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Effective pair correlations of
fractional powers of complex grid points

Rafael Sayous
October 31, 2023

Abstract: Using a standard definition of fractional powers on the universal cover
exp : S Ñ C˚ seen as an infinite helicoid embedded in R3, we study the statistics
of pairs from the countable family tnα : n P exp´1pΛqu for every complex grid Λ
and every real parameter α P s0, 1r . We prove the convergence of the empirical pair
correlations measures towards a rotation invariant measure with explicit density. In
particular, with the scaling factor N ÞÑ N1´α, we prove that there exists an exotic
pair correlation function which exhibits a level repulsion phenomenon. For other
scaling factors, we prove that either the pair correlations are Poissonian or there is
a total loss of mass. In addition, we give an error term for this convergence, with
explicit dependence on parameters of the grid Λ.

1 Introduction
In order to obtain a comprehensive understanding of the distribution of a countable
family punqnPI within a locally compact metric additive group G, an essential aspect
involves analysing the statistics of the spacings between selected pairs of these points,
seen at a varying scaling. The approach consisting in taking all pairs into account is
the study of pair correlations. More precisely, with the use of a nonnegative function
h : I Ñ r0,`8s such that every set tun P G : hpnq ď Nu is finite, our focus lies on
the asymptotic of the multisets FN “ tun ´ umuhpnq,hpmqďN,n‰m as N Ñ 8.

These problems were initially developed in physics, especially in quantum chaos,
which has lead to a purely mathematical point of view of pair correlations. See for
instance [RS98, AAL18, LS20b] for questions directly linked to quantum physics. In
various examples for the group G, the customary reference situation is the (almost
sure) behaviour of the pair correlations of a homogeneous Poisson point process
of constant intensity on the space G. If the pairs from punqnPI have the same be-
haviour, the sequence is said to have Poisson pair correlations. It is of interest on its
own to define precisely what this behaviour is, in particular in a multidimensional
setting [Hin+19]. Furthermore, determining whether a given sequence exhibits this
comparison behaviour or not presents an intriguing challenge, see the papers [RS98,
BZ05, LS20a, LT22, Wei23]. For instance, when α ą 0 is small enough, the sequence
ptnαuqnPN, where t¨u denotes the fractional part function, displays Poisson pair cor-
relations, as proven by C. Lutsko, A. Sourmelidis and N. Technau in their paper
[LST21], as well as in the special case α “ 1

2 , as shown by D. Elbaz, J. Marklof and
I. Vinogradov in [EMV15].
Keywords: pair correlations, level repulsion, fractional power, lattices, convergence of measures.
MSC: 11J83, 11K38, 11P21, 28A33.
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In our setting, the metric group G will then be pC,`q. Recall that a complex
Z-lattice is a discrete additive subgroup of C generating C as a real vector space,
and that a complex subset Λ is called a Z-grid if there exist a (unique) Z-lattice
Λ⃗ and a complex number z P C such that Λ “ z ` Λ⃗. The spaces LatC, of all
complex Z-lattices, and GridC, of complex Z-grids, are endowed with the Chabauty
topology (since lattices and grids are closed subsets of C). We denote by covolΛ⃗ the
area of any fundamental parallelogram of Λ⃗. In all our study, we fix a real number
α P s0, 1r and a Z-grid Λ P GridC. Let γ P s0, 1r , that we use as a parameter for the
scaling in this introduction. To conduct a much more involved study than the paper
[Say23] on the non generic pair correlation statistics of the real sequence pnαqnPN,
we will define a sequence of measures for the pair correlations of the "α powers" of
grid points in Λ. In this introduction, we present the case α “ 1

b
where b P N ´ t0u.

In this particular case, the study we conduct can be simplified and translated to
the statistics of scaled differences Nγpv´ uq where u, v are b-th roots of grid points
with norm less than N . In other words, we study the sequence of empirical pair
correlation measures given by the general term

RN “
1

bN2p2´α´γq

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

ÿ

u,vPC˚

ub“m, vb“n

∆Nγpv´uq,

where, for all complex number z P C, we denote by ∆z the Dirac mass at z. We de-
note by LebC the Lebesgue measure on C, and we define the nonnegative measurable
function ρ by

ρ : z ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if γ ą 1 ´ α,

π

α2p2 ´ αq covol2Λ⃗
if γ ă 1 ´ α,

α
2

1´α |z|
´

4´2α
1´α

p1 ´ αq covolΛ⃗

ÿ

pPΛ⃗´t0u

|p|ď
|z|

α

|p|
2

1´α if γ “ 1 ´ α.

We use the notation Dpz0, rq “ tz P C : |z ´ z0| ă ru for open disks. For all Radon
measures µN , for N P N, and µ on C, the sequence pµNqNPN is said to vaguely
converges towards µ if for every continuous functions f : C Ñ C with compact
support, we have the convergence µNpfq Ñ µpfq. In this case, we write µN ˚

á µ.

Theorem 1.1. We have the following vague convergence, as N Ñ 8,

RN
˚

á ρ LebC .

In the latter theorem, the vague convergence will be proven uniform over Λ
varying in either any compact subset of LatC or locally around any non-lattice grid
Λ1 (i.e. Λ1 P GridC and 0 R Λ1). See the second point of Remark 2.8 for precisions
on such a uniformity statement. As for effectiveness, let f P C1

c pCq, choose A ą 1
2



such that supp f Ă Dp0, Aq and assume that γ “ 1 ´ α. Then, we have a rate for
this convergence, given by the estimate, as N Ñ 8,

RNpfq “

ż

C
fpzqρpzq dz ` Oα,Λ

´A4p}f}8 ` }df}8q

N

¯

.

Theorem 1.1 indicates that ρ describes the repartition of pair correlations of α “ 1
b

powers of grid points. This is essentially a particular case of Theorem 2.1, the main
result of the present paper which holds for every real number α P s0, 1r . The proof
of Theorem 1.1 using Theorem 2.1 and some counting lemma is done at the very
end of Section 4.
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Figure 1: The graph of the function ρ restricted to the disk Dp0, 1q in the case
α “ 1

3 , γ “ 1 ´ α “ 2
3 and Λ “ Zris.

In other words, the pair correlations for the b-th roots of grid points are Poisson if
γ ă 1 ´ α, have an exotic density if γ “ 1 ´ α and there is a total loss of mass if
γ ą 1´α. This phase transition phenomenon frequently appears in the study of pair
correlations, see for instance [PP22a, PP22b, Say23]. The study of pair correlation
in a noncompact setting has already been fruitful in various fields. On G “ R, the
lengths of closed geodesics in negative curvature have Poisson pair correlation or
converge to an exponential probability measure (depending on the scaling factor)
[PS06, PP23]. Still on G “ R, for all α, β P R verifying some diophantine condition,
the image of Z2 by the quadratic form px, yq ÞÑ px ´ αq2 ` py ´ βq2 also exhibits
a Poisson pair correlation [Mar03] (see also [Mar02] for a related result in higher
dimension). On the group G “ pK,`q where K is a p-adic field with integer ring
denoted by O, the pair correlations of squares of integers tz2 : z P Ou has also been
studied in [Zah03] and has a behaviour which can arguably be called Poisson.

In Section 2, we first define a more general setting for pair correlations than
the one of Theorem 1.1, using the universal cover C of C˚ and dividing it into
levels. Then, we state Theorem 2.1, which is the main theorem in this paper and
of which Theorem 1.1 is a special case, as well as a version using separated levels,
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namely Theorem 2.7, and we prove the main lemmas we will use for the proof of
the latter theorem. In Section 3, we exhaustively prove Theorem 2.7, using a linear
approximation, an approximation of Riemann sums after an appropriate change
of variable, an averaging argument over levels, and various counting results. In
Section 4, we give an upper bound on the number of pairs which were counted out
by separating the grid points into levels in Section 2, allowing us to straightforwardly
derive Theorems 2.1 from Theorem 2.7.
Acknowledgments: This research is supported by the French-Finnish CNRS IEA PaCAP.
The author would like to thank J. Parkkonen and F. Paulin, the supervisors of his ongoing
doctorate, for their support, suggestions and corrections during this research.

2 The main statement and technical lemmas
In all this paper, we fix α P s0, 1r as well as Λ a Z-grid in C. We denote by Λ⃗ its
underlying Z-lattice. We set

S “ tpreiω, ωq : r ą 0, ω P Ru Ă C ˆ R

A standard way in complex analysis to define a power function is to use the Riemann
surface S. On the universal cover exp : C Ñ C˚ of C˚, we set ΛS “ exp´1pΛq, which
consists of infinitely many copies of the grid Λ (minus the origin if Λ contains 0): for
every t P R, the map exp restricts to a bijection ΛS X tz : t ď Impzq ă t` 2πu Ñ Λ.
We use the identification z ÞÑ pexppzq, Impzqq between the universal cover C and
the helicoid S. The set ΛS is then identified with tpn, ωq : n P Λ, ω P argpnqu Ă S.
We define the α power function on this surface by

Powα : S Ñ S
preiω, ωq ÞÑ prαeiαω, αωq,

which corresponds to the multiplication by α on the universal cover C. We are then
interested in pair correlations of the countable set PowαpΛSq. Let πC (resp. πR)
denote the projection on the complex (resp. real) coordinate of C ˆ R. To focus on
the complex part of such three dimensional vector differences, we flatten them and we
study the statistical distribution of the complex differences πCpPowαpnq´Powαpmqq

for all m,n P ΛS such that |πRpn´mq| ă 2π. The latter condition is introduced for
the points m and n to be on the same "copy" of C˚ in its universal cover C. This is
not a constraint since we multiply all differences Powαpnq ´ Powαpmq by a scaling
factor going to infinity and evaluate the related measures on a compactly supported
function: after rescaling, pairs of points failing to satisfy this condition uniformly
give rise to differences in CˆR escaping all compact subsets. Let ϕ, ψ : N Ñ s0,`8r

be two functions converging to `8, which we respectively call the scaling factor
and the renormalization factor. Throughout this paper, we fix λ P r0,`8s and we

4



assume the following convergence and formula

ϕpNq

N1´α
Ñ λ P r0,`8s as N Ñ 8,(1)

ψpNq “

´N2´α

ϕpNq

¯2
for all N P N.(2)

Compared to the case of the introduction, taking into account all directions of
noncompactness in S Ă CˆR, the need for two new integer parameters N 1 and N2

emerges. We are interested in the multi-index sequence of empirical pair correlation
measures whose formula is given for all N,N 1, N2 P N ´ t0u by the formula

Rα,Λ
N,N 1,N2 “

1
pN 1 ` N2qψpNq

ÿ

m,nPΛS , n‰m
|πRpn´mq|ă2π

0ă|πCpmq|,|πCpnq|ďN
´2πN 1ďπRpmq,πRpnqă2πN2

∆ϕpNqpπCpPowαpnq´Powαpmqqq

“
1

pN 1 ` N2qψpNq

ÿ

m,nPΛ, n‰m
0ă|m|,|n|ďN

ÿ

rPexp´1pmq, sPexp´1pnq

|Imprq´Impsq|ă2π
´2πN 1ďImprq,Impsqă2πN2

∆ϕpNqpexppαsq´exppαrqq.(3)

Set ρα,Λ the nonnegative measurable function of formula

ρα,Λ : z ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if λ “ `8,

π

α2p2 ´ αq covol2Λ⃗
if λ “ 0,

α
2

1´α

p1 ´ αq covolΛ⃗

´

|z|

λ

¯´
4´2α
1´α

ÿ

pPΛ⃗´t0u

|p|ď
|z|

αλ

|p|
2

1´α if λ P s0,`8r .

The next two results will be proven at the end of Section 4.

Theorem 2.1. We have the vague convergence, as mintN, N 1 ` N2u Ñ 8,

Rα,Λ
N,N 1,N2

˚
á ρα,Λ LebC .

For an error term and uniformity on Λ in this convergence, see Remark 4.2. In
the case α P s0, 1r XQ, we write its irreducible form α “ a

b
an obtain the following

result.

Theorem 2.2. We have the vague convergence, as N Ñ 8,

R
a
b
,Λ

N,0,b
˚

á ρa
b
,Λ LebC .

5



Figure 2: On the left, the helicoidal Riemann surface S. On the right, an illustration
of the points (dots) r P exp´1pΛq Ă C. The (dotted and plain) two-headed arrows
correspond to pairs of grid points appearing in the definition of the empirical pair
correlation measure Rα,Λ

N,N 1,N2 . The distinction between dotted and plain two-headed
arrows will be explained before Theorem 2.3.

2.1 Separation into levels
We use the notation R` “ r0,`8r . For every real number β, every integer k and
every nonzero complex number z, we begin by defining the level-k β power of z as

zrβ,ks
“ |z|

βeiβωk , where ωk is the representative in r2πk, 2πpk ` 1qr of argpzq.

In other words, for every z P C ´ R`, we set zrβ,ks “ eβplogpzq`i2πkq, where the
map log : C ´ R` ÞÑ C is the branch of the logarithm with branch cut R` and
verifying logp´1q “ iπ, and we extend this definition to C˚ in an "upper" continuous
way, namely when Impzq ě 0. For the particular case k “ 0, we use the notation
zβ “ zrβ,0s. This nonstandard choice of branch cut is handy for the following formula:
for all z, z1 P C˚ and all k P Z,

zrβ,ks

z1rβ,ks
“

´ z

z1

¯β

or
´ z

z1

¯rβ,´1s

,

depending on the sign of the difference ω´ω1 of the argument representatives ω of z
and ω1 of z1, both taken in r0, 2πr . In comparison, taking the principal branch of the
logarithm to define these power functions would have required to separate between
3 cases, whether the difference ω ´ ω1 belongs to s ´ 2π,´πs, s ´ π, πs or sπ, 2πs.

6



With the formula zβ “ eβ logpzq, we obtain the linear approximation, as z Ñ 0 with
the restriction Impzq ě 0,

(4) p1 ` zq
α

“ 1 ` αz ` Oαp|z|
2
q.

Note that the image of C˚ by the level-k β power function z ÞÑ zrβ,ks is the semi
open angular sector tz P C˚ : argpzq P r2πkβ, 2πpk` 1qβr mod 2πu, in other words
the sector of angle 2βπ centred at the argument 2πpk ` 1

2qβ mod 2π.
We define the multi-index sequence of level separated empirical pair correlation

measures by its general term

(5) Rα,Λ,lvl
N,N 1,N2 “

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆ϕpNqpnrα,ks´mrα,ksq.

In comparison to the definition Rα,Λ
N,N 1,N2 from the beginning of Section 2, in the

measure Rα,Λ,lvl
N,N 1,N2 we do not take into account pairs of points illustrated with dotted

arrows in Figure 2. Recall that the scaling and renormalization factors ϕ and ψ
verify the convergence (1) and the formula (2).

Theorem 2.3. We have the following vague convergence of positive measures, as
mintN, N 1 ` N2u Ñ 8,

Rα,Λ,lvl
N,N 1,N2

˚
á ρα,Λ LebC .
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Figure 3: The empirical distribution obtained for the measure R
1
3 ,Zris,lvl
N,N 1,N2 with N “ 70

and N 1 ` N2 “ 3 in the case λ “ 1, using a smoothing process of the library SciPy
of Python.

A qualitative illustration of this convergence is shown by comparing Figure 3
to Figure 1, in the exotic case λ “ 1. Since the modulus function | ¨ | from C to
R` is continuous and proper and since the function ρα,Λ is invariant under rotation,
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the hypotheses of Theorem 2.3 also imply the vague convergence, as the minimum
mintN,N 1 ` N2u Ñ 8,

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆ϕpNq|nrα,ks´mrα,ks|

˚
á 2πrρα,Λprqdr.

As an illustration of the latter convergence, a radial profile is drawn on Figure 4, in
the exotic case λ “ 1.

0 1 2 3 4 5
0

10

20

30

40

50

60

Figure 4: The empirical radial distribution of R
1
3 ,Zris,lvl
N,N 1,N2 for N 1 `N2 “ 3 and different

values of N (N “ 10 in pink, N “ 30 in orange, N “ 50 in green, and N “ 80 in
blue) using the scaling factor N ÞÑ N

2
3 (and renormalization factor N ÞÑ N2), and

the limit density r ÞÑ ρ 1
3 ,Zrisprq (in red).

We denote by diamΛ⃗ the minimal diameter over all fundamental parallelograms
of Λ⃗ and by sysΛ⃗ (resp. sysΛ) the systole of the the Z-lattice Λ⃗ (resp. of the Z-grid
Λ), that is to say

sysΛ⃗ (resp. sysΛ) “ mint|p| : p P Λ⃗ (resp. Λ), p ‰ 0u ą 0.

Remark 2.4. In the exotic case λ P s0,`8r , one can notice that we have ρα,Λ “ 0 on
the open disk Cp0, αλ sysΛ⃗q. This property is called a level repulsion phenomenon.
The fact that the radius αλ sysΛ⃗ of this level repulsion disk converges to `8 as
λ Ñ `8 can be interpreted as a continuity result between the cases λ P s0,`8r

and λ “ `8. Such a continuity observation may also be made between the cases
λ P s0,`8r and λ “ 0, since Gauss counting argument (more precisely, its version
for β “ 2

1´α
stated in Lemma 2.9) indicates that, for all λ P s0,`8r ,

ρα,Λpzq ÝÑ
|z|Ñ8

π

α2p2 ´ αq covol2Λ⃗
.

8



Remark 2.5. Notice that ρα,Λ is rotation invariant and, if λ P s0,`8r , the points
of discontinuity of ρα,Λ constitute the union of circles

Ť

pPΛ⃗´t0u
Cp0, αλ|p|q. By com-

parison, extending the definition of Rα,Λ,lvl
N,N 1,N2 to the simplistic case α “ 1, choosing

the scaling factor N ÞÑ 1 (hence λ “ 1) and the renormalization factor N ÞÑ N2,
a standard Gauss argument and a Riemann sum approximation grants the vague
convergence, as N Ñ 8,

R1,Λ,lvl
N,N 1,N2 “

1
N2

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆n´m
˚

á
π

covolΛ⃗

ÿ

pPΛ⃗´t0u

∆p.

In particular, the limit measure is not rotation invariant: we lose some symmetry
in this extreme case α “ 1.

Remark 2.6. Upon an appropriate rescaling in terms of α, a continuity statement
can be made between the cases α P s0, 1r and α “ 0. We impose the scaling factor
ϕpNq “ N1´α (hence λ “ 1) for this remark. Up to rotation, we can assume that the
grid Λ contains no nonzero point on the branch cut R` of the log function involved
in the definition of α-powers with levels. For all k P Z, all n,m nonzero grid points
in Λ and all integer N P N, notice that we have the convergence, as α Ñ 0`,

(6) 1
α
N1´α

pnrα,ks
´ mrα,ks

q ÝÑ Nplogpnq ´ logpmqq.

We set
RΛ,log
N “

1
N2

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆Nplogpnq´logpmqq.

which is (up to the choice of a branch cut for the logarithm function) the empirical
pair correlation measure studied in [PP22b, § 3] for logarithm of grid points. Using
Theorem 2.3 and the fact that z ÞÑ z

α
is continuous and proper for the top con-

vergence arrow, the convergence (6) for the left-hand convergence arrow, and the
dominated convergence theorem for the right-hand convergence arrow, we obtain
the following diagram of vague convergence:

pz ÞÑ z
α

q˚R
α,Λ,lvl
N,N 1,N2

˚
á

minpN,N 1`N2qÑ8
pz ÞÑ z

α
q˚ρα,Λ LebC “ α2ρα,Λpαzq dz

α

Ó
0`

ç˚

α

Ó
0`

ç˚

RΛ,log
N

|z|4

covolΛ⃗

ř

pPΛ⃗´t0u

|p|ď|z|

|p|2 dz.

The bottom convergence arrow missing to this diagram has been proven in [PP22b,
Theo. 3.1].

In order to state an effective version of Theorem 2.3, we will use the space C1
c pCq

of continuously differentiable functions of two real variables f : C Ñ C, with the
9



standard notations }f}8 “ supzPC |fpzq| and }df}8 “ supzPC }dfpzq}, where }¨} is the
operator norm on the space of R-linear applications from C to C. We use Landau’s
notation: for functions F,G : N ÞÑ C depending on some parameters including α,
we write F pNq “ OαpGpNqq if there exists some constant cα ą 0, depending only on
α, and some integer N0, depending on all the parameters, such that, for all N ě N0,
we have the inequality |F pNq| ď cα|GpNq|. In our study, each time we use the
Landau’s notation Oα, the rank N0 may depend on the real number α, the size A
of the support of the test function we evaluate our measures on, the scaling and
renormalization factors ϕ and ψ, and on the parameters diamΛ⃗, covolΛ⃗, sysΛ⃗ and
sysΛ of the grid Λ. In particular, it is important to recall that it does not depends
on the parameters N 1, N2 nor on any other index temporarily fixed in the proof of
a lemma or a theorem.

For all f P C1
c pCq and A ą 1, if λ “ `8 we set ErrTh.2.7pα,Λ, f, Aq “ 0, and

otherwise we define

ErrTh.2.7pα,Λ, f, Aq

“

$

’

’

&

’

’

%

Oα

`A4p}f}8`}df}8qp1`diam2
Λ⃗

q

covol2
Λ⃗

` ϕpNq

N1´α ` 1
NαϕpNq

` 1
N 1`N2

˘˘

if λ “ 0,

Oα

`

|
ϕpNq

λN1´α ´ 1| Err1 `Err2
N `

A2}f}8

covol2
Λ⃗

pN 1`N2q

˘

if λ P s0,`8r ,

where

Err1 “
A

8´6α
1´α }f}8p1 ` diam2

Λ⃗q

covol2Λ⃗ sys
4´2α
1´α

Λ⃗

`

λ`
1
λ

˘
10´8α

1´α

and

Err2 “
A4p}f}8 ` }df}8qp1 ` diam4

Λ⃗qpλ` 1
λq

2`|
1´2α
1´α

|

covol2Λ⃗ mint1, covolΛ⃗u mint1, sysΛ⃗u
.

Theorem 2.7. Let f P C1
c pCq and choose A ą 1 such that supp f Ă Dp0, Aq.

• If λ “ `8, then there exists an integer N0 which depends on α, Λ and A,
such that for all N ě N0 and all N 1, N2 P N, we have Rα,Λ,lvl

N,N 1,N2pfq “ 0.

• If λ P r0,`8r , as N Ñ 8, we have

Rα,Λ,lvl
N,N 1,N2pfq “

ż

C
fpzqρα,Λpzq dz ` ErrTh.2.7pα,Λ, f, Aq.

Remarks 2.8. • By a standard approximation argument of a function in C0
c pCq

by functions in C1
c pCq, Theorem 2.3 is an immediate consequence of Theorem

2.7.

• Notice that the parameters diamΛ⃗, covolΛ⃗, sysΛ⃗ that we used in the definition
of Oα are bounded for Λ varying in any compact subset of GridC, but the grid
systole sysΛ is only bounded for Λ varying in a compact subset of LatC (where

10



it coincides with the usual systole sysΛ⃗ of a lattice) and locally for Λ varying
in some neighbourhood in GridC of any grid Λ1 which does not contains zero.
Then, since in addition the error terms in Theorems 2.7 and 2.1 (see Remark
4.2) depend on Λ only through the same parameters, we have the following
uniformity statement: for every K Ă LatC compact and for every Λ1 P GridC
such that 0 R Λ1, there exists a neighbourhood U Ă GridC of Λ1 such that the
vague convergence in Theorem 2.7 (resp. 2.3, 2.2, 2.1, 1.1) is uniform over Λ
varying in either K or U .

• In the case α “ a
b

P Q, for all integers N P N and k0 P Z ´ t0u, we have the
periodicity formula R

a
b
,Λ,lvl

N,0,k0b “ R
a
b
,Λ,lvl

N,0,b . This implies that we have, as N Ñ 8,

R
a
b
,Λ,lvl

N,0,b
˚

á ρα,Λ LebC .

2.2 Counting lemmas
The next lemma is a well known result which will be useful in order to explicitly
compute the limit function ρα,Λ as well as to bound error terms for Theorem 2.7.

Lemma 2.9. For every real number β ě 0, there exists a constant Cβ ą 0 such
that, for all x ě 1,

ˇ

ˇ

ˇ

ÿ

mPΛ
0ă|m|ďx

|m|
β

´
2π

covolΛ⃗
xβ`2

β ` 2

ˇ

ˇ

ˇ
ď Cβ

1 ` diam2
Λ⃗

covolΛ⃗
xβ`1.

For every real number β ą ´2, we have the (less explicit) estimate, as x Ñ 8,

ÿ

mPΛ
0ă|m|ďx

|m|
β

“
2π

covolΛ⃗
xβ`2

β ` 2 ` Oβ

´1 ` diam2
Λ⃗

covolΛ⃗
pxβ`1

` sysβΛq

¯

.

In the case β “ ´2, we have the following estimate, as x Ñ `8,
ÿ

mPΛ
0ă|m|ďx

1
|m|2

„
2π

covolΛ⃗
logpxq.

For every real number β ă ´2, the sum
ř

mPΛ
0ă|m|ďx

|m|β converges as x Ñ 8 and its
limit verifies the inequality

ÿ

mPΛ´t0u

|m|β ď
16π sysβΛ diam2

Λ⃗ ´ 2π 2β`3
pβ`1qpβ`2q

diamβ`2
Λ⃗

covolΛ⃗
“ Oβ

´pdiamβ

Λ⃗
` sysβΛqdiam2

Λ⃗
covolΛ⃗

¯

.

11



Proof. We recall Abel’s summation formula: for every real sequence pakqkě1, all real
numbers 1 ď x0 ď x and all function f : rx0,`8r Ñ R of class C1 on sx0,`8r, we
have the equality

(7)
ÿ

x0ďkďx

akfpkq “
`

ÿ

1ďkďx

ak
˘

fpxq ´
`

ÿ

1ďkăx0

ak
˘

fpx0q ´

ż x

x0

`

ÿ

1ďkďt

ak
˘

f 1
ptq dt

Let x ě 1 and F be a closed fundamental parallelogram of Λ⃗ containing 0 with
minimal diameter.

For the case β “ 0, we follow the standard Gauss counting argument. Set
Ax “ tm P Λ : 0 ă |m| ď xu and Bx “

Ť

mPAx
pm ` F q, so that we have the

equality LebCpBxq “ CardpAxq covolΛ⃗. The definition of diamΛ⃗ yields the inclusions

(8) D̄p0, x ´ diamΛ⃗q Ă Bx Ă D̄p0, x ` diamΛ⃗q,

where the closed disk D̄p0, x ´ diamΛ⃗q is empty if x ă diamΛ⃗. Computing the
Lebesgue measure of these disks gives

(9) π

covolΛ⃗
maxt0, x ´ diamΛ⃗u

2
ď CardpAxq ď

π

covolΛ⃗
px ` diamΛ⃗q

2

which is even valid in the case 0 ď x ă 1 and implies the lemma in the case β “ 0.
Assume β ą 0. Consider the sequence pak “ Cardtm P Λ : k´1 ă |m| ď kuqkě1.

We have the following inequalities
ÿ

1ďkďx

akpk ´ 1q
β

ď
ÿ

mPΛ
0ă|m|ďx

|m|
β

ď
ÿ

1ďkďrxs

akk
β.

Let t¨u denote the lower integral part on R. Applying Abel’s formula (7) to f : t ÞÑ tβ

then f : t ÞÑ pt ´ 1qβ with x0 “ 1, together with the case β “ 0 to estimate
ř

1ďkďx ak “ CardpAtxuq, this proves the lemma in the case β ą 0.
Assume β P s ´ 2, 0r . Then we have the inequalities

(10)
ÿ

2ďkďx

akk
β

ď
ÿ

mPΛ
1ă|m|ďx

|m|
β

ď
ÿ

2ďkďrxs

akpk ´ 1q
β.

Applying Abel’s formula (7) to f : t ÞÑ tβ then f : t ÞÑ pt ´ 1qβ with x0 “ 2, this
proves the estimate, as x Ñ 8,

ÿ

mPΛ
1ă|m|ďx

|m|
β

“
2π

covolΛ⃗
xβ`2

β ` 2 ` Oβ

`1 ` diam2
Λ⃗

covolΛ⃗
xβ`1˘.

Combining this with the inequality
ř

mPΛ
0ă|m|ď1

|m|β ď sysβΛ
πp1`diam2

Λ⃗
q

covolΛ⃗
coming from

Equation (9), the lemma is proven in the case β P s ´ 2, 0r .
12



The case β “ ´2 directly comes from the inequalities (10) and the same ap-
plication of Abel’s formula, since then the only diverging term is equivalent to, as
x Ñ 8,

´

ż x

2

π

covolΛ⃗
t2f 1

ptq „
2π

covolΛ⃗
logpxq

in both cases where f is given by t ÞÑ 1
t2

or by t ÞÑ 1
pt´1q2 .

For the case β ă ´2, using the case β “ 0 from Equation (9), we can directly
compute

ÿ

mPΛ
0ă|m|ďx

|m|β “
ÿ

mPΛ
0ă|m|ď3diamΛ⃗

|m|β `
ÿ

mPΛ
3diamΛ⃗ă|m|ďx

|m|β

ď sysβΛ
π

covolΛ⃗
p3diamΛ⃗ ` diamΛ⃗q2 `

1
covolΛ⃗

ż

C´Dp0,2diamΛ⃗q

p|z| ´ diamΛ⃗qβ dz

“
16π sysβΛ diam2

Λ⃗
covolΛ⃗

´
2π 2β`3

pβ`1qpβ`2q
diamβ`2

Λ⃗
covolΛ⃗

.

Another helpful tool is given in the next lemma: it will allow us to count grid
points that are near a given straight line.

Lemma 2.10. Let g : R` Ñ R` be a nonnegative piecewise continuous function
and set Lg “ tx ` iy : x ě 0, y P R and |y| ď gpxqu. Then, for all N P N, we have
the inequality

Card
`

Λ X Dp0, Nq X Lg
˘

ď 4
N
ÿ

x“1

p1 ` diamΛ⃗qpmaxrx´1,xs g ` diamΛ⃗q

covolΛ⃗
.

Proof. Fix N P N ´ t0u. For every x P t1, . . . , Nu, let mx denote the real number
maxrx´1,xs g and consider the rectangle Rx “ rx ´ 1, xs ` ir´mx,mxs. We have the
inequality

Card
`

Λ X Dp0, Nq X Lg
˘

ď

N
ÿ

x“1
CardpΛ X Rxq.

For each x, let us denote by ĂRx the diamΛ⃗-neighbourhood of Rx for the infinity norm
}z}8 “ maxt|Repzq|, |Impzq|u (so that ĂRx is a rectangle, see Figure 5). Using Gauss
counting argument, the inequality between the Euclidean norm and the infinity
norm then yields the inequality, for all x P t1, . . . , Nu,

CardpΛ X Rxq covolΛ⃗ ď volpĂRxq “ p1 ` 2diamΛ⃗qp2mx ` 2diamΛ⃗q.

Summing over x P t1, . . . , Nu proves the lemma.

13



Figure 5: Illustration of the proof of Lemma 2.10.

2.3 Symmetry lemma
By the change of variable p “ n ´ m, we can rewrite the definition (5) as follows

(11) Rα,Λ,lvl
N,N 1,N2 “

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ÿ

mPΛ
0ă|m`p|,|m|ďN

∆ϕpNqppm`pqrα,ks´mrα,ksq

For any number z P C˚, recall the notation zα “ zrα,0s for its level-0 α power. Let
θ : C˚ Ñ R denote the projection of the argument function onto r0, 2πr . For all
nonzero complex numbers z, z1, the definition of their level-k α power yields the
formula zrα,ks

z1rα,ks “ p z
z1 q

rα,ls where l “ t
θpzq´θpz1q

2π u “ 0 or ´ 1 depending on the sign of
θpzq ´ θpz1q, independently of k. Set

I`
N “ tpm, pq P Λ ˆ pΛ⃗ ´ t0uq : 0 ă |m|, |m ` p| ď N and θpm ` pq ą θpmqu

and I´
N “ tpm, pq P Λ ˆ pΛ⃗ ´ t0uq : 0 ă |m|, |m ` p| ď N and θpm ` pq ă θpmqu.

In other words, putting aside the case θpm`pq “ θpmq for now, the set I`
N (resp. I´

N)
contains the indices pm, pq in Equation (11) verifying the formula, for all k P Z,

pm ` pqrα,ks

mrα,ks
“ p1 `

p

m
q
α
`

resp. pm ` pqrα,ks

mrα,ks
“ p1 `

p

m
q

rα,´1s
˘

.

Let Rα,Λ,`
N,N 1,N2 (resp. Rα,Λ,´

N,N 1,N2) denote the part of Rα,Λ,lvl
N,N 1,N2 with indices in I`

N (resp. in
I´
N) in Equation (11). One can notice a one-to-one correspondence between I`

N and
I´
N given by the map pm, pq ÞÑ pm ` p,´pq. This yields the formula

(12) Rα,Λ,´
N,N 1,N2 “ pz ÞÑ ´zq˚R

α,Λ,`
N,N 1,N2 .

The next lemma indicates that the contribution of the indices pm, pq which do not
belong to I`

N nor I´
N is negligible. Combined with the formula (12), we will be able

to derive the vague convergence of Rα,Λ,lvl
N,N 1,N2 from the one of Rα,Λ,`

N,N 1,N2 .
14



Lemma 2.11. Let f P C1
c pCq and choose A ą 1 such that supp f Ă Dp0, Aq. We

have the estimate, as N Ñ 8,

Rα,Λ,lvl
N,N 1,N2pfq “Rα,Λ,`

N,N 1,N2pfq ` Rα,Λ,´
N,N 1,N2pfq

` Oα

´ N}f}8

sysΛ⃗ covolΛ⃗ ψpNq

´´AN1´α

ϕpNq

¯

` diamΛ⃗

¯2¯

Proof. The difference Rα,Λ,lvl
N,N 1,N2pfq ´

`

Rα,Λ,`
N,N 1,N2pfq ` Rα,Λ,´

N,N 1,N2pfq
˘

is

(13) 1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ÿ

mPΛ
0ă|m`p|,|m|ďN
θpm`pq“θpmq

fpϕpNqppm ` pq
rα,ks

´ mrα,ks
qq.

Fix k P Z. Our goal is then to count pairs of points pm, pq P ΛˆpΛ⃗´t0uq verifying the
inequalities 0 ă |m|, |m`p| ď N , the equality of arguments θpm`pq “ θpmq and the
inequality |ϕpNqppm`pqrα,ks´mrα,ksq| ď A. We denote by I“

N,A the set of such indices
pm, pq (which indeed does not depend on k thanks to the formula zrα,ks “ ei2πkαzα).
Let pm, pq P I“

N,A. We denote by ω “ θpmq “ θpm ` pq their common argument
in r0, 2πr . The function z ÞÑ zrα,ks is regular when we restrict it to the segment
rm,m`ps: the complex valued function g : t ÞÑ pm`ptqrα,ks “ p|m|`t|p|qαeiαpω`2πkq

is differentiable and its derivative is given by g1 : t ÞÑ
αeiαpω`2πkq|p|

p|m|`t|p|q1´α . It is minimal
in modulus when t “ 1, for which we have |g1p1q| “

α|p|

|m`p|1´α . The mean value
inequality then grants us

A

ϕpNq
ě |pm ` pq

rα,ks
´ mrα,ks

| “ |gp1q ´ gp0q| ě
α|p|

|m ` p|1´α
.

From this, we derive the main inequality that we will use to count such pairs of
points, namely

(14) |p| ď
AN1´α

αϕpNq
.

As N Ñ 8, Equation (9) indicates that there are only Oα

` 1
covolΛ⃗

`

AN1´α

αϕpNq
` diamΛ⃗

˘2˘

points p P Λ⃗ verifying the inequality (14). Let us fix such a point p. Then, for the
points 0, m and m` p to be aligned, the nonzero grid point m` p has to be chosen
on the ray from 0 to p. Since moreover it has to be in the closed disk D̄p0, Nq, there
are at most N

sysΛ⃗
ways to choose the point m` p. This counting argument yields, as

N Ñ 8,

(15) CardpI“
N,Aq “ Oα

´ N

sysΛ⃗ covolΛ⃗

´´AN1´α

αϕpNq

¯

` diamΛ⃗

¯2¯
.

The triangle inequality applied to Equation (13) gives the estimate stated in the
lemma.
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Remark 2.12. Since the renormalization factor is given by ψpNq “ pN
2´α

ϕpNq
q2, in the

case λ “ 0 of Theorem 2.7, the estimate of Lemma 2.11 becomes

Rα,Λ,lvl
N,N 1,N2pfq “ Rα,Λ,`

N,N 1,N2pfq ` Rα,Λ,´
N,N 1,N2pfq ` Oα

´ A2}f}8

sysΛ⃗ covolΛ⃗ N

¯

.

2.4 Linear approximation
Thanks to Lemma 2.11 and the symmetry formula (12), for every f P C1

c pCq, we
can focus on the asymptotic behaviour of the sequence pRα,Λ,`

N,N 1,N2pfqqN,N 1,N2PN, whose
general term can be rewritten as

(16) Rα,Λ,`
N,N 1,N2pfq “

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

pm,pqPI`
N

f
`

ϕpNqmrα,ks
pp1 `

p

m
q
α

´ 1q
˘

.

Define another sequence of positive measures by its general term

µ`
N,N 1,N2 “

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

pm,pqPI`
N

∆ϕpNq
αp

mr1´α,ks
.

The next result is a linear approximation lemma.

Lemma 2.13. Let f P C1
c pCq and choose A ą 1 such that supp f Ă Dp0, Aq. We

assume that ϕpNq

N1´α ÝÑ
NÑ8

λ P r0,`8r . Then we have, as N Ñ 8,

Rα,Λ,`
N,N 1,N2pfq ´ µ`

N,N 1,N2pfq “ Oα

´A2}df}8

covol2Λ⃗

` A2

NαϕpNq
`
ϕpNq

N2´α
diam2

Λ⃗

˘

`
p1 ` diamΛ⃗q}f}8

covol2Λ⃗

` A3

NαϕpNq
`
ϕpNq2

N3´2αdiam3
Λ⃗

˘

¯

.

Proof. Fix k P Z. For all pm, pq P I`
N , we want to bound from above the quantity

(17)
ˇ

ˇf
`

ϕpNqmrα,ks
``

1 `
p

m

˘α
´ 1

˘˘˘

´ f
`

ϕpNq
αp

mr1´α,ks

˘
ˇ

ˇ.

By the hypothesis supp f Ă Dp0, Aq, in order for the latter quantity not to be equal
to 0, the index pm, pq has to verify (at least) one of the two inequalities

(18) |p| ď
A|m|1´α

αϕpNq
or

ˇ

ˇ

`

1 `
p

m

˘α
´ 1

ˇ

ˇ ď
A

|m|αϕpNq
.

Let I`
N,A be the subset of I`

N consisting of such indices. Recall the linear approxima-
tion (4) as z Ñ 0 with the restriction Impzq ě 0. Let pm, pq P I`

N,A. As a consequence
of Equation (18), since A

|m|αϕpNq
ď A

sysα
Λ ϕpNq

Ñ 0 as N Ñ 8 and thanks to the Lips-
chitz continuity of the inverse of z ÞÑ zα on a small neighbourhood of 1 “ 1α in the
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image of z ÞÑ zα (or equivalently in the half-space tz P C˚ : Impzq ě 0u), we have
the estimate, as N Ñ 8,

(19) max
pm,pqPI`

N,A

ˇ

ˇ

p

m

ˇ

ˇ “ Oα

´ A

|m|αϕpNq

¯

.

With the consequential estimate |p| “ Oα

`

AN1´α

ϕpNq

˘

, we use the Gauss counting argu-
ment from Equation (9) (summing over Λ⃗ with x “ Oα

`

AN1´α

ϕpNq

˘

) to deduce a result
that we will use twice in the remaining part of the proof: uniformly for every grid
point m P Λ, as N Ñ 8, we have the estimate

(20) Cardtp P Λ⃗ ´ t0u : pm, pq P I`
N,Au “ Oα

´ 1
covolΛ⃗

`AN1´α

ϕpNq
` diamΛ⃗

˘2
¯

.

In order to apply the approximation (4) to most fractions z “
p
m

, we have to take
out the indices pm, pq for which Imp

p
m

q ă 0 holds. For that matter, we first notice
that for all pm, pq P I`

N,A, the inequality Imp
p
m

q ă 0 holds if, and only if, we have
θpm ` pq ´ θpmq P sπ, 2πr (since Imp

p
m

q “ Imp
m`p
m

q). We denote by Ibad
N,A the set of

these indices. Then, by use of Equation (19), for all indices pm, pq P Ibad
N,A, we have

the estimate, as N Ñ 8,
ˇ

ˇ

p

m

ˇ

ˇ “
ˇ

ˇ

m` p

m
´ 1

ˇ

ˇ “
ˇ

ˇ|1 `
p

m
|eipθpm`pq´θpmqq ´ 1

ˇ

ˇ “ |eipθpm`pq´θpmqq ´ 1| ` Oα

´ A

|m|αϕpNq

¯

“ 2 sin
`θpm` pq ´ θpmq

2
˘

` Oα

´ A

|m|αϕpNq

¯

.(21)

Using this, we claim that the quantity θpm ` pq ´ θpmq which belongs to sπ, 2πr

since pm, pq P Ibad
N,A, has to be close to 2π. Since the image of θ is r0, 2πr , this

will imply that θpm ` pq has to be close to 2π while θppq has to be close to 0. In
other words, both grid points m` p and m have to be close to the real positive ray
R` ´ t0u. Using the concavity of the sinus function on r0, π2 s, we can derive the
following estimate from Equation (21) (and using again Equation (19)), as N Ñ 8,

2
π

p2π ´ pθpm ` pq ´ θpmqqq ď 2 sin
`θpm ` pq ´ θpmq

2 q

“
ˇ

ˇ

p

m

ˇ

ˇ ` Oα

´ A

|m|αϕpNq

¯

thus 2π ´ pθpm ` pq ´ θpmqq “ Oα

´ A

|m|αϕpNq

¯

(22)

which proves the claim.
As an immediate consequence, the same estimate holds for 2π ´ θpm ` pq and

for θpmq. We choose a constant Cα ą 0 to make the Landau’s notation explicit so
that θpmq ď Cα

A
|m|αϕpNq

, then we set the function gN : x ÞÑ x tan
`

Cα
A

xαϕpNq

˘

. For
N large enough so that Cα A

ϕpNq
ă π

2 , the map gN is well defined over r1,`8r and is
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nondecreasing. Applying Lemma 2.10 with gN gives us the estimate, as N Ñ 8,

Card
!

m P pΛ ´ t0uq X Dp0, Nq : θpmq ď
CαA

|m|αϕpNq

)

ď N
4p1 ` diamΛ⃗qpN tanpCα

A
NαϕpNq

q ` diamΛ⃗q

covolΛ⃗

“ Oα

´p1 ` diamΛ⃗qNpAN
1´α

ϕpNq
` diamΛ⃗q

covolΛ⃗

¯

.

Multiplying this bound by the number of lattice points p described in Equation (20)
gives us the following estimate for counting these bad indices, as N Ñ 8,

CardpIbad
N,Aq “ Oα

´p1 ` diamΛ⃗qNpAN
1´α

ϕpNq
` diamΛ⃗q

covolΛ⃗
ˆ

1
covolΛ⃗

`AN1´α

ϕpNq
` diamΛ⃗

˘2
¯

.

Thus, the restriction to these bad indices in the error term Rα,Λ,`
N,N 1,N2pfq´µ`

N,N 1,N2pfq

is estimated by, as N Ñ 8,

(23) Oα

´p1 ` diamΛ⃗q}f}8NpAN
1´α

ϕpNq
` diamΛ⃗q3

covol2Λ⃗ ψpNq

¯

We set Igood
N,A “ I`

N,A ´ Ibad
N,A. Using the mean value theorem, for all pm, pq P Igood

N,A ,
since Imp

p
m

q ě 0 by definition of Igood
N,A and using the uniform estimate (19), the

quantity (17) is bounded by

(24) }df}8ϕpNq|m|
α
ˇ

ˇ

`

1 `
p

m

˘α
´ 1 ´

αp

m

ˇ

ˇ “ Oα

´

}df}8ϕpNq
|p|2

|m|2´α

¯

.

It remains to bound from above the sum SN,A “
ř

pm,pqPIgood
N,A

|p|2

|m|2´α . For that matter,

we use the estimates (19) (in the form |p|2 “ Oα

`

A2|m|2´2α

ϕpNq2

˘

) and (20) then we apply
again Lemma 2.9 (summing over Λ, with β “ ´α and x “ N), which gives us an
upper bound for the sum SN,A as follows

SN,A ď
ÿ

mPΛ
0ă|m|ďN

1
|m|2´α

Oα

´A2|m|2´2α

ϕpNq2

¯

Cardtp P Λ⃗ ´ t0u : pm, pq P Igood
N,A u

ď
ÿ

mPΛ
0ă|m|ďN

1
|m|α

Oα

´ A2

ϕpNq2

¯

Oα

´

`

AN1´α

ϕpNq
` diamΛ⃗

˘2

covolΛ⃗

¯

“ Oα

´A2`AN1´α

ϕpNq
` diamΛ⃗

˘2

covolΛ⃗ ϕpNq2

¯

ÿ

mPΛ
0ă|m|ďN

1
|m|α

“ Oα

´A2N2´α
`

AN1´α

ϕpNq
` diamΛ⃗

˘2

covol2Λ⃗ ϕpNq2

¯

.
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This estimate together with the one over Ibad
N,A given in Equation (23), and the bound

given in Equation (24) gives us, as N Ñ 8,

Rα,Λ,`
N,N 1,N2pfq ´ µ`

N,N 1,N2pfq “ Oα

´A2}df}8N
2´α

`

AN1´α

ϕpNq
` diamΛ⃗

˘2

covol2Λ⃗ ψpNqϕpNq

`
p1 ` diamΛ⃗q}f}8NpAN

1´α

ϕpNq
` diamΛ⃗q3

covol2Λ⃗ ψpNq

¯

.

Since the renormalization factor is given by the formula ψpNq “
`

N2´α

ϕpNq

˘2, the latter
estimate can be simplified (using the inequality pa`bqk ď 2kpak`bkq for real numbers
a, b ą 0 and k P N) and finally rewritten, as N Ñ 8,

Rα,Λ,`
N,N 1,N2pfq ´ µ`

N,N 1,N2pfq “ Oα

´A2}df}8

covol2Λ⃗

` A2

NαϕpNq
`
ϕpNq

N2´α
diam2

Λ⃗

˘

`
p1 ` diamΛ⃗q}f}8

covol2Λ⃗

` A3

NαϕpNq
`
ϕpNq2

N3´2αdiam3
Λ⃗

˘

¯

.

Remark 2.14. If λ “ 0, the error term in Lemma 2.13 becomes, as N Ñ 8,

Rα,Λ,`
N,N 1,N2pfq ´ µ`

N,N 1,N2pfq “ Oα

´A2}df}8

covol2Λ⃗

A2

NαϕpNq
`

p1 ` diamΛ⃗q}f}8

covol2Λ⃗

A3

NαϕpNq

¯

“ Oα

´A4p1 ` diamΛ⃗qp}f}8 ` }df}8q

covol2Λ⃗ NαϕpNq

¯

.

2.5 Riemann sum approximation
The last lemma is a standard Riemann sum approximation. Let again F be a closed
fundamental parallelogram of Λ⃗ containing 0 and of diameter diamΛ⃗.

Lemma 2.15. Let δ P C˚ and F be a finite subset of Λ. Then, for every function
f P C1pCq, we have the inequality
ˇ

ˇ

ˇ
|δ|2 covolΛ⃗

ÿ

mPF

fpmδq ´

ż

Ť

mPF

δpm`F q

fpzq dz
ˇ

ˇ

ˇ
ď CardpF q|δ|3}df |

Ť

mPF

δpm`F q}8diamΛ⃗.

Proof. Notice that, for all m P F , we have LebCpδpm` F qq “ covolδΛ⃗ “ |δ|2 covolΛ⃗.
A direct application of the mean value inequality for f on the convex sets δpm`F q

and then summing over m P F ends the proof.

We now have enough tools to prove our effective theorem.
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3 Proof of Theorem 2.7
We have three different regimes for the scaling factor and the proof will be divided ac-
cordingly. Recall that the renormalization is given by the formula ψpNq “

`

N2´α

ϕpNq

˘2.
Let f P C1

c pCq and choose A ą 1 such that supp f Ă Dp0, Aq.

3.1 Regime ϕpNq

N1´α ÝÑ
NÑ8

`8

Compared to both other regimes where we get an asymptotic bound for the speed
of convergence, this one is particular as we will asymptotically prove the equality
Rα,Λ,lvl
N,N 1,N2pfq “ 0 representing a drastic loss of mass at infinity. For that reason,

we will not use whole lemmas from Section 2 but only elements of their proof.
For N large enough (independently on N 1, N2), we will first prove the equality
Rα,Λ,`
N,N 1,N2pfq “ 0 (hence Rα,Λ,´

N,N 1,N2pfq “ 0 by symmetry), then we will take care of
the diagonal terms pm, pq P IN , that is to say those which verify m`p

m
P R.

Fix k P Z. Recall that the set I`
N is defined so that, for all indices pm, pq P I`

N ,
the formula pm` pqrα,ks ´mrα,ks “ mrα,kspp1 `

p
m

qα ´ 1q holds. Our goal is to prove
that, for N large enough independently on k, we have the inequality

ˇ

ˇ

`

1 `
p

m

˘α
´ 1

ˇ

ˇ ě
A

|m|αϕpNq
.

Using the notation I`
N,A from the proof of Lemma 2.13, the indices pm, pq P I`

N

failing to verify the former inequality are in this set I`
N,A by Equation (18). Thus it is

sufficient to prove that, for N large enough, we have I`
N,A “ H. For all pm, pq P I`

N,A,
we can use the estimate |p| “ OαpAN

1´α

ϕpNq
q, that follows from Equation (19). Thanks

to the convergence N1´α

ϕpNq
Ñ 0 as N Ñ 8 and the inequality |p| ě sysΛ⃗ for all

p P Λ⃗ ´ t0u, we have indeed I`
N,A “ H for N large enough. For such ranks N and

for all N 1, N2 P N, this immediately gives the equality Rα,Λ,`
N,N 1,N2pfq “ 0. With the

same condition on the ranks N , N 1 and N2, the equality Rα,Λ,´
N,N 1,N2pfq “ 0 follows

from the symmetry described in Equation (12).
The same argument, this time using the set of indices I“

N,A defined in the proof
of Lemma 2.11 and the estimate (14), gives the result over the diagonal terms. After
summing over I`

N,A Y I´
N,A Y I“

N,A, we have finally proven the equality, for N large
enough and for all N 1, N2 P N,

Rα,Λ,lvl
N,N 1,N2pfq “ 0.

3.2 Local changes of variables
3.2.1 Riemann sums argument

In the two other regimes for the scaling factor ϕ, thanks to the symmetry equation
(12) and to Lemmas 2.11 and 2.13, it is sufficient to study the behaviour of the
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sequence pµ`
N,N 1,N2pfqqN,N 1,N2PN defined by the formula that we recall

µ`
N,N 1,N2pfq “

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ÿ

mPΛ
pm,pqPI`

N

f
´ϕpNqαp

mr1´α,ks

¯

,

where I`
N “ tpm, pq P Λ ˆ pΛ⃗ ´ t0uq : 0 ă |m|, |m` p| ď N and θpm` pq ą θpmqu..

In order for an index pm, pq to contribute to this sum, it has to verify, as N Ñ 8,

(25)
ˇ

ˇ

p

m

ˇ

ˇ ď
A

α|m|αϕpNq
hence |p| ď

AN1´α

αϕpNq
.

In order to see the measure µN,N 1,N2 as a weighted Riemann sum over the lattice Λ⃗,
we will use the open angular sector (illustrated in Figure 7)

Cp,k “ tz P C˚ : argpzq P θppq ´ p1 ´ αq2π sk, k ` 1r `2πZu,

the ray Lp,k “ tz P C˚ : argpzq ” ´
θppq

1´α
u and the family of change of variables

php,kqpPΛ⃗, kPZ defined by

hp,k : Cp,k Ñ C˚ ´ Lp,k

z ÞÑ |z|
´ 1

1´α e´
iωk
1´α with argpzq ” ωk P θppq ´ p1 ´ αq2π sk, k ` 1r .

In other words, these changes of variables are restrictions to Cp,k of the maps

(26) hp,k : z ÞÑ exp
´

´
1

1 ´ α
plogpzeip´θppq`2πpk`1qp1´αqq

q`ipθppq´2πpk`1qp1´αqqq

¯

where log is the nonstandard branch of the logarithm on C ´ R` defined in the
beginning of Section 2.1. Let p P Λ⃗ ´ t0u and k P Z. The map hp,k is biholomorphic
and computing its derivative, using the formula (26), gives us h1

p,k : z ÞÑ ´ 1
1´α

hp,kpzq

z
,

whose modulus is z ÞÑ 1
1´α

|z|
´

2´α
1´α . We set

ωp,k “
ÿ

mPΛ,mRR`

pm,pqPI`
N

∆ ϕpNqαp

mr1´α,ks

allowing us to decompose the measure µ`
N,N 1,N2 into sums where k and p are fixed,

then apply a different change of variables on each part. The condition m R R` is
introduced so that the points ϕpNqαp

mr1´α,ks all belong to Cp,k and not only to its closure.
In order to add or remove this condition at will, notice the inequality

(27) CardpΛ X D̄p0, Nq X R`q ď
N

sysΛ⃗
` 1.
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For all m P Λ such that pm, pq P I`
N and m R R`, the change of variable hp,k is

designed for the following computation:

hp,k
`ϕpNqαp

mr1´α,ks

˘

“
`ϕpNqα|p|

|m|1´α

˘´ 1
1´α hp,k

`

eipθppq´p1´αqpθpmq`2πkqq
˘

“
`ϕpNqα|p|

|m|1´α

˘´ 1
1´α e´ 1

1´α
ipθppq´p1´αqpθpmq`2πkqq

“ pϕpNqαpq
´ 1

1´α m

where we recall the notation z´ 1
1´α “ zr´ 1

1´α
,0s. Consequently, we have the formula

(28) php,kq˚ωp,k “
ÿ

mPΛ, mRR`

pm,pqPI`
N

∆mδN,p
where δN,p “ pϕpNqαpq

´ 1
1´α .

Using Equation (27), the condition m R R` in the latter formula can be removed up
to an extra error term of order Oαp

}f}8N
ψpNq sysΛ⃗

q, thus we forget about it until Equation
(35).

In order to compare every measure php,kq˚ωp,k with a weighted Riemann sum, we
have to establish which part of C is occupied by the indices m in its definition. Recall
that I`

N denotes the subset of ΛˆpΛ⃗´t0uq with conditions 0 ă |m|, |m`p| ď N and
θpm`pq ą θpmq. Putting aside the condition |m`p| ď N for the moment, we claim
that such indices m approximately occupy a half-disk (depending on p), namely half
of the closed disk Dp0, Nq. Let Bp denote the complex band r´1, 0sp ` R`. More
precisely, we claim that, modulo the complex subset Bp X D̄p0, Nq, the set

DN,p “ tz P C˚
´ t´pu : |z| ď N and θpz ` pq ą θpzqu

is the half-disk centred at the origin, of radius N and with the argument condition
θpzq P sθppq ´ π, θppqr `2πZ. The claim follows from a straightforward study of (the
sign of) the function z ÞÑ θpz`pq´θpzq which is continous on C´pR` Yp´p`R`qq,
which can be computed explicitly on the circle Cp0, |p|q and whose zeros belong to
the line Rp. See Figure 6 for a summary of this study. A quantitative comparison
between DN,p and the associated half-disk will be stated in Equation (32).

In order to remove the condition |m`p| ď N in I`
N and to compute the associated

error term, first notice that failing this condition implies that N ´ |p| ă |m| ď N .
Using Lemma 2.9 twice (summing over Λ with β “ 0, first with x “ N then with
x “ N ´ |p|), we obtain, as N Ñ 8 with N ě |p|,

CardpΛ X DN,p ´ tm P Λ : pm, pq P I`
Nuq “

πpN2 ´ pN ´ |p|q2q

covolΛ⃗
` O

`1 ` diam2
Λ⃗

covolΛ⃗
N
˘

“ O
´p|p| ` 1 ` diam2

Λ⃗qN

covolΛ⃗

¯

.

Thanks to the inequality |p| ď AN1´α

αϕpNq
from Equation (25), the condition N ě |p|

in the latter estimate is verified for N large enough, uniformly on such indices p.
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Figure 6: An illustration of a set DN,p with θppq ě π, and DN,p1 with θpp1q ă π.

Using Lemma 2.9 (summing over Λ⃗ with β “ 0 and x “ AN1´α

αϕpNq
), we can replace the

condition pm, pq P I`
N by m P Λ X DN,p in the definition of µN,N 1,N2pfq up to the

error term, as N Ñ 8,

µ`
N,N 1,N2pfq ´

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ÿ

mPΛXDN,p

fp
ϕpNqαp

mr1´α,ks
q

“ Oα

´}f}8pAN
1´α

ϕpNq
` 1 ` diam2

Λ⃗qpAN
1´α

ϕpNq
q2N

covol2Λ⃗ ψpNq

¯

.(29)

This invites us to define the measures

rωp,k “
ÿ

mPΛ,mRR`

mPΛXDN,p

∆ ϕpNqαp

mr1´α,ks

and rµ`
N,N 1,N2 “ 1

pN 1`N2qψpNq

řN2´1
k“´N 1

ř

pPΛ⃗´t0u
rωp,k. Using Equation (27), we obtain

an error term, as N Ñ 8,

(30) rµ`
N,N 1,N2 pfq ´ µ`

N,N 1,N2 pfq “ Oα

´}f}8p AN1´α

ϕpNq
` 1 ` diam2

Λ⃗qp AN1´α

ϕpNq
q2N

covol2Λ⃗ ψpNq
`

}f}8N

ψpNq sysΛ⃗

¯

.

Let F be a fundamental domain of Λ⃗ containing 0 and of diameter diamΛ⃗. Set
rDN,p “

Ť

mPΛXDN,p
pm`F q. We apply Lemma 2.15 (on the C1 function fp,k “ f˝h´1

p,k,
with δ “ δN,p and F “ Λ X DN,p), then we use Lemma 2.9 (summing over Λ with
β “ 0 and x “ N since we have the inclusion DN,p Ă D̄p0, Nq). This grants us the

23



estimate, as N Ñ 8,

ˇ

ˇ

ˇ
php,kq˚rωp,kpfp,kq ´

ş

δN,p
rDN,p

fp,kpzq dz

|δN,p|2 covolΛ⃗

ˇ

ˇ

ˇ
ď

diamΛ⃗
covolΛ⃗

}dfp,k |δN,p
rDN,p

}8 |δN,p|CardpΛ XDN,pq

“ Oα

´diamΛ⃗}dfp,k |δN,p
rDN,p

}8N
2

covol2Λ⃗pϕpNq|p|q
1

1´α

¯

.(31)

The set rDN,p is "approximately" DN,p, and is "approximately" a half-disk as we shall
now see. Let us use the notation, for all z0 P C, r ą 0, ω P R,

Hpz0, r, ωq “ tz P C : |z ´ z0| ď r and argpz ´ z0q P sω ´ π, ωr `2πZu

which is a half-disk centred at z0, of radius r ą 0, with an argument (relative to
its centre) determined by ω (more precisely by its image in R{2πZ). We want to
compare the complex subset rDN,p with the half-disk Hp0, N, θppqq. Let u be the
complex number verifying argpuq “ argppq ` π

2 and |u| “ diamΛ⃗. Let rBp,N denote
the diamΛ⃗-neighbourhood of the band Bp X D̄p0, Nq. Using the triangle inequality,
modulo the set rBp,N , we have the following inclusions

rDN,p Ă Hpu,N ` 2diamΛ⃗, θppqq and Hp´2u,N ´ 3diamΛ⃗, θppqq Ă rDN,p.

(We don’t necessarily have Hp´u,N´2diamΛ⃗, θppqq Ă rDN,pY rBp,N in the case where
Λ contains 0, since 0 never belongs to ΛXDN,p which is the set of indices we defined
rDN,p with). Thus, the symmetric difference that is of interest here verifies, modulo
rBp,N ,

rDN,p∆Hp0, N, θppqq “ p rDN,p Y Hp0, N, θppqqq ´ p rDN,p X Hp0, N, θppqqq

Ă Hpu,N ` 2diamΛ⃗, θppqq ´ Hp´2u,N ´ 3diamΛ⃗, θppqq.

Since the set rBp,N has Lebesgue measure bounded by Opp|p| ` diamΛ⃗qNq, the latter
inclusion modulo rBp,N gives the estimate, as N Ñ 8 (with N ě 3diamΛ⃗ and
independently on p P Λ⃗ ´ t0u),

LebCp rDN,p∆Hp0, N, θppqqq ď
π

2 ppN ` 2diamΛ⃗q2 ´ pN ´ 3diamΛ⃗q2q ` Opp|p| ` diamΛ⃗qNq

“ OpdiamΛ⃗Nq ` Opp|p| ` diamΛ⃗qNq “ Opp|p| ` diamΛ⃗qNq.(32)
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Let RN “
N`diamΛ⃗

pϕpNqα|p|q
1

1´α
. From the estimates (32) and (31), we derive, as N Ñ 8,

ˇ

ˇ

ˇ
php,kq˚rωp,kpfp,kq ´

ş

δN,pHp0,N,θppqq
fp,kpzq dz

|δN,p|2 covolΛ⃗

ˇ

ˇ

ˇ

“ Oα

´diamΛ⃗}dfp,k |δN,p
rDN,p

}8N
2

covol2Λ⃗pϕpNq|p|q
1

1´α

¯

`
|
ş

δN,p
rDN,p

fp,kpzq dz ´
ş

δN,pHp0,N,θppqq
fp,kpzq dz|

covolΛ⃗ |δN,p|2

“ Oα

´diamΛ⃗}dfp,k |δN,p
rDN,p

}8N
2

covol2Λ⃗pϕpNq|p|q
1

1´α

¯

`
}fp,k |δN,pp rDN,pYHp0,N,θppqqq

}8 LebCpδN,p
rDN,p∆δN,pHp0, N, θppqqq

covolΛ⃗ |δN,p|2

“ Oα

´diamΛ⃗}dfp,k |Dp0,RN q}8N
2

covol2Λ⃗pϕpNq|p|q
1

1´α

`
}fp,k |Dp0,RN q}8p|p| ` diamΛ⃗qN

covolΛ⃗

¯

.(33)

We set

HCp,k “ h´1
p,k

`

δN,pHp0, N, θppqq ´ Lp,k
˘

“ h´1
p,k

`

Hp0, |δN,p|N,´
α

1 ´ α
θppqq ´ Lp,k

˘

(where we used the equality argpδN,pq ` θppq ” ´ 1
1´α

θppq ` θppq “ ´ α
1´α

θppq for
the right-hand equality). We will geometrically describe HCp,k in Section 3.2.2, and
see that this set is the intersection of an angular sector (which turns out to be half
of Cp,k) and the complementary set C ´ D̄p0, |δN,pN |´p1´αqq “ C ´ D̄p0, α|p|ϕpNq

N1´α q.
Recall the formula fp,k “ f ˝ h´1

p,k and that the modulus of h1
p,k is z ÞÑ 1

1´α
|z|

´
2´α
1´α .

Hence the Jacobian of hp,k is z ÞÑ 1
p1´αq2 |z|

´
4´2α
1´α . We define

(34) ν`
p,kpfq “

1
p1 ´ αq2|δN,p|2 covolΛ⃗

ż

HCp,k

fpzq|z|
´

4´2α
1´α dz,

and

ν`
N,N 1,N2 “

1
pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

ν`
p,k.

Thanks to the inclusion supp f Ă Dp0, Aq and the formula |h´1
p,k| : z ÞÑ |z|´p1´αq, we

have the inequalities, for all N P N,

}fp,k |Dp0,RN q}8 ď }f}8 and }dfp,k |Dp0,RN q}8 ď p1 ´ αqAp1´αqp2´αq
}df}8 ď A2

}df}8.

Let εα be the function 1`| log | if α “ 1
2 , and the constant function 1 otherwise. Com-

bining Equations (33) and (27) (to remove the condition m R R` in the definition of
rωp,k), applying the change of variable formula, and using Lemma 2.9 (summing over
Λ⃗ with β “ 0 and x “ AN1´α

αϕpNq
thanks to Equation (25)), we compute the estimate,
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as N Ñ 8,

rµ`
N,N 1,N2pfq ` Oα

` }f}8N

ψpNq sysΛ⃗

˘

´ ν`
N,N 1,N2pfq

“
ÿ

pPΛ⃗´t0u

|p|ď AN1´α

αϕpNq

Oα

´}fp,k |Dp0,RN q}8p|p| ` diamΛ⃗qN

covolΛ⃗ ψpNq
`

diamΛ⃗}dfp,k |Dp0,RN q}8N
2

covol2Λ⃗ ψpNqpϕpNq|p|q
1

1´α

¯

“ Oα

´}f}8pAN
1´α

ϕpNq
` diamΛ⃗qNpAN

1´α

ϕpNq
q2

covol2Λ⃗ ψpNq
`

A2diamΛ⃗}df}8N
2

covol2Λ⃗ ψpNqϕpNq
1

1´α

ÿ

pPΛ⃗´t0u

|p|ď AN1´α

αϕpNq

|p|
´ 1

1´α

¯

.

Together with Equation (30), we finally obtain the estimate, as N Ñ 8,

µ`
N,N 1,N2pfq ´ ν`

N,N 1,N2pfq “ Oα

´

}f}8N

ψpNq

` 1
sysΛ⃗

`

AN1´α

ϕpNq
` diamΛ⃗pAN

1´α

ϕpNq
q2

covol2Λ⃗

˘

(35)

`
}f}8pAN

1´α

ϕpNq
` 1 ` diam2

Λ⃗qpAN
1´α

ϕpNq
q2N

covol2Λ⃗ ψpNq

`
A2}df}8diamΛ⃗N

2

covol2Λ⃗ ψpNqϕpNq
1

1´α

ÿ

pPΛ⃗´t0u

|p|ď AN1´α

αϕpNq

|p|
´ 1

1´α

¯

.

3.2.2 Geometric description by symmetry

Set νN,N 1,N2 “ ν`
N,N 1,N2 ` pz ÞÑ ´zq˚ν

`
N,N 1,N2 . Using the symmetry argument (12),

we will be able to compare Rα,Λ,lvl
N,N 1,N2 to νN,N 1,N2 . This section aims at describing the

measure νN,N 1,N2 .

Lemma 3.1. For all k P Z and all p P Λ⃗ ´ t0u, up to a complex subset of Lebesgue
measure 0, we have the disjoint union

HCp,k Y p´HC´p,kq “ Cp,k X pC ´ Dp0, α|p|ϕpNq

N1´α
qq.

Proof. To prove this, fix k and p as such. We begin by noticing that HCp,k and
´HC´p,k are indeed subsets of Cp,k (by definition for HCp,k, and thanks to the inclu-
sion ´HC´p,k Ă ´C´p,k “ Cp,k). Furthermore, they are subsets of C´Dp0, α|p|ϕpNq

N1´α q

since the changes of variable h´1
p,k and h´1

´p,k have the same modulus z ÞÑ |z|´p1´αq.
More precisely, the definition of hp,k grants the formula, for all z P C ´ Lp,k,

h´1
p,kpzq “ |z|

´p1´αqe´ip1´αqωk where argpzq ” ωk P ´
θppq

1 ´ α
` 2π sk, k ` 1r
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Figure 7: Illustration of Lemma 3.1.

or, in other words, for all r ą 0 and ω P R ´ p´θppq ` 2πZq,

(36) h´1
p,kpreip´

αθppq

1´α
`ωq

q “ r´p1´αq exp
´

θppq ´ p1 ´ αq
`

θppq ` ω ` 2π
`

k ´

Yθppq ` ω

2π

]

˘˘

¯

.

Since h´1
p,k (and similarly h´p,kq) acts separately on each variable in polar coordinates,

it remains to describe HCp,k (resp. ´HC´p,k) in terms of arguments, which reduces
to the description of the set h´1

p,kpS1 ´te´
iθppq

1´α uq (resp. ´h´1
´p,kpS1 ´te´

iθp´pq

1´α uq). Using
the formula (36) and doing separately the cases θppq ď π and θppq ą π, we find that

h´1
p,kpS1 ´ te´

iθppq

1´α uq

“

#

teiω : ω P θppq ´ 2πp1 ´ αqp sk, k `
θppq

2π r Y sk ` 1
2 `

θppq

2π , k ` 1r qu if θppq ď π,

teiω : ω P θppq ´ 2πp1 ´ αq sk ´ 1
2 `

θppq

2π , k `
θppq

2π r u if θppq ą π,

which is half of the circle arc S1 X Cp,k. Similarly, up to a finite number of points
(namely the three points in exppαθppq ´ 2πkp1 ´ αq ` t´1, 0, 1uq), the complex
subset ´h´1

´p,kpS1 ´ te´
θp´pq

1´α uq can be proven equal to half of a circle arc, namely
the complement of h´1

p,kpS1 ´ te´
iθppq

1´α uq in S1 X Cp,k. This concludes the proof of the
lemma.

Thanks to the union described in Lemma 3.1, we derive the following formula

νN,N 1,N2 “
1

pN 1 ` N2qψpNq

N2´1
ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

νp,k

where we set νp,k “ ν`
p,k ` pz ÞÑ ´zq˚ν

`
´p,k, that is to say νp,k is a measure absolutely

continuous with respect to LebC with density given by, for all z P C,

(37) gp,kpzq “

|z|
´

4´2α
1´α 1

Cp,kXpC´Dp0,α|p|ϕpNq

N1´α qq
pzqpϕpNqα|p|q

2
1´α

p1 ´ αq2 covolΛ⃗
.
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We use the notation Cp “ Cp,0 X pC ´ Dp0, α|p|ϕpNq

N1´α qq. We notice that the sector
Cp,kXpC´Dp0, α|p|ϕpNq

N1´α qq is obtained by a rotation of Cp as e´i2πkp1´αqCp “ ei2πkαCp.
We can then describe νN,N 1,N2 by the following formula

νN,N 1,N2 pfq “
pαϕpNqq

2
1´α

p1 ´ αq2 covolΛ⃗pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1

ÿ

pPΛ⃗´t0u

|p|
2

1´α

ż

ei2πkαCp

fpzq|z|
´

4´2α
1´α dz,

where the sum over p P Λ⃗ ´ t0u is finite since ei2πkαCp Ă C ´ supp f if |p| ą AN1´α

αϕpNq
.

When N 1, N2 Ñ 8, we will average over k the above integrals on ei2πkαCp, which will
allow us to replace them by one integral over C´Dp0, α|p|ϕpNq

N1´α q. For that purpose, we
separate the cases α P QX s0, 1r and α P pR ´ QqX s0, 1r . Since the averaging over
k P t´N 1, . . . , N2 ´ 1u and the one over p P Λ⃗ ´ t0u are geometrically uncorrelated,
both averaging processes seem to be necessary in order to obtain a rotation-invariant
limit. Imposing a small value of N 1 ` N2 empirically leads to rotation discrepancy
near the origin, as shown in Figure 8 (where N 1 “ 0 and N2 “ 1).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 8: The complex points ϕpNqpnrα,0s´mrα,0sq inside the disk Dp0, 3
2q, for lattices

points m,n P Zris with 0 ă |m|, |n| ď N “ 20, α “ 23
42 and ϕpNq “ N

19
42 .

The measure we will obtain after this averaging process is given by the formula

(38) νNpfq “
pαϕpNqq

2
1´α

p1 ´ αq covolΛ⃗ ψpNq

ÿ

pPΛ⃗´t0u

|p|
2

1´α

ż

C´Dp0,α|p|ϕpNq

N1´α q

fpzq|z|
´

4´2α
1´α dz.
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3.2.3 Averaging: the rational case

In this section, we assume that α P QX s0, 1r and we write α “ a
b

where a and b are
coprime positive natural numbers. We recall that the angle of the restricted open
sectors Cp is 2πp1´αq “ 2π b´a

b
. Thus, outside of the union of b rays from the origin

(which is a set of Lebesgue measure 0), we have the covering formula, for all k0 P Z
and all p P Λ⃗ ´ t0u,

(39)
k0`b´1
ÿ

k“k0

1ei2πkαCp
“ pb ´ aq1C´Dp0,α|p|ϕpNq

N1´α q
.

Hence, we can rewrite νN,N 1,N2pfq by regrouping groups of b consecutive integrals,
which gives

νN,N 1,N2 pfq “
pαϕpNqq

2
1´α pb´ aq

X

N 1
`N2

b

\

p1 ´ αq2 covolΛ⃗pN 1 `N2qψpNq

ÿ

pPΛ⃗´t0u

|p|
2

1´α

ż

C´Dp0,
α|p|ϕpNq

N1´α q

fpzq|z|
´

4´2α
1´α dz

`
pαϕpNqq

2
1´α

p1 ´ αq2 covolΛ⃗pN 1 `N2qψpNq

N2
´1

ÿ

k“´N 1`t
N1`N2

b u

ÿ

pPΛ⃗´t0u

|p|
2

1´α

ż

ei2πkαCp

fpzq|z|
´

4´2α
1´α dz.

We recall the formula ψpNq “ pN
2´α

ϕpNq
q2. Using polar coordinate, we can bound from

above the latter integrals as follows, for all k P Z and p P Λ⃗ ´ t0u,
ż

ei2πkαCp

fpzq|z|
´

4´2α
1´α dz ď 2π}f}8

ż

rą
α|p|ϕpNq

N1´α

r´
3´α
1´α dr “ p1 ´ αqπ}f}8

`α|p|ϕpNq

N1´α

˘´ 2
1´α .

Using the inequality
ˇ

ˇ

t
N 1`N2

b
u

N 1`N2 ´ 1
b

ˇ

ˇ ď 1
N 1`N2 and Lemma 2.9 (summing over Λ⃗ with

β “ 0 and x “ AN1´α

αϕpNq
), we get the estimate, as N Ñ 8,

(40) νN,N 1,N2pfq “ νNpfq ` Oα

´A2}f}81Z´bZpN 1 ` N2q

covol2Λ⃗pN 1 ` N2q

¯

.

3.2.4 Averaging: the irrational case
In this section, we assume that α P pR´QqX s0, 1r . As we take successive rotations
by an angle 2πα (or equivalently, an angle ´2πp1 ´ αq) of the (restricted) angular
sector Cp, there is no possibility of having a periodic covering formula such as Equa-
tion (39). However, since the angle of Cp is also 2πp1´αq, we can still geometrically
understand the error in such a covering. Let Cp,N 1,N2 denote the complex subset
␣

z P C : |z| ě
α|p|ϕpNq

N1´α
and argpzq X

`

θppq ` 2πp1 ´ αq
‰ tp1 ´ αqpN 1 `N2qu

1 ´ α
´N2, N 1

“ ˘

‰ H
(

.

In other words, Cp,N 1,N2 is the restriction to C ´Dp0, α|p|ϕpNq

N1´α q of the angular sector
between arguments θppq ´ p1 ´αqN2 ` 2πZ and θppq ` p1 ´αqN 1 ` 2πZ (with direct
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trigonometric orientation). Then, outside of the union of 2pN 1 `N2q rays from the
origin (which is a set of Lebesgue measure 0), we have the formula, for all p P Λ⃗´t0u,

N2´1
ÿ

k“´N 1

1ei2πkαCp
“ tp1 ´ αqpN 1

` N2
qu1C´Dp0,α|p|ϕpNq

N1´α q
` 1Cp,N 1,N2 .

With computations analogous to the ones in Section 3.2.3, we find a similar error
term, namely as N Ñ 8,

(41) νN,N 1,N2pfq “ νNpfq ` Oα

´ A2}f}8

covol2Λ⃗pN 1 ` N2q

¯

.

3.3 Regime ϕpNq

N1´α ÝÑ
NÑ8

0

Using the formula ψpNq “ pN
2´α

ϕpNq
q2 and Lemma 2.9 (summing over Λ⃗ with β “ ´ 1

1´α

and x “ AN1´α

αϕpNq
), the third line in the estimate (35) can be bounded, as N Ñ 8,

N2

ψpNqϕpNq
1

1´α

ÿ

pPΛ⃗´t0u

|p|ď AN1´α

αϕpNq

|p|
´ 1

1´α “

$

’

’

’

’

’

&

’

’

’

’

’

%

A
1´2α
1´α

covolΛ⃗
Oαp 1

N
q if α ă 1

2 ,

1
covolΛ⃗

Oαp
logp

?
N

ϕpNq
q

N
q if α “ 1

2 ,

cΛ⃗ Oαp 1

N2p1´αqϕpNq
2α´1
1´α

q if α ą 1
2 ,

where cΛ⃗ “
pdiam

´ 1
1´α

Λ⃗
`sys

´ 1
1´α

Λ⃗
qdiam2

Λ⃗
covolΛ⃗

. Since 1
N

, logp
?

N
ϕpNq

q

N
and even pN2p1´αqϕpNq

2α´1
1´α q´1

are negligible with respect to 1
NαϕpNq

, the estimate (35) can be rewritten by removing
the first term of its right-hand side and by combining the second and third terms,
so that the estimate holds for N large enough independently on }df}8 (as required
in our definition of Oα). As N Ñ 8, we obtain

µ`
N,N 1,N2pfq “ ν`

N,N 1,N2pfq ` Oα

´A3p}f}8 ` }df}8q

covol2Λ⃗ NαϕpNq

¯

.

Then, using the symmetry described in Equation (12) together with Lemma 2.11 (in
which the stated estimate is also negligible when compared to 1

NαϕpNq
, see Remark

2.12) and Lemma 2.13, (see Remark 2.14) we get, as N Ñ 8,

(42) Rα,Λ,lvl
N,N 1,N2pfq “ νN,N 1,N2pfq ` Oα

´A4p1 ` diamΛ⃗qp}df}8 ` }f}8q

covol2Λ⃗ NαϕpNq

¯

.

Thanks to the estimates (40) and (41), we can focus on the behaviour of the sequence
pνNpfqqNPN defined in Equation (38), where νN is the measure of density

gN : z ÞÑ
pαϕpNqq

2
1´α |z|

´
4´2α
1´α

p1 ´ αq covolΛ⃗ ψpNq

ÿ

pPΛ⃗´t0u

|p|ď
|z|N1´α

αϕpNq

|p|
2

1´α
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with respect to the Lebesgue measure of C (with gNp0q “ 0 by continuity). In this
regime, using Lemma 2.9 (summing over Λ⃗ ´ t0u with β “ 2

1´α
and x “

|z|N1´α

αϕpNq
), we

have the pointwise convergence

@z P C˚, gNpzq ÝÑ
NÑ8

π

α2p2 ´ αq covol2Λ⃗
“ ρα,Λpzq.

More precisely, Lemma 2.9 even grants us the error term, as N Ñ 8, uniformly for
every complex number z P C ´ Dp0, αϕpNq

N1´α q,

gNpzq “ ρα,Λpzq ` Oα

´p1 ` diam2
Λ⃗qϕpNq

covol2Λ⃗ |z|N1´α

¯

.

For all N P N, the function gN vanishes on the open disk Dp0, sysΛ⃗ αϕpNq

N1´α q hence is
bounded from above on Dp0, αϕpNq

N1´α q by

pαϕpNqq
2

1´α sys´
4´2α
1´α

Λ⃗
p1 ´ αq covolΛ⃗ ψpNq

ÿ

pPΛ⃗´t0u

|p|ď1

|p|
2

1´α “
ϕpNq

2
1´α

ψpNq
Cα,Λ.

Integrating these error terms over C and since
ş

Dp0,A
1

|z|
dz “ 2πA, we obtain the

estimate, as N Ñ 8,

|νNpfq ´ ρα,Λ LebCpfq|

ď }f}8

ż

Dp0,αϕpNq

N1´α q

π

α2p2 ´ αq covol2Λ⃗
dz ` }f}8

ż

Dp0,αϕpNq

N1´α q

ϕpNq
2

1´α

ψpNq
Cα,Λ dz

` }f}8

ż

Dp0,AqXpC´Dp0,αϕpNq

N1´α qq

Oα

´p1 ` diam2
Λ⃗qϕpNq

covol2Λ⃗ |z|N1´α

¯

dz

“ }f}8 Oα

´ 1
covol2Λ⃗

`ϕpNq

N1´α

˘2
¯

` }f}8 Oα

´

Cα,Λ
`ϕpNq

N1´α

˘
4´2α
1´α

¯

` }f}8 Oα

´Ap1 ` diam2
Λ⃗qϕpNq

covol2Λ⃗ N1´α

¯

“ Oα

´A}f}8p1 ` diam2
Λ⃗qϕpNq

covol2Λ⃗ N1´α

¯

.(43)

Combining Equations (43), (42), (41) and (40), we have proven Theorem 2.7 in the
case λ “ 0.
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3.4 Regime ϕpNq

N1´α ÝÑ
NÑ8

λ P s0,`8r

By using the inequality |p| ě sysΛ⃗, the formula ψpNq “
`

N2´α

ϕpNq

˘2
„ N2

λ2 and Gauss
counting argument (9), in this regime, the estimate (35) grants us, as N Ñ 8,

µ`
N,N 1,N2pfq ´ ν`

N,N 1,N2pfq

“ Oα

´A2λ2}f}8

N

` 1
sysΛ⃗

`
λ´1 ` diamΛ⃗λ

´2

covol2Λ⃗

˘

`
A3}f}8pλ´1 ` 1 ` diam2

Λ⃗q

covol2Λ⃗N

`
A4}df}8diamΛ⃗ sys

´ 1
1´α

Λ⃗
pλ´1 ` diamΛ⃗q2

covol3Λ⃗ λ
2α´1
1´α N

¯

“ Oα

´A4p}f}8 ` }df}8qp1 ` diamΛ⃗q3pλ` λ´1q
2`|

1´2α
1´α

|

covol2Λ⃗ mint1, covolΛ⃗u mint1, sysΛ⃗uN

¯

.(44)

Thanks to the estimates (44), (40), (41) and to Lemmas 2.11 and 2.13, in this regime
too we can focus on the behaviour of the sequence pνNqNPN defined in Equation
(38). Its density gN with respect to the Lebesgue measure of C has the following
the pointwise almost everywhere convergence outside of a countable union of circles:
for all z P C ´

Ť

pPΛ⃗ Cp0, αλ|p|q,

gN pzq “
pαϕpNqq

2
1´α |z|

´
4´2α
1´α

p1 ´ αq covolΛ⃗ ψpNq

ÿ

pPΛ⃗´t0u

|p|ď
|z|N1´α

αϕpNq

|p|
2

1´α ÝÑ
NÑ8

α
2

1´α

p1 ´ αq covolΛ⃗

´

|z|

λ

¯´
4´2α
1´α

ÿ

pPΛ⃗´t0u

|p|ď
|z|

αλ

|p|
2

1´α ,

which is the formula of the function ρα,Λ defined before Theorem 2.1. In this section,
we aim at making this convergence effective and at concluding the proof of Theorem
2.7. From now on, we assume that N is large enough so that λ

2 ď
ϕpNq

N1´α ď 2λ. First,
one can notice that both functions gN and ρα,Λ vanish on the open disk Dp0, αλ sysΛ⃗

2 q.
For all z P Dp0, Aq, we have the inequality

|gN pzq ´ ρα,Λpzq| ď
α

2
1´α p

αλ sysΛ⃗
2 q

´
4´2α
1´α

p1 ´ αq covolΛ⃗

ˇ

ˇ

ˇ

´ ϕpNq

N1´α

¯
4´2α
1´α

´ λ
4´2α
1´α

ˇ

ˇ

ˇ

ÿ

pPΛ⃗´t0u

|p|ď 2A
αλ

|p|
2

1´α

`
α

2
1´α p

α sysΛ⃗
2 q

´
4´2α
1´α

p1 ´ αq covolΛ⃗

ÿ

pPΛ⃗´t0u

|p|ď 2A
αλ

|p|
2

1´α
ˇ

ˇ1
rα

ϕpNq

N1´α |p|,`8r
p|z|q ´ 1rαλ|p|,`8r p|z|q

ˇ

ˇ.

Integrating on each annulus tz P C : |z| P rαλ|p|, α ϕpNq

N1´α |p|su and using Lemma 2.9
(summing over p1 “ λp P λΛ⃗ ´ t0u with x “ 2A

α
ě 1 and β “ 2

1´α
then β “ 4´2α

1´α
),

thanks to the inclusion supp f Ă Dp0, Aq and the inequality ϕpNq

N1´α ď 2λ, we obtain
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the estimate, as N Ñ 8,
ˇ

ˇ

ˇ

ż

C
pgN ´ ρα,Λqf dLebC

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

Dp0,Aq´Dp0,
αλ sysΛ⃗

2 q

pgN ´ ρα,Λqf dLebC

ˇ

ˇ

ˇ

“A2}f}8 Oα

´ pλ sysΛ⃗q
´

4´2α
1´α

covolΛ⃗

ˇ

ˇ

ˇ

´ ϕpNq

N1´α

¯

4´2α
1´α

´ λ
4´2α
1´α

ˇ

ˇ

ˇ

ÿ

pPΛ⃗´t0u

|p|ď 2A
αλ

|p|
2

1´α

¯

`A2}f}8 Oα

´ sys´
4´2α
1´α

Λ⃗
covolΛ⃗

ÿ

pPΛ⃗´t0u

|p|ď 2A
αλ

|p|
2

1´α 2πmax
!

α
ϕpNq

N1´α
|p|, αλ|p|

)
ˇ

ˇ

ˇ
α
ϕpNq

N1´α
|p| ´ αλ|p|

ˇ

ˇ

ˇ

¯

“ }f}8 Oα

´A
6´4α
1´α p1 ` λ2diam2

Λ⃗q

covol2Λ⃗ sys
4´2α
1´α

Λ⃗
λ

4´2α
1´α

ˇ

ˇ

` ϕpNq

λN1´α

˘

4´2α
1´α ´ 1

ˇ

ˇ `
A

8´6α
1´α p1 ` λ2diam2

Λ⃗q

covol2Λ⃗ sys
4´2α
1´α

Λ⃗
λ

8´6α
1´α

ˇ

ˇ

ϕpNq

λN1´α
´ 1

ˇ

ˇ

¯

“ Oα

´}f}8A
8´6α
1´α p1 ` λ2diam2

Λ⃗q

covol2Λ⃗ sys
4´2α
1´α

Λ⃗

` 1
λ

4´2α
1´α

`
1

λ
8´6α
1´α

˘
ˇ

ˇ

ϕpNq

λN1´α
´ 1

ˇ

ˇ

¯

since 4´2α
1´α

ą 1. Recalling that νN “ gN LebC, combining the latter estimate with the
ones from Equations (40), (41), (44), the symmetry described in Equation (12), and
Lemmas 2.11 and 2.13, we have finally proven Theorem 2.7 (in which we simplified
the error term by using standard inequalities such as 1 ` λβ ď 2pλ` 1

λ
q|β| for every

real number β).

4 Removing the branch cut
In the beginning of Section 2, we defined an empirical pair correlation measure
Rα,Λ
N,N 1,N2 . In its definition (3), for all grid points n,m P Λ, we have the condition

|Imprq ´ Impsq| ă 2π where r, s are logarithms of n,m in the associated Riemann
surface ĂC˚ “ C. In terms of the levels introduced in Section 2.1, this translates to
consider all terms of the form nrα,ks ´mrα,ks (already taken into account in Rα,Λ,lvl

N,N 1,N2),
as well as the terms nrα,k`1s ´mrα,ks (resp. nrα,ks ´mrα,k`1s) for which the argument
condition θpnq ă θpmq (resp. θpnq ą θpmq) holds. In other words, comparing the
measure Rα,Λ

N,N 1,N2 with its level separated avatar Rα,Λ,lvl
N,N 1,N2 defined in Equation (5)

and studied in Section 3, we obtain

Rα,Λ
N,N 1,N2 ´ Rα,Λ,lvl

N,N 1,N2 “
1

pN 1 `N2qψpNq

N2´2
ÿ

k“´N 1

ÿ

n,mPΛ, n‰m
0ă|n|,|m|ďN

∆ϕpNqpnrα,k`1s´mrα,ksq1θpnqăθpmq

(45)

` ∆ϕpNqpnrα,ks´mrα,k`1sq1θpnqąθpmq.

Lemma 4.1. Let A ą 1. For every integer k P Z, let

IN,A,k “
␣

pn,mq P Λ2 : n ‰ m, 0 ă |n|, |m| ď N, |nrα,k`1s ´mrα,ks| ď
A

ϕpNq
and θpnq ă θpmq

(

.
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Then we have, as N Ñ 8,

CardpIN,A,kq “ Oα

´

p1 ` diamΛ⃗q

covol2Λ⃗
N
`AN1´α

ϕpNq
` diamΛ⃗

˘3
1λ‰`8

¯

.

Proof. Let pn,mq P IN,A,k, set ε “
θpnq`θpmq

2 P s0, 2πr and notice that

αp2πk ` θpmqq P α2πk ` α sε, 2πs “ α2πpk ` 1q ` α sε ´ 2π, 0s

and αp2πpk ` 1q ` θpnqq P α2πpk ` 1q ` αr0, εr.

Since in addition α P s0, 1r and the scaling factor N ÞÑ ϕpNq converges to `8,
we claim that both points mrα,ks and nrα,k`1s are close to the ray Lα,k of argument
2πpk` 1qα. Indeed, assume first that the segment rnrα,k`1s,mrα,kss and the ray Lα,k
don’t intersect (which can happen only if α ě 1

2q. Applying Al-Kashi’s law of cosines
to the triangle with vertices nrα,k`1s, mrα,ks and 0 with angle ω P r2πp1 ´ αq, πs at
0, we obtain the inequalities

´ A

ϕpNq

¯2
ě |nrα,k`1s ´mrα,ks|2 “ |n|2α ` |m|2α ´ 2|n|α|m|α cospωq

ě |n|2α ` |m|2α ´ 2|n|α|m|α cosp2πp1 ´ αqq

“ p|n|α ´ |m|αq2 ` 2|n|α|m|αp1 ´ cosp2πp1 ´ αqqq.

Figure 9: Illustration of the proof that both points nrα,k`1s (confined in the red
region) and mrα,ks (in the blue one) are close to the ray Lα,k.

Assuming that |n| ď |m| (instead of using mint|n|, |m|u and maxt|n|, |m|u), the
latter equation and the triangle inequality on |m|α “ |mrα,ks| “ |mrα,ks ˘ nrα,k`1s|

grant us the bound

(46) |n|α ď
1

a

2p1 ´ cosp2πp1 ´ αqqq

A

ϕpNq
and |m|α ď

A

ϕpNq
` |n|α.
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Then nrα,k`1s and mrα,ks are both close to 0, hence close to Lα,k.
And now if pn1,m1q P IN,A,k and if the segment rn1rα,k`1s,m1rα,kss and the ray Lα,k

intersect, we directly have the inequalities

(47) dpm1rα,ks, Lα,kq, dpn1rα,k`1s, Lα,kq ă
A

ϕpNq
.

By Gauss counting argument (9) and since A
ϕpNq

Ñ 0, the inequalities (46) are only
valid for a number Oαp

p1`diamΛ⃗q4

covol2
Λ⃗

q of indices pn,mq P Λ2. Hence, from now on we can
assume that rnrα,k`1s,mrα,kss and the ray Lα,k do intersect and work with Equation
(47). Geometrically, this implies that (at least) one of the points nrα,k`1s and mrα,ks

is in the open half-space centred at Lα,k, i.e. of equation Repze´i2πkαq ą 0. By
symmetry, we can assume this holds for the point mrα,ks. Set

Pα : z ÞÑ |z|
αeiαω where argpzq ” ω P 2πpk ` 1q` sε ´ 2π, εr.

This function coincides with z ÞÑ zrα,ks around m, and with z ÞÑ zrα,k`1s at n. Set
εN “ A

ϕpNq
. Denote by ℓ a point in Lα,k for which the inequality |mrα,ks ´ ℓ| ă εN

holds. By the reversed triangle inequality, we see that |ℓ| P Dp|m|α, εNq. Applying
the mean value inequality to the inverse function of Pα, we can locate the grid point
m as follows

|m ´ P´1
α pℓq| ď |mrα,ks

´ ℓ| max
Dpℓ,εN q

|pP´1
α q

1
| ď εN

1
α

p|ℓ| ` εNq
1
α

´1.

In other words, the grid point m is close to the positive real line in the following
sense

(48) m P D
´

x0,
εN
α

pxα0 ` εNq
1
α

´1
¯

where x0 “ P´1
α pℓq P R`.

We assume that N is large enough so that the three inequalities εN ď 1, 2
1
α ´1εN

α
ď 1

2
and εN

α
p2α ` εNq

1
α

´1 hold. The latter inequality implies that x0 ě 2 for Equation
(48) to hold. One can then notice that the ball described in Equation (48) has
radius bounded by 2

1
α ´1εN

α
x1´α

0 ď 1
2x0. Since it is centred at x0 ě 2, we obtain

the inequality Repmq ě 1. More generally, for every real number x ě 1, the ball
from Equation (48) can intersect the vertical line above x (or equivalently contains
x) only if x0 ď 2x. Using the notation Lg of Lemma 2.10, this remark applied to
x “ Repmq P r1, |m|s implies that the point m belongs to the set Lg for the function

g : x ÞÑ
3 1

α
´αεN
α

x1´α.

Applying Lemma 2.10 to the grid Λ and the inequalities maxrk´1,ks g “ gpkq ď gpNq

(since g is nondecreasing), this gives us the inequality

(49) Card
␣

m P Λ : Dn P Λ, pn,mq P IN,A,k
(

ď 4N p1 ` diamΛ⃗qpgpNq ` diamΛ⃗q

covolΛ⃗
.
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In order to count not only such points m but all the ordered pairs pn,mq P IN,A,k,
we will use the function Qα : z ÞÑ zr 1

α
,0s. The assumption θpnq ă θpmq gives the

formula n
m

“ Qαpn
rα,k`1s

mrα,ks q. By applying the mean value inequality to the function Qα

between the points 1 and nrα,k`1s

mrα,ks on an adequate neighbourhood V of 1 (for instance
we can choose the semi-open half-disk V “ Dp1, A

ϕpN0q sysα
Λ

q X QαpC˚q for N0 large
enough so that the closure of this half disk does not contain 0), we obtain, with
cα “ maxV |Q1

α|,

ˇ

ˇ1 ´
n

m

ˇ

ˇ ď cα
ˇ

ˇ1 ´
nrα,k`1s

mrα,ks

ˇ

ˇ ď cα
A

ϕpNq|m|α

i.e. |m ´ n| ď cα
A|m|1´α

ϕpNq
ď cα

AN1´α

ϕpNq
.(50)

Using Gauss counting argument (more precisely, the right-hand inequality of Equa-
tion (9) applied to the grid m ´ Λ), and recalling the definitions εN “ A

ϕpNq
and

gpNq “
3

1
α ´αεN

α
N1´α, the latter inequality yields, as N Ñ 8,

CardpIN,A,kq ď 4N p1 ` diamΛ⃗qpgpNq ` diamΛ⃗q

covolΛ⃗
π

covolΛ⃗

`

cα
AN1´α

ϕpNq
` diamΛ⃗

˘2

“ Oα

´

p1 ` diamΛ⃗q

covol2Λ⃗
N
`AN1´α

ϕpNq
` diamΛ⃗

˘3
¯

.

In the case λ ‰ 8, this proves the lemma. If λ “ `8, then Equation (50) becomes
impossible as long as N is large enough so that ϕpNq

N1´α ą cα
A

sysΛ⃗
, hence IN,A,k is

empty.

Proof of Theorem 2.1. Immediate by combining Equation (45) with Lemma 4.1.

Remark 4.2. In addition, for all f P C1
c pCq and A ą 1 such that supp f Ă Dp0, Aq,

we obtain the error term in Theorem 2.1, as mintN,N 1 ` N2u Ñ 8,

Rα,Λ
N,N 1,N2pfq “

ż

C
fpzqρα,Λpzq dz ` ErrTh.2.7pα,Λ, f, Aq

` Oα

´

p1 ` diamΛ⃗qN

covol2Λ⃗pN 1 ` N2qψpNq

`AN1´α

ϕpNq
` diamΛ⃗

˘3
1λ‰`8

¯

.

From the form of this error term, the same result holds uniformly over some subsets
of GridC as the one stated in Theorem 1.1. See the second point in Remarks 2.8 for
an explanation.

Proof of Theorem 2.2. Immediate by combining the rational version of Theorem 2.7
stated in Remark 2.8 with Lemma 4.1.
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Proof of Theorem 1.1. Let γ P s0, 1r . Assuming ϕpNq “ Nγ and ψpNq “ N2p2´α´γq,
we can compare R

1
b
,Λ

N,0,b defined in Equation (3) to the measure RN defined in the
introduction and obtain

RN ´ R
1
b
,Λ

N,0,b “
1

bψpNq

ÿ

m,nPΛ, n‰m
0ă|m|,|n|ďN

ÿ

rPexp´1pmq, sPexp´1pnq

|Imprq´Impsq|ě2π
0ďImprq, Impsqă2πb

∆ϕpNqpexpp s
b

q´expp r
b

qq.

Since z ÞÑ expp z
b
q induces a biholomorphism from C{i2πbZ to C˚, for two points

expp r
b
q and expp s

b
q to be close together, the associated classes rrs and rss have to

be close together in C{i2πbZ. Under the assumptions |Imprq ´ Impsq| ě 2π and
0 ď Imprq, Impsq ă 2πb, this implies that one of the two points r,s is close to the
real line, and the other one to the horizontal line R ` i2πb. We use the notation
IN,A,b from Lemma 4.1. Let f P C1

c pCq and A ą 1 be such that supp f Ă Dp0, Aq.
For N large enough, for an index pn,mq to contribute to the sum RNpfq´R

1
b
,Λ

N,0,bpfq,
then either pn,mq or pm,nq has to belong to IN,A,b. The number of such points n,m
is evaluated in Lemma 4.1. Combining this with Theorem 2.2, we obtain the vague
convergence RN ´ R

1
b
,Λ

N,0,b
˚

á 0 as N Ñ `8 and deduce Theorem 1.1.
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