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Effective pair correlations
of fractional powers of integers

Rafael Sayous
June 7, 2023

Abstract
We study the statistics of pairs from the sequence pnαqnPN˚ , for every parameter
α P s0, 1r. We prove the convergence of the empirical pair correlation measures
towards a measure with an explicit density. In particular, when using the scaling
factor N ÞÑ N1´α, we prove that there exists an exotic pair correlation function
which exhibits a level repulsion phenomenon. For other scaling factors, we prove
that either the pair correlations are Poissonian or there is a total loss of mass. In
addition, we give an error term for this convergence.

1 Introduction
In order to understand the distribution of a sequence punqnPN˚ in a locally compact
metric additive groupG, an important aspect is the statistics of the spacings between
some pairs of points. The approach consisting in taking all pairs of points into
account is the study of pair correlations, more precisely the asymptotic study of the
multisets FN “ tun ´ umu1ďn‰mďN as N Ñ 8.

These problems were initially developed in physics, especially in quantum chaos,
which has lead to a purely mathematical point of view of pair correlations. See
[RS98, AAL18, LS20] for questions directly linked to quantum physics. In various
examples for the group G, the usual point of comparison for pair correlations is the
(almost sure) behavior of those of a homogeneous Poisson point process of constant
intensity on the space G. If the pairs from punqnPN˚ have the same behavior, the
sequence is said to have Poisson pair correlations. It is of interest on its own to define
precisely what this behavior is and to quantify how "pseudorandom" a deterministic
sequence has to be when its pair correlations are Poisson [Hin+19, ALP16, Mar20].
Another point of interest is then to find out whether a given sequence has this
behavior or not [RS98, BZ05, LS18, LT22, Wei23].

For instance, the sequence ptnαuqnPN, where t¨u denotes the fractional part func-
tion, has Poisson pair correlations if α is small enough, as proven by C. Lutsko,
A. Sourmelidis and N. Technau in their paper [LST21], and in the special case
α “ 1

2 , as shown by D. Elbaz, J. Marklof and I. Vinogradov in [EMV15]. As for
the pseudorandomness of this sequence, there are two opposite arguments: on one
hand, for all α P s0, 1r , it equidistributes with respect to the Lebesgue measure on
r0, 1r (see [KN74, Theo. 2.5]), on the other hand, in the case α “ 1

2 , it does not
behave like a Poisson process at the level of its gaps (i.e. when we only take into
account pairs of points that are consecutive for the order on r0, 1r ), as pointed out
by N.D. Elkies and C.T. McMullen [EM04].
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In this paper, the metric group G is R. Let us give some examples of pair
correlations in a noncompact setting. On G “ R, the lengths of closed geodesics
in negative curvature have Poisson pair correlation or converge to an exponential
probability measure (depending on the scaling factor) [PS06]. On G “ R then
G “ C, the special case where un “ logpnq has been shown to exhibit three different
behaviors (once again depending on the scaling factor) [PP22a, PP22b, PP22c].
Motivated and inspired by these works, we fix α P s0, 1r and study the real sequence
of general term un “ nα. Let β P s0, 1r , that we will use as a parameter that
determines the scaling. We denote by ∆x the unit Dirac mass at x. We define the
empirical pair correlation measure of punqnPN at order N as

Rα,β
N “

1
N2´α´β

ÿ

1ďn‰mďN

∆Nβpnα´mαq.

One interesting behavior in this sum will happen when n andm are close to the upper
bound N . In that sense, the linear approximation NβpNα´ pN ´1qαq „ αNβ´p1´αq,
as N Ñ 8, suggests that a fruitful scaling is given by β “ 1 ´ α. Such an intuition
is confirmed in our main theorem.

In order to state it, we recall that a sequence of positive measures pµnqnPN on
R is said to converge vaguely if there exists a positive measure µ on R such that,
for every continuous and compactly supported complex-valued function f defined
on R, we have the convergence µNpfq ÝÑ

NÑ8
µpfq, and then we write µN ˚

á
NÑ8

µ.
In that context, if µpRq ă lim infNÑ8 µNpRq (resp. if µpRq “ 0), we say that the
convergence exhibits a loss of mass (resp. total loss of mass). If there exists ε ą 0
such that µp s ´ ε, εr q “ 0, we say that the measure µ exhibits a level repulsion
of size ε. Finally, saying that pnαqnPN˚ has Poisson pair correlations means that
the limit measure µ has a Radon-Nikodym derivative with respect to the Lebesgue
measure which is constant. To illustrate the following theorem, an example of the
pair correlation function ρα in the case β “ 1 ´ α is shown on Figure 1.

Theorem 1.1. We have the following vague convergence of positive measures

Rα,β
N

˚
á

NÑ8
ρα LebR

where LebR is the Lebesgue measure on R and ρα : R Ñ R` is the measurable
nonnegative function given by

ρα : t ÞÑ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if β ą 1 ´ α,

1
αp2 ´ αq

if β ă 1 ´ α,

α
1

1´α

1 ´ α
|t|´

2´α
1´α

t
|t|

α u
ÿ

p“1
p

1
1´α if β “ 1 ´ α,

where | ¨ | denotes the absolute value function on R, and t¨u is the lower integer part
function from R to Z.
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We can interpret Theorem 2.1 as a result on counting small values in the multisets
FN “ tnα ´ mαu1ďn‰mďN as N Ñ 8. Indeed, the theorem, together with the
regularity of the function ρα, is equivalent to the claim that, for all a, b P R such
that a ă b, we have the convergence

1
N2´α´β

Card
´

FN X
‰ a

Nβ
,
b

Nβ

“

¯

ÝÑ
NÑ8

ż b

a

ραptq dt.

Let us comment on the transitional regime β “ 1 ´ α. The even function ρα
is piecewise continuous on R, with discontinuity at each point in αZ ´ t0u, and
bounded: its maximum is reached at the points ˘α and is equal to ραpαq “ 1

αp1´αq
.

For every k P Z´ t0u, the function ρα is smooth on the open interval skα, pk` 1qαr.
As t Ñ ˘8 in R´Z, a comparison with an integral shows that ρα1ptq „ ´1

αp2´αqt
. Thus

the function ρα flattens around ˘8. The same comparison with an integral gives us
the convergence ρα Ñ

˘8

1
αp2´αq

. This limit could be interpreted as a continuity result
between the two regimes β “ 1 ´ α and β ă 1 ´ α. Indeed, we have the equality
supp Rα,β

N “ NβFN , thus the points from the multiset FN sent to ˘8 when scaled
by a factor Nβ, under the regime β “ 1 ´ α, need a smaller scaling factor to be
actually observed in the support of a limiting measure: those are points giving rise
to the Poisson behavior of pair correlations of pnαqnPN˚ in the regime β ă 1 ´ α.
Such a continuity interpretation can also be argued between the cases β “ 1´α, for
which ρα LebR exhibits a level repulsion of size αλ, and β ą 1 ´ α where we have a
total loss of mass. See Figure 1 for an example of both those continuity properties.

− 1
2

0 1
2

0

4
3

Empirical pair correlations distribution of (
√
n)1≤n≤N with N = 106 and φ(N) =

√
N .

Figure 1: The empirical distribution (in blue) of pair correlations for p
?
nq1ďnďN with

N “ 106 using the scaling factor N ÞÑ
?
N (and renormalization factor N ÞÑ N),

and the limit distribution ρ 1
2

(in red).

Theorem 1.1 will be stated in more detailed version in Theorem 2.1 using a wider
range of scaling factors, then in an effective (stronger) version in Theorem 2.2.

3



Our study is much more involved than the work of [PP22a] on the pair cor-
relations of plogpnqqnPN˚ . Here we have different sequences to study in parallel,
depending on the parameter α. In order to have a precise estimate for the error
term, it is important to keep track of its dependence on α in the technical lemmas
we use to prove our theorem. The next section is dedicated to that matter.
Acknowledgements: This research was supported by the French-Finnish CNRS IEA PaCap.
I would like to thank J. Parkkonen and F. Paulin, the supervisors of my ongoing Doctorate,
for their support, suggestions and corrections during this research.

2 The main statement and technical lemmas
Let α P s0, 1r. We will denote the set of nonnegative (resp. positive) real numbers
by R` (resp. R˚

`). We are interested in the statistical behavior of the real sequence
pnαqnPN˚ . For that purpose, we study its empirical pair correlation measures given
by the following general term

Rα
N “

1
ψpNq

ÿ

1ďn‰mďN

∆ϕpNqpnα´mαq

where for every x P R, the notation ∆x stands for the Dirac measure at x, the func-
tion ϕ : N Ñ R˚

` is called a scaling factor and ψ : N Ñ R˚
` is called a renormalization

factor. Both those functions are assumed to be converging to `8.

Theorem 2.1. We assume that ϕpNq

N1´α ÝÑ
NÑ8

λ P r0,`8s and for every N P N, we set
ψpNq “ N2´α

ϕpNq
. Then, we have the following vague convergence of positive measures

Rα
N

˚
á

NÑ8
ρα LebR

where LebR is the Lebesgue measure on R and ρα : R Ñ R` is the measurable
nonnegative function given by

ρα : t ÞÑ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if λ “ `8,

1
αp2 ´ αq

if λ “ 0,

α
1

1´α

1 ´ α

´

|t|

λ

¯´
2´α
1´α

t
|t|

αλ u
ÿ

p“1
p

1
1´α if λ P R˚

`.

We notice that, scaling the pair correlation functions ρα in the exotic case λ “ 1
for different α, we can compare them with each other. Let us define the functions
Ăρα : t ÞÑ αp2 ´αqραpαtq and see on Figure 2 how these functions seem to collapse to
the null function as α Ñ 1, except at integer points where they explode. This remark
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can be considered as a continuity observation as α Ñ 1, since a direct computation
grants the vague convergence

1
N

ÿ

1ďn‰mďN

∆n´m
˚

á
NÑ8

ÿ

pPZ˚

∆p.

−1 0 1
0

1

Figure 2: The scaled pair correlation functions Ăρα in the exotic case λ “ 1 for
different power parameters: α “ 1

2 (in blue), α “ 9
10 (in green) and α “ 99

100 (in red).

Using C1
c functions, we also obtain an effective version of Theorem 2.1. To state

it, we use Landau’s notation. For functions F,G : N ÞÑ C depending on some
parameters including α, we write F pNq “ OαpGpNqq if there exists some constant
cα ą 0, depending only on α, and some integer N0, possibly depending on all the
parameters, such that, for all N ě N0, we have the inequality |F pNq| ď cα|GpNq|. In
our case, the rank N0 will depend on the real number α, the size A of the support of
the test function we evaluate our measures on, and the scaling and renormalization
factors.

Theorem 2.2. We assume that ϕpNq

N1´α ÝÑ
NÑ8

λ P r0,`8s and for every N P N, we set
ψpNq “ N2´α

ϕpNq
. Let f P C1

c pRq and choose A ą 1 such that supp f Ă r´A,As.

• If λ “ `8, then for all N large enough so that αϕpNq

p2Nq1´α ą A, we have Rα
Npfq “ 0.

• If λ “ 0, then there exists cα ą 0 depending only on α such that, for all N large
enough so that ϕpNq ą A

2α´1 , we have the inequality

ˇ

ˇRα
Npfq ´

1
αp2 ´ αq

LebRpfq
ˇ

ˇ ď cαp}f}8 ` }f 1
}8qA3

´ϕpNq

N1´α
`

1
NαϕpNq

`
1
N

¯

.

• If λ P R˚
`, then using the notation ρα from Theorem 2.1, we have the estimate

Rα
Npfq “ ρα LebRpfq

` Oα

´A
3´2α
1´α pλ2}f 1}8 ` λ}f}8q

N
` A2λ}f}8

ˇ

ˇ

ˇ

´ ϕpNq

λN1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

¯

.
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Remark 2.3. An explicit constant cα will be given at the end of the proof of
Theorem 2.2 in the case λ “ 0. The associated statement gives us a somehow weak
control on the error term, as ϕpNq

N1´α can go to zero very slowly. A similar remark
applies to the statement regarding the case λ P R˚

`, since ϕpNq

λN1´α can go to 1 very
slowly.

The fact that Theorem 2.2 implies Theorem 2.1 comes from the classical argu-
ment that one can pass from the convergence of regular measures on C1

c functions
to all C0

c functions by density for the } ¨ }8 norm. However, in the space C0
c we loose

any kind of effectiveness as p}f 1
n}8qnPN can explode along a sequence approximating

a continuous function.

2.1 Symmetry of the empirical pair correlation measures
For the clarity of the proof, we begin with some practical lemmas. The first one
uses the symmetry centered at 0 of the measures Rα

N . In order to reduce the proof
of Theorem 2.2 to the asymptotic study of a sequence of measures on R`, we define

Rα,`
N “

1
ψpNq

ÿ

1ďmănďN

∆ϕpNqpnα´mαq and Rα,´
N “

1
ψpNq

ÿ

1ďnămďN

∆ϕpNqpnα´mαq

so that we have the decomposition Rα
N “ Rα,`

N ` Rα,´
N and the inclusions of their

support supppRα,`
N q Ă R˚

` and supppRα,´
N q Ă ´R˚

`.

Lemma 2.4. We assume that ϕpNq

N1´α ÝÑ
NÑ8

λ P r0,`8s and for every N P N, we
set ψpNq “ N2´α

ϕpNq
. Let f P C1

c pRq and A ą 1 such that supp f Ă r´A,As. Set
f̌ : t ÞÑ fp´tq. Let F : N Ñ R` be a function possibly depending on the parameters
α, ϕ, }f}8, }f 1}8, A and λ. We assume there exists a real number cα ą 0, only
depending on α, and a integer N0 P N such that, for all N ě N0,
ˇ

ˇRα,`
N pfq ´ 1R`

ρα LebRpfq
ˇ

ˇ ď
cα
2 F pNq and

ˇ

ˇRα,`
N pf̌q ´ 1R`

ρα LebRpf̌q
ˇ

ˇ ď
cα
2 F pNq.

Then, for all N ě N0, we have the inequality
ˇ

ˇRα
Npfq ´ ρα LebRpfq

ˇ

ˇ ď cαF pNq.

Proof. Using the symmetry Rα,´
N “ pt ÞÑ ´tq˚R

α,`
N , the invariance of the parame-

ters of F under this change of variable, and the fact that ρα is even, we have the
inequality, for all N ě N0,

ˇ

ˇRα,´
N pfq ´ 1R´

ρα LebRpfq
ˇ

ˇ “
ˇ

ˇpt ÞÑ ´tq˚pRα,`
N ´ 1R`

ρα LebRqpfq
ˇ

ˇ

“
ˇ

ˇRα,`
N pf̌q ´ 1R`

ρα LebRpf̌q
ˇ

ˇ ď cαF pNq.

The result then follows from the triangle inequality.
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2.2 Linear approximation
The second lemma is a linear approximation process. Indeed, we will be able to
approximate the re-written expression Rα,`

N “ 1
ψpNq

řN´1
m“1

řN´m
p“1 ∆ϕpNqppm`pqα´mαq

by the positive measure on R` defined by

µ`
N “

1
ψpNq

N´1
ÿ

m“1

N´m
ÿ

p“1
∆ϕpNq

αp

m1´α
.

Lemma 2.5. Let f P C1
c pRq and choose A ą 1 such that supp f Ă r´A,As. Let

N P N˚. We assume that N is large enough so that ϕpNq ą A
2α´1 . Then there exists

a positive constant c1
α ą 0 depending only on α, such that

|Rα,`
N pfq ´ µ`

Npfq| ď c1
αA

3
}f 1

}8

N2p1´αq

ψpNqϕpNq2 .

Remark 2.6. In the case at hand, we will assume that the renormalization factor is
linked to the scaling factor by the formula ψpNq “ N2´α

ϕpNq
. The inequality in Lemma

2.5 thus becomes

|Rα,`
N pfq ´ µ`

Npfq| ď c1
αA

3
}f 1

}8

1
NαϕpNq

.

Proof. For all a, b P Z, we use the double brackets notation Ja, bK “ ta, a` 1, . . . , bu
for the interval of integers between a and b. Let N ě 2 (for N “ 1, we have
Rα,`

1 “ µ`
1 “ 0). For m P J1, N ´ 1K and p P J1, N ´ mK, we want to bound from

above the quantity
ˇ

ˇf
`

ϕpNqppm ` pq
α

´ mα
q
˘

´ f
`

ϕpNq
αp

m1´α

˘
ˇ

ˇ.

To do so, we first observe that a bound on the contributing p arises from the fact
that the function f is compactly supported. Indeed, for all m P J1, N ´ 1K and
p P J1, N ´ mK, we have the equivalences

ϕpNq
αp

m1´α ď A ðñ p ď Am1´α

αϕpNq

and ϕpNqppm ` pqα ´ mαq ď A ðñ p ď p A
ϕpNq

` mαq
1
α ´ m.

Thus we set some bound for p in this proof by defining the function

(1) pmax : pN,mq ÞÑ

Y

max
!Am1´α

αϕpNq
,
` A

ϕpNq
` mα

˘
1
α ´ m

)]

and we denote by IN the set of indices pm, pq respecting that bound on p, that is to
say IN “ tpm, pq P N2 : 1 ď m ď N ´ 1, 1 ď p ď pmaxpN,mqu.

Applying the mean value inequality to f and the Taylor-Lagrange inequality to
the function x ÞÑ p1 ` xqα, we obtain the following inequality, for all pm, pq P IN ,
ˇ

ˇfpϕpNq ppm ` pq
α

´ mα
qq ´ f

`

ϕpNq
αp

m1´α

˘
ˇ

ˇ ď }f 1
}8ϕpNqmα

ˇ

ˇ

`

1 `
p

m

˘α
´ 1 ´

αp

m

ˇ

ˇ

ď }f 1
}8ϕpNq

αp1 ´ αq

2
p2

m2´α
.(2)
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Our goal is then to bound from above the sum
ř

pm,pqPIN

p2

m2´α . For that pur-
pose, we use some integral comparison. We extend pmax to N˚ ˆ R` still using the
expression (1). We will compare the above sum to the integral defined by

JN “

ż N´1

x“1

ż pmaxpN,x`1q`1

y“1

y2

x2´α
dydx.

To justify the comparison, we begin with a unit square. The variations in each
variable of the integrand function provide the inequality, for every m, p P N˚,

ż

rm,m`1sˆrp,p`1s

y2

x2´α
dydx ě

p2

pm ` 1q2´α
.

We can bound from below the integral JN by the sum of integrals on the unit squares
under the graph of the nondecreasing function pmaxpN, ¨q ` 1. We thus obtain

ż N´1

x“1

ż pmaxpN,x`1q`1

y“1

y2

x2´α
dydx ě

N´2
ÿ

m“1

pmaxpN,m`1q
ÿ

p“1

ż

rm,m`1sˆrp,p`1s

y2

x2´α
dydx

ě

N´2
ÿ

m“1

pmaxpN,m`1q
ÿ

p“1

p2

pm ` 1q2´α

“
ÿ

pm,pqPIN

p2

m2´α
´

pmaxpN,1q
ÿ

p“1
p2.

As ϕ ÝÑ
8

`8, the definition of pmax indicates that pmaxpN, 1q “ 0 for N large
enough. More precisely, it is the case if we have both inequalities A

αϕpNq
ă 1 and

p A
ϕpNq

´1q
1
α ´1 ă 1, or equivalently if we have ϕpNq ą Amax

␣ 1
α
, 1

2α´1

(

“ A
2α´1 which

is one of our assumptions. Hence we have the inequality
ř

pm,pqPIN

p2

m2´α ď JN .
It remains to evaluate the integral JN . Using the facts that for all x ě 1 (or

x “ 0), we have the inequality px` 1q3 ´ 1 ď 23x3 and by observing that pmaxpN, ¨q
is integer-valued, we obtain the following sequence of inequalities

JN “

ż N´1

1

ż pmaxpN,x`1q`1

1

y2

x2´α
dydx “

1
3

ż N´1

1

ppmaxpN, x ` 1q ` 1q3 ´ 1
x2´α

dx

ď
23

3

ż N´1

1

pmaxpN, x ` 1q3

x2´α
dx

ď
8
3

ż N´1

1

max
␣

Apx`1q1´α

αϕpNq
, p A
ϕpNq

` px ` 1qαq
1
α ´ px ` 1q

(3

x2´α
dx

ď
8
3

23p1´αqA3

α3ϕpNq3

ż N´1

1
x1´2α dx `

8
3

ż N´1

1

px ` 1q3`p A
ϕpNqpx`1qα ` 1q

1
α ´ 1

˘3

x2´α
dx

ď
8.23p1´αqA3

6p1 ´ αqα3
N2p1´αq

ϕpNq3 `
8
3J

1
N ,

8



where J 1
N is the last integral on the previous line. Using the mean value inequality for

the map x ÞÑ p1`xq
1
α (whose derivative is increasing) between 0 and A

ϕpNqpx`1qα , and
the inequality A

ϕpNq
ď 1 (coming from our assumption ϕpNq ą A

2α´1), the remaining
integral J 1

N can be bounded as follows

J 1
N ď

ż N´1

1

px ` 1q3` 1
α

p1 ` A
ϕpNqpx`1qα q

1
α

´1 A
ϕpNqpx`1qα

˘3

x2´α
dx

ď
2 1

α
´1A3

α3
1

ϕpNq3

ż N´1

1

px ` 1q3p1´αq

x2´α
dx

ď
2 1

α
`2´3αA3

α3
1

ϕpNq3

ż N´1

1
x1´2α dx ď

2 1
α

`2´3αA3

α3
N2p1´αq

ϕpNq3 .

Combining this integral approximation with our inequality (2), we finally obtain the
inequality

|Rα,`
N pfq ´ µ`

Npfq|

ď
αp1 ´ αq

2 }f 1
}8

ϕpNq

ψpNq

ÿ

pm,pqPIN

p2

m2´α
ď
αp1 ´ αq

2 }f 1
}8

ϕpNq

ψpNq
JN

ď
αp1 ´ αq

2 }f 1
}8

ϕpNq

ψpNq

´8 ¨ 23p1´αqA3

6p1 ´ αqα3
N2p1´αq

ϕpNq3 `
8 ¨ 2 1

α
`2´3αA3

3α3
N2p1´αq

ϕpNq3

¯

ďc1
αA

3
}f 1

}8

N2p1´αq

ψpNqϕpNq2

where c1
α “

21`3p1´αq`2
1
α `4´3α

p1´αq

3α2 ď 32
3

2
1
α

α2 .

2.3 Riemann sum approximation for compactly supported
functions

Finally, the third lemma is a practical quite standard version of the Riemann sum
approximation with estimate of the error term which is suitable for compactly sup-
ported C1 functions.
Lemma 2.7. Let f P C1

c pRq and choose B ě 0 such that supp f Ă r´B,Bs. Let
δ ą 0 and M P N˚. Then

ˇ

ˇ

ˇ

ż Mδ

0
fptqdt ´ δ

M
ÿ

p“1
fppδq

ˇ

ˇ

ˇ
ď

}f 1}8

2 δmintB,Mδu.

Proof. Assume that Mδ ď B. By the triangle and mean value inequalities, we thus
have, for all p P J1,MK,
ˇ

ˇ

ˇ

ż pδ

pp´1qδ

fptqdt´δfppδq
ˇ

ˇ

ˇ
ď

ż pδ

pp´1qδ

|fptq´fppδq|dt ď

ż pδ

pp´1qδ

}f 1
}8ppδ´tqdt “ }f 1

}8

δ2

2 .

9



By summing over p P J1,MK and using the triangle inequality, the lemma is proved
in the case Mδ ď B.

Now let us assume that Mδ ą B. The quantity we want to evaluate can be
written

ˇ

ˇ

ˇ

ż B

0
fptqdt ´ δ

t B
δ u
ÿ

p“1
fppδq

ˇ

ˇ

ˇ
.

The case we first proved thus yields the inequality

(3)
ˇ

ˇ

ˇ

ż δt B
δ u

0
fptqdt ´ δ

t B
δ u
ÿ

p“1
fppδq

ˇ

ˇ

ˇ
ď

}f 1}8

2 δ2
YB

δ

]

.

For the remaining part of the integral, we use once again the triangle and mean
value inequalities and obtain

(4)
ˇ

ˇ

ˇ

ż B

δt B
δ u
fptqdt

ˇ

ˇ

ˇ
ď

ż B

δt B
δ u

|fptq ´ fpBq|dt ď
}f 1}8

2

´

B ´ δ
YB

δ

]¯2

Summing both inequalities (3) and (4), we get

ˇ

ˇ

ˇ

ż B

0
fptqdt ´ δ

t B
δ u
ÿ

p“1
fppδq

ˇ

ˇ

ˇ
ď

}f 1}8

2 δ2
´YB

δ

]

`

´B

δ
´

YB

δ

]¯2¯

ď
}f 1}8

2 δ2
´YB

δ

]

`

´B

δ
´

YB

δ

]¯¯

“
}f 1}8

2 δB.

This concludes the proof of the Lemma 2.7.

3 Proof of Theorem 2.2
We now have the tools to prove our theorem. As we are studying three regimes
for the scaling factor ϕ that are completely different in terms of behavior of the
sequence pRα

NqNPN, the proof will be divided accordingly. Recall that we impose, for
all N P N, that the renormalization factor is ψpNq “ N2´α

ϕpNq
, even though it has no

importance in the first regime. By Lemma 2.4, we only need to study the effective
behavior of the positive part of our pair correlation measures, which is defined by

Rα,`
N “

1
ψpNq

N´1
ÿ

m“1

N´m
ÿ

p“1
∆ϕpNqppm`pqα´mαq.

Let f P C1
c pRq and choose A ą 1 such that supp f Ă r´A,As.

10



3.1 Regime ϕpNq

N1´α ÝÑ
NÑ8

`8

In this first case, we want to show the vague convergence towards 0. For all x ě 0,
we have the inequality

p1 ` xq
α

´ 1 “

ż x

0
αp1 ` tqα´1dt ě

αx

p1 ` xq1´α
.

Consequently, for all N P N˚, all m P J1, N ´ 1K and all p P J1, N ´ mK, we obtain

ϕpNqppm ` pq
α

´ mα
q “ ϕpNqmα

``

1 `
p

m

˘α
´ 1

˘

ě ϕpNqmα α p
m

p1 `
p
m

q1´α
“ ϕpNq

αp

pm ` pq1´α
ě

αϕpNq

p2Nq1´α
.(5)

One can notice that we have not yet used any assumption on ϕ (other than its
positivity). If N is large enough so that αϕpNq

p2Nq1´α ą A, Equation (5) yields the
equality Rα,`

N pfq “ 0 (in fact, independently on the choice of the renormalization
factor ψ). That concludes the proof in the first case.

3.2 Regime ϕpNq

N1´α ÝÑ
NÑ8

0

Our goal is to show the asymptotic Poissonian behavior of pRα,`
N qNPN, with the speed

of convergence described in Theorem 2.2. By Lemma 2.5 (more precisely, by the
Remark 2.6 following it), it suffices to prove the same result for pµ`

NqNPN instead.
As we want to show some convergence towards a measure absolutely continuous
with respect to the Lebesgue measure LebR`

on R`, we will use a Riemann sum
approximation of the sums defining the measures µ`

N and thus compare them to
integrals. For that matter, for all N P N ´ t0u and m P J1, N ´ 1K, we set

δN,m “
αϕpNq

m1´α
,

corresponding to the step appearing in the second sum defining µ`
N . Let N P N´t0u.

We define the positive measure ν`
N on R` by

ν`
N “

1
ψpNq

N´1
ÿ

m“1

1
δN,m

1r0,pN´mqδN,ms LebR`
.

Lemma 2.7 with B “ A, M “ N ´ m and δ “ δN,m grants us the inequality

|µ`
Npfq ´ ν`

Npfq| “
1

ψpNq

ˇ

ˇ

ˇ

N´1
ÿ

m“1

1
δN,m

´

δN,m

pN´mq
ÿ

p“1
fppδN,mq ´

ż pN´mqδN,m

0
fptqdt

¯
ˇ

ˇ

ˇ

ď
1

ψpNq

N´1
ÿ

m“1

1
δN,m

}f 1}8

2 δN,m mintA, pN ´ mqδN,mu.(6)
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In order to evaluate the above sum of such minima, we use the following equivalence,
for all m P J1, N ´ 1K,

pN ´ mqδN,m ď A ðñ gNpmq ď 0 where gN : x ÞÑ pN ´ xq ´
A

αϕpNq
x1´α.

A straightforward study of the functions gN shows that they each admit only one
zero xN in s0, N r, which has the asymptotic behavior xN „ N . More precisely, we
have Np1 ´ A

αNαϕpNq
q “ N ´ AN1´α

αϕpNq
ď xN ď N. Using the inequality (6), we obtain

|µ`
Npfq ´ ν`

Npfq| ď
}f 1}8

2ψpNq

´

txN u
ÿ

m“1
A ` αϕpNq

N´1
ÿ

m“txN u`1

N ´ m

m1´α

¯

ď
}f 1}8

2ψpNq

´

NA ` αϕpNq

ż N

xN

N ´ x

x1´α
dx

¯

since x ÞÑ N´x
x1´α is nonincreasing on s0, N s. Using the above approximation of xN ,

we get, for all x P rxN , N s, the inequality N ´ x ď AN1´α

αϕpNq
. The integral

şN

xN

N´x
x1´α dx

is then bounded from above by AN
α2ϕpNq

. Since ψpNq “ N2´α

ϕpNq
, it yields

(7) |µ`
Npfq ´ ν`

Npfq| ď
}f 1}8

2ψpNq

´

NA ` αϕpNq
AN

α2ϕpNq

¯

ď
p1 ` αqA}f 1}8

2α
ϕpNq

N1´α
.

We remark that this error term goes to 0 only in the case at hand: we won’t be
able to use the same measures µ`

N and ν`
N for the last case ϕpNq

N1´α ÝÑ
NÑ8

λ P R˚
`.

Now that we are assured that the measure ν`
N is a good approximation of µ`

N , we
can move forward and study the convergence of pν`

NqNPN. As those measures have
a density, that we denote by θN , with respect to the Lebesgue measure, we study
their pointwise convergence. Let t P R`. We have

θNptq “
1

ψpNq

N´1
ÿ

m“1

1
δN,m

1r0,pN´mqδN,msptq.

To see its behavior as N Ñ 8, we use a t-depending version of the function gN : for
all m P J1, N ´ 1K, we have

pN ´ mqδN,m ď t ðñ gN,tpmq ď 0 where gN,t : x ÞÑ pN ´ xq ´
t

αϕpNq
x1´α.

Once again, each gN,t only has one zero in R` that we denote by xN,t, and we
still have the approximation Np1 ´ t

αNαϕpNq
q “ N ´ tN1´α

αϕpNq
ď xN,t ď N . Since

ψpNq “ N2´α

ϕpNq
, we can rewrite θNptq as follows:

(8) θNptq “
1

ψpNq

txN,tu
ÿ

m“1

1
δN,m

“
1

αϕpNqψpNq

txN,tu
ÿ

m“1
m1´α

“
1

αN2´α

txN,tu
ÿ

m“1
m1´α.

12



The last sum is comparable to an integral. More precisely, we have the approxima-
tion

ż txN,tu

0
x1´αdx ď

txN,tu
ÿ

m“1
m1´α

ď

ż txN,tu

0
x1´αdx ` txN,tu

1´α

i.e. 1
2 ´ α

txN,tu
2´α

ď

txN,tu
ÿ

m“1
m1´α

ď
1

2 ´ α
txN,tu

2´α
` txN,tu

1´α.

Combining this integral comparison with the expression (8) and using the asymptotic
behavior xN,t „ N as t P R` is fixed, we get the pointwise convergence

(9) θNptq ÝÑ
NÑ8

1
αp2 ´ αq

“ ραptq.

We could conclude the proof of Theorem 2.1 in the case at hand, that is under the
regime ϕpNq

N1´α ÝÑ
NÑ8

0, by use of the dominated convergence theorem. However, for
the effective version we present in Theorem 2.2, we need more precision. First, we
have the inequality

|ν`
Npfq ´ ρα LebR`

pfq| ď }f}8

ż A

0

ˇ

ˇ

ˇ
θNptq ´

1
αp2 ´ αq

ˇ

ˇ

ˇ
dt.

For all t P r0, As, the previous integral comparison and the approximation of xN,t
yield

ˇ

ˇ

ˇ
θNptq ´

1
αp2 ´ αq

ˇ

ˇ

ˇ
“

1
α

ˇ

ˇ

ˇ

1
N2´α

txN,tu
ÿ

m“1
m1´α

´
1

2 ´ α

ˇ

ˇ

ˇ

ď
1

αp2 ´ αq
max

!
ˇ

ˇ

ˇ

txN,tu
2´α

N2´α
` p2 ´ αq

txN,tu
1´α

N2´α
´ 1

ˇ

ˇ

ˇ
, 1 ´

txN,tu
2´α

N2´α

)

ď
1
α

´ 1
N

`
t

αNαϕpNq

¯

.

We consequently get the estimate, for all N P N,

(10) |ν`
Npfq ´ ρα LebR`

pfq| ď
}f}8A

α

´ A

2αNαϕpNq
`

1
N

¯

.

Summing the error terms from Lemma 2.5, Equations (7) and (10), we finally get
the effective convergence in the second case of Theorem 2.2: for all N large enough
so that ϕpNq ą A

2α´1 , there exists some real number cα ą 0, depending only on α,
such that

|Rα,`
N pfq ´ ρα LebR`

pfq| ď
cα
2 p}f}8 ` }f 1

}8qA3
´ϕpNq

N1´α
`

1
NαϕpNq

`
1
N

¯

.

(We used cα

2 in order to stick to the notations from Lemma 2.4). An explicit example
of such a constant is given by cα “ 2 max

␣

c1
α,

1`α
2α ,

1
2α2

(

, where c1
α is defined in the

proof of Lemma 2.5 as c1
α “

21`3p1´αq`2
1
α `4´3α

p1´αq

3α2 . Using Lemma 2.4, the same cα is
an example of a constant for Theorem 2.2.
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3.3 Regime ϕpNq

N1´α ÝÑ
NÑ8

λ P R˚
`

Let us first assume that f P C1
c pR˚

`q (instead of C1
c pRq) and choose 0 ă ε ă 1 such

that supp f Ă rε, As. This lower bound on the support of f will not be an obstacle,
as the limiting measure will display some level repulsion property. We discuss how
to pass to general test functions in C1

c pRq at the end of the proof.
For this third and final case, the previous estimate (7) is not enough: it gives

an error term that does not vanish as N Ñ 8. This gives us a hint that the limit
measure will be exotic in comparison to the ones from the two previous regimes.
Let us temporarily use the explicit notation ρα “ ρα,λ in order to emphasize the
dependence of the function ρα on λ. We first notice that, since the real function
x ÞÑ λx is (continuous and) proper, and thanks to the formula

Rα
N “ λpx ÞÑ λxq˚

´ 1
λψpNq

ÿ

1ďn,mďN

∆ϕpNq

λ
pnα´mαq

¯

and the equality λpx ÞÑ λxq˚pρα,1 LebR`
q “ ρα,1

`

¨

λ

˘

LebR`
“ ρα,λ LebR`

, it is suffi-
cient to prove Theorem 2.1 in the special case λ “ 1. For Theorem 2.2, we will discuss
how the error term depends on λ at the end of the proof. Henceforth, we assume
that λ “ 1. As in the study of the regime ϕpNq

N1´α ÝÑ
NÑ8

0, we use Lemmas 2.4 and 2.5
and study the behavior of pµ`

NqNPN. Fix N ě 2. Recall that ψpNq “ N2´α

ϕpNq
„

NÑ8
N

in this case. Set hα : x ÞÑ x´p1´αq which is a diffeomorphism on R˚
` with inverse

x ÞÑ x´ 1
1´α . We can then define the positive measure rµ`

N on R˚
` by the formula

rµ`
N “ ph´1

α q˚µ
`
N , that is

(11)

rµ`
N “

1
ψpNq

N´1
ÿ

m“1

N´m
ÿ

p“1
∆m 1

pαpϕpNqq

1
1´α

“
1

ψpNq

N´1
ÿ

p“1

N´p
ÿ

m“1
∆m 1

pαpϕpNqq

1
1´α

.

We thus see rµ`
N as a weighted sum of Riemann sums with step denoted by

δN,p “
1

pαpϕpNqq
1

1´α

.

We will compare it to the positive measure rν`
N defined by the equality

rν`
N “

1
ψpNq

N´1
ÿ

p“1

1
δN,p

1r0,pN´pqδN,ps LebR`
.

For that purpose, we will use Lemma 2.7, and thus need to understand thoroughly
the quantity mintA, pN ´ pqδN,pu. We have the equivalence, for all p P J1, N ´ 1K,

pN ´ pqδN,p ě A ðñ gNppq ď 0 where now gN : x ÞÑ x ´
1

αA1´α

pN ´ xq1´α

ϕpNq
.
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A straightforward analysis of the function gN shows that it has a unique zero xN in
s0, N r. Then we have the convergence xN ÝÑ

NÑ8
ℓ “ 1

αA1´α . We immediately get the
following bound for the speed of convergence:

(12) xN
ℓ

“
pN ´ xNq1´α

ϕpNq
ď
N1´α

ϕpNq
.

Suppose first that α ‰ 1
2 (i.e. 1

1´α
‰ 2). Because of the initial change of variable

hα, we have to be cautious: when summing to get the total error term, we will
apply Lemma 2.7 to the function rf “ f ˝ hα. The inclusion supp f Ă rε, As yields
supp rf Ă

“ 1
A1´α ,

1
ε1´α

‰

. Set rA “ 1
ε1´α . Applying Lemma 2.7 to rf with δ “ δN,p,

M “ N ´p and B “ rA, and using an integral comparison coming from the fact that
the function x ÞÑ pN ´ xqx´ 1

1´α is nonincreasing on R˚
` (while being cautious of the

case txN u “ 0 for the integral to be definite), we have

|rµ`
Np rfq ´ rν`

Np rfq|

ď
1

ψpNq

N´1
ÿ

p“1

1
δN,p

ˇ

ˇ

ˇ

ż pN´pqδN,p

0

rfptq dt ´ δN,p

N´p
ÿ

m“1

rfpmδN,pq
ˇ

ˇ

ˇ

ď
} rf 1}8

2ψpNq

N´1
ÿ

p“1
mint rA, pN ´ pqδN,pu

ď
}f 1}8

2ψpNq

´

txN u
ÿ

p“1

rA `

N´1
ÿ

p“txN u`1
pN ´ pqδN,p

¯

“
rA} rf 1}8

2ψpNq
txN u `

} rf 1}8

2ψpNq

1
pαϕpNqq

1
1´α

N´1
ÿ

p“txN u`1

N ´ p

p
1

1´α

ď
rA} rf 1}8ℓ

2ψpNq

N1´α

ϕpNq
`

} rf 1}8

2ψpNq

1
pαϕpNqq

1
1´α

´ N

ptxN u ` 1q
1

1´α

`

ż N

txN u`1

N ´ x

x
1

1´α

dx
¯

“
rA} rf 1}8ℓ

2N `
} rf 1}8N

2ψpNqpαϕpNqptxN u ` 1qq
1

1´α

`
} rf 1}8

2ψpNqpαϕpNqq
1

1´α

«

N

1 ´ 1
1´α

x1´ 1
1´α ´

1
2 ´ 1

1´α

x2´ 1
1´α

ffx“N

x“txN u`1

where we used the formula ψpNq “ N2´α

ϕpNq
. The expression between brackets is equal

to
p1 ´ αq2

αp2α ´ 1q
N2´ 1

1´α `
1 ´ α

α
NptxN u ` 1q

´α
1´α `

1 ´ α

1 ´ 2αptxN u ` 1q
1´2α
1´α .

The function x ÞÑ x
´α

1´α is nonincreasing on R˚
`, and x ÞÑ x

1´2α
1´α is monotone (of

monotony given by the sign of 1
2 ´α). By the inequality (12), for all N large enough

(depending only on α, A, ϕ), we have ℓ ď txN u ` 1 ď ℓ` 2, providing the estimates
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ptxN u `1q
´α

1´α ď ℓ
´α

1´α and ptxN u `1q
1´2α
1´α ď Cpℓ, αq “ ℓ

1´2α
1´α or pℓ`2q

1´2α
1´α (depending

of the sign of 1
2 ´α). Summing those error terms, recalling that ϕpNq „ N1´α, hence

ψpNq „ N , and using the inequalities 1
A1´α ď ℓ ď 1

α
, we get the following bound

|rµ`
Np rfq ´ rν`

Np rfq| “ Oα

´

} rf 1
}8

´

rAℓ

N
`

1
Nℓ

1
1´α

`
1

N
1

1´α

`
ℓ

´α
1´α

N
`
Cpℓ, αq

N2

¯¯

“ Oα

´

} rf 1}8p rAℓ ` ℓ´ 1
1´α q

N

¯

“ Oα

´

} rf 1}8p rA ` Aq

N

¯

.

For the case α “ 1
2 , the integration of x ÞÑ N´x

x
1

1´α
gives an extra error term of order

logpNq coming with a factor 1
NϕpNq

1
1´α

„ 1
N2 , which keeps the result valid since

logpNq

N2 ď 1
N

. Recalling the definitions rA “ 1
ε1´α and rf “ f ˝ hα, we finally have

|rµ`
Npf ˝ hαq ´ rν`

Npf ˝ hαq| “ Oα

ˆ

}h1
α f

1 ˝ hα}8

` 1
ε1´α ` A

˘

N

˙

“ Oα

ˆ

}h1
α f

1 ˝ hα}8A

Nε1´α

˙

.(13)

Our goal is now to find the limit of prν`
NqNPN and to inverse the change of variable in

order to get back to pRα,`
N qNPN. Let t P R˚

`. The Radon-Nikodym derivative rθN of
rν`
N (with respect to the Lebesgue measure) is given by

rθNptq “
1

ψpNq

N´1
ÿ

p“1

1
δN,p

1r0,pN´pqδN,psptq.

Let us rewind using the change of variable hα : x ÞÑ x´p1´αq. Set ν`
N “ phαq˚rν

`
N . Its

Radon-Nikodym derivative θN verifies

θNptq “ |ph´1
α q

1
ptq| rθN ˝ h´1

α ptq “
t´

2´α
1´α

p1 ´ αqψpNq

N´1
ÿ

p“1

1
δN,p

1r0,pN´pqδN,ps

`

t´
1

1´α

˘

.

We have the equivalence, for all p P J1, N ´ 1K,

pN ´ pqδN,p ě t´
1

1´α ðñ gN,tppq ď 0 where now gN,t : x ÞÑ x ´
t

α

pN ´ xq1´α

ϕpNq
.

Once again, a direct study of these nondecreasing functions gives us the existence of
a unique zero xN,t of gN,t in s0, N r. It verifies xN,t ÝÑ

NÑ8

t
α

and its definition grants
us the following estimation for its speed of convergence, valid for all N ě 2,

(14) t

α

N1´α

ϕpNq

´

1 ´
t

αNαϕpNq

¯1´α

ď xN,t ď
t

α

N1´α

ϕpNq
.
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This estimate is useful as it implies some uniform convergence, namely that for all
compact subset K in R`, we have

(15) sup
tPK

ˇ

ˇ

ˇ
xN,t ´

t

α

ˇ

ˇ

ˇ
ÝÑ
NÑ8

0.

Using first the nonuniform version of this, we have the following pointwise conver-
gence, for t P R` ´ αN,

θNptq “
α

1
1´α

1 ´ α

ϕpNq
1

1´α

ψpNq
t´

2´α
1´α

txN,tu
ÿ

p“1
p

1
1´α ÝÑ

NÑ8
θ8ptq “

α
1

1´α

1 ´ α
t´

2´α
1´α

t t
α u
ÿ

p“1
p

1
1´α .

Let θ8 : R` Ñ R` denote the limit measurable function on R` in this (almost ev-
erywhere) convergence, which is the restriction to R` of the function ρα in Theorem
2.1 (for λ “ 1). In order to get an effective vague convergence, we first observe the
inequality

|ν`
Npfq ´ θ8 LebR`

pfq| ď

ż A

0
|fptqpθNptq ´ θ8ptqq| dt

ď }f}8

α
1

1´α

1 ´ α

ϕpNq
1

1´α

ψpNq

ż A

0
t´

2´α
1´α

ˇ

ˇ

ˇ

txN,tu
ÿ

p“1
p

1
1´α ´

t t
α u
ÿ

p“1
p

1
1´α

ˇ

ˇ

ˇ
dt

` }f}8

ˇ

ˇ

ˇ

ϕpNq
1

1´α

ψpNq
´ 1

ˇ

ˇ

ˇ

ż A

0
θ8ptqdt.(16)

For all k P N, the function θ8 in bounded on the interval interval rkα, pk ` 1qαr.
Since, by comparing to an integral, we have the convergence θ8 ÝÑ

`8

1
αp2´αq

, this
proves that θ8 is bounded on R`. As θ8 is defined using only the parameter α, we
have

}f}8

ˇ

ˇ

ˇ

ϕpNq
1

1´α

ψpNq
´ 1

ˇ

ˇ

ˇ

ż A

0
θ8ptqdt “ Oα

´

}f}8A
ˇ

ˇ

ˇ

ϕpNq
1

1´α

ψpNq
´ 1

ˇ

ˇ

ˇ

¯

“ Oα

´

}f}8A
ˇ

ˇ

ˇ

´ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

¯

.(17)

As the lower integer part function t¨u is continuous on R ´ Z, we know that, for
all t P R` ´ αN and N large enough depending on t (and α), we have the equality
txN,tu “

X

t
α

\

, meaning that θNptq “
ϕpNq

1
1´α

ψpNq
θ8ptq. We set

θ̂N “
ψpNq

ϕpNq
1

1´α

θN .

Thus the almost everywhere convergence of pθ̂NqNPN is stationary. However, it is not
necessarily uniform as it can be much slower for t close to αN. Define two functions
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δ´ : t ÞÑ t ´ α
X

t
α

\

and δ` : t ÞÑ α
P

t
α

T

´ t, where r¨s denotes the upper integer part
function. We use the speed of convergence of the sequences pxN,tqNPN described in
the inequalities (14) and we get, for all t P pR` ´ αNq X r0, As,

xN,t ă

Y t

α

]

` 1 ðù
t

α

N1´α

ϕpNq
ă

Y t

α

]

` 1 ðñ
N1´α

ϕpNq
ă

X

t
α

\

` 1
t
α

“ 1 `
δ`ptq

t

and xN,t ě

Y t

α

]

ðù
t

α

N1´α

ϕpNq

´

1 ´
t

αNαϕpNq

¯1´α

ě

Y t

α

]

thus xN,t ě

Y t

α

]

ðù
N1´α

ϕpNq

´

1 ´
A

αNαϕpNq

¯1´α

ě

X

t
α

\

t
α

“ 1 ´
δ´ptq

t
.

Now let us study, for N large enough independently on t, the proportion of t P r0, As

verifying both of these inequalities on δ˘ptq. Let us define

XN “

!

t P R` : δ`ptq ď t
´N1´α

ϕpNq
´1

¯

or δ´ptq ă t
´

1´
N1´α

ϕpNq

´

1´
A

αNαϕpNq

¯1´α¯)

,

that is, the subset of t’s failing to verify at least one the two previous inequalities
which were allowing to have θ̂Nptq “ θ8ptq. By definition of δ´ and δ`, the set XN

is included in a union of intervals Ik around each kα, for k P
q
0,
X

A
α

\y
, whose length

is at most

kα
´N1´α

ϕpNq
´ 1

¯

` pk ` 1qα
´

1 ´
N1´α

ϕpNq

´

1 ´
A

αNαϕpNq

¯1´α¯

“ Oα

´

A
ˇ

ˇ

ˇ

N1´α

ϕpNq
´ 1

ˇ

ˇ

ˇ

¯

.

As we will sum these lengths, it is important to notice that the right-hand side of
the previous equality does not depend on k: there exists c2

α ą 0 depending only on
α such that, for N large enough, depending on α, A and ϕ, for all k P

q
0,
X

A
α

\y
, we

have the inequality
LebRpIkq ď c2

αA
´N1´α

ϕpNq
´ 1

¯

.

In order to also get some upper bound on |θ̂N ´ θ8| on XN , we use the uniform
convergence property (15): we know that there exists N0 P N (depending on α
and A) such that for all N ě N0 and for all t P r0, As, we have the inequality
ˇ

ˇtxN,tu ´
X

t
α

\
ˇ

ˇ ď 1. We also notice that θ̂N “ θ8 near 0. More precisely, there exists
some integer N1 ě N0 such that, for all N ě N1, we have the inequality N1´α

ϕpNq
ă 2,

hence xN,t ă 2 t
α

thanks to the right-hand side in the inequalities (14). For such
integers N , we have the equality θ̂N “ θ8p“ 0q on r0, α2 s. This equality can be
understood as the level repulsion phenomenon for θN . We can now bound from
above the integral of |θ̂N ´ θ8|. Indeed, for all N ě N1, we have
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ż A

0
t´

2´α
1´α

ˇ

ˇ

ˇ

txN,tu
ÿ

p“1
p

1
1´α ´

t t
α u
ÿ

p“1
p

1
1´α

ˇ

ˇ

ˇ
dt “

ż

r α
2 ,AsXXN

t´
2´α
1´α

ˇ

ˇ

ˇ

txN,tu
ÿ

p“1
p

1
1´α ´

t t
α u
ÿ

p“1
p

1
1´α

ˇ

ˇ

ˇ
dt

ď

ż

r α
2 ,AsXXN

t´
2´α
1´α

´

x
1

1´α

N,t `

´ t

α

¯
1

1´α
¯

dt

ď

t A
α u
ÿ

k“1

ż

r α
2 ,AsXIk

t´
2´α
1´α

´´

2 t
α

¯
1

1´α
`

´ t

α

¯
1

1´α
¯

dt ď
2

1
1´α ` 1
α

1
1´α

t A
α u
ÿ

k“1

ż

r α
2 ,AsXIk

dt

t

ď
1

α
1

1´α

t A
α u
ÿ

k“1

4.2
1

1´α

α
c2
αA

ˇ

ˇ

ˇ

N1´α

ϕpNq
´ 1

ˇ

ˇ

ˇ
“ Oα

ˆ

A2
ˇ

ˇ

ˇ

N1´α

ϕpNq
´ 1

ˇ

ˇ

ˇ

˙

.

By Equations (16) and (17), and since A ě 1, this gives the final error term for the
vague convergence of pν`

NqNPN:

|ν`
Npfq ´ θ8 LebR`

pfq| “ Oα

ˆ

}f}8A
2
ˇ

ˇ

ˇ

N1´α

ϕpNq
´ 1

ˇ

ˇ

ˇ
` A

ˇ

ˇ

ˇ

´ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

˙

“ Oα

ˆ

}f}8A
2
ˇ

ˇ

ˇ

´ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

˙

.(18)

Recalling the definition of hα : x ÞÑ 1
x1´α , hence |h1

α| : x ÞÑ p1´αq 1
x2´α , and summing

the error terms from Lemma 2.5 and Equations (13), (18), we finally obtain

|Rα,`
N pfq ´ θ8 LebR`

pfq|

ď|Rα,`
N pfq ´ µ`

Npfq| ` |µ`
Npfq ´ ν`

Npfq| ` |ν`
Npfq ´ θ8 LebR`

pfq|

“|Rα,`
N pfq ´ µ`

Npfq| ` |phαq˚rµ
`
Npfq ´ phαq˚rν

`
Npfq| ` |ν`

Npfq ´ θ8 LebR`
pfq|

“ Oα

ˆ

A3}f 1}8

NαϕpNq

˙

` |rµ`
Npf ˝ hαq ´ rν`

Npf ˝ hαq| ` Oα

ˆ

}f}8A
2
ˇ

ˇ

ˇ

´ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

˙

“ Oα

ˆ

A3}f 1}8

NαϕpNq
`

}h1
αf

1 ˝ hα}8A

Nε1´α
` A2

}f}8

ˇ

ˇ

ˇ

´ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

˙

“ Oα

˜

A3}f 1}8

N
`

ˇ

ˇh1
α

`

A´ 1
1´α

˘ˇ

ˇ}f 1}8A

Nε1´α
` A2

}f}8

ˇ

ˇ

ˇ

´ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

¸

“ Oα

˜

A3}f 1}8

N
`
A

3´2α
1´α }f 1}8

Nε1´α
` A2

}f}8

ˇ

ˇ

ˇ

´ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

¸

.

Now let us drop the assumption on the existence of some positive lower bound ε
for supp f : let f P C1

c pRq and choose A ą 1 such that supp f Ă r´A,As. We remark
that both the positive measure θ8 LebR`

and the measures Rα,`
N , for N P N ´ t0u,

display some level repulsion property. Indeed, the function θ8 vanishes on r0, αr,
and Equation (5) implies that, for all N P N, we have supp Rα,`

N Ă
“

αϕpNq

2N1´α ,`8
“

.
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For all N large enough so that ϕpNq

N1´α ą 1
2 , we thus have both inclusions

supppθ8 LebR`
q Ă rα,`8r and supp Rα,`

N Ă
“α

4 ,`8
“

.

Set ε “ α
8 . By a standard smoothing process, we know there exists a function

g P C1
c pRq verifying

(1) the functional equality g “ f (and hence g1 “ f 1) on the interval r2ε, As,

(2) the inclusion supp g Ă rε, As,

(3) the inequality }g}8 ď }f}8,

(4) and the inequality }g1}8 ď }f 1}8 ` 2 }f}8

ε
.

For N large enough, the interval r2ε, As contains the support of both measures
θ8 LebR`

and Rα,`
N . Thus, the approximation g of f grants us the asymptotic

upper bound

|Rα,`
N pfq ´ θ8 LebR`

pfq| “ |Rα
N pgq ´ θ8 LebR`

pgq|

“ Oα

˜

A3}g1}8

N
`

A
3´2α
1´α }g1}8

Nε1´α
` A2}g}8

ˇ

ˇ

ˇ

´ ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

¸

“ Oα

˜

`

A3 ` A
3´2α
1´α qp}f 1}8 ` }f}8q

N
` A2}f}8

ˇ

ˇ

ˇ

´ ϕpNq

N1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

¸

.

Since 3 ă 3´2α
1´α

, this concludes the proof in the case λ “ 1. For the general case,
we use the notation fλ : x ÞÑ fpλxq. Using again the notation ρα,λ to underline the
dependence of ρα on λ, we have

|Rα
Npfq ´ ρα,λ LebRpfq|

“

ˇ

ˇ

ˇ
λpx ÞÑ λxq˚

´ 1
λψpNq

ÿ

1ďn‰mďN

∆ϕpNq

λ
pnα´mαq

¯

pfq ´ λpx ÞÑ λxq˚pρα,1 LebRqpfq

ˇ

ˇ

ˇ

“λ
ˇ

ˇ

ˇ

1
λψpNq

ÿ

1ďn‰mďN

fλ

´ϕpNq

λ
pnα ´ mα

q

¯

´ ρα,1 LebRpfλq

ˇ

ˇ

ˇ

“λOα

˜

A
3´2α
1´α p}f 1

λ}8 ` }fλ}8q

N
` A2

}fλ}8

ˇ

ˇ

ˇ

´ ϕpNq

λN1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

¸

“ Oα

˜

A
3´2α
1´α pλ2}f 1}8 ` λ}f}8q

N
` A2λ}f}8

ˇ

ˇ

ˇ

´ ϕpNq

λN1´α

¯
2´α
1´α

´ 1
ˇ

ˇ

ˇ

¸

.

This proves Theorem 2.2 under the third regime, i.e. assuming λ P R˚
`, and finally

concludes the proof of Theorem 2.2.
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