function. We shall call j = |J |.

Counting and Computing Join-Endomorphisms in Lattices 7

For each of the
(
n
j

)
possibilities for J , the elements of I\J are to be mapped to

I by the injective function f�I\J . The number of functions f�I\J is n!
j! . Therefore,

|F4| =
∑n

j=0

(
n
j

)
n!
j! . This sum equals n!Ln(−1) which in turn is equal to Rn(1).

It follows that |F| =
∑4

i=1 |Fi| = (n+ 1)2 + n!Ln(−1) as wanted. ut

4 Algorithms

We shall provide efficient algorithms for the maximization problem mentioned
in the introduction: Given a finite lattice L and S ⊆ E(L) find

d
E(L)

S, i.e., the
greatest join-endomorphism in the lattice E(L) below all the elements of S.

Finding
d

E(L)
S may not be immediate. E.g., see

d
E(L)

S in Fig.1a for a small
lattice of four elements and two join-endomorphisms. As already mentioned, a
naive approach is to compute

d
E(L)

S by taking σS(c)
def
=

d
L
{f(c) | f ∈ S} for

each c ∈ L. This does not work since σS is not necessarily a join-endomorphism
as shown in Fig.1b.

A brute force solution to compute
d

E(L)
S can be obtained by generating

the set S′ = {g | g ∈ E(L) and g v f for all f ∈ S} and taking its join. This
approach works since

⊔
S′ =

d
E(L)

S but as shown in Section 3, the size of E(L)
can be super-polynomial for distributive lattices and exponential in general.

Nevertheless, one can use lattice properties to compute
d

E(L)
S efficiently.

For distributive lattices, we use the inherent compositional nature of
d

E(L)
S.

For arbitrary lattices, we present an algorithm that uses the function σS in the
naive approach to compute

d
E(L)

S by approximating it from above.
We will give the time complexities in terms of the number of basic binary

lattice operations (i.e., meets, joins and subtractions) performed during execu-
tion.

4.1 Meet of Join-Endomorphisms in Distributive Lattices

Here we shall illustrate some pleasant compositionality properties of the infima
of join-endomorphisms that can be used for computing the join-endomorphismd

E(L)
S in a finite distributive lattice L. In what follows we assume n = |L| and

m = |S|.
We use XJ to denote the set of tuples (xj)j∈J of elements xj ∈ X for each

j ∈ J.

Lemma 1. Let L be a finite distributive lattice and S = {fi}i∈I ⊆ E(L). Thend
E(L)

S = δS where δS(c)
def
=

d
L
{
⊔

i∈I fi(ai) | (ai)i∈I ∈ LI and
⊔

i∈I ai w c}.

The above lemma basically says that
(d

E(L)
S
)
(c) is the greatest element

in L below all possible applications of the functions in S to elements whose
join is greater or equal to c. The proof that δS wE

d
E(L)

S uses the fact that
join-endomorphisms preserve joins. The proof that δS vE

d
E(L)

S proceeds by
showing that δS is a lower bound in E(L) of S. Distributivity of the lattice L
is crucial for this direction. In fact without it

d
E(L)

S = δS does not necessarily
hold as shown by the following counter-example.

8 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

⊥

1 2

>

(a) f1: ···→, f2:→, f : 99K

⊥

1 2

>

(b) f1: ···→, f2: →,
σS : 99K

⊥

1 2 3

>

(c) f1: ···→, f2:→, δS : 99K

Fig. 1: S = {f1, f2} ⊆ E(L). (a) f =
d

E(L)
S. (b) σS(c)

def
= f1(c) u f2(c) is not

a join-endomorphism of M2: σS(1 t 2) 6= σS(1) t σS(2). (c) δS in Lemma 1 is
not a join-endomorphism of the non-distributive lattice M3: δS(1)tδS(2) = 1 6=
⊥ = δS(1 t 2).

Example 1. Consider the non-distributive lattice M3 and S = {f1, f2} defined
as in Fig.1c. We obtain δS(1 t 2) = δS(>) = ⊥ and δS(1) t δS(2) = 1 t ⊥ = 1.
Then, δS(1 t 2) 6= δS(1) t δS(2), i.e., δS is not a join-endomorphism.

Naive Algorithm A1. One could use Lemma 1 directly in the obvious way to
provide an algorithm for

d
E(L)

S by computing δS : i.e., computing the meet of
elements of the form

⊔
i∈I fi(ai) for every tuple (ai)i∈I such that

⊔
i∈I ai w c.

For each c ∈ L, δS(c) checks nm tuples (ai)i∈I , each one with a cost in O(m).
Thus A1 can compute

d
E(L)

S by performing O(n×nm×m) = O(mnm+1) binary
lattice operations.

Nevertheless, we can use Lemma 1 to provide a recursive characterization
of

d
E(L)

S that can be used in a divide-and-conquer algorithm with lower time
complexity.

Proposition 5. Let L be a finite distributive lattice and S = S1 ∪ S2 ⊆ E(L).
Then

(d
E(L)

S
)
(c) =

d
L
{
(d

E(L)
S1

)
(a)t

(d
E(L)

S2

)
(b) | a, b ∈ L and at b w c}.

The above proposition bears witness to the compositional nature of
d

E(L)
S. It

can be proven by replacing
(d

E(L)
S1

)
(a) and

(d
E(L)

S2

)
(b) by δS1

(a) and δS2
(b)

using Lemma 1 (see [13]).

Naive Algorithm A2. We can use Prop.5 to compute
d

E(L)
S with the following

recursive procedure: Take any partition {S1, S2} of S such that the absolute
value of |S1| − |S2| is at most 1. Then compute the meet of all

(d
E(L)

S1

)
(a) t(d

E(L)
S2

)
(b) for every a, b such that a t b w c. Then given c ∈ L, the time

complexity of a naive implementation of the above procedure can be obtained

Counting and Computing Join-Endomorphisms in Lattices 9

as the solution of the equation T (m) = n2(1 + 2T (m/2)) and T (1) = 1 which is
in O(mn2 log2 m). Therefore,

d
E(L)

S can be computed in O(mn1+2 log2 m).
The time complexity of the naive algorithm A2 is better than that of A1.

However, by using a simple memoization technique to avoid repeating recursive
calls and the following observations one can compute

d
E(L)

S in a much lower
time complexity order.

4.2 Using Subtraction and Downsets to characterize
d

E(L)
S

In what follows we show that
d

E(L)
S can be computed in O(mn2) for distributive

lattices and, in particular, in O(n+mlog n) for powerset lattices. To achieve this
we use the subtraction operator from co-Heyting algebras and the notion of down
set4.

Subtraction Operator. Notice that in Prop.5 we are considering all pairs a, b ∈ L
such that atb w c. However, because of the monotonicity of join-endomorphisms,
it suffices to take, for each a ∈ L, just the least b such that a t b w c. In
finite distributive lattices, and more generally in co-Heyting algebras [5], the
subtraction operator c\a gives us exactly such a least element. The subtraction
operator is uniquely determined by the property (Galois connection) b w c\a iff
a t b w c for all a, b, c ∈ L.

Down-sets. Besides using just c\a instead of all b’s such that a t b w c, we can
use a further simplification: Rather than including every a ∈ L, we only need to
consider every a in the down-set of c. Recall that the down-set of c is defined as
↓c = {e ∈ L |e v c}. This additional simplification is justified using properties
of distributive lattices to show that for any a′ ∈ L, such that a′ 6v c, there exists
a v c such that

(d
E(L)

S1

)
(a)t

(d
E(L)

S2

)
(c\a) v

(d
E(L)

S1

)
(a′)t

(d
E(L)

S2

)
(c\a′).

The above observations lead us to the following theorem.

Theorem 2. Let L be a finite distributive lattice and S = S1∪S2 ⊆ E(L). Then(d
E(L)

S
)
(c) =

d
L
{
(d

E(L)
S1

)
(a) t

(d
E(L)

S2

)
(c\a) | a ∈ ↓c}.

The above result can be used to derive a simple recursive algorithm that,
given a finite distributive lattice L and S ⊆ E(L), computes

d
E(L)

S in worst-case

time complexity O(mn2) where m = |S| and n = |L|. We show this algorithm
next.

4.3 Algorithms for Distributive Lattices

We first describe the algorithm DMeetApp that computes the value
(d

E(L)
S
)
(c).

We then describe the algorithm DMeet that computes the function
d

E(L)
S by

calling DMeetApp in a particular order to avoid repeating computations. We
use the following definition to specify the calling order.

4 Recall that we give time complexities in terms of the number of basic binary lattice
operations (i.e., meets, joins and subtractions) performed during execution.

10 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

Definition 2. A binary partition tree (bpt) of a finite set S 6= ∅ is a binary
tree such that (a) its root is S, (b) if |S| = 1 then its root is a leaf, and (c) if
|S| > 1 it has a left and a right subtree, themselves bpts of S1 and S2 resp., for
a partition {S1, S2} of S.

Let ∆ be a bpt of S. We use ∆(S′) for the subtree of ∆ rooted at S′ ⊆ S, if it
exists. We use 〈S,∆1, ∆2〉 for the bpt of S with ∆1 and ∆2 as its left and right
subtrees.

The following proposition is an immediate consequence of the previous defi-
nition.

Proposition 6. The size (number of nodes) of any bpt of S is 2m − 1 where
m = |S|.

DMeetApp(∆, c). Let ∆ = 〈S,∆1, ∆2〉 be a bpt of S ⊆ E(L) where L is a
distributive lattice. The recursive program DMeetApp(∆, c) defined in Algo-
rithm 1 computes

(d
E(L)

S
)
(c). It uses a global lookup table T for storing the

results of calls to DMeetApp. Initially each entry of T stores a null value not
included in L. Since S is the union of the roots of ∆1 and ∆2, the correctness of
DMeetApp(∆, c) follows from Thm.2. Termination follows from the fact that
L is finite and the bpts ∆1 and ∆2 in the recursive calls are strictly smaller than
∆.

Algorithm 1 DMeetApp(∆, c) returns
(d

E(L)
S
)
(c) where ∆ is a bpt of S ⊆

E(L) and L is a finite distributive lattice. The global variable T is used as a
lookup table.

1: procedure DMeetApp(∆, c) . ∆ = 〈S,∆1,∆2〉
2: if IsNull(T [S, c]) then
3: if S = {f} then
4: T [S, c]← f(c)
5: else
6: T [S, c]←

d
L
{DMeetApp(∆1, a) tDMeetApp(∆2, c\a) | a ∈ ↓c}.

Computing
d

E(L)
S for Distributive Lattices. Let us consider an execution

of DMeetApp(∆, c). From the definition of subtraction it follows that c\a ∈ ↓c .
Then for each recursive call DMeetApp(∆′, a′) performed by an execution of
DMeetApp(∆, c) we have a′ ∈ ↓c . This and the fact that T is initialized with
null values not in L lead us the following simple observation.

Observation 3 Let ∆ = 〈S,∆1, ∆2〉 with ∆1 and ∆2 rooted at S1 and S2. As-
sume that T [S1, a

′], T [S2, a
′] ∈ L for every a′ ∈ ↓c . Then the number of binary

lattice operations (meets, joins, substractions) performed by DMeetApp(∆, c)
is in O(| ↓c |).

Counting and Computing Join-Endomorphisms in Lattices 11

Algorithm 2 DMeet(L, S, P). Given a finite distributive lattice L, P ⊆ L and
S ⊆ E(L), the algorithm computes T [S, c] =

d
E(L)

S(c) for each c ∈ P . ∆ is a
bpt of S and T is a global lookup table.

1: T [S′, a]← null . for each a ∈ P and each node S′ of ∆
2: for each S′ in a post-order traversal sequence of ∆ do . visit each S′ of ∆ in

post-order
3: for each c ∈ P in increasing order do . visit each c ∈ P in increasing order

w.r.t L
4: DMeetApp(∆(S′), c)

DMeet(L, S, P). The values of
(d

E(L)
S
)
(c) for each c ∈ P ⊆ L are computed

by the program in Algo.2 as follows. To satisfy the assumption in Obs.3, it
visits each node S′ of ∆ in post-order (i.e., before visiting a node it first visits
its children). For each subtree ∆(S′) of ∆, it calls DMeetApp(∆(S′), c) for
every c ∈ P in increasing order with respect to the order of L: I.e., before
calling DMeetApp(∆(S′), c) it calls first DMeetApp(∆(S′), c′) for each c′ ∈
(P ∩ ↓c) \ {c}. The correctness of the call DMeet(L, S, P) follows from that of
DMeetApp(∆, c).

Complexity for Distributive Lattices. Assume that L is a distributive lattice of
size n and that S is a subset of E(L) of size m. The above-mentioned traversals
of ∆ and P ensure that the assumption in Obs.3 is satisfied by each call of the
form DMeetApp(∆(S′), c) performed during the execution of DMeet(L, S, L).
From Prop.6 we know that the number of iterations of the outer for is 2m −
1. Clearly | ↓c | and |P | are both in O(n). Thus, given S′ we conclude from
Obs.3 that the total number of operations from all calls of the form DMee-
tApp(∆(S′), c), executed in the inner for, is in O(n2). The worst-case time
complexity of DMeet(L, S, L) is then in O(mn2).

Complexity for Powerset Lattices. Assume that L is a powerset lattice. We
can compute

d
E(L)

S in O(n + mlog n) as follows. First call DMeet(L, S, P)
where P = J(L) ∪ {⊥} and J(L) is the set of join-irreducible elements (i.e.,
the singleton sets in this case) of L. Since |J(L)| = log2 n and | ↓c | = 2 for
every c ∈ J(L), DMeet(L, S, P) can be performed in O(m log n). This produces
T [S, c] =

(d
E(L)

S
)
(c) for each c ∈ P. To compute T [S, e] =

(d
E(L)

S
)
(e) for each

e ∈ L \ P in a total time of O(n), visit each such an e in increasing order and
set T [S, e] = T [S, a] t T [S, b] for some a, b ∈ ↓e \ {e} such that e = a t b. Since
e 6∈ P there must be a, b satisfying the above condition.

4.4 Algorithms for Arbitrary Lattices

The previous algorithm may fail to produce the
d

E(L)
S for non-distributive finite

lattices. Nonetheless, for any arbitrary finite lattice L,
d

E(L)
S can be computed

by successive approximations, starting with some self-map known to be smaller
than each f ∈ S and greater than

d
E(L)

S. Assume a self-map σ : L → L

12 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

such that σ wE
d

E(L)
S and, for all f ∈ S, σ vE f. A good starting point is

σ(u) =
d
{f(u) | f ∈ S}, for all u ∈ L. By definition of u, σ is the biggest

function under all functions in S, hence σ wE
d

E(L)
S. The program GMeet in

Algorithm 3 computes decreasing upper bounds of
d

E(L)
S by correcting σ values

not conforming to the following join-endomorphism property: σ(u) t σ(v) =
σ(u t v). The correction decreases σ and maintains the invariant σ wE

d
E(L)

S,
as stated in Thm.4.

Theorem 4. Let L be a finite lattice, u, v ∈ L, σ : L → L and S ⊆ E(L).
Assume σ wE

d
E(L)

S holds, and consider the following updates:

1. when σ(u) t σ(v) @ σ(u t v), assign σ(u t v)← σ(u) t σ(v)
2. when σ(u) t σ(v) 6v σ(u t v), assign σ(u) ← σ(u) u σ(u t v) and also

σ(v)← σ(v) u σ(u t v)

Let σ′ be the function resulting after the update. Then, (1) σ′ @ σ and (2)
σ′ wE

d
E(L)

S.

Algorithm 3 GMeet finds σ =
d

E(L)
S

1: σ(u)←
d
{f(u) | f ∈ S} . for all u ∈ L

2: while u, v ∈ L ∧ σ(u) t σ(v) 6= σ(u t v) do
3: if σ(u) t σ(v) @ σ(u t v) then . case (1)
4: σ(u t v)← σ(u) t σ(v)
5: else . case (2)
6: σ(u)← σ(u) u σ(u t v)
7: σ(v)← σ(v) u σ(u t v)

The procedure (see Algo.3) loops through pairs u, v ∈ L while there is some
pair satisfying cases (1) or (2) above for the current σ. When there is, it updates
σ as mentioned in Thm.4. At the end of the loop all pairs u, v ∈ L satisfy the join
preservation property. By the invariant mentioned in the theorem, this means
σ =

d
E(L)

S.
As for the previous algorithms in this paper the worst-time time complexity

will be expressed in terms of the binary lattice operations performed during
execution. Assume a fixed set S of size m. The complexity of the initialization
(Line 1) of GMeet is O(nm) with n = |L |. The value of σ for a given w ∈ L can
be updated (decreased) at most n times. Thus, there are at most n2 updates of
σ for all values of L. Finding a w = u t v where σ(w) needs an update because
σ(u) t σ(v) 6= σ(u t v) (test of the loop, Line 2) takes O(n2). Hence, the worst
time complexity of the loop is in O(n4).

The program GMeet+ in Algo.4 uses appropriate data structures to reduce
significantly the time complexity of the algorithm. Essentially, different sets are
used to keep track of properties of (u, v) lattice pairs with respect to the current
σ. We have a support (correct) pairs set Supw = {(u, v) | w = utv∧σ(u)tσ(v) =

Counting and Computing Join-Endomorphisms in Lattices 13

Algorithm 4 GMeet+ finds σ =
d

E(L)
S

1: σ(u)←
d
{f(u) | f ∈ S} . for all u ∈ L

2: Initialize Supw, Conw, Failw, for all w
3: while w ∈ L such that (u, v) ∈ Conw do . some conflict set not empty
4: Conw ← Conw\{(u, v)}
5: σ(w)← σ(u) t σ(v)
6: Failw ← Failw ∪ Supw . all pairs previously in Supw are now failures
7: Supw ← {(u, v)}
8: checkSupports(w) . for u ∈ L, verify property Supwtu

9: while z ∈ L such that (x, y) ∈ Failz do . some failures set not empty
10: Failz ← Failz\{(x, y)}
11: if σ(x) 6= σ(x) u σ(z) then
12: σ(x)← σ(x) u σ(z) . σ(x) decreases
13: Failx ← Failx ∪ Supx . all pairs in Supx are now failures
14: Supx ← ∅
15: checkSupports(x) . for u ∈ L, verify property Supxtu

16: if σ(y) 6= σ(y) u σ(z) then
17: σ(y)← σ(y) u σ(z) . σ(y) decreases
18: Faily ← Faily ∪ Supy . all pairs in Supy are now failures
19: Supy ← ∅
20: checkSupports(y) . for u ∈ L, verify property Supytu

21: if σ(x) t σ(y) = σ(z) then
22: Supz ← Supz ∪ {(x, y)} . (x, y) is now correct
23: else
24: Conz ← Conz ∪ {(x, y)} . (x, y) is now a conflict

σ(w)}. We also have a conflicts set Conw = {(u, v) | w = u t v ∧ σ(u) t σ(v) @
σ(w)} and failures set Failw = {(u, v) | w = u t v ∧ σ(u) t σ(v) 6v σ(w)}.
Algorithm 4 updates σ as mentioned in Thm.4 and so maintains the invariant
σ w

d
E(L)

S. An additional invariant is that, for all w, sets Supw, Conw, Failw are
pairwise disjoint. When the outer loop finishes sets Conw and Failw are empty
(for all w) and thus every (u, v) belongs to Suputv, i.e. the resulting σ =

d
E(L)

S.

Auxiliary procedure checkSupports(u) identifies all pairs of the form (u, x) ∈
Suputx that may no longer satisfy the join-endomorphism property σ(u)tσ(x) =
σ(ut x) because of an update to σ(u). When this happens, it adds (u, x) to the
appropriate Con, or Fail set. The time complexity of the algorithm depends on
the set operations computed for each w ∈ L chosen, either in the conflicts Conw
set or in the failures Failw set. When a w is selected (for some (u, v) such that
u t v = w) the following holds: (1) at least one of σ(w), σ(u), σ(v) is decreased,
(2) some fix k number of elements are removed from or added to a set, (3) a
union of two disjoint sets is computed, and (4) new support sets of w, u or v are
calculated.

With an appropriate implementation, operations (1)-(2) take O(1), and also
operation (3), since sets are disjoint. Operation (4) clearly takes O(n). In each
loop of the (outer or inner) cycles of the algorithm, at least one σ reduction is

14 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

Fig. 2: Average performance time of GMeet+, DMeet and Brute-force. Plots A
and D use 2n lattices, B and E distributive lattices, and C and F arbitrary (possibly
non-distributive) lattices. Plots A-C have a fixed number of join-endomorphisms and
plots D-F have a fixed lattice size.

computed. Furthermore, for each reduction of σ, O(n) operations are performed.
The maximum possible number of σ(w) reductions, for a given w, is equal to the
length d of the longest strictly decreasing chain in the lattice. The total number
of possible σ reductions is thus equal to nd. The total number of operations
of the algorithm is then O(n2d). In general, d could be (at most) equal to n,
therefore, after initialization, worst case complexity is O(n3). The initialization
(Lines 1-2) takes O(nm) +O(n2), where m = |S|. Worst time complexity is thus
O(mn + n3). For powerset lattices, d = log2 n, thus worst time complexity in
this case is O(mn+ n2 log2 n).

4.5 Experimental Results and Small Example

Here we present some experimental results showing the execution time of the
proposed algorithms. We also discuss a small example with join-endomorphisms
representing dilation operators from Mathematical Morphology [2]. We use the
algorithms presented above to compute the greatest dilation below a given set
of dilations and illustrate its result for a simple image.

Consider Figure 2. In plots 2.A-C, the horizontal axis is the size of the lattice.
In plots 2.D-F, the horizontal axis is the size of S. Curves in images 2.A-C
plot, for each algorithm, the average execution time of 100 runs (10 for 2.A)
with random sets S ⊆ E(L) of size 4. Images 2.D-F, show the mean execution
time of each algorithm for 100 runs (10 for 2.D) varying the number of join-
endomorphisms (|S| = 4i, 1 ≤ i ≤ 8). The lattice size is fixed: |L| = 10 for 2.E
and 2.F, and |L| = 25 for 2.D. In all cases the lattices were randomly generated,
and the parameters selected to showcase the difference between each algorithm
with a sensible overall execution time. For a given lattice L and S ⊆ E(L),
the brute-force algorithm explores the whole space E(L) to find all the join-
endomorphism below each element of S and then computes the greatest of them.

Counting and Computing Join-Endomorphisms in Lattices 15

Size A1 A2 GMeet GMeet+ DMeet

16 2.01 0.958 0.00360 0.000603 0.000632
32 64.6 25.3 0.0633 0.00343 0.00181
64 1901 600 0.948 0.0154 0.00542

128 >600 >600 15.4 0.0860 0.0160
256 >600 >600 252 0.361 0.0483
512 >600 >600 >600 2.01 0.166

1024 >600 >600 >600 10.7 0.547

Table 2: Average time in seconds over powerset lattices with |S| = 4

In particular, the measured spike in plot 2.C corresponds to the random lattice of
seven elements with the size of E(L) being bigger than in the other experiments
in the same figure. In our experiments we observed that for a fixed S, as the
size of the lattice increases, DMeet outperforms GMeet+. This is noticeable
in lattices 2n (see 2.A). Similarly, for a fixed lattice, as the size of S increases
GMeet+ outperforms DMeet. GMeet+ performance can actually improve
with a higher number of join-endomorphisms (see 2.D) since the initial σ is
usually smaller in this case.

To illustrate some performance gains, Table 2 shows the mean execution time
of the algorithms discussed in this paper. We include A1 and A2, the algorithms
outlined just after Lemma 1 and Proposition 5.

An MM Example. Mathematical morphology (MM) is a theory, based on
topological, lattice-theoretical and geometric concepts, for the analysis of ge-
ometric structures. Its algebraic framework comprises [2,14,17], among others,
complete lattices together with certain kinds of morphisms, such as dilations,
defined as join-endomorphisms [14]. Our results give bounds about the number
of all dilations over certain specific finite lattices and also efficient algorithms to
compute their infima.

A typical application of MM is image processing. Consider the space G = Z2.
A dilation [2] by si ⊆ P(G) is a function δsi : P(G) → P(G) such that
δsi(X) = {x + e | x ∈ X and e ∈ si}. The dilation δsi(X) describes the in-
teraction of an image X with the structuring element si. Intuitively, the dilation
of X by si is the result of superimpose si on every activated pixel of X, with
the center of si aligned with the corresponding pixel of X. Then, each pixel of
every superimposed si is included in δsi(X).

Let L be the powerset lattice for some finite set D ⊆ G. It turns out that
the dilation

d
E(L)

S corresponds to the intersection of the structuring elements
of the corresponding dilations in S. Fig.3 illustrates

d
E(L)

S for the two given
dilations δs1(I) and δs2(I) with structuring elements s1 and s2 over the given
image I.

5 Conclusions and Related Work

We have shown that given a lattice L of size n and a set S ⊆ E(L) of size
m,

d
E(L)

S can be computed in the worst-case in O(n + mlog n) binary lattice

16 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

Fig. 3: Binary image I (on the left). Dilations δs1 , δs2 for structuring elements s1, s2.
On the right

(d
E(L)
{δs1 , δs2}

)
(I). New elements of the image after each operation in

grey and black.

operations for powerset lattices, O(mn2) for lattices of sets, and O(nm+n3) for
arbitrary lattices. We illustrated the experimental performance of our algorithms
and a small example from mathematical morphology.

In [9] a bit-vector representation of a lattice is discussed. This work gives
algorithms of logarithmic (in the size of the lattice) complexity for join and
meet operations. These results count bit-vector operations. From [1] we know
that E(L) is isomorphic to the downset of (P × P op), where P is the set of
join-prime elements of L, and that this, in turn, is isomorphic to the set of
order-preserving functions from (P × P op) to 2. Therefore, for the problem of

computing
d

E(L)
S, we get bounds O(m log2(2(n

2)) = O(mn2) for set lattices and

O(m(log2 n)2) for powerset lattices where n = |L| and m = |S|. This, however,
assumes a bit-vector representation of a lattice isomorphic to E(L). Computing
this representation takes time and space proportional to the size of E(L) [9]
which could be exponential as stated in the present paper. Notice that in our
algorithms the input lattice is L instead of E(L).

We have stated the cardinality of the set of join-endomorphisms E(L) for
significant families of lattices. To the best of our knowledge we are the first to
establish the cardinality (n+1)2+n!Ln(−1) for the lattice Mn. The cardinalities
nlog2 n for power sets (boolean algebras) and

(
2n
n

)
for linear orders can also be

found in the lattice literature [1,10,16]. Our original proofs for these statements
can be found in the technical report of this paper [13].

The lattice E(L) have been studied in [6]. The authors showed that a finite
lattice L is distributive iff E(L) is distributive. A lower bound of 22n/3 for the
number of monotonic self-maps of any finite poset L is given in [4]. Nevertheless
to the best of our knowledge, no other authors have studied the problem of de-
termining the size E(L) nor algorithms for computing

d
E(L)

S. We believe that
these problems are important, as argued in the Introduction; algebraic structures
consisting of a lattice and join-endomorphisms are very common in mathematics
and computer science. In fact, our interest in this subject arose in the algebraic
setting of spatial and epistemic constraint systems [8] where continuous join-
endomorphisms, called space functions, represent knowledge and the infima of

Counting and Computing Join-Endomorphisms in Lattices 17

endomorphisms correspond to distributed knowledge. We showed in [8] that dis-
tributed knowledge can be computed in O(mn1+log2(m)) for distributive lattices
and O(n4) in general. In this paper we have provided much lower complexity
orders for computing infima of join-endomorphisms. Furthermore [8] does not
provide the exact cardinality of the set of space functions of a given lattice.

As future work we plan to explore in detail the applications of our work in
mathematical morphology and computer music [15]. Furthermore, in the same
spirit of [11] we have developed algorithms to generate distributive and arbitrary
lattices. In our experiments, we observed that for every lattice L of size n we
generated, nlog2 n ≤ |E(L)| ≤ (n+1)2+n!Ln(−1) and if the generated lattice was
distributive, nlog2 n ≤ |E(L)| ≤

(
2n
n

)
. We plan to establish if these inequalities

hold for every finite lattice.

Acknowledgments. We are indebted to the anonymous referees and editors
of RAMICS 2020 for helping us to improve one of the complexity bounds, some
proofs, and the overall quality of the paper.

References

1. Birkhoff, G.: Lattice Theory. No. v. 25,pt. 2 in American Mathematical Society
colloquium publications, American Mathematical Society (1967)

2. Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-
Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics. pp. 857–944.
Springer Netherlands (2007)

3. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge uni-
versity press, 2nd edn. (2002)

4. Duffus, D., Rodl, V., Sands, B., Woodrow, R.: Enumeration of order preserving
maps. Order 9(1), 15–29 (1992)

5. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.:
Continuous lattices and domains. Cambridge University Press (2003)

6. Grätzer, G., Schmidt, E.: On the lattice of all join-endomorphisms of a lattice.
Proceedings of The American Mathematical Society - PROC AMER MATH SOC
9, 722–722 (1958)

7. Guzmán, M., Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: Belief, knowledge,
lies and other utterances in an algebra for space and extrusion. J. Log. Algebr.
Meth. Program. 86(1), 107–133 (2017)

8. Guzmán, M., Knight, S., Quintero, S., Ramı́rez, S., Rueda, C., Valencia, F.D.:
Reasoning about Distributed Knowledge of Groups with Infinitely Many Agents.
In: CONCUR 2019 - 30th International Conference on Concurrency Theory. vol. 29,
pp. 1–29 (2019)

9. Habib, M., Nourine, L.: Tree structure for distributive lattices and its applications.
Theoretical Computer Science 165(2), 391–405 (1996)

10. Jipsen, P.: Relation algebras, idempotent semirings and generalized bunched im-
plication algebras. In: Relational and Algebraic Methods in Computer Science. pp.
144–158. Springer International Publishing (2017)

11. Jipsen, P., Lawless, N.: Generating all finite modular lattices of a given size. Algebra
universalis 74(3), 253–264 (2015)

18 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

12. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and Epistemic
Modalities in Constraint-Based Process Calculi. In: 23rd International Conference
on Concurrency Theory. Lecture Notes in Computer Science, vol. 7454, pp. 317–
332. Springer (2012)

13. Quintero, S., Ramı́rez, S., Rueda, C., Valencia, F.D.: Counting and Comput-
ing Join-Endomorphisms in Lattices. Research report, LIX, Ecole polytechnique
; INRIA Saclay - Ile-de-France (2019), https://hal.archives-ouvertes.fr/

hal-02422624

14. Ronse, C.: Why mathematical morphology needs complete lattices. Signal Process-
ing 21(2), 129 – 154 (1990)

15. Rueda, C., Valencia, F.: On validity in modelization of musical problems by ccp.
Soft Computing 8(9), 641–648 (2004)

16. Santocanale, L.: On Discrete Idempotent Paths. In: Combinatorics on Words. vol.
11682, pp. 312–325. Springer (2019)

17. Stell, J.: Why mathematical morphology needs quantales. In: Wilkinson, M.,
Roerdink, J. (eds.) International Symposium on Mathematical Morphology,
ISMM09. pp. 13–16. Institute for Mathematics and Computing Science, University
of Groningen (2009)

https://hal.archives-ouvertes.fr/hal-02422624
https://hal.archives-ouvertes.fr/hal-02422624

	Counting and Computing Join-Endomorphisms in Lattices

