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Our application

Estimating the true position of a mobile object (aircraft, drone, ...) from measured (therefore noisy) raw positions Two cases :

From past positions: prediction : frequently solved with linear / extended / unscented Kalman filters, or particle filters [START_REF] Bar-Shalom | Estimation with applications to tracking and navigation[END_REF] From past and future positions: smoothing This may be difficult with a highly maneuvering target [START_REF] Pilte | Dynamic management of tracking ressources for hyper-manoeuvring targets[END_REF] 

Our framework

Instead of considering the trajectory in the state space (R 3 ), the movement of the mobile object is considered as a sequence of displacements: rotations and translations in R 3 This set is called the Special Euclidean group SE(3) SE( 3) is a Lie group, which is both: a differentiable manifold a group in which both the product and inverse maps are smooth

Underlying Lie group: SE(3)

An element of SE(3) can be represented by a 4-by-4 matrix

R T 0 1 , R ∈ SO(3), T ∈ R 3 ∶
An element of its Lie algebra se(3) can be represented by a 4-by-4 matrix:

Ω U 0 0 , Ω skew-symmetric, U ∈ R 3

Our method

A minimizing geodesic between two points g 0 , g 1 with respect to ⟪⋅, ⋅⟫ g is a curve γ∶ [0, 1] → G, such that γ(0) = g 0 , γ(1) = g 1 minimizing the functional:

L(γ) = 1 2 1 0 ⟪ γ(t), γ(t)⟫ g dt (1)
Left invariance of the metric implies it is enough to seek after a solution of the reduced problem:

L(γ) = 1 2 1 0 ⟨ ξ(t), ξ(t)⟩ dt ( 2 
)
where ξ is a curve in g. ξ satisfies the so-called Euler-Arnold equation [START_REF] Marsden | Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems[END_REF]:

ξ(t) = ad † ξ(t) ξ(t) (3)
An extended notion of parametric linear regression on Riemannian manifolds, called intrinsic geodesic regression, has been independently developed in [START_REF] Fletcher | Geodesic Regression on Riemannian Manifolds[END_REF] and [START_REF] Niethammer | Geodesic regression on image time series. In Medical image computing and computer-assisted intervention : MICCAI[END_REF] Let y 1 , . . . , y N be a set of points representing the trajectory of the mobile on a Riemannian manifold (M, g): the idea is to find a geodesic curve γ(t) on the manifold that best fits those points in a "linear" manner at known times t 1 , . . . , t N The geodesic regression model is expressed as follows in [START_REF] Fletcher | Geodesic Regression on Riemannian Manifolds[END_REF] Y = Exp Exp(p, tv), ε

where γ(t) = Exp(p, tv) is the geodesic curve given by the initial conditions γ(0) = p and γ(0) = v, and ε is a Gaussian random variable taking values in the tangent space at γ(t).

In [START_REF] Hinkle | Polynomial regression on riemannian manifolds[END_REF], this geodesic regression model is generalized to a polynomial one where the curve γ(t) is a Riemannian polynomial of order k, as defined by

∇ γ(t) ∇ γ(t) . . . ∇ γ(t) γ(t) = ∇ k γ(t) γ(t) = 0,
where ∇ denotes the Levi -Civita connection The estimate is found by minimizing a least squares criterion based on a Riemannian distance between the model γ(t) and the data

E(γ) = 1 N N j=1 d(γ(t j ), y j ) 2
under the constraint that γ shall be a geodesic One can prove, by taking the differential of E with respect to the initial conditions that it is equivalent to cancelling out the Riemannian gradient 
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