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Effective pair correlations of fractional powers of integers

We study the statistics of pairs from the sequence pn α q nPN ˚, for every parameter α P s0, 1r. We prove the convergence of the empirical pair correlation measures towards a measure with an explicit density. In particular, when using the scaling factor N Þ Ñ N 1´α , we prove that there exists an exotic pair correlation function which exhibits a level repulsion phenomenon. For other scaling factors, we prove that either the pair correlations are Poissonian or there is a total loss of mass. In addition, we give an error term for this convergence.

Introduction

In order to understand the distribution of a sequence pu n q nPN ˚in a locally compact metric additive group G, an important aspect is the statistics of the spacings between some pairs of points. The approach consisting in taking all pairs of points into account is the study of pair correlations, more precisely the asymptotic study of the multisets F N " tu n ´um u 1ďn‰mďN as N Ñ 8.

These problems were initially developed in physics, especially in quantum chaos, which has lead to a purely mathematical point of view of pair correlations. See [START_REF] Rudnick | The pair correlation function of fractional parts of polynomials[END_REF][START_REF] Aichinger | On Quasi-Energy-Spectra, Pair Correlations of Sequences and Additive Combinatorics[END_REF][START_REF] Larcher | Pair correlation of sequences pta n αuq nPN with maximal additive energy[END_REF] for questions directly linked to quantum physics. In various examples for the group G, the usual point of comparison for pair correlations is the (almost sure) behavior of those of a homogeneous Poisson point process of constant intensity on the space G. If the pairs from pu n q nPN ˚have the same behavior, the sequence is said to have Poisson pair correlations. It is of interest on its own to define precisely what this behavior is and to quantify how "pseudorandom" a deterministic sequence has to be when its pair correlations are Poisson [START_REF] Hinrichs | On a multi-dimensional Poissonian pair correlation concept and uniform distribution[END_REF][START_REF] Aistleitner | Pair correlations and equidistribution[END_REF][START_REF] Marklof | Pair correlation and equidistribution on manifolds[END_REF]. Another point of interest is then to find out whether a given sequence has this behavior or not [START_REF] Rudnick | The pair correlation function of fractional parts of polynomials[END_REF][START_REF] Boca | The Correlations of Farey Fractions[END_REF][START_REF] Larcher | Some negative results related to Poissonian pair correlation problems[END_REF][START_REF] Lutsko | Full Poissonian Local Statistics of Slowly Growing Sequences[END_REF][START_REF] Weiß | An Explicit non-Poissonian Pair Correlation Function[END_REF].

For instance, the sequence ptn α uq nPN , where t¨u denotes the fractional part function, has Poisson pair correlations if α is small enough, as proven by C. Lutsko, A. Sourmelidis and N. Technau in their paper [START_REF] Lutsko | Pair Correlation of the Fractional Parts of αn θ[END_REF], and in the special case α " 1 2 , as shown by D. Elbaz, J. Marklof and I. Vinogradov in [START_REF] El-Baz | The two-point correlation function of the fractional parts of ? n is Poisson[END_REF]. As for the pseudorandomness of this sequence, there are two opposite arguments: on one hand, for all α P s0, 1r , it equidistributes with respect to the Lebesgue measure on r0, 1r (see [KN74, Theo. 2.5]), on the other hand, in the case α " 1 2 , it does not behave like a Poisson process at the level of its gaps (i.e. when we only take into account pairs of points that are consecutive for the order on r0, 1r ), as pointed out by N.D. Elkies and C.T. McMullen [START_REF] Elkies | Gaps in ? n mod 1 and ergodic theory[END_REF].

1 In this paper, the metric group G is R. Let us give some examples of pair correlations in a noncompact setting. On G " R, the lengths of closed geodesics in negative curvature have Poisson pair correlation or converge to an exponential probability measure (depending on the scaling factor) [START_REF] Pollicott | Correlations for pairs of closed geodesics[END_REF]. On G " R then G " C, the special case where u n " logpnq has been shown to exhibit three different behaviors (once again depending on the scaling factor) [START_REF] Parkkonen | On the statistics of pairs of logarithms of integers[END_REF][START_REF] Parkkonen | From exponential counting to pair correlations[END_REF][START_REF] Parkkonen | Pair correlations of logarithms of complex lattice points[END_REF]. Motivated and inspired by these works, we fix α P s0, 1r and study the real sequence of general term u n " n α . Let β P s0, 1r , that we will use as a parameter that determines the scaling. We denote by ∆ x the unit Dirac mass at x. We define the empirical pair correlation measure of pu n q nPN at order N as

R α,β N " 1 N 2´α´β ÿ 1ďn‰mďN ∆ N β pn α ´mα q .
One interesting behavior in this sum will happen when n and m are close to the upper bound N . In that sense, the linear approximation N β pN α ´pN ´1q α q " αN β´p1´αq , as N Ñ 8, suggests that a fruitful scaling is given by β " 1 ´α. Such an intuition is confirmed in our main theorem.

In order to state it, we recall that a sequence of positive measures pµ n q nPN on R is said to converge vaguely if there exists a positive measure µ on R such that, for every continuous and compactly supported complex-valued function f defined on R, we have the convergence µ N pf q ÝÑ N Ñ8 µpf q, and then we write µ N á N Ñ8

µ.

In that context, if µpRq ă lim inf N Ñ8 µ N pRq (resp. if µpRq " 0), we say that the convergence exhibits a loss of mass (resp. total loss of mass). If there exists ε ą 0 such that µp s ´ε, εr q " 0, we say that the measure µ exhibits a level repulsion of size ε. Finally, saying that pn α q nPN ˚has Poisson pair correlations means that the limit measure µ has a Radon-Nikodym derivative with respect to the Lebesgue measure which is constant. To illustrate the following theorem, an example of the pair correlation function ρ α in the case β " 1 ´α is shown on Figure 1. Theorem 1.1. We have the following vague convergence of positive measures

R α,β N á N Ñ8 ρ α Leb R
where Leb R is the Lebesgue measure on R and ρ α : R Ñ R `is the measurable nonnegative function given by

ρ α : t Þ Ñ $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % 0 if β ą 1 ´α, 1 αp2 ´αq if β ă 1 ´α, α 1 1´α 1 ´α |t| ´2´α 1´α t |t| α u ÿ p"1 p 1 1´α if β " 1 ´α,
where | ¨| denotes the absolute value function on R, and t¨u is the lower integer part function from R to Z.

We can interpret Theorem 2.1 as a result on counting small values in the multisets F N " tn α ´mα u 1ďn‰mďN as N Ñ 8. Indeed, the theorem, together with the regularity of the function ρ α , is equivalent to the claim that, for all a, b P R such that a ă b, we have the convergence

1 N 2´α´β Card ´FN X ‰ a N β , b N β " ¯ÝÑ N Ñ8 ż b a ρ α ptq dt.
Let us comment on the transitional regime β " 1 ´α. The even function ρ α is piecewise continuous on R, with discontinuity at each point in αZ ´t0u, and bounded: its maximum is reached at the points ˘α and is equal to ρ α pαq " 1 αp1´αq . For every k P Z ´t0u, the function ρ α is smooth on the open interval skα, pk `1qαr. As t Ñ ˘8 in R´Z, a comparison with an integral shows that ρ α 1 ptq " ´1 αp2´αqt . Thus the function ρ α flattens around ˘8. The same comparison with an integral gives us the convergence ρ α Ñ ˘8 1 αp2´αq . This limit could be interpreted as a continuity result between the two regimes β " 1 ´α and β ă 1 ´α. Indeed, we have the equality supp R α,β N " N β F N , thus the points from the multiset F N sent to ˘8 when scaled by a factor N β , under the regime β " 1 ´α, need a smaller scaling factor to be actually observed in the support of a limiting measure: those are points giving rise to the Poisson behavior of pair correlations of pn α q nPN ˚in the regime β ă 1 ´α. Such a continuity interpretation can also be argued between the cases β " 1 ´α, for which ρ α Leb R exhibits a level repulsion of size αλ, and β ą 1 ´α where we have a total loss of mass. See Figure 1 for an example of both those continuity properties.
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Empirical pair correlations distribution of ( √ n) 1≤n≤N with N = 10 6 and φ(N ) = √ N .

Figure 1: The empirical distribution (in blue) of pair correlations for p ? nq 1ďnďN with N " 10 6 using the scaling factor N Þ Ñ ? N (and renormalization factor N Þ Ñ N ), and the limit distribution ρ 1 2 (in red).

Theorem 1.1 will be stated in more detailed version in Theorem 2.1 using a wider range of scaling factors, then in an effective (stronger) version in Theorem 2.2.

Our study is much more involved than the work of [START_REF] Parkkonen | On the statistics of pairs of logarithms of integers[END_REF] on the pair correlations of plogpnqq nPN ˚. Here we have different sequences to study in parallel, depending on the parameter α. In order to have a precise estimate for the error term, it is important to keep track of its dependence on α in the technical lemmas we use to prove our theorem. The next section is dedicated to that matter.
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The main statement and technical lemmas

Let α P s0, 1r. We will denote the set of nonnegative (resp. positive) real numbers by R `(resp. R ˚). We are interested in the statistical behavior of the real sequence pn α q nPN ˚. For that purpose, we study its empirical pair correlation measures given by the following general term

R α N " 1 ψpN q ÿ 1ďn‰mďN ∆ ϕpN qpn α ´mα q
where for every x P R, the notation ∆ x stands for the Dirac measure at x, the function ϕ : N Ñ R ˚is called a scaling factor and ψ : N Ñ R ˚is called a renormalization factor. Both those functions are assumed to be converging to `8. Theorem 2.1. We assume that ϕpN q N 1´α ÝÑ N Ñ8

λ P r0, `8s and for every N P N, we set ψpN q " N 2´α ϕpN q . Then, we have the following vague convergence of positive measures

R α N á N Ñ8 ρ α Leb R
where Leb R is the Lebesgue measure on R and ρ α : R Ñ R `is the measurable nonnegative function given by

ρ α : t Þ Ñ $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % 0 if λ " `8, 1 αp2 ´αq if λ " 0, α 1 1´α 1 ´α ´|t| λ ¯´2´α 1´α t |t| αλ u ÿ p"1 p 1 1´α if λ P R ˚.
We notice that, scaling the pair correlation functions ρ α in the exotic case λ " 1 for different α, we can compare them with each other. Let us define the functions Ă ρ α : t Þ Ñ αp2 ´αqρ α pαtq and see on Figure 2 how these functions seem to collapse to the null function as α Ñ 1, except at integer points where they explode. This remark can be considered as a continuity observation as α Ñ 1, since a direct computation grants the vague convergence

1 N ÿ 1ďn‰mďN ∆ n´m á N Ñ8 ÿ pPZ ˚∆p . -1 0 1 0 1 Figure 2:
The scaled pair correlation functions Ă ρ α in the exotic case λ " 1 for different power parameters: α " 1 2 (in blue), α " 9 10 (in green) and α " 99 100 (in red).

Using C 1 c functions, we also obtain an effective version of Theorem 2.1. To state it, we use Landau's notation. For functions F, G : N Þ Ñ C depending on some parameters including α, we write F pN q " O α pGpN qq if there exists some constant c α ą 0, depending only on α, and some integer N 0 , possibly depending on all the parameters, such that, for all N ě N 0 , we have the inequality |F pN q| ď c α |GpN q|. In our case, the rank N 0 will depend on the real number α, the size A of the support of the test function we evaluate our measures on, and the scaling and renormalization factors.

Theorem 2.2. We assume that ϕpN q N 1´α ÝÑ N Ñ8

λ P r0, `8s and for every N P N, we set ψpN q " N 2´α ϕpN q . Let f P C 1 c pRq and choose A ą 1 such that supp f Ă r´A, As.

• If λ " `8, then for all N large enough so that αϕpN q p2N q 1´α ą A, we have R α N pf q " 0. • If λ " 0, then there exists c α ą 0 depending only on α such that, for all N large enough so that ϕpN q ą A 2 α ´1 , we have the inequality

ˇˇR α N pf q ´1 αp2 ´αq Leb R pf q ˇˇď c α p}f } 8 `}f 1 } 8 qA 3 ´ϕpN q N 1´α `1 N α ϕpN q `1 N ¯.
• If λ P R ˚, then using the notation ρ α from Theorem 2.1, we have the estimate

R α N pf q " ρ α Leb R pf q `Oα ´A3´2α 1´α pλ 2 }f 1 } 8 `λ}f } 8 q N `A2 λ}f } 8 ˇˇ´ϕ pN q λN 1´α ¯2´α 1´α ´1ˇˇˇ¯.
Remark 2.3. An explicit constant c α will be given at the end of the proof of Theorem 2.2 in the case λ " 0. The associated statement gives us a somehow weak control on the error term, as ϕpN q N 1´α can go to zero very slowly. A similar remark applies to the statement regarding the case λ P R ˚, since ϕpN q λN 1´α can go to 1 very slowly.

The fact that Theorem 2.2 implies Theorem 2.1 comes from the classical argument that one can pass from the convergence of regular measures on C 1 c functions to all C 0 c functions by density for the } ¨}8 norm. However, in the space C 0 c we loose any kind of effectiveness as p}f 1 n } 8 q nPN can explode along a sequence approximating a continuous function.

Symmetry of the empirical pair correlation measures

For the clarity of the proof, we begin with some practical lemmas. The first one uses the symmetry centered at 0 of the measures R α N . In order to reduce the proof of Theorem 2.2 to the asymptotic study of a sequence of measures on R `, we define

R α,Ǹ " 1 ψpN q ÿ 1ďmănďN ∆ ϕpN qpn α ´mα q and R α,Ń " 1 ψpN q ÿ 1ďnămďN
∆ ϕpN qpn α ´mα q so that we have the decomposition R α N " R α,Ǹ `Rα,Ń and the inclusions of their support supppR α,Ǹ q Ă R ˚and supppR α,Ń q Ă ´R˚.

Lemma 2.4. We assume that ϕpN q N 1´α ÝÑ N Ñ8

λ P r0, `8s and for every N P N, we set ψpN q " N 2´α ϕpN q . Let f P C 1 c pRq and A ą 1 such that supp f Ă r´A, As. Set f : t Þ Ñ f p´tq. Let F : N Ñ R `be a function possibly depending on the parameters α, ϕ, }f } 8 , }f 1 } 8 , A and λ. We assume there exists a real number c α ą 0, only depending on α, and a integer N 0 P N such that, for all N ě N 0 ,

ˇˇR α,Ǹ pf q ´1R `ρα Leb R pf q ˇˇď c α 2 F pN q and ˇˇR α,Ǹ p f q ´1R `ρα Leb R p f q ˇˇď c α 2 F pN q.
Then, for all N ě N 0 , we have the inequality

ˇˇR α N pf q ´ρα Leb R pf q ˇˇď c α F pN q.
Proof. Using the symmetry R α,Ń " pt Þ Ñ ´tq ˚Rα,Ǹ , the invariance of the parameters of F under this change of variable, and the fact that ρ α is even, we have the inequality, for all N ě N 0 ,

ˇˇR α,Ń pf q ´1R ´ρα Leb R pf q ˇˇ" ˇˇpt Þ Ñ ´tq ˚pR α,Ǹ ´1R `ρα Leb R qpf q ˇ" ˇˇR α,Ǹ p f q ´1R `ρα Leb R p f q ˇˇď c α F pN q.
The result then follows from the triangle inequality.

Linear approximation

The second lemma is a linear approximation process. Indeed, we will be able to approximate the re-written expression R α,Ǹ "

1 ψpN q ř N ´1 m"1
ř N ´m p"1 ∆ ϕpN qppm`pq α ´mα q by the positive measure on R `defined by

µ Ǹ " 1 ψpN q N ´1 ÿ m"1 N ´m ÿ p"1 ∆ ϕpN q αp m 1´α . Lemma 2.5. Let f P C 1 c pRq and choose A ą 1 such that supp f Ă r´A, As. Let N P N ˚.
We assume that N is large enough so that ϕpN q ą A 2 α ´1 . Then there exists a positive constant c 1 α ą 0 depending only on α, such that

|R α,Ǹ pf q ´µǸ pf q| ď c 1 α A 3 }f 1 } 8 N 2p1´αq ψpN qϕpN q 2 .
Remark 2.6. In the case at hand, we will assume that the renormalization factor is linked to the scaling factor by the formula ψpN q " N 2´α ϕpN q . The inequality in Lemma 2.5 thus becomes

|R α,Ǹ pf q ´µǸ pf q| ď c 1 α A 3 }f 1 } 8 1 N α ϕpN q .
Proof. For all a, b P Z, we use the double brackets notation a, b " ta, a `1, . . . , bu for the interval of integers between a and b. Let N ě 2 (for N " 1, we have R α,1 " µ 1 " 0). For m P 1, N ´1 and p P 1, N ´m , we want to bound from above the quantity ˇˇf `ϕpN qppm `pq α ´mα q ˘´f `ϕpN q αp m 1´α ˘ˇ.

To do so, we first observe that a bound on the contributing p arises from the fact that the function f is compactly supported. Indeed, for all m P 1, N ´1 and p P 1, N ´m , we have the equivalences

ϕpN q αp m 1´α ď A ðñ p ď Am 1´α αϕpN q
and ϕpN qppm `pq α ´mα q ď A ðñ p ď p A ϕpN q `mα q

1 α ´m.
Thus we set some bound for p in this proof by defining the function (1)

p max : pN, mq Þ Ñ Y max ! Am 1´α αϕpN q , `A ϕpN q `mα ˘1 α ´m)]
and we denote by I N the set of indices pm, pq respecting that bound on p, that is to say I N " tpm, pq P N 2 : 1 ď m ď N ´1, 1 ď p ď p max pN, mqu.

Applying the mean value inequality to f and the Taylor-Lagrange inequality to the function x Þ Ñ p1 `xq α , we obtain the following inequality, for all pm, pq P I N ,

ˇˇf pϕpN q ppm `pq α ´mα qq ´f `ϕpN q αp m 1´α ˘ˇď }f 1 } 8 ϕpN qm α ˇˇ`1 `p m ˘α ´1 ´αp m ˇď }f 1 } 8 ϕpN q αp1 ´αq 2 p 2 m 2´α . (2)
Our goal is then to bound from above the sum ř pm,pqPI N p 2 m 2´α . For that purpose, we use some integral comparison. We extend p max to N ˚ˆR `still using the expression (1). We will compare the above sum to the integral defined by

J N " ż N ´1 x"1 ż pmaxpN,x`1q`1 y"1 y 2 x 2´α dydx.
To justify the comparison, we begin with a unit square. The variations in each variable of the integrand function provide the inequality, for every m, p P N

˚, ż rm,m`1sˆrp,p`1s y 2 x 2´α dydx ě p 2 pm `1q 2´α .
We can bound from below the integral J N by the sum of integrals on the unit squares under the graph of the nondecreasing function p max pN, ¨q `1. We thus obtain

ż N ´1 x"1 ż pmaxpN,x`1q`1 y"1 y 2 x 2´α dydx ě N ´2 ÿ m"1 pmaxpN,m`1q ÿ p"1 ż rm,m`1sˆrp,p`1s y 2 x 2´α dydx ě N ´2 ÿ m"1 pmaxpN,m`1q ÿ p"1 p 2 pm `1q 2´α " ÿ pm,pqPI N p 2 m 2´α ´pmaxpN,1q ÿ p"1 p 2 .
As ϕ ÝÑ 8 `8, the definition of p max indicates that p max pN, 1q " 0 for N large enough. More precisely, it is the case if we have both inequalities A αϕpN q ă 1 and

p A ϕpN q ´1q 1 α ´1 ă 1, or equivalently if we have ϕpN q ą A max ␣ 1 α , 1 2 α ´1 ( " A 2 α ´1
which is one of our assumptions. Hence we have the inequality ř pm,pqPI N p 2 m 2´α ď J N . It remains to evaluate the integral J N . Using the facts that for all x ě 1 (or x " 0), we have the inequality px `1q 3 ´1 ď 2 3 x 3 and by observing that p max pN, ¨q is integer-valued, we obtain the following sequence of inequalities

J N " ż N ´1 1 ż pmaxpN,x`1q`1 1 y 2 x 2´α dydx " 1 3 ż N ´1 1 pp max pN, x `1q `1q 3 ´1 x 2´α dx ď 2 3 3 ż N ´1 1 p max pN, x `1q 3 x 2´α dx ď 8 3 ż N ´1 1 max ␣ Apx`1q 1´α αϕpN q , p A ϕpN q `px `1q α q 1 α ´px `1q ( 3 x 2´α dx ď 8 3 2 3p1´αq A 3 α 3 ϕpN q 3 ż N ´1 1 x 1´2α dx `8 3 ż N ´1 1 px `1q 3 `p A ϕpN qpx`1q α `1q 1 α ´1˘3 x 2´α dx ď 8.2 3p1´αq A 3 6p1 ´αqα 3 N 2p1´αq ϕpN q 3 `8 3 J 1 N ,
where J 1 N is the last integral on the previous line. Using the mean value inequality for the map x Þ Ñ p1 `xq 1 α (whose derivative is increasing) between 0 and A ϕpN qpx`1q α , and the inequality A ϕpN q ď 1 (coming from our assumption ϕpN q ą A 2 α ´1 ), the remaining integral J 1 N can be bounded as follows

J 1 N ď ż N ´1 1 px `1q 3 `1 α p1 `A ϕpN qpx`1q α q 1 α ´1 A ϕpN qpx`1q α ˘3 x 2´α dx ď 2 1 α ´1A 3 α 3 1 ϕpN q 3 ż N ´1 1 px `1q 3p1´αq x 2´α dx ď 2 1 α `2´3α A 3 α 3 1 ϕpN q 3 ż N ´1 1 x 1´2α dx ď 2 1 α `2´3α A 3 α 3 N 2p1´αq ϕpN q 3 .
Combining this integral approximation with our inequality (2), we finally obtain the inequality

|R α,Ǹ pf q ´µǸ pf q| ď αp1 ´αq 2 }f 1 } 8 ϕpN q ψpN q ÿ pm,pqPI N p 2 m 2´α ď αp1 ´αq 2 }f 1 } 8 ϕpN q ψpN q J N ď αp1 ´αq 2 }f 1 } 8 ϕpN q ψpN q ´8 ¨23p1´αq A 3 6p1 ´αqα 3 N 2p1´αq ϕpN q 3 `8 ¨2 1 α `2´3α A 3 3α 3 N 2p1´αq ϕpN q 3 ďc 1 α A 3 }f 1 } 8 N 2p1´αq ψpN qϕpN q 2 where c 1 α " 2 1`3p1´αq `2 1 α `4´3α p1´αq 3α 2 ď 32 3 2 1 α α 2 .

Riemann sum approximation for compactly supported functions

Finally, the third lemma is a practical quite standard version of the Riemann sum approximation with estimate of the error term which is suitable for compactly supported C 1 functions.

Lemma 2.7. Let f P C 1 c pRq and choose B ě 0 such that supp f Ă r´B, Bs. Let δ ą 0 and M P N ˚. Then

ˇˇż M δ 0 f ptqdt ´δ M ÿ p"1 f ppδq ˇˇď }f 1 } 8 2 δ mintB, M δu.
Proof. Assume that M δ ď B. By the triangle and mean value inequalities, we thus have, for all p P 1, M ,

ˇˇż pδ pp´1qδ f ptqdt´δf ppδq ˇˇď ż pδ pp´1qδ |f ptq´f ppδq|dt ď ż pδ pp´1qδ }f 1 } 8 ppδ´tqdt " }f 1 } 8 δ 2 2 .
By summing over p P 1, M and using the triangle inequality, the lemma is proved in the case M δ ď B. Now let us assume that M δ ą B. The quantity we want to evaluate can be written

ˇˇż B 0 f ptqdt ´δ t B δ u ÿ p"1 f ppδq ˇˇ.
The case we first proved thus yields the inequality

(3)

ˇˇż δt B δ u 0 f ptqdt ´δ t B δ u ÿ p"1 f ppδq ˇˇď }f 1 } 8 2 δ 2 Y B δ ] .
For the remaining part of the integral, we use once again the triangle and mean value inequalities and obtain (4)

ˇˇż B δt B δ u f ptqdt ˇˇď ż B δt B δ u |f ptq ´f pBq|dt ď }f 1 } 8 2 ´B ´δY B δ ]¯2
Summing both inequalities (3) and (4), we get

ˇˇż B 0 f ptqdt ´δ t B δ u ÿ p"1 f ppδq ˇˇď }f 1 } 8 2 δ 2 ´YB δ ] `´B δ ´YB δ ]¯2ď }f 1 } 8 2 δ 2 ´YB δ ] `´B δ ´YB δ ]¯¯" }f 1 } 8 2 δB.
This concludes the proof of the Lemma 2.7.

Proof of Theorem 2.2

We now have the tools to prove our theorem. As we are studying three regimes for the scaling factor ϕ that are completely different in terms of behavior of the sequence pR α N q N PN , the proof will be divided accordingly. Recall that we impose, for all N P N, that the renormalization factor is ψpN q " N 2´α ϕpN q , even though it has no importance in the first regime. By Lemma 2.4, we only need to study the effective behavior of the positive part of our pair correlation measures, which is defined by

R α,Ǹ " 1 ψpN q N ´1 ÿ m"1 N ´m ÿ p"1 ∆ ϕpN qppm`pq α ´mα q .
Let f P C 1 c pRq and choose A ą 1 such that supp f Ă r´A, As.

Regime

ϕpN q N 1´α ÝÑ N Ñ8
`8

In this first case, we want to show the vague convergence towards 0. For all x ě 0, we have the inequality p1 `xq α ´1 "

ż x 0 αp1 `tq α´1 dt ě αx p1 `xq 1´α .
Consequently, for all N P N ˚, all m P 1, N ´1 and all p P 1, N ´m , we obtain ϕpN qppm `pq α ´mα q " ϕpN qm α ``1 `p m ˘α ´1ě ϕpN qm α α p m p1 `p m q 1´α " ϕpN q αp pm `pq 1´α ě αϕpN q p2N q 1´α . (5) One can notice that we have not yet used any assumption on ϕ (other than its positivity). If N is large enough so that αϕpN q p2N q 1´α ą A, Equation (5) yields the equality R α,Ǹ pf q " 0 (in fact, independently on the choice of the renormalization factor ψ). That concludes the proof in the first case.

Regime

ϕpN q N 1´α ÝÑ N Ñ8 0 
Our goal is to show the asymptotic Poissonian behavior of pR α,Ǹ q N PN , with the speed of convergence described in Theorem 2.2. By Lemma 2.5 (more precisely, by the Remark 2.6 following it), it suffices to prove the same result for pµ Ǹ q N PN instead.

As we want to show some convergence towards a measure absolutely continuous with respect to the Lebesgue measure Leb R `on R `, we will use a Riemann sum approximation of the sums defining the measures µ Ǹ and thus compare them to integrals. For that matter, for all N P N ´t0u and m P 1, N ´1 , we set δ N,m " αϕpN q m 1´α , corresponding to the step appearing in the second sum defining µ Ǹ . Let N P N´t0u.

We define the positive measure ν Ǹ on R `by

ν Ǹ " 1 ψpN q N ´1 ÿ m"1 1 δ N,m 1 r0,pN ´mqδ N,m s Leb R `.
Lemma 2.7 with B " A, M " N ´m and δ " δ N,m grants us the inequality |µ Ǹ pf q ´νǸ pf q| "

1 ψpN q ˇˇN ´1 ÿ m"1 1 δ N,m ´δN,m pN ´mq ÿ p"1 f ppδ N,m q ´ż pN ´mqδ N,m 0 f ptqdt ¯ˇď 1 ψpN q N ´1 ÿ m"1 1 δ N,m }f 1 } 8 2 δ N,m mintA, pN ´mqδ N,m u. (6)
In order to evaluate the above sum of such minima, we use the following equivalence, for all m P 1, N ´1 , pN ´mqδ N,m ď A ðñ g N pmq ď 0 where g N : x Þ Ñ pN ´xq ´A αϕpN q x 1´α .

A straightforward study of the functions g N shows that they each admit only one zero x N in s0, N r, which has the asymptotic behavior x N " N . More precisely, we have N p1 ´A αN α ϕpN q q " N ´AN 1´α αϕpN q ď x N ď N. Using the inequality (6), we obtain

|µ Ǹ pf q ´νǸ pf q| ď }f 1 } 8 2ψpN q ´tx N u ÿ m"1 A `αϕpN q N ´1 ÿ m"tx N u`1 N ´m m 1´α ď }f 1 } 8 2ψpN q ´N A `αϕpN q ż N x N N ´x x 1´α dx since x Þ Ñ N ´x
x 1´α is nonincreasing on s0, N s. Using the above approximation of x N , we get, for all x P rx N , N s, the inequality N ´x ď AN 1´α αϕpN q . The integral

ş N x N N ´x
x 1´α dx is then bounded from above by AN α 2 ϕpN q . Since ψpN q " N 2´α ϕpN q , it yields

(7) |µ Ǹ pf q ´νǸ pf q| ď }f 1 } 8 2ψpN q ´N A `αϕpN q AN α 2 ϕpN q ¯ď p1 `αqA}f 1 } 8 2α ϕpN q N 1´α .
We remark that this error term goes to 0 only in the case at hand: we won't be able to use the same measures µ Ǹ and ν Ǹ for the last case ϕpN q N 1´α ÝÑ

N Ñ8 λ P R ˚.
Now that we are assured that the measure ν Ǹ is a good approximation of µ Ǹ , we can move forward and study the convergence of pν Ǹ q N PN . As those measures have a density, that we denote by θ N , with respect to the Lebesgue measure, we study their pointwise convergence. Let t P R `. We have

θ N ptq " 1 ψpN q N ´1 ÿ m"1 1 δ N,m 1 r0,pN ´mqδ N,m s ptq.
To see its behavior as N Ñ 8, we use a t-depending version of the function g N : for all m P 1, N ´1 , we have pN ´mqδ N,m ď t ðñ g N,t pmq ď 0 where g N,t : x Þ Ñ pN ´xq ´t αϕpN q x 1´α .

Once again, each g N,t only has one zero in R `that we denote by x N,t , and we still have the approximation N p1 ´t αN α ϕpN q q " N ´tN 1´α αϕpN q ď x N,t ď N . Since ψpN q " N 2´α ϕpN q , we can rewrite θ N ptq as follows:

(8)

θ N ptq " 1 ψpN q txN,tu ÿ m"1 1 δ N,m " 1 αϕpN qψpN q txN,tu ÿ m"1 m 1´α " 1 αN 2´α txN,tu ÿ m"1 m 1´α .
The last sum is comparable to an integral. More precisely, we have the approximation

ż tx N,t u 0 x 1´α dx ď txN,tu ÿ m"1 m 1´α ď ż tx N,t u 0 x 1´α dx `tx N,t u 1´α i.e. 1 2 ´α tx N,t u 2´α ď txN,tu ÿ m"1 m 1´α ď 1 2 ´α tx N,t u 2´α `tx N,t u 1´α .
Combining this integral comparison with the expression (8) and using the asymptotic behavior x N,t " N as t P R `is fixed, we get the pointwise convergence

(9) θ N ptq ÝÑ N Ñ8 1 αp2 ´αq " ρ α ptq.
We could conclude the proof of Theorem 2.1 in the case at hand, that is under the regime ϕpN q N 1´α ÝÑ N Ñ8 0, by use of the dominated convergence theorem. However, for the effective version we present in Theorem 2.2, we need more precision. First, we have the inequality

|ν Ǹ pf q ´ρα Leb R `pf q| ď }f } 8 ż A 0 ˇˇθ N ptq ´1 αp2 ´αq ˇˇdt.
For all t P r0, As, the previous integral comparison and the approximation of x N,t yield

ˇˇθ N ptq ´1 αp2 ´αq ˇˇ" 1 α ˇˇ1 N 2´α txN,tu ÿ m"1 m 1´α ´1 2 ´α ˇď 1 αp2 ´αq max !ˇˇˇt x N,t u 2´α N 2´α `p2 ´αq tx N,t u 1´α N 2´α ´1ˇˇˇ, 1 ´tx N,t u 2´α N 2´α ) ď 1 α ´1 N `t αN α ϕpN q ¯.
We consequently get the estimate, for all N P N,

(10) |ν Ǹ pf q ´ρα Leb R `pf q| ď }f } 8 A α ´A 2αN α ϕpN q `1 N ¯.
Summing the error terms from Lemma 2.5, Equations ( 7) and (10), we finally get the effective convergence in the second case of Theorem 2.2: for all N large enough so that ϕpN q ą A 2 α ´1 , there exists some real number c α ą 0, depending only on α, such that

|R α,Ǹ pf q ´ρα Leb R `pf q| ď c α 2 p}f } 8 `}f 1 } 8 qA 3 ´ϕpN q N 1´α `1 N α ϕpN q `1 N ¯.
(We used cα 2 in order to stick to the notations from Lemma 2.4). An explicit example of such a constant is given by c α " 2 max

␣ c 1 α , 1`α 2α , 1 2α 2 (
, where c 1 α is defined in the proof of Lemma 2.5 as c 1 α " 2 1`3p1´αq `2 1 α `4´3α p1´αq 3α 2 . Using Lemma 2.4, the same c α is an example of a constant for Theorem 2.2.

Regime

ϕpN q N 1´α ÝÑ N Ñ8 λ P R
Let us first assume that f P C 1 c pR ˚q (instead of C 1 c pRq) and choose 0 ă ε ă 1 such that supp f Ă rε, As. This lower bound on the support of f will not be an obstacle, as the limiting measure will display some level repulsion property. We discuss how to pass to general test functions in C 1 c pRq at the end of the proof. For this third and final case, the previous estimate (7) is not enough: it gives an error term that does not vanish as N Ñ 8. This gives us a hint that the limit measure will be exotic in comparison to the ones from the two previous regimes. Let us temporarily use the explicit notation ρ α " ρ α,λ in order to emphasize the dependence of the function ρ α on λ. We first notice that, since the real function x Þ Ñ λx is (continuous and) proper, and thanks to the formula

R α N " λpx Þ Ñ λxq ˚´1 λψpN q ÿ 1ďn,mďN ∆ ϕpN q λ pn α ´mα q ānd the equality λpx Þ Ñ λxq ˚pρ α,1 Leb R `q " ρ α,1 `λ ˘Leb R `" ρ α,λ Leb R `, it is suffi-
cient to prove Theorem 2.1 in the special case λ " 1. For Theorem 2.2, we will discuss how the error term depends on λ at the end of the proof. Henceforth, we assume that λ " 1. As in the study of the regime ϕpN q N 1´α ÝÑ N Ñ8 0, we use Lemmas 2.4 and 2.5

and study the behavior of pµ Ǹ q N PN . Fix N ě 2. Recall that ψpN q " N 2´α ϕpN q

" N Ñ8 N in this case. Set h α : x Þ Ñ x ´p1´αq which is a diffeomorphism on R ˚with inverse x Þ Ñ x ´1 1´α
. We can then define the positive measure r µ Ǹ on R ˚by the formula

r µ Ǹ " ph ´1 α q ˚µǸ , that is (11) r µ Ǹ " 1 ψpN q N ´1 ÿ m"1 N ´m ÿ p"1 ∆ m 1 pαpϕpN qq 1 1´α " 1 ψpN q N ´1 ÿ p"1 N ´p ÿ m"1 ∆ m 1 pαpϕpN qq 1 1´α
.

We thus see r µ Ǹ as a weighted sum of Riemann sums with step denoted by

δ N,p " 1 pαpϕpN qq 1 1´α
. We will compare it to the positive measure r ν Ǹ defined by the equality

r ν Ǹ " 1 ψpN q N ´1 ÿ p"1 1 δ N,p 1 r0,pN ´pqδ N,p s Leb R `.
For that purpose, we will use Lemma 2.7, and thus need to understand thoroughly the quantity mintA, pN ´pqδ N,p u. We have the equivalence, for all p P 1, N ´1 , pN ´pqδ N,p ě A ðñ g N ppq ď 0 where now g N : x Þ Ñ x ´1 αA 1´α pN ´xq 1´α ϕpN q .

A straightforward analysis of the function g N shows that it has a unique zero x N in s0, N r. Then we have the convergence x N ÝÑ N Ñ8

ℓ " 1 αA 1´α . We immediately get the following bound for the speed of convergence:

(12)

x N ℓ " pN ´xN q 1´α ϕpN q ď N 1´α ϕpN q .

Suppose first that α ‰ 1 2 (i.e. 1 1´α ‰ 2). Because of the initial change of variable h α , we have to be cautious: when summing to get the total error term, we will apply Lemma 2.7 to the function r

f " f ˝hα . The inclusion supp f Ă rε, As yields supp r f Ă " 1 A 1´α , 1 ε 1´α ‰ . Set r A " 1 ε 1´α .
Applying Lemma 2.7 to r f with δ " δ N,p , M " N ´p and B " r A, and using an integral comparison coming from the fact that the function x Þ Ñ pN ´xqx ´1 1´α is nonincreasing on R ˚(while being cautious of the case tx N u " 0 for the integral to be definite), we have

|r µ Ǹ p r f q ´r ν Ǹ p r f q| ď 1 ψpN q N ´1 ÿ p"1 1 δ N,p ˇˇż pN ´pqδ N,p 0 r f ptq dt ´δN,p N ´p ÿ m"1 r f pmδ N,p q ˇď } r f 1 } 8 2ψpN q N ´1 ÿ p"1 mint r A, pN ´pqδ N,p u ď }f 1 } 8 2ψpN q ´tx N u ÿ p"1 r A `N´1 ÿ p"tx N u`1 pN ´pqδ N,p " r A} r f 1 } 8 2ψpN q tx N u `} r f 1 } 8 2ψpN q 1 pαϕpN qq 1 1´α N ´1 ÿ p"tx N u`1 N ´p p 1 1´α ď r A} r f 1 } 8 ℓ 2ψpN q N 1´α ϕpN q `} r f 1 } 8 2ψpN q 1 pαϕpN qq 1 1´α ´N ptx N u `1q 1 1´α `ż N tx N u`1 N ´x x 1 1´α dx " r A} r f 1 } 8 ℓ 2N `} r f 1 } 8 N 2ψpN qpαϕpN qptx N u `1qq 1 1´α `} r f 1 } 8 2ψpN qpαϕpN qq 1 1´α « N 1 ´1 1´α x 1´1 1´α ´1 2 ´1 1´α x 2´1 1´α ff x"N x"tx N u`1
where we used the formula ψpN q " N 2´α ϕpN q . The expression between brackets is equal to p1 ´αq 2 αp2α ´1q

N 2´1 1´α `1 ´α α N ptx N u `1q ´α 1´α `1 ´α 1 ´2α ptx N u `1q 1´2α 1´α .
The function x Þ Ñ x ´α 1´α is nonincreasing on R ˚, and x Þ Ñ x 1´2α 1´α is monotone (of monotony given by the sign of 1 2 ´α). By the inequality (12), for all N large enough (depending only on α, A, ϕ), we have ℓ ď tx N u `1 ď ℓ `2, providing the estimates ptx N u `1q ´α 1´α ď ℓ ´α 1´α and ptx N u `1q 1´2α 1´α ď Cpℓ, αq " ℓ 1´2α 1´α or pℓ `2q 1´2α 1´α (depending of the sign of 1 2 ´α). Summing those error terms, recalling that ϕpN q " N 1´α , hence ψpN q " N , and using the inequalities 1 A 1´α ď ℓ ď 1 α , we get the following bound

|r µ Ǹ p r f q ´r ν Ǹ p r f q| " O α ´} r f 1 } 8 ´r Aℓ N `1 N ℓ 1 1´α `1 N 1 1´α `ℓ ´α 1´α N `Cpℓ, αq N 2 ¯" O α ´} r f 1 } 8 p r Aℓ `ℓ´1 1´α q N ¯" O α ´} r f 1 } 8 p r A `Aq N ¯.
For the case α " 1 2 , the integration of x Þ Ñ N ´x

x 1 1´α
gives an extra error term of order logpN q coming with a factor

1 N ϕpN q 1 1´α " 1
N 2 , which keeps the result valid since logpN q N 2 ď 1 N . Recalling the definitions r A " 1 ε 1´α and r f " f ˝hα , we finally have

|r µ Ǹ pf ˝hα q ´r ν Ǹ pf ˝hα q| " O α ˆ}h 1 α f 1 ˝hα } 8 `1 ε 1´α `AN " O α ˆ}h 1 α f 1 ˝hα } 8 A N ε 1´α ˙. ( 13 
)
Our goal is now to find the limit of pr ν Ǹ q N PN and to inverse the change of variable in order to get back to pR α,Ǹ q N PN . Let t P R ˚. The Radon-Nikodym derivative r θ N of r ν Ǹ (with respect to the Lebesgue measure) is given by

r θ N ptq " 1 ψpN q N ´1 ÿ p"1 1 δ N,p
1 r0,pN ´pqδ N,p s ptq.

Let us rewind using the change of variable h

α : x Þ Ñ x ´p1´αq . Set ν Ǹ " ph α q ˚r ν Ǹ . Its Radon-Nikodym derivative θ N verifies θ N ptq " |ph ´1 α q 1 ptq| r θ N ˝h´1 α ptq " t ´2´α 1´α p1 ´αqψpN q N ´1 ÿ p"1 1 δ N,p 1 r0,pN ´pqδ N,p s `t´1 1´α ˘.
We have the equivalence, for all p P 1, N ´1 , pN ´pqδ N,p ě t ´1 1´α ðñ g N,t ppq ď 0 where now g N,t : x Þ Ñ x ´t α pN ´xq 1´α ϕpN q .

Once again, a direct study of these nondecreasing functions gives us the existence of a unique zero x N,t of g N,t in s0, N r. It verifies x N,t ÝÑ N Ñ8 t α and its definition grants us the following estimation for its speed of convergence, valid for all N ě 2, (14) t α

N 1´α ϕpN q ´1 ´t αN α ϕpN q ¯1´α ď x N,t ď t α N 1´α ϕpN q .
This estimate is useful as it implies some uniform convergence, namely that for all compact subset K in R `, we have

(15) sup tPK ˇˇx N,t ´t α ˇˇÝÑ N Ñ8 0.
Using first the nonuniform version of this, we have the following pointwise convergence, for t P R `´αN,

θ N ptq " α 1 1´α 1 ´α ϕpN q 1 1´α ψpN q t ´2´α 1´α txN,tu ÿ p"1 p 1 1´α ÝÑ N Ñ8 θ 8 ptq " α 1 1´α 1 ´α t ´2´α 1´α t t α u ÿ p"1 p 1 1´α .
Let θ 8 : R `Ñ R `denote the limit measurable function on R `in this (almost everywhere) convergence, which is the restriction to R `of the function ρ α in Theorem 2.1 (for λ " 1). In order to get an effective vague convergence, we first observe the inequality

|ν Ǹ pf q ´θ8 Leb R `pf q| ď ż A 0 |f ptqpθ N ptq ´θ8 ptqq| dt ď }f } 8 α 1 1´α 1 ´α ϕpN q 1 1´α ψpN q ż A 0 t ´2´α 1´α ˇˇt x N,tu ÿ p"1 p 1 1´α ´t t α u ÿ p"1 p 1 1´α ˇˇdt `}f } 8 ˇˇϕ pN q 1 1´α ψpN q ´1ˇˇˇż A 0 θ 8 ptqdt. (16) 
For all k P N, the function θ 8 in bounded on the interval interval rkα, pk `1qαr. Since, by comparing to an integral, we have the convergence θ 8 ÝÑ `8 1 αp2´αq , this proves that θ 8 is bounded on R `. As θ 8 is defined using only the parameter α, we have }f } 8 ˇˇϕ pN q

1 1´α ψpN q ´1ˇˇˇż A 0 θ 8 ptqdt " O α ´}f } 8 A ˇˇϕ pN q 1 1´α ψpN q ´1ˇˇˇ" O α ´}f } 8 A ˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ¯. ( 17 
)
As the lower integer part function t¨u is continuous on R ´Z, we know that, for all t P R `´αN and N large enough depending on t (and α), we have the equality tx N,t u " X t α \ , meaning that θ N ptq " ϕpN q 1 1´α ψpN q θ 8 ptq. We set θN " ψpN q ϕpN q 1 1´α θ N .

Thus the almost everywhere convergence of p θN q N PN is stationary. However, it is not necessarily uniform as it can be much slower for t close to αN. Define two functions

δ ´: t Þ Ñ t ´αX t α \ and δ `: t Þ Ñ α P t α T
´t, where r¨s denotes the upper integer part function. We use the speed of convergence of the sequences px N,t q N PN described in the inequalities (14) and we get, for all t P pR `´αNq X r0, As,

x N,t ă Y t α ] `1 ðù t α N 1´α ϕpN q ă Y t α ] `1 ðñ N 1´α ϕpN q ă X t α \ `1 t α " 1 `δ`p tq t and x N,t ě Y t α ] ðù t α N 1´α ϕpN q ´1 ´t αN α ϕpN q ¯1´α ě Y t α ] thus x N,t ě Y t α ] ðù N 1´α ϕpN q ´1 ´A αN α ϕpN q ¯1´α ě X t α \ t α " 1 ´δ´p tq t .
Now let us study, for N large enough independently on t, the proportion of t P r0, As verifying both of these inequalities on δ ˘ptq. Let us define

X N " ! t P R `: δ `ptq ď t ´N 1´α ϕpN q ´1¯o r δ ´ptq ă t ´1´N 1´α ϕpN q ´1´A αN α ϕpN q ¯1´α ¯),
that is, the subset of t's failing to verify at least one the two previous inequalities which were allowing to have θN ptq " θ 8 ptq. By definition of δ ´and δ `, the set X N is included in a union of intervals I k around each kα, for k P 0,

X A α \ , whose length is at most kα ´N 1´α ϕpN q ´1¯`p k `1qα ´1 ´N 1´α ϕpN q ´1 ´A αN α ϕpN q ¯1´α ¯" O α ´AˇˇˇN 1´α ϕpN q ´1ˇˇˇ¯.
As we will sum these lengths, it is important to notice that the right-hand side of the previous equality does not depend on k: there exists c 2 α ą 0 depending only on α such that, for N large enough, depending on α, A and ϕ, for all k P 0,

X A α \ , we have the inequality Leb R pI k q ď c 2 α A ´N 1´α ϕpN q ´1¯.
In order to also get some upper bound on | θN ´θ8 | on X N , we use the uniform convergence property (15): we know that there exists N 0 P N (depending on α and A) such that for all N ě N 0 and for all t P r0, As, we have the inequality ˇˇtx N,t u ´X t α \ˇˇď 1. We also notice that θN " θ 8 near 0. More precisely, there exists some integer N 1 ě N 0 such that, for all N ě N 1 , we have the inequality N 1´α ϕpN q ă 2, hence x N,t ă 2 t α thanks to the right-hand side in the inequalities (14). For such integers N , we have the equality θN " θ 8 p" 0q on r0, α 2 s. This equality can be understood as the level repulsion phenomenon for θ N . We can now bound from above the integral of | θN ´θ8 |. Indeed, for all N ě N 1 , we have

1 1´α α c 2 α A ˇˇN 1´α ϕpN q ´1ˇˇˇ" O α ˆA2 ˇˇN 1´α ϕpN q ´1ˇˇˇ˙.
By Equations ( 16) and ( 17), and since A ě 1, this gives the final error term for the vague convergence of pν Ǹ q N PN :

|ν Ǹ pf q ´θ8 Leb R `pf q| " O α ˆ}f } 8 A 2 ˇˇN 1´α ϕpN q ´1ˇˇˇ`Aˇˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ" O α ˆ}f } 8 A 2 ˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ˙. (18) 
Recalling the definition of h α : x Þ Ñ 1 x 1´α , hence |h 1 α | : x Þ Ñ p1´αq 1 x 2´α , and summing the error terms from Lemma 2.5 and Equations (13), (18), we finally obtain |R α,Ǹ pf q ´θ8 Leb R `pf q| ď|R α,Ǹ pf q ´µǸ pf q| `|µ Ǹ pf q ´νǸ pf q| `|ν Ǹ pf q ´θ8 Leb R `pf q| "|R α,Ǹ pf q ´µǸ pf q| `|ph α q ˚r µ Ǹ pf q ´ph α q ˚r ν Ǹ pf q| `|ν Ǹ pf q ´θ8 Leb R `pf q| " O α ˆA3 }f 1 } 8 N α ϕpN q ˙`|r µ Ǹ pf ˝hα q ´r ν Ǹ pf ˝hα q| `Oα ˆ}f } 8 A 2 ˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ"

O α ˆA3 }f 1 } 8 N α ϕpN q `}h 1 α f 1 ˝hα } 8 A N ε 1´α `A2 }f } 8 ˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ" O α ˜A3 }f 1 } 8 N `ˇh 1 α `A´1 1´α ˘ˇ} f 1 } 8 A N ε 1´α `A2 }f } 8 ˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ" O α ˜A3 }f 1 } 8 N `A 3´2α 1´α }f 1 } 8 N ε 1´α `A2 }f } 8 ˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ¸.
Now let us drop the assumption on the existence of some positive lower bound ε for supp f : let f P C 1 c pRq and choose A ą 1 such that supp f Ă r´A, As. We remark that both the positive measure θ 8 Leb R `and the measures R α,Ǹ , for N P N ´t0u, display some level repulsion property. Indeed, the function θ 8 vanishes on r0, αr, and Equation (5) implies that, for all N P N, we have supp R α,Ǹ Ă " αϕpN q 2N 1´α , `8" .

For all N large enough so that ϕpN q N 1´α ą 1 2 , we thus have both inclusions supppθ 8 Leb R `q Ă rα, `8r and supp R α,Ǹ Ă " α 4 , `8" .

Set ε " α 8 . By a standard smoothing process, we know there exists a function g P C 1 c pRq verifying (1) the functional equality g " f (and hence g 1 " f 1 ) on the interval r2ε, As,

(2) the inclusion supp g Ă rε, As,

(3) the inequality }g} 8 ď }f } 8 , (4) and the inequality }g 1 } 8 ď }f 1 } 8 `2}f}8 ε . For N large enough, the interval r2ε, As contains the support of both measures θ 8 Leb R `and R α,Ǹ . Thus, the approximation g of f grants us the asymptotic upper bound |R α,Ǹ pf q ´θ8 Leb R `pf q| " |R α N pgq ´θ8 Leb R `pgq|

" O α ˜A3 }g 1 } 8 N `A 3´2α 1´α }g 1 } 8 N ε 1´α `A2 }g} 8 ˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ"
O α ˜`A 3 `A 3´2α 1´α qp}f 1 } 8 `}f } 8 q N `A2 }f } 8 ˇˇ´ϕ pN q N 1´α ¯2´α 1´α ´1ˇˇˇ¸.

Since 3 ă 3´2α 1´α , this concludes the proof in the case λ " 1. For the general case, we use the notation f λ : x Þ Ñ f pλxq. Using again the notation ρ α,λ to underline the dependence of ρ α on λ, we have

|R α N pf q ´ρα,λ Leb R pf q| " ˇˇλpx Þ Ñ λxq ˚´1 λψpN q ÿ 1ďn‰mďN
∆ ϕpN q λ pn α ´mα q ¯pf q ´λpx Þ Ñ λxq ˚pρ α,1 Leb R qpf q ˇ" λ ˇˇ1 λψpN q ÿ 1ďn‰mďN f λ ´ϕpN q λ pn α ´mα q ¯´ρ α,1 Leb R pf λ q ˇ"

λ O α ˜A3´2α 1´α p}f 1 λ } 8 `}f λ } 8 q N `A2 }f λ } 8 ˇˇ´ϕ pN q λN 1´α ¯2´α 1´α ´1ˇˇˇ" O α ˜A 3´2α
1´α pλ 2 }f 1 } 8 `λ}f } 8 q N `A2 λ}f } 8 ˇˇ´ϕ pN q λN 1´α ¯2´α 1´α ´1ˇˇˇ¸.

This proves Theorem 2.2 under the third regime, i.e. assuming λ P R ˚, and finally concludes the proof of Theorem 2.2.