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Abstract: Using a standard definition of fractional powers on the universal cover
exp : S — C* seen as an infinite helicoid embedded in R3, we study the statistics
of pairs from the countable family {n® : n € exp~!(A)} for every complex grid A
and every real parameter « € |0, 1[. We prove the convergence of the empirical pair
correlations measures towards a rotation invariant measure with explicit density. In
particular, with the scaling factor N +— N1=% we prove that there exists an exotic
pair correlation function which exhibits a level repulsion phenomenon. For other
scaling factors, we prove that either the pair correlations are Poissonian or there is
a total loss of mass. In addition, we give an error term for this convergence, with
explicit dependence on parameters of the grid A.

1 Introduction

In order to obtain a comprehensive understanding of the distribution of a countable
family (u,)ner within a locally compact metric additive group GG, an essential aspect
involves analysing the statistics of the spacings between selected pairs of these points,
seen at a varying scaling. The approach consisting in taking all pairs into account is
the study of pair correlations. More precisely, with the use of a nonnegative function
h: 1 — [0,400] such that every set {u, € G : h(n) < N} is finite, our focus lies on
the asymptotic of the multisets Fiv = {un — Um }n(n) h(m)<Nnzem as N — 0.

These problems were initially developed in physics, especially in quantum chaos,
which has lead to a purely mathematical point of view of pair correlations. See for
instance | , , | for questions directly linked to quantum physics. In
various examples for the group G, the customary reference situation is the (almost
sure) behaviour of the pair correlations of a homogeneous Poisson point process
of constant intensity on the space G. If the pairs from (u,),e; have the same be-
haviour, the sequence is said to have Poisson pair correlations. It is of interest on its
own to define precisely what this behaviour is, in particular in a multidimensional
setting [ ]. Furthermore, determining whether a given sequence exhibits this
comparison behaviour or not presents an intriguing challenge, see the papers | ,

]. For instance, when o > 0 is small enough, the sequence
({na})neN, where {- } denotes the fractional part function, displays Poisson pair cor-
relations, as proven by C. Lutsko, A. Sourmelidis and N. Technau in their paper
[ ], as well as in the special case v = 3, as shown by D. Elbaz, J. Marklof and
I. Vinogradov in | .
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In our setting, the metric group G will then be (C,+). Recall that a complex
Z-lattice is a discrete additive subgroup of C generating C as a real vector space,
and that a complex subset A is called a Z-grid if there exist a (unique) Z-lattice
A and a complex number z € C such that A = 2z + A. The spaces Latc, of all
complex Z-lattices, and Gridc, of complex Z-grids, are endowed with the Chabauty
topology (since lattices and grids are closed subsets of C). We denote by covol; the

area of any fundamental parallelogram of A. In all our study, we fix a real number
a €]0,1[ and a Z-grid A € Gridc. Let v €]0, 1, that we use as a parameter for the
scaling in this introduction. To conduct a much more involved study than the paper
[ | on the non generic pair correlation statistics of the real sequence (n®)nen,
we will define a sequence of measures for the pair correlations of the "a powers" of
grid points in A. In this introduction, we present the case o = % where b € N — {0}.
In this particular case, the study we conduct can be simplified and translated to
the statistics of scaled differences N7(v — u) where u, v are b-th roots of grid points
with norm less than N. In other words, we study the sequence of empirical pair
correlation measures given by the general term

1
%N = W Z Z AN'Y(vfu)a

n,meA, n#m u,veC*
0<|n|,|m|<N yb=m, vb=n
where, for all complex number z € C, we denote by A, the Dirac mass at z. We de-

note by Lebc the Lebesgue measure on C, and we define the nonnegative measurable
function p by

( 0 if v>1-aq,
T

if <1l-—aq,
a2(2 — ) covol® 7

X
Pz 4 2 4-20

am|z|7 T—a 2 .
_— o if =1—a.
(1 — ) covoly Z 2 o “

peA—{0}

[
\ Ip|<=

We use the notation D(z,7) = {z € C : |z — 2| < r} for open disks. For all Radon
measures py, for N € N, and p on C, the sequence (uy)ney is said to vaguely
converges towards p if for every continuous functions f : C — C with compact
support, we have the convergence ux (f) — u(f). In this case, we write puy — .

Theorem 1.1. We have the following vague convergence, as N — o0,
RAn = p Lebc .

In the latter theorem, the vague convergence will be proven uniform over A
varying in either any compact subset of Lat¢ or locally around any non-lattice grid
A (i.e. A € Gridc and 0 ¢ A’). See the second point of Remark 2.8 for precisions
on such a uniformity statement. As for effectiveness, let f € C!(C), choose A > 1
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such that supp f < D(0, A) and assume that 7 = 1 — «. Then, we have a rate for
this convergence, given by the estimate, as N — o0,

Al + \df\oo)>
- .

An(f) = | () =+ O (

Theorem 1.1 indicates that p describes the repartition of pair correlations of o = %
powers of grid points. This is essentially a particular case of Theorem 2.1, the main
result of the present paper which holds for every real number « €0, 1[. The proof
of Theorem 1.1 using Theorem 2.1 and some counting lemma is done at the very

end of Section 4.

Figure 1: The graph of the function p restricted to the disk D(0,1) in the case
a=3,7v=1-—a=2and A =Z[i].

In other words, the pair correlations for the b-th roots of grid points are Poisson if
v < 1 — «, have an exotic density if v = 1 — a and there is a total loss of mass if
~v > 1—q. This phase transition phenomenon frequently appears in the study of pair
correlations, see for instance | , , |. The study of pair correlation
in a noncompact setting has already been fruitful in various fields. On G = R, the
lengths of closed geodesics in negative curvature have Poisson pair correlation or
converge to an exponential probability measure (depending on the scaling factor)
[ , |. Still on G = R, for all «, B € R verifying some diophantine condition,
the image of Z? by the quadratic form (z,y) — (z — a)? + (y — 3)? also exhibits
a Poisson pair correlation [ | (see also | | for a related result in higher
dimension). On the group G = (K, +) where K is a p-adic field with integer ring
denoted by @, the pair correlations of squares of integers {z? : z € &} has also been
studied in | ] and has a behaviour which can arguably be called Poisson.

In Section 2, we first define a more general setting for pair correlations than
the one of Theorem 1.1, using the universal cover C of C* and dividing it into
levels. Then, we state Theorem 2.1, which is the main theorem in this paper and
of which Theorem 1.1 is a special case, as well as a version using separated levels,
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namely Theorem 2.7, and we prove the main lemmas we will use for the proof of
the latter theorem. In Section 3, we exhaustively prove Theorem 2.7, using a linear
approximation, an approximation of Riemann sums after an appropriate change
of variable, an averaging argument over levels, and various counting results. In
Section 4, we give an upper bound on the number of pairs which were counted out
by separating the grid points into levels in Section 2, allowing us to straightforwardly
derive Theorems 2.1 from Theorem 2.7.

Acknowledgments: This research is supported by the French-Finnish CNRS TEA PaCAP.
The author would like to thank J. Parkkonen and F. Paulin, the supervisors of his ongoing
doctorate, for their support, suggestions and corrections during this research.

2 The main statement and technical lemmas

In all this paper, we fix o €]0,1[ as well as A a Z-grid in C. We denote by A its
underlying Z-lattice. We set

S={(re“ w):r>0,weR}cCxR

A standard way in complex analysis to define a power function is to use the Riemann
surface S. On the universal cover exp : C — C* of C*, we set Ag = exp~!(A), which
consists of infinitely many copies of the grid A (minus the origin if A contains 0): for
every t € R, the map exp restricts to a bijection Agn{z : t <Im(z) <t+27} — A.
We use the identification z — (exp(z),Im(z)) between the universal cover C and
the helicoid S. The set Ag is then identified with {(n,w) : n€ A, we arg(n)} < S.
We define the o power function on this surface by

Pow,, : S — S
(re™, w) — (r%

zcxw’ Oétd),

which corresponds to the multiplication by a on the universal cover C. We are then
interested in pair correlations of the countable set Pow,(Ag). Let mc (resp. mg)
denote the projection on the complex (resp. real) coordinate of C x R. To focus on
the complex part of such three dimensional vector differences, we flatten them and we
study the statistical distribution of the complex differences ¢ (Pow, (n) —Pow,(m))
for all m,n € Ag such that |mg(n —m)| < 27. The latter condition is introduced for
the points m and n to be on the same "copy" of C* in its universal cover C. This is
not a constraint since we multiply all differences Pow,(n) — Pow,(m) by a scaling
factor going to infinity and evaluate the related measures on a compactly supported
function: after rescaling, pairs of points failing to satisfy this condition uniformly
give rise to differences in C x R escaping all compact subsets. Let ¢, 9 : N — 0, +oo[
be two functions converging to +00, which we respectively call the scaling factor
and the renormalization factor. Throughout this paper, we fix A € [0, +o0] and we



assume the following convergence and formula

(1) ?V(lNo)éH)\e[O,+oo]asN—>oo,
N2y 2
(2) w(N):<¢(N)> for all N € N.

Compared to the case of the introduction, taking into account all directions of
noncompactness in S ¢ C x R, the need for two new integer parameters N’ and N”
emerges. We are interested in the multi-index sequence of empirical pair correlation
measures whose formula is given for all N, N, N” € N — {0} by the formula

1
‘%mA’ "= A iy oW (n)—Powq (m
NNUNT T ONT NP Yh(N) mnegnm $(N) (mc(Powa (n)~Powa (m)))
g (n—m)| <27
0<|mc(m),|mc(n)|<N
=27 N'<mp(m),mr(n)<27N”

1
() - 2 2 A p(N)(exp(as)—exp(ar))-
(N/ + N//)¢(N) mneA,n#Fm  reexp—t(m), scexp1(n)
0<|m|,[n|<N Im(r)—Im(s)|<2m

—27N'<Im(r),Im(s)<2wN"
Set pa,a the nonnegative measurable function of formula

( 0 if A= +oo,
T

it A=0,

a?(2 — ) covol
Pa,A - 2 3

aTa ENSs=s 2,
Lk} —a f Xel0 .
(1—oz)cov01K<)\) Z 2 ' €10, el
peA—{0}
\ |p\<%

The next two results will be proven at the end of Section 4.

Theorem 2.1. We have the vague convergence, as min{N, N' + N"} — oo,

7A *
%}?]7]\[/71\[// - pa7A Leb(c .

For an error term and uniformity on A in this convergence, see Remark 4.2. In
the case a €0, 1] nQ, we write its irreducible form a = ¢ an obtain the following

b
result.

Theorem 2.2. We have the vague convergence, as N — 0,

gvA *
ENop — P Lebc.



i2rN"

Figure 2: On the left, the helicoidal Riemann surface S. On the right, an illustration
of the points (dots) 7 € exp~}(A) = C. The (dotted and plain) two-headed arrows
correspond to pairs of grid points appearing in the definition of the empirical pair
correlation measure %ﬁ‘,’}\,, ~»- The distinction between dotted and plain two-headed
arrows will be explained before Theorem 2.3.

2.1 Separation into levels

We use the notation R, = [0, +0o[. For every real number /3, every integer k and
every nonzero complex number z, we begin by defining the level-k 5 power of z as

ZBKL — 2186tk where wy, is the representative in [27k, 2m(k + 1)[ of arg(z).

In other words, for every z € C — R, we set z[PkF — eBlos(x)+27k) " where the
map log : C — R, — C is the branch of the logarithm with branch cut R, and
verifying log(—1) = im, and we extend this definition to C* in an "upper" continuous
way, namely when Im(z) > 0. For the particular case k& = 0, we use the notation
28 = 21801 This nonstandard choice of branch cut is handy for the following formula:
for all z,2’ € C* and all k € Z,

2[B:K] Z\B 2\ [B:—1]
- (5) (5
depending on the sign of the difference w —w’ of the argument representatives w of z
and w’ of 2/, both taken in [0, 27| . In comparison, taking the principal branch of the

logarithm to define these power functions would have required to separate between
3 cases, whether the difference w — w’ belongs to | — 27, —x], | — 7, 7] or |, 27].
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With the formula 2% = e?1°2(2) we obtain the linear approximation, as z — 0 with
the restriction Im(z) > 0,

(4) (1+2)* =1+ az+ 04(]2]*).

Note that the image of C* by the level-k 3 power function z — z%# is the semi
open angular sector {z € C* : arg(z) € [27k(3,2m(k+ 1) mod 27}, in other words
the sector of angle 287 centred at the argument 27 (k + %)B mod 27.

We define the multi-index sequence of level separated empirical pair correlation
measures by its general term

1 N"—1
a,Alvl
(5) '@N,N’,N” = (N/ i N”)¢(N) Z Z Aqs(N)(n[a,k],m[a,k])

k=—N' nmeA,n#m
0<|n|,|m|<N

In comparison to the definition 9?10\‘,[]\\]/ n» from the beginning of Section 2, in the
measure e@%/]\viv}v,, we do not take into account pairs of points illustrated with dotted
arrows in Figure 2. Recall that the scaling and renormalization factors ¢ and

verify the convergence (1) and the formula (2).

Theorem 2.3. We have the following vague convergence of positive measures, as
min{N, N + N"} — oo,
e@ﬁéf’?\}}j}l\[u _*‘ pa7A Leb(c .

2 il
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Figure 3: The empirical distribution obtained for the measure % ]%:JZV[,}j\l],,l with NV = 70

and N’ + N” = 3 in the case A = 1, using a smoothing process of the library SciPy
of Python.

A qualitative illustration of this convergence is shown by comparing Figure 3
to Figure 1, in the exotic case A = 1. Since the modulus function | - | from C to
R, is continuous and proper and since the function p, 4 is invariant under rotation,
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the hypotheses of Theorem 2.3 also imply the vague convergence, as the minimum
min{N, N' + N"} — o,

1 N"—1 )
(N' + N”)w(N) Z Z A¢>(N)|n[avk]7m[OtJ€]| - QWTpa,A(T)dT-

k=—N' n,meA,n#m
0<|n|,|m|<N

As an illustration of the latter convergence, a radial profile is drawn on Figure 4, in
the exotic case A = 1.

60

50 4

40 4

30 4

20 A

10 4

0 T T T

0 1 2 3 4 5
EAI RN

Figure 4: The empirical radial distribution of % J%ZJZV[,}]’\I,NI for N'+N" = 3 and different

values of N (N = 10 in pink, N = 30 in , N =50 in green, and N = 80 in

blue) using the scaling factor N — N 5 (and renormalization factor N — N?), and
the limit density r — pé,Z[i](T> (in red).

We denote by diamj; the minimal diameter over all fundamental parallelograms

of A and by sys; (resp. sys,) the systole of the the Z-lattice A (resp. of the Z-grid
A), that is to say

sysg (resp. sys,) = min{|p| : pe A (resp. A),p # 0} > 0.

Remark 2.4. In the exotic case A € |0, +o0[ , one can notice that we have p, o = 0 on
the open disk C'(0, aAsys;). This property is called a level repulsion phenomenon.
The fact that the radius aAsys; of this level repulsion disk converges to +oo as
A — +o0 can be interpreted as a continuity result between the cases A € ]0, +o0[
and A = 400. Such a continuity observation may also be made between the cases
A €]0, +oo| and A = 0, since Gauss counting argument (more precisely, its version
for 5 = ﬁ stated in Lemma 2.9) indicates that, for all A €]0, 400,

™

an(z) — :
pan(?) |zl>0 a?(2 — ) covol
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Remark 2.5. Notice that p, A is rotation invariant and, if A € ]0, +oo[, the points

of discontinuity of pa,a constitute the union of circles (.5, C'(0, aA[p|). By com-

parison, extending the definition of %ﬁ,/}v}v}v,, to the simplistic case a = 1, choosing

the scaling factor N ~— 1 (hence A = 1) and the renormalization factor N — N2,
a standard Gauss argument and a Riemann sum approximation grants the vague
convergence, as N — o0,

AN L « 0T
‘%N,N’,N” = ﬁ Z An—?’l’L - Z AP'

covolz
n,meN, n#m A peA—{0}
0<|n|,|m|<N

In particular, the limit measure is not rotation invariant: we lose some symmetry
in this extreme case o = 1.

Remark 2.6. Upon an appropriate rescaling in terms of «, a continuity statement
can be made between the cases o €0, 1] and o = 0. We impose the scaling factor
¢(N) = N7 (hence A = 1) for this remark. Up to rotation, we can assume that the
grid A contains no nonzero point on the branch cut R, of the log function involved
in the definition of a-powers with levels. For all k € Z, all n, m nonzero grid points
in A and all integer N € N, notice that we have the convergence, as a — 07,

(6) Nl ol s N (log(n) — log(m)).

We set
1

A,lo
RNE = e Z AN(log(n)—log(m))'

n,meA, n#m

0<lnl,|m|<N
which is (up to the choice of a branch cut for the logarithm function) the empirical
pair correlation measure studied in | , § 3] for logarithm of grid points. Using
Theorem 2.3 and the fact that z — Z is continuous and proper for the top con-
vergence arrow, the convergence (6) for the left-hand convergence arrow, and the
dominated convergence theorem for the right-hand convergence arrow, we obtain
the following diagram of vague convergence:

Alvl * 2
z— Z VN — z— Z Lebe = « az)dz
( &) w N NN min(N,N'+N")—0 ( & )xPa.n Lebe pan(az)
« «
I« ||«
o+ or
A,log |z|4 = )
%N covoly Zpe/\—{()} ’p’ dz.

Ip|<|z]

The bottom convergence arrow missing to this diagram has been proven in | ,
Theo. 3.1].

In order to state an effective version of Theorem 2.3, we will use the space C}(C)
of continuously differentiable functions of two real variables f : C — C, with the
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standard notations || f|lsc = sup,cc |f(2)| and ||df || = sup,cc |df (2)|, where |-| is the
operator norm on the space of R-linear applications from C to C. We use Landau’s
notation: for functions F,G : N — C depending on some parameters including «,
we write F'(N) = O,(G(N)) if there exists some constant ¢, > 0, depending only on
«, and some integer Ny, depending on all the parameters, such that, for all N > N,
we have the inequality |F(N)| < ¢,|G(N)|. In our study, each time we use the
Landau’s notation O, the rank Ny may depend on the real number «, the size A
of the support of the test function we evaluate our measures on, the scaling and
renormalization factors ¢ and ¢, and on the parameters diamjz, covols, sys; and
sys, of the grid A. In particular, it is important to recall that it does not depends
on the parameters N, N” nor on any other index temporarily fixed in the proof of
a lemma or a theorem.

For all f € C}(C) and A > 1, if A\ = 40 we set Errppar(a, A, f, A) = 0, and
otherwise we define

ErrTh,gj(Oé, A, f, A)

AS(| oo +]df |o0) (1 +diam?) (4

OOé ( lea + Nadl)(N) + N/—‘,l-N”)) lf )\ = 07

covol2
_ X
2
Oa (|57 — 1 Erry + 52 4+ oo o) if A €]0, +oof,
A
where 5 6o
AT [ f]oo(1 4 diam?) 1, 10-8a
Err; = ‘ ‘OO 124 A ()‘+ X) e
2 1—a
covolx DN
and 1-2a
AV fllo + o) (1 + diam) (A + 12
Erry =

covol% min{1, covol} min{1, sys;}
Theorem 2.7. Let f € C}(C) and choose A > 1 such that supp f < D(0, A).

o If A\ = 400, then there exists an integer No which depends on o, A and A,
such that for all N = Ny and all N, N" € N, we have %ﬁ%v}w(f) =0.

e IfA\e|0,400[, as N — o0, we have
FEAML(f) = f F(2)pan(2) dz + Ervznan(a A, £, A).
C

Remarks 2.8.  « By astandard approximation argument of a function in C?(C)
by functions in C}(C), Theorem 2.3 is an immediate consequence of Theorem
2.7.

 Notice that the parameters diamy, covoly, sys; that we used in the definition
of O, are bounded for A varying in any compact subset of Gridc, but the grid
systole sys, is only bounded for A varying in a compact subset of Latc (where

10



it coincides with the usual systole sys; of a lattice) and locally for A varying
in some neighbourhood in Grid¢ of any grid A" which does not contains zero.
Then, since in addition the error terms in Theorems 2.7 and 2.1 (see Remark
4.2) depend on A only through the same parameters, we have the following
uniformity statement: for every K < Latc compact and for every A’ € Gride
such that 0 ¢ A’, there exists a neighbourhood U < Grid¢ of A’ such that the
vague convergence in Theorem 2.7 (resp. 2.3, 2.2, 2.1, 1.1) is uniform over A
varying in either K or U.

e In the case a = § € Q, for all integers N € N and ko € Z — {0}, we have the

. .. 2 Avl 2 Alvl .. .
periodicity formula Z3 %, = Zno, - This implies that we have, as N — oo,
2NN
N 0b — PaA Lebc .

2.2 Counting lemmas

The next lemma is a well known result which will be useful in order to explicitly
compute the limit function p, a as well as to bound error terms for Theorem 2.7.

Lemma 2.9. For every real number = 0, there exists a constant Cz > 0 such
that, for all x > 1,

B+2 2,
’ Z iml? — 2 x < Bl—l—dlam g1
— covolg B + 2 covoly
0<|m|<z

For every real number B > —2, we have the (less explicit) estimate, as x — o0,

o2 xPt? 1+ d1am
> ml - + 05 (S TR @ ) ).
= covoly B + 2 covoly
0<|m|<z
In the case B = —2, we have the following estimate, as x — 40,

Z Lo .2m log(z).

2 N
. |m covoly
0<|m|<z

For every real number B < —2, the sum Y, men |m|® converges as x — o and its

0<|m|<z
limit verifies the inequality
167 sysh d1am~ o 2883 __qiamS+? (diam@ + sys? )diam?
Z |m|5 < A 1(ﬁ+1)(ﬂ+2) A _ 0,8 ( A IA A).
meAm (0} covolg covolg

11



Proof. We recall Abel’s summation formula: for every real sequence (a)>1, all real
numbers 1 < 2o < x and all function f : [zg, +00[ — R of class C* on ]zg, +oo[, we
have the equality

T

@S afb=( Y af@ (Y w)fm) - f (S w)f

ro<k<z 1<k<z 1<k<zg To 1<k<t

Let z > 1 and .# be a closed fundamental parallelogram of A containing 0 with
minimal diameter.

For the case § = 0, we follow the standard Gauss counting argument. Set
Ay ={me A : 0 <|m| <z} and B, = (J,,c4,(m + F), so that we have the
equality Leb¢(B,) = Card(A,) covol;. The definition of diamy yields the inclusions

(8) D(0,z — diamy) = B, = D(0,z + diamy),

where the closed disk D(0,2 — diamy) is empty if # < diamz. Computing the
Lebesgue measure of these disks gives

(9)

max{0, z — diamz}* < Card(4,) <

. 2
(z + diamy)
covol 7 covol 3

which is even valid in the case 0 < z < 1 and implies the lemma in the case § = 0.
Assume 8 > 0. Consider the sequence (ax = Card{m e A : k—1 < |m| < k})g=1.
We have the following inequalities

Z ak(k’ — 1)6 < Z |m\’8 < Z akk:ﬂ.

1<k<z meA 1<k<]z]
0<|m|<z

Let |-| denote the lower integral part on R. Applying Abel’s formula (7) to f : t +— t°
then f : ¢t — (t —1)% with 2y = 1, together with the case 3 = 0 to estimate
D<hes @ = Card(Aj,)), this proves the lemma in the case § > 0.

Assume €] —2,0[. Then we have the inequalities

(10) dMlak? < > mlP < > ak -1

Applying Abel’s formula (7) to f : t — t” then f : t — (t — 1)? with 2y = 2, this
proves the estimate, as * — o0,

o2 P2 1 + diam?
> Il = + 05 (— ),
vy covoly B + 2 covoly
1<|m|<z
1+diam?2
Combining this with the inequality > ea  |m|? < sysh T+ diamy) coming from

0<|m|<1 covol ¢

Equation (9), the lemma is proven in the case 5 €] — 2,0].
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The case f = —2 directly comes from the inequalities (10) and the same ap-
plication of Abel’s formula, since then the only diverging term is equivalent to, as

r — o0,
oo 2w
_ t2 /t ~ l
L covolg 1) covol og(7)

in both cases where f is given by ¢t — =% or by t — ﬁ
For the case [ < —2, using the case B = 0 from Equation (9), we can directly

compute

>, Imf

> P > mf

meA meA meN

0<|m|<z 0<|m|<3diamy 3diam; <|m|<z
T 1 .
< Sysﬁ (3diamy + diamj ) + f (|z] — diam K),g dz
covoly covols Jo_ D(0,2diam ;)

28+3

o2 B+2
167 sysi dlamx B 2m Wdlam

A

covol 3 covol n

]

Another helpful tool is given in the next lemma: it will allow us to count grid
points that are near a given straight line.

Lemma 2.10. Let g : R, — R, be a nonnegative piecewise continuous function
and set Ly = {x +iy : © >0,y € R and |y| < g(z)}. Then, for all N € N, we have
the inequality

Card(A n D(0,

i (1 + diamy)(maxz—141 9 + dlamA)
= covoly

Proof. Fix N € N —{0}. For every x € {1,..., N}, let m, denote the real number
max(,_1,,] g and consider the rectangle R, = [z — 1, z] + i[—m,, m,|. We have the
inequality

N
Card(A n D(0,N) n L,) < Z Card(A n R,).

=1

For each x, let us denote by E; the diam ;-neighbourhood of R, for the infinity norm
2|0 = max{|Re(2)|, [Im(z)|} (so that R, is a rectangle, see Figure 5). Using Gauss

counting argument, the inequality between the Euclidean norm and the infinity
norm then yields the inequality, for all x € {1,..., N},
Card(A n R;) covoly < vol(ﬁ) (1 + 2diamy)(2m, + 2diamy).

Summing over x € {1,..., N} proves the lemma. ]
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) diam

Figure 5: Illustration of the proof of Lemma 2.10.

2.3 Symmetry lemma

By the change of variable p = n — m, we can rewrite the definition (5) as follows

N"—1

a,Alvl
(1) FNw = Ny N,, Z Z 2 Denmetes—mies)

=Y pek—{0}

meN
0<|mtpl,[m|<N

For any number z € C*, recall the notation z® = z[*% for its level-0 o power. Let
0 : C* — R denote the projection of the argument function onto [0,2x[. For all
nonzero complex numbers z, 2, the definition of their level-k « power yields the
formula ,[[a 'Z]] = (;)[a’l] where | = [%J = 0 or — 1 depending on the sign of

0(z) — 9( '), independently of k. Set
= {(m.p) e Ax (K—{0}) = 0. < |m|,|m +p

< N and 6(m + p) > 0(m)}
and Iy = {(m,p) e A x (A—{0}) : 0 <|m|,|m+p| <

|
| < N and 6(m + p) < 6(m)}.
In other words, putting aside the case 8(m+p) = 6(m) for now, the set I3 (resp. Iy)
contains the indices (m, p) in Equation (11) verifying the formula, for all k € Z,

(m + p)leH

(m + p)lek] P \fa
mleck] =1+ ).

mlesk] m

A A AL e e .
Let 25N nn (resp. Zs'si yv) denote the part of 'y, with indices in Iy, (resp. in

Iy) in Equation (11). One can notice a one-to-one correspondence between 5 and
Iy given by the map (m,p) — (m + p, —p). This yields the formula

(12) ‘%N N’.N" = (Z — —Z>*L@Jo\2{]\\}t]\n/.

Do
—(1+ £ .
(1+-) (resp

The next lemma indicates that the contribution of the indices (m,p) which do not
belong to I} nor Iy is negligible. Combined with the formula (12), we will be able

X Alvl A
to derive the vague convergence of 2% v from the one of 2\ .
N.N'.N N.N',N

14



Lemma 2.11. Let f € C}(C) and choose A > 1 such that supp f = D(0, A). We
have the estimate, as N — 0,

R o (F) =5 i (F) + R oo (F)

l1-a
0 (oo (o )+ inms))

Proof. The difference L@;/}V}V}Vu( f)— (%]O\[]/]\V/JFN//( )+ %’]O\‘,[J\VT no(f)) is

N"—1
1

) (N + N")(N) Z Z 2 F((N)((m + p)leokl — mleskly),

k=—N"peX—{0}

meA
0<|m+pl|,/m|<N
0(m+p)=0(m)

Fix k € Z. Our goal is then to count pairs of points (m, p) € Ax (A—{0}) verifying the
inequalities 0 < |m/|, [m+p| < N, the equality of arguments §(m+p) = 6(m) and the
inequality [¢(N)((m+p)l@H —mlek)| < A. We denote by Iy 4 the set of such indices
(m,p) (which indeed does not depend on k thanks to the formula zl®kl = gi2mke o),
Let (m,p) € Iy 4. We denote by w = 6(m) = 0(m + p) their common argument
in [0,27[. The function z — z[**! is regular when we restrict it to the segment
[m, m+p]: the complex valued function g : t +— (m+pt)lFl = (Jm|+t[p|)*ei@t2mk)

qeto(w+2m

is differentiable and its derivative is given by ¢’ : t — It is minimal

(Im|+tlpl)t ="
in modulus when ¢t = 1, for which we have |¢'(1)] = \mfz‘)ﬂ—a' The mean value

inequality then grants us

A
s = [+ )l
¢(N)
From this, we derive the main inequality that we will use to count such pairs of
points, namely

a a|p|
M =1g(1) — g(0)] = Tt plie

ANl—a
14 p| < .
(14) o< o
As N — o0, Equation (9) indicates that there are only O, (Covlolx (fﬁ&\;; + diam K)z)

points p € A verifying the inequality (14). Let us fix such a point p. Then, for the
points 0, m and m + p to be aligned, the nonzero grid point m + p has to be chosen
on the ray from 0 to p. Since moreover it has to be in the closed disk D(0, N), there

are at most - ;\S[x ways to choose the point m + p. This counting argument yields, as

N — oo,
(15) Card(I5 ,) = O, (SYSKZ)VOIK <(§;V(;v;> + diamx)2>.

The triangle inequality applied to Equation (13) gives the estimate stated in the
lemma. 0
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Remark 2.12. Since the renormalization factor is given by ¢(V) = (];(2 J;(; )2, in the
case A = 0 of Theorem 2.7, the estimate of Lemma 2.11 becomes

A2] flloo )

sysi covoly N/

AL vl A, A —
'%]%/,N/,N”(f) = %Xé]’Nj:N// (f) + '%]C\Yf,N/,N/’<f) + Oa (

2.4 Linear approximation

Thanks to Lemma 2.11 and the symmetry formula (12), for every f € C}(C), we
can focus on the asymptotic behaviour of the sequence (%ﬁ/]\\,f N (f)) NN Nven, whose
general term can be rewritten as

N"-1

(16) 5Nl () = (N,+N,, N 2 X FemmiRis e ).

m
k— N’ (m,p) EI+

Define another sequence of positive measures by its general term

N"—1
1

+ _
R = N N 2, 2 St

k=—N' (m p)EIJr

The next result is a linear approximation lemma.

Lemma 2. 13 Let f € CHC) and choose A > 1 such that supp f < D(0, A). We

assume that £ /\ € [0, +oo[. Then we have, as N — 0,

N1 N
o A?|df ., A? &(N
) = o) = On (T iy + Smadions)
(1 + diamg)|f]e A3 SN
" covol% (NO‘(;S(N) T NI dlam/{))

Proof. Fix k € Z. For all (m,p) € I};, we want to bound from above the quantity

(17) [FeVmiR (1 + 2)7=1))) = F(9(N) —t) |

By the hypothesis supp f < D(0, A), in order for the latter quantity not to be equal
to 0, the index (m,p) has to verify (at least) one of the two inequalities

Alm|t— A
ag(N) Im|*¢(N)’
Let 1.],\77 1 be the subset of I3 consisting of such indices. Recall the linear approxima-

tion (4) as z — 0 with the restriction Im(z) > 0. Let (m,p) € I3 4. As a consequence
of Equation (18), since — 0 as N — o and thanks to the Lips-

P«
(19 bl < or 1+ 2)7 1| <

A A
mleaN) S sysg 6N
chitz continuity of the inverse of z — 2% on a small neighbourhood of 1 = 1 in the
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image of z — 2% (or equivalently in the half-space {z € C* : Im(z) > 0}), we have
the estimate, as N — oo,

P A
(19) max |—| = 0, <7>
(m.p)elf; 4 ‘m| Im|*¢(N)
With the consequential estimate |p| = O, (%), we use the Gauss counting argu-

ment from Equation (9) (summing over A with z = O, (Aé\(,;)a)) to deduce a result

that we will use twice in the remaining part of the proof: uniformly for every grid
point m € A, as N — o0, we have the estimate

< 1 ,JAN!'-«

(20) Card{p € A - {0} : (m,p) e ]JJG,A} = covolK( o(N)

+ diam K>2>'

In order to apply the approximation (4) to most fractions z = £, we have to take
out the indices (m,p) for which Im(£) < 0 holds. For that matter, we first notice
that for all (m,p) € Iy 4, the inequality Im(£) < 0 holds if, and only if, we have
0(m +p) — 0(m) €]n, 27| (since Im(2) = Im(m+p)). We denote by I3 the set of
these indices. Then, by use of Equation (19), for all indices (m, p) € IR*}, we have
the estimate, as N — o0,

py_ym+p o _ Dy i@(mtp)—0(m)) _ 1| _ |,i(0(m+p)—6(m)) _ A
2] 52 i Rptnseon ] = s 1110, (1)
o Bm+p)—0(m) A

Using this, we claim that the quantity 6(m + p) — 6(m) which belongs to |, 27|
since (m,p) € I}, has to be close to 2. Since the image of 6 is [0,2n[, this
will imply that 6(m + p) has to be close to 27 while 6(p) has to be close to 0. In
other words, both grid points m + p and m have to be close to the real positive ray
R, — {0}. Using the concavity of the sinus function on [0, 5], we can derive the
following estimate from Equation (21) (and using again Equation (19)), as N — oo,

g(27T — (@(m +p) —0(m))) < 2sin (9(m +p) = 0(m)

)

m 2
P A
=l 0 (g
A
(22) thus 27 — (H(m + p) — Q(m)) = Oa (WM)

which proves the claim.
As an immediate consequence, the same estimate holds for 2 — #(m + p) and
for O(m). We choose a constant C, > 0 to make the Landau’s notation explicit so
) A
that 0(m) < Cor—ars e ¢(N then we set the function gy : x — xtan (C'QW(N)). For
N large enough so that C’ A 2 the map gy is well defined over [1, +o0[ and is
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nondecreasing. Applying Lemma 2.10 with gy gives us the estimate, as N — oo,

O A
card{me (A= {0}) 0 DO N) + 0(m) < (22 )}
4(1 + diamy) (N tan(Co xa577 N%( ;) + diamg)

< N
covol 7

1—

o, ((1 + diamg) N (455 + diamx))

covol 7

Multiplying this bound by the number of lattice points p described in Equation (20)
gives us the following estimate for counting these bad indices, as N — oo,
. 1-a .
(1+ dlamK)N(Aé\([T + diamy) . 1 (ANka
covolg covolg * #(N)

Card(I39) = Oq < + diamK)Z).

Thus, the restriction to these bad indices in the error term %’ﬁ,[}vfr no () =1 o e ()
is estimated by, as N — oo,

d(N)
covol%@b( )

We set I]g{f’;d = Iy 4 — I3 Using the mean value theorem, for all (m, p) € ]jg\ffﬂld,

(1 + diamg)| £l N (A2 + diam)? )

(23) Ou (

since Im(2) > 0 by definition of %% and using the uniform estimate (19), the
quantity (17) is bounded by

p ap p®
24 d N “N1+—=) —1——| =0, ( d N )
@0 oo Vmp (1 2)" = 1= 22 = 0, (Leo()
It remains to bound from above the sum Sy 4 = > (mp)erEood 7@1’2!2_&. For that matter,

AQ‘mF 2a

SV )) and (20) then we apply
again Lemma 2.9 (summing over A, with § = —« and x = N), which gives us an
upper bound for the sum Sy 4 as follows

we use the estimates (19) (in the form [p[* = O, (

1 A2\ 220 .
Sna < Z Oa< [m| )Card{peA—{O} : (m,p)efjg\;ﬁd}

= mfPe P(N)?
0<|m|<N
-« . 2
_ Z 1 o ( A2 )O ((Aé\([N) —l—dlamx))
N o mle “Np(N)2/) ¢ covolg
0<|m|<N
ANL . 2
o (A2( é\(’N) +d1amﬂ)) Z 1
“ covoly (V)2 . m|e
0<|m|<N
a AN : 2
:Oa <A2N2 ( ]\([N) —l—dlamK) >

covolA O(N)?
18



This estimate together with the one over I]‘?,ff}‘ given in Equation (23), and the bound
given in Equation (24) gives us, as N — o0,

2 2—a (AN~ . RY
RN () = v (f) = Oa (A 11>V 2( ooy + diamy)
o T covol Y(N)o(N)

(1 + diamyg)| £l N (A2 + diam;)?
+ )

p(N)
covol% »(N)

Since the renormalization factor is given by the formula ) (N) = (%)2, the latter
estimate can be simplified (using the inequality (a+b)* < 2%(a*+b) for real numbers

a,b> 0 and k € N) and finally rewritten, as N — oo,

X A2|df oo, A® N) 4
R () = i o (£) = O cow{l'% (Faom) v
A

s (1 + diamy)| fo ( A3 B(N)2
covol% Nap(N)

Remark 2.14. If A = 0, the error term in Lemma 2.13 becomes, as N — 0,

N Adfl, AP (14 diamg)[fl, AP
%Ny,l}\/’j,—]\fll (f) - M?\},N’,N”(f) = O ( H H 2 " >

covol% Neg(N) covol% Neg(N)
-0 (A4(1 + diamg) (/] + |dfoo)>
“ covol% Neg(N)

2.5 Riemann sum approximation

The last lemma is a standard Riemann sum approximation. Let again .# be a closed
fundamental parallelogram of A containing 0 and of diameter diamj.

Lemma 2.15. Let 6 € C* and F be a finite subset of A. Then, for every function
f e CYC), we have the inequality

‘](5!200\701[; Z f(md) —J f(2)dz| < Card(F)|6)°||df| () som+5)|odiamy.
s U s(m+7) mer

meF

Proof. Notice that, for all m € F, we have Lebc(d(m + .F)) = covolsz = [6]* covoly.
A direct application of the mean value inequality for f on the convex sets d(m + %)
and then summing over m € F' ends the proof. O]

We now have enough tools to prove our effective theorem.
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3 Proof of Theorem 2.7

We have three different regimes for the scaling factor and the proof will be divided ac-
cordingly. Recall that the renormalization is given by the formula ¢ (N) = (%)2
Let f € C}(C) and choose A > 1 such that supp f = D(0, A).

3.1 Regime ]‘ff(ﬂi s +00
Compared to both other regimes where we get an asymptotic bound for the speed
of convergence, this one is particular as we will asymptotically prove the equality
(%’]O\‘,?V}V}w( f) = 0 representing a drastic loss of mass at infinity. For that reason,
we will not use whole lemmas from Section 2 but only elements of their proof.
For N large enough (independently on N’ N”), we will first prove the equality
%]O\‘,’f]\\}tN,,( f) = 0 (hence %]O\‘,/]\V,_ v (f) = 0 by symmetry), then we will take care of
the diagonal terms (m, p) € Iy, that is to say those which verify ™2 e R.

Fix k € Z. Recall that the set I}, is defined so that, for all indices (m,p) € I},
the formula (m + p)l* — mlek]l = mleFl (14 2)o — 1) holds. Our goal is to prove
that, for IV large enough independently on k, we have the inequality

Do A
](1+%) —1\>W.

Using the notation Iy , from the proof of Lemma 2.13, the indices (m,p) € I}
failing to verify the former inequality are in this set ;{, 4 by Equation (18). Thus it is
sufficient to prove that, for IV large enough, we have I3y , = . For all (m,p) € I} 4,

we can use the estimate |p| = Oa(%), that follows from Equation (19). Thanks

% — 0 as N — o0 and the inequality |[p| > sys; for all
pE A - {0}, we have indeed Iy , = & for N large enough. For such ranks N and
for all N, N” € N, this immediately gives the equality %Z‘i‘,’f}\}tN”( f) = 0. With the
same condition on the ranks N, N’ and N”, the equality Z%N: xo(f) = 0 follows
from the symmetry described in Equation (12). o

The same argument, this time using the set of indices Iy , defined in the proof
of Lemma 2.11 and the estimate (14), gives the result over the diagonal terms. After

summing over Iy 4, U Iy 4 U Iy 4, we have finally proven the equality, for N large
enough and for all N/, N” € N,

to the convergence

AAM) =0

3.2 Local changes of variables
3.2.1 Riemann sums argument

In the two other regimes for the scaling factor ¢, thanks to the symmetry equation
(12) and to Lemmas 2.11 and 2.13, it is sufficient to study the behaviour of the
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sequence (ty yr o (f)) w7, nven defined by the formula that we recall

N"—1

eI M S VI (2

k—* " peh— {0}( m§£1 .

NJJ\FI,NQNN(f)

where I} = {(m,p) € A x (A ={0}) : 0 < |ml|,|m+p| <N and 0(m + p) > 6(m)}..
In order for an index (m, p) to contribute to this sum, it has to verify, as N — oo,

‘p| A AN«

(25) hence |[p| < 2o (N)

- < -
m'  alm|*¢(N)

In order to see the measure py n7 nv as a weighted Riemann sum over the lattice K,
we will use the open angular sector (illustrated in Figure 7)

Cpr ={2€C* : arg(z) € 0(p) — (1 — )27 |k, k + 1[ +27Z},

the ray L, = {z € C* : arg(z) = —%} and the family of change of variables
(k) pe i, pez defined by

hp,k . Cp,k — C* — Lp,k '
z - |Z|7ﬁ67ﬁ with arg(z) = wr € 0(p) — (1 — )27 |k, k + 1].

In other words, these changes of variables are restrictions to C), of the maps

1 )
(26) hpp:z+— exp <— — a(log(zel(_e(p)”ﬂﬂ1)(1_0‘)))+i(0(p)—27r(k:+1)(1—a))))

where log is the nonstandard branch of the logarithm on C — R, defined in the

beginning of Section 2.1. Let p € A— {0} and k € Z. The map h,,j, is biholomorphic

1 hp,k:(z)

and computing its derivative, using the formula (26), gives us hg 2> — 120,

_2-a
whose modulus is z — 2=|z| 1=, We set

(/Up,k- = é A (;,’)(N)az
11—«
meA, m¢R 4 mll=ek]
(mp)ely

allowing us to decompose the measure ,u& N7 v into sums where k and p are fixed,
then apply a different change of variables on each part. The condition m ¢ R, is
introduced so that the points (1 )aaf all belong to C,; and not only to its closure.

In order to add or remove this Condltlon at will, notice the inequality

(27) Card(A n D(0,N) nRy) <
SySy
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For all m € A such that (m,p) € I} and m ¢ R, the change of variable h, is
designed for the following computation:

o(N)ap, o(N)alpl, -1 (1 (B s
o imaar) = (i) 77 hoale G- (e)0my2n))

N 1 ,
_ (¢‘(m‘)10élp\) T o~ 12t (0(p)~(1=a)(0(m)+2mk)) _ (gb(N)ap)‘ﬁ m

where we recall the notation z s = z[-1=a0] Consequently, we have the formula

1
(28) (hpk)sp e = Z Apsy,, where 6y, = (¢(N)ap) Ta.
meA, mgR
(m.p)el;

Using Equation (27), the condition m ¢ R, in the latter formula can be removed up

wwﬁflx ), thus we forget about it until Equation

to an extra error term of order O, (
(35).

In order to compare every measure (h,j)«wp r With a weighted Riemann sum, we
have to establish which part of C is occupied by the indices m in its definition. Recall
that I3 denotes the subset of A x (A —{0}) with conditions 0 < |m/, |m+p| < N and
6(m+p) > 0(m). Putting aside the condition |m+p| < N for the moment, we claim
that such indices m approximately occupy a half-disk (depending on p), namely half
of the closed disk D(0,N). Let B, denote the complex band [—1,0]p + R;. More
precisely, we claim that, modulo the complex subset B, n D(0, N), the set

Dy,={zeC"—{—p} : |2| < N and §(z + p) > 0(2)}

is the half-disk centred at the origin, of radius N and with the argument condition
0(z) €0(p) — m,0(p)| +27Z. The claim follows from a straightforward study of (the
sign of) the function z — 6(z+p)—60(z) which is continous on C— (R, u (—p+R,)),
which can be computed explicitly on the circle C(0, |p|) and whose zeros belong to
the line Rp. See Figure 6 for a summary of this study. A quantitative comparison
between Dy, and the associated half-disk will be stated in Equation (32).

In order to remove the condition [m+p| < N in I}, and to compute the associated
error term, first notice that failing this condition implies that N — [p| < |m| < N.
Using Lemma 2.9 twice (summing over A with § = 0, first with = N then with
x = N —|p|), we obtain, as N — oo with N = |p|,

N2 — (N — |p))?) 1 + diam?
A Dy, — A ey = i G
Card( NLUnp {m € (m,p) € N}) COVOIK 0 ( covolK )
.9
_0 ((]p] +1+ dlamK)N)'
covolx

Thanks to the inequality |p| < % from Equation (25), the condition N > |p|

in the latter estimate is verified for N large enough, uniformly on such indices p.

22



Dy p .
P/ Dy
1y Tt : |
L N,p p
/710 1 /101
// B[}’
/
/
Dy ,p
Figure 6: An illustration of a set Dy, with 6(p) > m, and Dy, with 6(p’) <
AN1—«

Using Lemma 2.9 (summing over A with 8 = 0 and z = ), we can replace the

ag(N)
condition (m,p) € Iy by m € A n Dy, in the definition of ux n y~(f) up to the
error term, as N — oo,

N N"—1 N
MN,N/,NN(f) - (N/ N” Z Z Z f(fn([l ) )

k, N’ EA {O}meAmDNp
l1—a l1—a
(Ifoo(AN 41+ diamd) (AN >2N>
covoliqp(N)

(29) = O,

This invites us to define the measures

Op ke = E A s(n)ap
mll—a,k]
meA, m¢R
meAmDNp

N"—-1 ~ . . .
and fiy n yn = WZ N 2ape—qoy Wpk- Using Equation (27), we obtain

an error term, as N — oo,

AN A
(f|00( é\(fN +1 + diam? 2 é\(]N) 2N [ fllooN )

(30) Ay v no (F) = 1 v v (f) = Oa covolZ () (N sysg

Let .# be a fundamental domain of A containing 0 and of diameter diam;. Set
Dy, = Unmeanpy, (m+F). We apply Lemma 2.15 (on the C! function f,; = foh ;
with 0 = 0y, and F' = A n Dy ), then we use Lemma 2.9 (summing over A with
=0 and z = N since we have the inclusion Dy, < D(0,N)). This grants us the

P,k
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estimate, as N — o0,

S5N,p51v,p fo(2) dz‘ diam ¢

N B Y .
(i)l |0 p|* covol h covolg Idfp. 0N pDN,p loo |0n p|Card(A A Dy p)
(31) _0 <diamﬁ|dfpvk Dl 2)
- (6%

covol% (¢(N)[p|) ==

The set D ~p is "approximately" Dy 5, and is "approximately" a half-disk as we shall
now see. Let us use the notation, for all 2o € C, r > 0, w € R,

H(zp,myw) ={2€C : |z — 2| <rand arg(z — 2¢) € |w — 7, w| +27Z}

which is a half-disk centred at zy, of radius » > 0, with an argument (relative to
its centre) determined by w (more precisely by its image in R/27Z). We want to
compare the complex subset Dy, with the half-disk H(0, N,60(p)). Let u be the

complex number verifying arg(u) = arg(p) + § and |u| = diamjy. Let B, 5 denote
the diamz-neighbourhood of the band B, n D(0, N). Using the triangle inequality,

modulo the set §p7 ~, we have the following inclusions
ﬁN,p < H(u, N + 2diamy, 0(p)) and H(—2u, N — 3diamgy,0(p)) < lN)N,p.

(We don’t necessarily have H(—u, N —2diamy, §(p)) ZNDNypuép,N in the case where
A contains 0, since 0 never belongs to A n Dy, which is the set of indices we defined

1~)N7p with). Thus, the symmetric difference that is of interest here verifies, modulo
-ép,Na

DnpAH(0,N,6(p)) = (Dyy v H(0, N,0(p))) = (D, 0 H(0, N, 6(p)))
< H(u, N + 2diamy, 0(p)) — H(—2u, N — 3diamgy, 6(p)).

Since the set B, v has Lebesgue measure bounded by O((|p| + diam 7)), the latter
inclusion modulo §p7 ~ gives the estimate, as N — oo (with N > 3diamj; and
independently on p e A — {0}),

Lebe (D ,AH(0,N,0(p))) < g((zv + 2diam)® — (N — 3diamy)?) + O((|p| + diam;)N)
(32) = O(diamy; N) + O((|p| + diam;)N) = O((|p| + diamy)N).
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]V+dkunx

Let Ry = —. From the estimates (32) and (31), we derive, as N — o,

(¢(N)alp|) T==

$swp 0N 000 fo(2) d2 |
|0 p|? covol

)(hp,k)*a}p,k(fp,k) -

~0 (diamK”dfM 6N,pﬁNvP1°°N2) + Saw Doy o) 42 = §5 o, o) o (2) 421
covol (¢(N)|p|) ==

o <diam1§||dfp7k 5N,pf)N,p100N2)
covol (¢(N)|p|) ==

+ | ook |95,p (D ,p U H(0,N,0(p))) oo Lebe (6np D pAdn p H(0, N, 6(p)))
covoly [dn p|2

covoly [0 p|?

(33) =0, (diamxﬂdfp,k m(o,RNﬁoN2 o ok 10055 oo (lp] + diamx)N)
covol% (¢(N)|p|) ™= covoly
We set
-1 -1 o
Hcp,k = hp,k (5N,pH(O7 N7 g(p)) - Lp,k) = hp,k (H(07 |5N,p‘N7 - 1 — O[H(p>> - Lp,k)
(where we used the equality arg(dy,) + 0(p) = —10(p) + 0(p) = —12-0(p) for

the right-hand equality). We will geometrically describe HC,; in Section 3.2.2, and
see that this set is the intersection of an angular sector (which turns out to be half

of C,) and the complementary set C — D(0, |65, N|~07%)) = C — D(0, O‘K’,‘l‘ﬁ(i\[)).

Recall the formula f,j, = f o h,; and that the modulus of A, is z — =|z| T«

Hence the Jacobian of hy,j, is z — m|z| T We define

4—2a

1
(34) voi(f) = JHO f(2)|z] 7T dz,

(1 — a)?|0n,p|? covoly

and
N1

V]J\FZ,N’,N” = (N/ N// Z Z

k‘ N peA—{0}

Thanks to the inclusion supp f < D(0, A) and the formula || : z — |2|70=) | we
have the inequalities, for all N € N,

| fok ip0r) | < [ Flleo and [dfp Do,y oo < (1= @) AU df o) < A% dlf o

Let €, be the function 1+|log | if & = 3, and the constant function 1 otherwise. Com-
bining Equations (33) and (27) (to remove the condition m ¢ R, in the definition of
wp7 ), applying the change of variable formula, and using Lemma 2.9 (summing over

A with 8 = 0 and z = ‘iN( ) thanks to Equation (25)), we compute the estimate,
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as N — o0,

~ IfloN &
IU’N,N’,N”(f) + Oa (7’(7@(]\7) SySK) VN,N’,N”(f)
- Y o (Hfm 1D(0,Rn)lloo ([P + diam )N N diam g [|dfp x |D(0,RN)OON2)
«@ _1
e covolz Y (N) covol2 () (¢(N)|p|) ==
lpl< o@([\;)
o, (Mol G NG| Ao gy
f— 2 L « .
covol S 1h(N) covol% h(N)(N) == A o,
Ip|< W(N)

Together with Equation (30), we finally obtain the estimate, as N — oo,

ANl—a)Q
#(N) )

N, 1 + diamg (
35 + o _ .t L ow :Oa HfHOO ¢(N)
(35) HUn N/ N (f) VN N'.N (f) < »(N) (SYSK + covolg

Hﬂu<N1“+1+dmm><gxﬂ%v
covolK W»(N)
A?||df | ,diamz N2 1
H f”oo A Z |p| 1761)'

1

covol% Y(N)p(N) == peA—{0}

pl< AN
3.2.2 Geometric description by symmetry
Set vy v N = Uy e + (2 = —2)sV% o yee Using the symmetry argument (12),

we will be able to compare %ﬁlj\v,v]v,, to vy nv n». This section aims at describing the

measure vy n/ .Nv-

Lemma 3.1. For all k€ Z and all p € A - {0}, up to a complex subset of Lebesgue
measure 0, we have the disjoint union

alplé(N)

HCp,k ) (*Hc_nk) = CpJ{; N (C — D(O, Ni-a

))-

Proof. To prove this, fix & and p as such. We begin by noticing that HC,; and

—HC_,, are indeed subsets of C, . (by definition for HC), j, and thanks to the inclu-
sion —HC_,, € —C_, ; = C, ). Furthermore, they are subsets of C— D(0, %)
since the changes of variable h, } and h:}? . have the same modulus z + [z|~0=%),

More precisely, the definition of 7hp7k granté the formula, for all z € C — Ly,

; 0
h;,lg(z) = \z]_(l_a)e_’(l_o‘)“’“ where arg(z) =wy € 7 (p) +27 |k, k+ 1]
’ —
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HC) x,

alp|lo(N
C(0, 2lplgil)y

Figure 7: Illustration of Lemma 3.1.

or, in other words, for all » > 0 and w € R — (—0(p) + 27Z),

(36) By k(e FE ) =m0 e (0(p) — (1 0) (0(p) + w0 + 2 (- [e(p;; “I)-
Since h . (and similarly h_,,;)) acts separately on each variable in polar coordinates,
it remams to describe HC,j, (resp. —H C',p k) in terms of arguments Wthh reduces

to the description of the set h (S' —{e” = }) (resp. —h_, (S —{e” =2 })) Using
the formula (36) and doing separately the cases 0(p) <7 and 0(p) > 7, we find that

2w 0

B {ew;wee(p)—zm—a)(]k,m@[ e+ 3+ 22 k1)) it o(p) <,
a {e“ :wedp)—2r(l—a)lk— 5+ ) oy ()[} if 6(p) > ,

which is half of the circle arc S' n C,, ;. Similarly, up to a finite number of points
(namely the three points in exp(af(p) — 27k(1 — ) + {—1,0,1})), the complex

0(—
subset —hZ_) ,(S' — {e” =« }) can be proven equal to half of a circle arc, namely

the complement of h. ; (S' — {6_219*(12 }) in S' A C,x. This concludes the proof of the
lemma. O

Thanks to the union described in Lemma 3.1, we derive the following formula
1 N"—1

NN T N 24, A

where we set v, = v + (2 = —2).v7,;, that is to say v, is a measure absolutely
continuous with respect to Lebe with density given by, for all z € C,

42a

- 2
27 e, ine-pio, ey (2)(9(N)alp|) T
(1 — )2 covoly ‘

27

(37> gp,k(z) =



We use the notation C, = C,o n (C — D(0, 22MY)) -~ We notice that the sector

Nl—a
Cypi (C— D(0, Y22 i obtained by a rotation of G, as e 2100, = ¢i2mkeCy
We can then describe vy y/ y» by the following formula
(ag(N)) ™= S 2 e
() = v @R e
(1 —a)Zcovolz (N’ + N")¢(N) k:Z—:N’ peKZ—:{O} eizmkac,
where the sum over p € A — {0} is finite since e?meC, « C —supp f if |p| > %.
When N’, N” — o0, we will average over k the above integrals on e*™C), which will
allow us to replace them by one integral over C— D(0, %) For that purpose, we

separate the cases « € Qn ]0,1[ and o € (R — Q) ]0,1[. Since the averaging over
ke{—N' ...,N"—1} and the one over p € A — {0} are geometrically uncorrelated,
both averaging processes seem to be necessary in order to obtain a rotation-invariant
limit. Imposing a small value of N’ + N” empirically leads to rotation discrepancy
near the origin, as shown in Figure 8 (where N’ = 0 and N” = 1).

1.5 1

1.0

0.5

0.0

—0.5 1

—1.0

—1.5 1

T T T
—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Figure 8: The complex points ¢(N)(nl*% —m[*) inside the disk D(0, 2), for lattices
points m,n € Z[i] with 0 < |m|,|n| < N =20, a = 22 and ¢(N) = Nis,

The measure we will obtain after this averaging process is given by the formula

4—2c

f@)|2| 7= d

_ (ag(N))T= 2
(38) VN(f) - (1 _ Oé) COVOIA‘ w(N) pe/_{z_{o} |p|
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3.2.3 Averaging: the rational case

In this section, we assume that o € Qn ]0,1[ and we write a = ¢ where a and b are
coprime positive natural numbers. We recall that the angle of the restricted open
sectors C,, is 2m(1 — o) = 2% Thus, outside of the union of b rays from the origin
(which is a set of Lebesgue measure 0), we have the covering formula, for all kg € Z

and all p e A — {0},

ko+b—1

(39> k:EkO I[ei%rkacp == (b - a)HC—D(O,a]‘\Z;lldi(g))'

Hence, we can rewrite vy yv n#(f) by regrouping groups of b consecutive integrals,
which gives

(@p(N)) ™= (b — a)| XN | L i
vnren (f) = 1p| ™ j FElEE e
(1 — )2 covolz (N’ + N")p(N) peKZ—:{o} C—D(0, 2lrlen

(ad(N)) T SN 2 i
e R S g | g, TN

k=—N'+| X5 | peX—{0}

We recall the formula ¢)(N) = (];(2 J;{; )2. Using polar coordinate, we can bound from

above the latter integrals as follows, for all k € Z and p € A - {0},

420 s alpl¢(N) - =
1—a <2 I—a = (1 — L R S I-a
[ A FE gz <rlsl [ ar = (= el (D)

NI—«
lN/+NIIJ 5
~ }; ~ % < W and Lemma 2.9 (summing over A with

f=0and z = ‘z];(l&;), we get the estimate, as N — oo,

Using the inequality ‘

AQHf”oo]lZbe(N/ + N”))

(40) s F) = n(F) + O (= SR

3.2.4 Averaging: the irrational case

In this section, we assume that o € (R—Q)n |0, 1[. As we take successive rotations
by an angle 2w« (or equivalently, an angle —27(1 — «)) of the (restricted) angular
sector Cp, there is no possibility of having a periodic covering formula such as Equa-
tion (39). However, since the angle of C), is also 27m(1 — «r), we can still geometrically
understand the error in such a covering. Let C), v y» denote the complex subset

{zeC: |z| = % and arg(z) n (0(p) + 27(1 — o) |

(= ) (N + N")]

11—«

In other words, C,, n/ v is the restriction to C — D(0, a'ﬁ'fi(iv )) of the angular sector

between arguments 0(p) — (1 —a)N” +27Z and 0(p) + (1 — )N’ + 27Z (with direct

— N",N'[) # &}.
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trigonometric orientation). Then, outside of the union of 2(N’ + N”) rays from the
origin (which is a set of Lebesgue measure 0), we have the formula, for all p e A—{0},

N"-1

D Learkag, = (1 — a)(N' + N)Le_po,elsion ) + Lo, o v
[—— M

With computations analogous to the ones in Section 3.2.3, we find a similar error
term, namely as N — oo,

A?| flleo
41 VUN.N' N" =V + O, < )
( ) N,N',N (f) N(f) COVOl?-\*(N/ + N”)
3.3 Regime 2 —, ¢
& N'=* N Lo
Using the formula )(N) = (];(21;(; )2 and Lemma 2.9 (summing over A with § = — 1
and r = %), the third line in the estimate (35) can be bounded, as N — o,
( ATS 1 1
covoly Oa(ﬁ) if a < 3
N2 1 1 VN
e — (3vy) .
o 2 | T =4 L_ O, (—22007) if o =2,
GNSINT PR j
et - 1 =
|p\<% L K Oa(N2(17cx)¢(N) 21&:; ) it o> 2’
1 1
diam_ 1% +sys_ I~ )diam? og (XX a—
where c; = (diam :;Vyolﬁ M0 Since % : g(j(,(m) and even (N2(-9p(N) T )1
A

are negligible with respect to W(N)’ the estimate (35) can be rewritten by removing
the first term of its right-hand side and by combining the second and third terms,
so that the estimate holds for N large enough independently on ||df |, (as required
in our definition of O,). As N — o, we obtain

(A?’(\fHoo + \df\oo>>
covol Ne¢(N) /-

MXI,N’,N"(JC) = VJ—G,N’,N”(f) +0

Then, using the symmetry described in Equation (12) together with Lemma 2.11 (in
which the stated estimate is also negligible when compared to o, see Remark

N*¢(N)
2.12) and Lemma 2.13, (see Remark 2.14) we get, as N — oo,

A (1 + diamg)(|df [l + f\oo))
covol? Neg(N) '

(12)  BNN) = v (F) + O

Thanks to the estimates (40) and (41), we can focus on the behaviour of the sequence
(vn(f))nen defined in Equation (38), where vy is the measure of density

4—2a

2
PR CEL) Ll i
(1 — a) covol; ¥(N) i)
11—«
‘p|<|20‘£5](1\r)
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with respect to the Lebesgue measure of C (with gn(0) = 0 by continuity). In this
regime, using Lemma 2.9 (summing over A — {0} with 3 = = and r = |Z‘N&V)a

have the pointwise convergence

), we

m
Vz e C*, z) —>
on(2) N—® a?(2 — a) covolx

= pa,A(Z)'

More precisely, Lemma 2.9 even grants us the error term, as N — oo, uniformly for

every complex number z € C — D(0, ?\‘fl(i)),

1+ diam%)gb(N))
covol% |z| N1~

gn(2) = pan(2) + Oq <(

For all N € N, the function gy vanishes on the open disk D(0, W#) hence is
bounded from above on D(0, Ojfl(ﬁ)) by
2 74112;
(Oé(b(N)) 1me SySK Z ‘p’% ( ) C
e = a,A
(1 — ) covol; ¢(N) i) W(N)
lpl<1

Integrating these error terms over C and since SD 0.4 T] Ldz = 21 A, we obtain the
estimate, as N — o0,

[N (f) = pa,a Lebe(f)]
N
< 0 d 0 T
If1 fD(OM) 7 aycovert 141 ijym) o
(1 + diam?)¢(N)
+1fl | (L tamgothy
D(0,4)n(C-D(0,2422)) covoly |z| N
- 1 p(N),2 G(N), 420
=110 O (e (gma)) + 141 0a (o () ™)
(A(l + diam%)qb(N))
“ COVOI% Nl-«o
Al flloo(1 + diam%)(ﬁ(N))

covol% Nl-o

+ 1l O

(43) =0, (

Combining Equations (43), (42), (41) and (40), we have proven Theorem 2.7 in the
case A = 0.
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3.4 Regime % —> A €0, 40

N—w

2—a\ 2 2
N ) ~ N and Gauss

By using the inequality |p| > sysy, the formula ¢(N) = (W =
counting argument (9), in this regime, the estimate (35) grants us, as N — o0,

t v v (F) = vy e e (F)

_0 (A2A2||f||oo( 1 N A™! + diam A2 A3 floo AL+ 1+ diam%)

)+

A4de\|ood1am sysa ()\ 1+d1am )2)

N Sysg cov012~ covol% N

covol3 Ao = N

AY[flloo + ldf o) (1 + diam ) A+ A~ )2+|%\
:oa( )

44
(44) covol% min{1, covolz} min{1,sysz} N

Thanks to the estimates (44), (40), (41) and to Lemmas 2.11 and 2.13, in this regime
too we can focus on the behaviour of the sequence (vy)yeny defined in Equation
(38). Its density gy with respect to the Lebesgue measure of C has the following
the pointwise almost everywhere convergence outside of a countable union of circles:

for all ze C — Upex C(0, aX|p]),

2 _ 42« 2 4—2a
(ag(N)) 77 |#] = S o
on(2) = > — (%) > bl
1 — «) covoly Y(IN £ N—-w (1 —a)covoly \ A 4
- eovlg o) % (1= a) covol E
Ipl< ‘ilg(ma IpIS%

which is the formula of the function p, o defined before Theorem 2.1. In this section,
we aim at making this convergence effective and at concluding the proof of Theorem

2.7. From now on, we assume that N is large enough so that % < < 2\. First,
alsysy )
5 )

Nl «
one can notice that both functions gy and p, s vanish on the open disk D(0,
For all z € D(0, A), we have the inequality

)\sys— _4-2a 4—2a
s 7 ()T g(N) R =
— < N I—a
ow(2) = a2 < | () > o
peA—{0}
Ipl<2%

Oéﬁ ( 5YSK )~ = 2
2 R
o moovol; 2 P Moy (D)~ Tarpl et (12D
A peR—{o}
<24

\p\]} and using Lemma 2 9

)7

< 2), we obtaln

Integrating on each annulus {z € C : |z| € [a\|p|, @ N1 =
24

(summing over p = A\p € AA — {0} with z = 22 > 1 and f = -2 then 3 =
( )

Nl—«a

thanks to the inclusion supp f < D(0, A) and the inequality
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the estimate, as N — o0,

(93 = pan) dLeb |

> ol

|| (on = pondrdrebe| = ||
C D(0,A)—D(0,——2&

) <<Asysx>“li“

)
(gb(N) )% _ )\41—2a

—a

= 42| f] O

covol Nl-«a
peA—{0}
pl<24
_4-—2a
sysg " 2 P(N) N)
2 A
+ 42| f]0 Oq (W > Ip| ™% 27 max {ao |p|,oz)\|p|} N1 > Ipl = axlp]|)
peA—{0}
Ip|< 2%
AT (1+ N2diam%) | G(N) | a2 ATE (14 A2diam?) | ¢(N)
=10 O (o (i) T 1] e S 1))
covol: sysKl’“ AT-a covol: sys/{’“ AT=a
8—6«
[lo A= (1 + Ndiam3) 1 L\ o)
= Oa ( s= (/\41125 " = )})\Nl—a - 1‘)

2 i—
covol% sysz

sinc combining the latter estimate with the
ones from Equatlons (4()) (41), (44) the symmetry described in Equation (12), and
Lemmas 2.11 and 2.13, we have finally proven Theorem 2.7 (in which we simplified
the error term by using standard inequalities such as 1 + M < 2(\ + )‘B | for every
real number ). O

4 Removing the branch cut

In the beginning of Section 2, we defined an empirical pair correlation measure
ﬁ,[}v/ nv- In its definition (3), for all grid points n,m € A, we have the condition

IIm(r) — Im(s)| < 27 where 7, s are logarithms of n,m in the associated Riemann
surface C* = C. In terms of the levels introduced in Section 2.1, this translates to

consider all terms of the form nl®* —mle#] (already taken into account in %ﬁjj\\,}v}v,,),
as well as the terms nl®* 1 — mlakl (vesp. nlokl — mlek+1l) for which the argument

condition §(n) < O(m) (resp. #(n) > O(m)) holds. In other words, comparing the
measure L@f\‘,/]\v, N With its level separated avatar %ﬁ/]\\,}v}v,, defined in Equation (5)
and studied in Section 3, we obtain

(45)
N"—2

a,A a,ALlvl
%N,N/,N” %N N/ N” = (N/ N’/ Z Z Ad)(N)(n[a’k‘*'l]fm[a’k])]]'a(n)<9(m)
— N’ nymeA, n#m
O<|n\ |m|<N

+ Ay (V) (nleok —mlek+11) Loy >0 (m) -

Lemma 4.1. Let A > 1. For every integer k € 7, let

Inak={(n,m)eA? : n#m,0<|n|,|m| <N, plehtll _ ppledk]| < and 6(n) < 6(m) }.

A
¢(N)
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Then we have, as N — o0,

(1+ diamg) AN
7N (
covol% o(N)

Card(In ax) = Oq < + diamK)3 ]1#%0).

Proof. Let (n,m) € Iy ay, set € = w €10, 27| and notice that

a(2rk 4+ 0(m)) € a2rk + ae, 2n] = a2n(k + 1) + a Je — 27, 0]
and a(2m(k + 1) +60(n)) € a2r(k + 1) + a[0, ¢].
Since in addition a €]0,1] and the scaling factor N — ¢(N) converges to +o,
we claim that both points m[** and nl*#*+11 are close to the ray L, of argument

27 (k + 1)a. Indeed, assume first that the segment [nl®F+1 mlekl] and the ray Loy
don’t intersect (which can happen only if o > %) Applying Al-Kashi’s law of cosines

to the triangle with vertices nl®**1 ml** and 0 with angle w € [27(1 — a), 7] at
0, we obtain the inequalities

A \2
(7) > |n[a,k+1] _ m[a,k],Q _ ’n’2a + |m’2a _ 2|n|a|m’a COS(w)

P(N)

> [n** + |m|** — 2|n|%|m|¥ cos(2n(1 — a))

= (In|* = |m[*)* + 2[n|*|m|*(1 — cos(27(1 — ))).

Figure 9: Illustration of the proof that both points nl®**1 (confined in the red
region) and m!®*] (in the blue one) are close to the ray Lg.

Assuming that |n| < |m| (instead of using min{|n|,|m|} and max{|n|,|m|}), the
latter equation and the triangle inequality on |m|® = |[ml**l| = |mlokl + plek+i]]
grant us the bound
1 A
7/2(1 = cos(2m(1 — a))) ¢(IN)
34

(46) n|* <




Then nl**+1 and ml** are both close to 0, hence close to L .
And now if (n/,m’) € Iy 4, and if the segment [k p/lek]] and the ray Lok
intersect, we directly have the inequalities

A
47 dm' ™k Lo, dnoR L) < ——.
(47) ( o) 0 <57
By Gauss counting argument (9) and since — 0, the inequalities (46) are only
(1+diamf\)4

covol2

A

_A
B(N)

valid for a number O, ( ) of indices (n,m) € A%. Hence, from now on we can

assume that [nl®*+1 ml*+] and the ray L, do intersect and work with Equation
(47). Geometrically, this implies that (at least) one of the points nl®*+1 and ml«*]
is in the open half-space centred at L.y, i.e. of equation Re(ze ®7k@) > (. By
symmetry, we can assume this holds for the point ml[®*. Set

P, : 2+ |z|*€" where arg(z) =w e 2n(k + 1)+ |e — 27, [.

This function coincides with z — zl“* around m, and with z — zl®**+1 at n. Set

EN = ﬁ. Denote by ¢ a point in L, for which the inequality |mlekl — 0] < ey
holds. By the reversed triangle inequality, we see that |¢| € D(|m|% en). Applying
the mean value inequality to the inverse function of P,, we can locate the grid point
m as follows

1

m — P (0)] < [ml** — ¢ max NIt W< en=(6] +en)s
D(ten) o

In other words, the grid point m is close to the positive real line in the following

sense

(48) m e D(xo, N (po gN)%—l) where zo = P-1(0) e R,.
(6%

1_
We assume that N is large enough so that the three inequalities ey < 1, % < %

and =X(2% + ¢ N) ~1 hold. The latter inequality implies that xy > 2 for Equation
(48) to hold. One can then notice that the ball described in Equation (48) has

radius bounded by EQEN x5 ¢ < %azo. Since it is centred at xy > 2, we obtain
the inequality Re(m) = 1. More generally, for every real number z > 1, the ball
from Equation (48) can intersect the vertical line above z (or equivalently contains
x) only if zy < 2z. Using the notation L, of Lemma 2.10, this remark applied to
x = Re(m) € [1, |m]|] implies that the point m belongs to the set L, for the function

1_

g:x—

Applying Lemma 2.10 to the grid A and the inequalities maxp,_14 9 = g(k) < g(N)

(since g is nondecreasing), this gives us the inequality

(1 + diamy)(g(N) + diamy)
covolg '

(49) Card{meA:3Ine A, (n,m)€ Iyax} < 4N
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In order to count not only such points m but all the ordered pairs (n,m) € In .,

we will use the function Qg : z — zla%. The assumption 6(n) < 6(m) gives the

[a,k+1]

formula * = Qo (" oy ) By applying the mean value inequality to the function @),

between the points 1 and ”[a[a J,:]] on an adequate neighbourhood V' of 1 (for instance

we can choose the semi-open half-disk V' = D(1, W) N Qu(C*) for Ny large

enough so that the closure of this half disk does not contain 0), we obtain, with
Ca = maxy [,

. n[a,k-‘rl] A

- T < o < Cqo

| m‘ Cal mlonk] ¢ S(N)|m|e
A -« Alea

(50) ie. |m—n|<c, i

———— < Cy——-
o(N) ¢(N)

Using Gauss counting argument (more precisely, the right-hand inequality of Equa-

tion (9) applied to the grid m — A), and recalling the definitions ey = ﬁ and
1l o
g(N) = ?’QTENNI*O‘, the latter inequality yields, as N — oo,
1 + diamy)(g(V) + diamy ANt
Card(Iy ax) < 4N( + diamyg)(g(N) + diamg) 7 (ca + diamx)2
- covol covolg o(N)
(1 + diamy) . AN 3
=0 ( 2AN( +d1amx) )
covol #(N)
In the case A # oo, this proves the lemma. If A = +00, then Equation (50) becomes
impossible as long as N is large enough so that f,(ﬂi > Cagss , hence Iy 4y is
empty. L]

Proof of Theorem 2.1. Immediate by combining Equation (45) with Lemma 4.1. [

Remark 4.2. In addition, for all f € C!}(C) and A > 1 such that supp f = D(0, A),
we obtain the error term in Theorem 2.1, as min{N, N’ + N"} — o,

'@N N/ N” ) = f f(Z)pa,A(Z) dz + ErrTh.2.7<a7 A7 f7 A)
C

(1 + diamz)N ANt
T Pa <COV012[-\'(N/ + N”)@/)(N)( ¢(N)

+ diam ) IL,\?&JFOO)

From the form of this error term, the same result holds uniformly over some subsets
of Gridc as the one stated in Theorem 1.1. See the second point in Remarks 2.8 for
an explanation.

Proof of Theorem 2.2. Immediate by combining the rational version of Theorem 2.7
stated in Remark 2.8 with Lemma 4.1. O
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Proof of Theorem 1. 1 Let v €]0,1[. Assuming ¢(N) = N and ¢(N) = N2C-a=7),

we can compare % NO , defined in Equation (3) to the measure Zy defined in the
introduction and obtain

1A 1
AN = N0 = oy 2 2 AV (exp(3)—exp(3):
w m,neA, n#m reexp~!(m), scexp—!(n)
0<|m|,[n|<SN  |Im(r)—Im(s)|>2n

0<Im(r),Im(s)<27b

Since z + exp(7) induces a biholomorphism from C/i2wbZ to C*, for two points
exp(7) and exp(7) to be close together, the associated classes [r] and [s] have to
be close together in C/i2rbZ. Under the assumptions |Im(r) — Im(s)| > 27 and
0 < Im(r),Im(s) < 2xb, this implies that one of the two points r,s is close to the
real line, and the other one to the horizontal line R + 27b. We use the notation

Inap from Lemma 4.1. Let f e C}(C) and A > 1 be such that supp f < D(0, A).

1
For N large enough, for an index (n, m) to contribute to the sum Zy(f)— ]’{,gb(f),

then either (n,m) or (m,n) has to belong to In 45. The number of such points n, m

is evaluated in Lemma 4.1. Combining this with Theorem 2.2, we obtain the vague
1

convergence Zn — ]’{,i)\b = 0 as N — +o0 and deduce Theorem 1.1. O
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