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An extended Oja process for streaming canonical analysis   

Canonical components of the canonical analysis of two random vectors are 

collinear with principal components of a PCA of the multidimensional linear 

regression function of one vector with respect to the other. In the context of 

streaming data, we estimate online in parallel this regression function and 

components of a canonical correlation analysis, taking into account at each step a 

mini-batch of current data or all the data up to the current step to have a faster 

convergence, and using extended Oja processes. We extend this approach to 

generalized canonical correlation analysis and deal with the cases of streaming 

factorial correspondence analysis, multiple correspondence analysis and factorial 

discriminant analysis.  

Keywords: incremental learning; projected PCA; stochastic approximation; 

streaming linear regression, streaming canonical analysis 

1. Introduction 

Let 𝑄 be a positive definite symmetric (𝑝, 𝑝) matrix called metric, 〈. , . 〉 be the inner product and 

‖. ‖ the norm induced by 𝑄. For vectors in ℝ , 𝑄-orthogonal and 𝑄-normed respectively denote 

orthogonal and normed with respect to the metric 𝑄. Recall that a (𝑝, 𝑝) matrix B is 𝑄-symmetric 

if 𝑄𝐵 is symmetric; then 𝐵 has p real eigenvalues and there exists a 𝑄-orthonormal basis of ℝ  

comprised of eigenvectors of 𝐵. Let ℝ ×  be the space of (𝑝, 𝑞) matrices. Let 𝐴т denote the 

transpose of a matrix 𝐴. Let (∙) denote a sequence of matrices or vectors or reals depending on 

the context. Let ℝ ∗ be the dual space of ℝ . The abbreviation a.s. stands for  almost surely and 

Si.j.k for Subsection i.j.k.  

In the context of streaming data or big data processed sequentially as a data stream, that can 

oversize memory storage or computation capacity, stochastic approximation algorithms can be 

used to estimate online statistical parameters. For example: parameters of a regression function 

(Ljung, Pflug and Walk 1992, Duarte, Monnez and Albuisson, 2018, Lalloué, Monnez and 

Albuisson 2022); centers of clusters in unsupervised classification (Monnez 2006, Cardot, Cénac 

and Monnez 2012); principal components in principal component analysis (PCA) (Benzécri 1969, 

Duflo 1997, Cardot and Degras 2018, Monnez 2022a and references therein). The incoming 

observation vectors are used to update the estimate sequence until the latter converges to the 

quantity of interest. When using such processes, it is not necessary to store the data and, due to 

the relative simplicity of the computation involved, a much greater number of data than with non-



sequential methods can be taken into account during the same amount of time. Moreover, this 

type of method uses less memory space than a batch method (Balsubramani, Dasgupta and Freund 

2013, for PCA). 

To estimate online eigenvectors corresponding to eigenvalues in decreasing order of a 𝑄-

symmetric matrix B, 𝑄 and 𝐵 being unknown, we define in (Monnez 2022a) an extension of the 

Oja process (Oja and Karhunen 1985). In the Oja process, the authors supposed that 𝐵 is the 

expectation of a random matrix of which one observation is used at each step and that 𝑄 = 𝐼. A 

corollary of the almost sure convergence theorem of (Monnez 2022a) recalled in Section 2 

(Lemma 1) applies to the case where there exist two sequences of observable random matrices 

(𝑉 , 𝑛 ≥ 1) and (𝑄 , 𝑛 ≥ 1) converging almost surely to 𝐵 and 𝑄 respectively. If the estimator 

𝑉  of 𝐵 is determined sequentially by a stochastic approximation process, we can perform in 

parallel the online estimation of 𝐵 and that of eigenvectors and eigenvalues of 𝐵. We apply this 

principle to the online estimation of canonical components of a streaming canonical analysis (CA) 

of two random vectors.  

CA of 𝑍  and 𝑍  consists in determining at step 𝑖 ∈ {1, … , 𝑟} a couple of canonical components 

𝑉 , 𝑉  that are affine combinations of the components of two random vectors 𝑍  and 𝑍  

respectively, centered, of variance 1, uncorrelated respectively with the previous components, 

maximizing 𝐸 𝑉 𝑉 . Particular cases are: 

- canonical correlation analysis (CCA) when there is no affine relation between the components 

of (𝑍 , 𝑍 );  

- factorial correspondence analysis (FCA) when the components of 𝑍  and 𝑍  are respectively 

the indicators of the exclusive modalities of two categorical variables; 

- factorial discriminant analysis (FDA) when there is no affine relation between the components 

of 𝑍  and the components of 𝑍  are the indicators of the exclusive modalities of a categorical 

variable.  

Canonical components are collinear with principal components of a PCA of the multidimensional 

linear regression function of one vector with respect to the other or projected PCA. The stochastic 

approximation of this regression function and that of the principal components of its PCA can be 

implemented in parallel (Monnez 2008, 2010, Bar 2013). In these references are defined 

stochastic approximation processes with one observation per step for estimating a linear 

regression function and processes of the Krasulina type for estimating principal components. Here 

we use processes using at each step all observations up to this step (A) or a mini-batch of current 

observations (B) for linear regression, and extended Oja processes for principal components. 

Previous experiments conducted in the application to streaming linear regression or streaming 

PCA led to the conclusion that type A processes generally converge faster than type B processes 



(Duarte, Monnez and Albuisson 2018, Monnez and Skiredj 2021). Moreover we study the 

extension to generalized canonical correlation analysis and multiple correspondence analysis. 

Section 3 (S3) is devoted to the estimation of a regression function. We first give two almost sure 

convergence theorems of stochastic approximation processes to the solution of a linear system 

𝐹𝑋 = 𝐺, 𝐹 and 𝐺 being respectively unknown (𝑝, 𝑝) and (𝑝, 𝑞) matrices (Theorems 1,2). We 

apply them to the estimation of the multidimensional linear regression function 𝐸[𝑆|𝑅] of a 

random vector 𝑆 with respect to a random vector 𝑅, in the case where there is no affine relation 

between the components of 𝑅 (Corollaries 1,2) and the case where the components of 𝑅 are the 

indicators of the exclusive modalities of a categorical variable (Corollaries 3,4). Corollaries 1,3 

apply when at each step of the process all observations of (𝑅, 𝑆) up to this step are used, 

Corollaries 2,4 when only the current observations are used. In S4, we present algorithms for 

estimating online canonical components of a CCA (Theorem 3) and general components of a 

generalized canonical correlation analysis (gCCA) (Theorem 4). We present in S5 algorithms for 

estimating online canonical components of a FCA (Theorem 5) and general components of a 

multiple correspondence analysis (MCA) (Theorem 6), and in S6 discriminant components of a 

FDA (Theorem 7). The proofs of Theorems 1,2 are in S7. 

2. An extension of the Oja process 

Let 𝐵 be a (𝑝, 𝑝) 𝑄-symmetric matrix, for 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑝, 𝜆  be its ith largest eigenvalue and 

𝑣  a 𝑄-normed eigenvector corresponding to 𝜆 , 𝐵 and 𝑄 being unknown. The Oja process (Oja 

and Karhunen 1985) for estimating online eigenvectors of 𝐵 is restricted to the case where the 

metric 𝑄 is known and 𝐵 is the expectation of a random matrix of which independent observations 

are used in the construction of the process. 

We suppose here that there exist two sequences of observable random matrices (𝑉 , 𝑛 ≥ 1) and 

(𝑄 , 𝑛 ≥ 1) converging almost surely respectively to 𝐵 and 𝑄. For a random metric 𝑄  in ℝ , let 

〈. , . 〉  be the inner product and ‖. ‖  the norm induced by 𝑄 . Let (𝑎 ) be a sequence of positive 

numbers. For 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑝, we recursively define the processes 𝑋 , 𝑌 , 𝑋  in 

ℝ  such that, for 𝑛 ≥ 1: 

𝑌 = (𝐼 + 𝑎 𝑉 )𝑋 ,    𝑋 = 𝑌 − ∑ 〈𝑌 , 𝑋 〉 𝑋 ,     𝑋 = . 

The set of vectors (𝑋 , … , 𝑋 ) is obtained by Gram-Schmidt orthonormalization with respect 

to 𝑄  of 𝑌 , … , 𝑌 .  

Assume, using the same numbering of assumptions as in (Monnez 2022a): 

(H1a) 𝐵 is 𝑄-symmetric. (H1b) The r largest eigenvalues of 𝐵 are simple. 

(H2a) For all 𝑛, 𝐼 + 𝑎 𝑉  is invertible.  



(H2b) 𝑉 ⟶ 𝐵, ∑ 𝑎 ‖𝑉 − 𝐵‖ < ∞ a.s. 

(H3a) 𝑎 > 0, ∑ 𝑎 = ∞, ∑ 𝑎 < ∞.  

(H4) 𝑄 ⟶ 𝑄, ∑ 𝑎 ‖𝑄 − 𝑄‖ < ∞ a.s. 

(H5) 𝑋 , 𝑖 ∈ {1, … , 𝑟}, is an absolutely continuous random variable with respect to the 

Lebesgue measure, independent of the sequence (𝐵 ). 

Applying Corollary 4 of (Monnez 2022a) yields: 

Lemma 1. Under H1a,b on 𝐵, H2a,b on 𝑉 , H3a on 𝑎 , H4 on 𝑄  and H5 on 𝑋 , for 𝑖 ∈ {1, … , 𝑟}, 

𝑋  converges to 𝑣  or −𝑣 , 〈𝑉 𝑋 , 𝑋 〉  to 𝜆 , ∑ 𝑎 〈𝑉 𝑋 , 𝑋 〉 − 𝜆 < ∞ a.s.  

If a convergent recursive estimator (𝑉 ) of 𝐵 can be constructed, this extension of the Oja process 

can be used in parallel to estimate online eigenvectors of 𝐵. 

 

3. Stochastic approximation for streaming multidimensional linear regression  

3.1 Stochastic approximation of the solution of a linear system 

Let 𝐹 be an unknown positive definite symmetric (𝑝, 𝑝) matrix with smallest eigenvalue 𝜆 and 𝐺 

an unknown (𝑝, 𝑞) matrix. Let 𝐴 = 𝐹 𝐺 be the solution of the linear system 𝐹𝑋 = 𝐺, with 𝑋 a 

(𝑝, 𝑞) matrix. Let (𝐹 , 𝑛 ≥ 1) and (𝐺 , 𝑛 ≥ 1) be sequences of  (𝑝, 𝑝) and (𝑝, 𝑞) random matrices 

respectively, (𝑎 , 𝑛 ≥ 1) be a sequence of positive numbers. Consider the stochastic 

approximation process (𝐴 , 𝑛 ≥ 1) in ℝ ×  and assume: 

𝐴 = 𝐴 − 𝑎 (𝐹 𝐴 − 𝐺 ). 

(A1) 𝐹 ⟶ 𝐹 a.s.  (A2) ∑ 𝑎 ‖𝐹 − 𝐹‖ < ∞, ∑ 𝑎 ‖𝐺 − 𝐺‖ < ∞ a.s. 

(A3a) 𝑎 > 0, 𝑎 = 𝑜(1), ∑ 𝑎 = ∞. 

Theorem 1. Under A1, A2, A3a, 𝐴 ⟶ 𝐴, ∑ 𝑎 ‖𝐴 − 𝐴‖ < ∞ a.s. 

Theorem 1 complements Theorem 9 of (Duarte, Monnez and Albuisson 2018). 

Let 𝑇  be the 𝜎-field generated by 𝐴 , 𝐹 , 𝐺 , … , 𝐹 , 𝐺 . Assume: 

(B1) 𝐸[𝐹 |𝑇 ] = 𝐹, 𝐸[𝐺 |𝑇 ] = 𝐺 a.s. 

(B2) ∃𝑓, 𝑔 > 0: 𝑠𝑢𝑝  𝐸[‖𝐹 − 𝐹‖ |𝑇 ] < 𝑓, 𝑠𝑢𝑝  𝐸[‖𝐺 − 𝐺‖ |𝑇 ] < 𝑔 a.s. 

(H3b1) 𝑎 > 0, ∑ 𝑎 = ∞, ∑ 𝑎
⁄

< ∞,
 

≤ 1 + 𝛾𝑎 + 𝛾 , 0 < 𝛾 < 2𝜆, 𝛾 ≥ 0, 

∑ 𝛾 < ∞. 

Theorem 2. Let 𝜆 be the smallest eigenvalue of 𝐹. Under B1, B2, H3a, 𝐴 ⟶ 𝐴 a.s. and in q.m., 

∑ 𝑎 𝐸[‖𝐴 − 𝐴‖ ] < ∞; H3b1 replacing H3a, there exists 𝑏 > 0 such that  𝐸[‖𝐴 − 𝐴‖ ] ≤

𝑏𝑎 , ∑ 𝑎 ‖𝐴 − 𝐴‖ < ∞ a.s. 

For 𝑎 = , H3b1 is verified from a certain rank 𝑛  for < 𝛼 < 1 and if 𝑎 >  for 𝛼 = 1. 

Theorem 2 complements Theorem 2 of (Monnez 2008) for the choice of (𝑎 ). 



3.2 Application to streaming least square multidimensional linear regression 

Let 𝑅 and 𝑆 be two random vectors in ℝ  and ℝ  respectively, defined on the same probability 

space. Assume: 

(A4a) The 4th moments of (𝑅, 𝑆) exist.  (A4b) ‖𝑅‖ and ‖𝑆‖ are a.s. bounded. 

(A4c) There is no affine relation between the components of R. 

3.2.1 Case where assumption A4c holds 

1) Let ‖. ‖ be the Euclidean norm in ℝ . The least square multidimensional linear regression of 𝑆 

with respect to 𝑅 consists in determining the (𝑝, 𝑞) matrix 𝐴 and the (𝑞, 1) matrix 𝐷 minimizing 

𝐸[‖𝑆 − 𝐴 𝑅 − 𝐷‖ ]. Let the covariance matrices 

𝐹 = 𝐶𝑜𝑣𝑎𝑟 [𝑅] = 𝐸[(𝑅 − 𝐸[𝑅])(𝑅 − 𝐸[𝑅]) ],  

𝐺 = 𝐶𝑜𝑣𝑎𝑟[𝑅, 𝑆] = 𝐸[(𝑅 − 𝐸[𝑅])(𝑆 − 𝐸[𝑆]) ]. 

Under A4c, the matrix F is positive definite and: 

𝐴 = 𝐹 𝐺 , 𝐷 = 𝐸[𝑆] − 𝐴 𝐸[𝑅]. 

The multidimensional linear regression function of 𝑆 with respect to 𝑅 is 

𝐸[𝑆|𝑅] = 𝐴 𝑅 + 𝐷 =  𝐶𝑜𝑣𝑎𝑟[𝑆, 𝑅](𝐶𝑜𝑣𝑎𝑟 [𝑅]) (𝑅 − 𝐸[𝑅]) + 𝐸[𝑆]. 

Let 𝑅 =
𝑅
1

 in ℝ , 𝐴 =
𝐴

𝐷
, 𝐹 = 𝐸[𝑅 (𝑅 ) ], 𝐺 = 𝐸[ 𝑅 𝑆  ]: 𝐹 𝐴 = 𝐺 , 

 𝐸[𝑆|𝑅] = (𝐴 ) 𝑅 = 𝐸[ 𝑆(𝑅 )  ](𝐸[𝑅 (𝑅 ) ]) 𝑅 . 

2) Let 𝑅 , 𝑆 , 𝑖 ≥ 1, 𝑗 ∈ {1, … , 𝑚 }  be an i.i.d. sample of (𝑅, 𝑆), 𝜇 = ∑ 𝑚  and: 

𝑅 =
𝑅

1
, 𝐹 = ∑ ∑ 𝑅 𝑅 , 𝐺 = ∑ ∑ 𝑅 𝑆  , 

𝐹 = ∑ 𝑅 𝑅 , 𝐺 = ∑ 𝑅 𝑆 . 

For ℎ ∈ {1,2}, let the stochastic approximation process (𝐴 , 𝑛 ≥ 1) of 𝐴  in ℝ( )× :  

𝐴 , = 𝐴 − 𝑎 (𝐹 𝐴 − 𝐺 ); 𝐴 =
𝐴

(𝐷 )
, 𝐴 (𝑝, 𝑞), 𝐷 (𝑞, 1). 

𝐴  is an estimator of 𝐴, 𝐷  of 𝐷. Under A4a,c: 

𝐹 ⟶ 𝐹 , 𝐺 ⟶ 𝐺 , 𝐸[‖𝐹 − 𝐹 ‖] = 𝑂
1

√𝑛
, 𝐸[‖𝐺 − 𝐺 ‖] = 𝑂

1

√𝑛
.  

Assume: (A3b) 𝑎 > 0, 𝑎 = 𝑜(1), ∑ 𝑎 = ∞ , ∑
√

< ∞. 

Under A3b and A4a,c, the assumptions of Theorem 1 hold for the process (𝐴 ), thus: 

Corollary 1. Under A3b and A4a,c, 𝐴 ⟶ 𝐴 , ∑ 𝑎 ‖𝐴 − 𝐴 ‖ < ∞, 𝐴 ⟶ 𝐴, 

∑ 𝑎 ‖𝐴 − 𝐴‖ < ∞ a.s. 

Under H3b1 and A4b,c, the assumptions of Theorem 2 hold for the process (𝐴 ), thus: 



Corollary 2. Let 𝜆 be the smallest eigenvalue of 𝐸  𝑅 𝑅 . Under H3b1 and A4b,c, 𝐴 ⟶ 𝐴  

a.s. and in q.m., ∑ 𝑎 ‖𝐴 − 𝐴 ‖ < ∞ a.s., 𝐴 ⟶ 𝐴 a.s. and in q.m., ∑ 𝑎 ‖𝐴 − 𝐴‖ < ∞ 

a.s. 

3.2.2 Case where the components 𝑅 , … , 𝑅  of 𝑅 are the indicators of the exclusive 

modalities of a categorical variable 

In this case, the multidimensional linear regression function 𝐸[𝑆|𝑅] of 𝑆 with respect to 𝑅 is equal 

to the conditional expectation 

𝐸[𝑆|𝑅] = ∑ 𝑅 = 𝐸[𝑆𝑅 ](𝐸[𝑅𝑅 ]) 𝑅 = 𝐴 𝑅, 𝐴 = (𝐸[𝑅𝑅 ]) 𝐸[𝑅𝑆 ]. 

Let 𝑅 , 𝑆 , 𝑖 ≥ 1, 𝑗 ∈ {1, … , 𝑚 }  be an i.i.d. sample of (𝑅, 𝑆), 𝜇 = ∑ 𝑚  and:  

𝐹 = ∑ ∑ 𝑅 𝑅 , 𝐺 = ∑ ∑ 𝑅 𝑆  , 

𝐹 = ∑ 𝑅 𝑅 , 𝐺 = ∑ 𝑅 𝑆 . 

For ℎ ∈ {1,2}, let the stochastic approximation process (𝐴 , 𝑛 ≥ 1) of 𝐴 in ℝ × :  

𝐴 , = 𝐴 − 𝑎 (𝐹 𝐴 − 𝐺 ). 

Corollary 3. Under A3b and A4a, 𝐴 ⟶ 𝐴, ∑ 𝑎 ‖𝐴 − 𝐴‖ < ∞ a.s. 

Corollary 4.  Let 𝜆 be the smallest eigenvalue of 𝐸[𝑅𝑅 ]. Under H3b1 and A4b, 𝐴 ⟶ 𝐴 a.s. 

and in q.m., ∑ 𝑎 ‖𝐴 − 𝐴‖ < ∞ a.s. 

4. Stochastic approximation for streaming canonical correlation analysis 

In this section, the numbering of assumptions is the same as in (Monnez 2022a). 

Let 𝑍 be a random vector in ℝ  of covariance matrix 𝐶 and 𝑀 a metric in ℝ  possibly depending 

on characteristics of 𝑍. In the PCA of 𝑍 in (ℝ , 𝑀) (Monnez 2022a,b) is determined at step 𝑖 a 

linear combination 𝑐 (𝑍 − 𝐸[𝑍]) of the centered components of 𝑍, called 𝑖  principal 

component,  

- verifying 𝑐 𝑀 𝑐 = 1 (1), 

- uncorrelated with the previous components, 𝑐 𝐶𝑐 = 0, 𝑗 ∈ {1, … , 𝑖 − 1}  (2), 

- verifying 𝑐 𝑀 𝑐 = 0, 𝑗 ∈ {1, … , 𝑖 − 1} (2’), 

- of maximum variance 𝑐 𝐶𝑐  (3). 

Using the method of Lagrange multipliers gives: 

Lemma 2. Under (1), (2 or 2’), (3), 𝑐  is a 𝑀 -normed eigenvector of the 𝑀 -symmetric matrix 

𝑀𝐶, corresponding to its 𝑖  largest eigenvalue 𝜆 = 𝑐 𝐶𝑐 .   



4.1 Streaming CCA  

Let 𝑍  and 𝑍  be random vectors in ℝ  and ℝ  respectively, defined on the same probability 

space (Ω, 𝒜, 𝑃). Assume the components of  𝑍  and 𝑍  belong to 𝐿 (Ω, 𝒜, 𝑃) equipped with the 

inner product 〈𝑉, 𝑊〉 = 𝐸[𝑉𝑊]. Assume there is no affine relation between the components of 

𝑍 = 𝑍
𝑍

. Let 𝐸 , 𝑘 ∈ {1,2}, be the subspace of 𝐿 (Ω, 𝒜, 𝑃) generated by the centered 

components of 𝑍 : 𝐸 ∩ 𝐸 = {0}. Let for 𝑘 ≠ 𝑙 ∈ {1,2}: 

𝐶 =  𝐸 𝑍 − 𝐸[𝑍 ] 𝑍 − 𝐸[𝑍 ] , 𝐶 = 𝐸 𝑍 − 𝐸[𝑍 ] 𝑍 − 𝐸[𝑍 ] . 

𝐵 = (𝐶 ) 𝐶 , 𝐵 = (𝐶 ) 𝐶 . 

Let 𝜌(. , . ) be a linear correlation coefficient. Canonical correlation analysis consists in 

determining at step 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 , 𝑝 ), for 𝑘 ∈ {1,2}, an element of 𝐸 , called 𝑖  

canonical component in 𝑍 , 𝑉 = 𝜂 𝑍 − 𝐸[𝑍 ] ,  

- of variance 1: 𝐸 𝑉 = 𝜂 𝐶 𝜂 = 1  (4.1.1), 

- uncorrelated with 𝑉 , 𝑗 ∈ {1, … , 𝑖 − 1}: 𝐸 𝑉 𝑉 =  𝜂 𝐶 𝜂 = 0  (4.1.2), 

- maximizing 𝜌 𝑉 , 𝑉 = 𝐸 𝑉 𝑉 = cos 𝑉 , 𝑉   (4.1.3). 

For 𝑘 ≠ 𝑙 ∈ {1,2}, for fixed 𝑉  of norm 1, 𝑉  of norm 1 which maximizes the cosine cos 𝑉 , 𝑉  

is collinear with the projection of 𝑉  on 𝐸  (see S3.2.1), 

𝐸 𝑉 |𝑍 = 𝐶𝑜𝑣𝑎𝑟 𝑉 , 𝑍 𝐶 𝑍 − 𝐸[𝑍 ] = 𝜂 𝐸[𝑍 − 𝐸[𝑍 ]|𝑍 ], 

𝑐𝑜𝑠 𝑉 , 𝑉 = 𝐸 𝐸 𝑉 |𝑍 = 𝑉𝑎𝑟 𝜂 𝐸[𝑍 |𝑍 ] . 

Under (4.1.1), (4.1.2), (4.1.3), 𝐸 𝑉 |𝑍  is the 𝑖  principal component of the PCA of 𝐸[𝑍 |𝑍 ] 

in ℝ , 𝐶  , of maximum variance 𝑐𝑜𝑠 𝑉 , 𝑉 = 𝜌 𝑉 , 𝑉 , and 𝑉  

of variance 1 is equal to 
,

𝐸 𝑉 |𝑍 . By S3.2.1 and Lemma 2: 

𝐸 𝑉 |𝑍 = 𝜂 𝐸[𝑍 − 𝐸[𝑍 ]|𝑍 ] = 𝜂 𝐶 𝐶 𝑍 − 𝐸[𝑍 ] , 

𝜌 𝑉 , 𝑉 = 𝐸 𝐸 𝑉 |𝑍 = 𝜂 𝐶 𝐶 𝐶 𝜂 , 

𝑉 =
,

𝐸 𝑉 |𝑍 = 𝜂 𝑍 − 𝐸[𝑍 ]  ⟺  𝜂 =
,

𝐶 𝐶 𝜂 . 

Proposition 1. For 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 , 𝑝 ), for 𝑘 ≠ 𝑙 ∈ {1,2}, 𝜂  is a 𝐶 -normed 

eigenvector of the 𝐶 -symmetric matrix 𝐶 𝐶 𝐶 𝐶 = 𝐵 𝐵  corresponding 

to its 𝑖  largest eigenvalue 𝜌 𝑉 , 𝑉  and 𝜂 =
,

𝐶 𝐶  𝜂 = 
,

𝐵  𝜂 . 

 

Stochastic approximation of canonical components 



Let 𝑆𝐸𝑄 = 𝑍 , … , 𝑍 , … , 𝑍 , … , 𝑍 , …  be a sequence of i.i.d. observations of 𝑍, the 

mini-batch 𝑍 , … , 𝑍  being introduced at step 𝑛 of the processes. Let for 𝑖 ≥ 1, 𝑗 ∈

{1, … , 𝑚 }, 𝑘 ∈ {1,2}, 𝑍 =
𝑍

𝑍
, 𝑍  (𝑝 , 1),  𝑍 = 𝑍

1
, 𝑍 =

𝑍

1
, 𝜇 = ∑ 𝑚 , 𝜆  be the 

smallest eigenvalue of 𝐸 𝑍 𝑍 , 𝑘 ∈ {1,2}, 𝜆 = 𝑚𝑖𝑛(𝜆 , 𝜆 ). Assume: 

(H7a) 𝑍 has 4  moments.  (H7b) ‖𝑍‖ is a.s. bounded. 

(H7c) There is no affine relation between the components of 𝑍. 

(H3b1) 𝑎 > 0, ∑ 𝑎 = ∞, ∑ 𝑎
⁄

< ∞,
 

≤ 1 + 𝛾𝑎 + 𝛾 , 0 < 𝛾 < 2𝜆, 𝛾 ≥ 0, 

∑ 𝛾 < ∞. 

(H3c) 𝑎 > 0, ∑ 𝑎 = ∞, ∑
√

< ∞, ∑ 𝑎 < ∞.  

H3b1 implies H3c. In order to estimate online the canonical components, we define parallel 

stochastic approximation processes of 𝐵  and of eigenvectors of 𝐵 = 𝐵 𝐵 . 

For 𝑘 ≠ 𝑙 ∈ {1,2}, ℎ ∈ {1,2}, we define the random matrices 𝐹 , 𝐺 , and the stochastic 

approximation processes 𝐵  in ℝ( )× , such that: 

𝐹 = ∑ ∑ 𝑍 𝑍 , 𝐺 = ∑ ∑ 𝑍 𝑍 , 

𝐹 = ∑ 𝑍 𝑍 , 𝐺 = ∑ 𝑍 𝑍 . 

𝐵 , = 𝐵 − 𝑎 𝐹 𝐵 − 𝐺 , 𝐵 =
𝐵

𝐷
, 𝐵  (𝑝 , 𝑝 ), 𝐷 (𝑝 , 1). 

We define the convex combination 𝐵  in ℝ × ,   

𝐵 = 𝜔 𝐵 + 𝜔 𝐵 , 𝜔 ≥ 0, 𝜔 ≥ 0, 𝜔 + 𝜔 = 1. 

By Corollary 1, under H3c, H7a,c, 𝐵 ⟶ 𝐵 , ∑ 𝑎 𝐵 − 𝐵 < ∞ a.s. 

By Corollary 2, under H3b1, H7b,c, 𝐵 ⟶ 𝐵 , ∑ 𝑎 𝐵 − 𝐵 < ∞ a.s. 

Thus under H3b1, H7b,c, 𝐵 ⟶ 𝐵 , ∑ 𝑎 𝐵 − 𝐵 < ∞ a.s. and: 

𝐵 = 𝐵 𝐵 ⟶ 𝐵 = 𝐵 𝐵 , ∑ 𝑎 𝐵 − 𝐵 < ∞ a.s. 

 

For 𝑘 ∈ {1,2}, let �̅�  be the mean of the sample 𝑍 , … , 𝑍  of 𝑍  and 𝐶  its covariance 

matrix, 𝐶 = ∑ ∑ 𝑍 𝑍 − �̅� �̅� , both recursively computed. The matrix 𝐶  is 

positive definite from a certain rank. Let 〈. , . 〉 ,  be the inner product and ‖. ‖ ,  the norm 

induced by 𝐶  in ℝ . Under assumptions H3c, H7a,c: 

𝐶 ⟶ 𝐶 , 𝐸 𝐶 − 𝐶 = 0
√

, ∑ 𝑎 𝐶 − 𝐶 < ∞ a.s. 

Assumption H4 with 𝑄 = 𝐶  holds. For  𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 , 𝑝 ), we define the 

processes 𝑋 , 𝑌 , 𝑋  in ℝ  and apply Lemma 1 with 𝑉 = 𝐵 , 𝐵 = 𝐵 : 



𝑌 = 𝐼 + 𝑎 𝐵 𝑋 , 𝑋 = 𝑌 − ∑ 〈𝑌 , 𝑋 〉 , 𝑋 , 𝑋 =
,

. 

Theorem 3. Let 𝜆  be the smallest eigenvalue of 𝐸 𝑍 𝑍 , 𝑘 ∈ {1,2}, 𝜆 = 𝑚𝑖𝑛(𝜆 , 𝜆 ). 

Under H1b, H2a, H3b1, H5, H7b,c, for 𝑘 ≠ 𝑙 ∈ {1,2}, for 𝑖 ∈ {1, … , 𝑟}, 𝑋  converges to 𝜂  or 

−𝜂 , 〈𝐵 𝑋 , 𝑋 〉  to 𝜌 𝑉 , 𝑉 , 
〈 , 〉

 to 𝜂  or −𝜂 , ∑ 𝑎 〈𝐵 𝑋 , 𝑋 〉 −

𝜌 𝑉 , 𝑉 < ∞ a.s. When 𝜔 = 0 for all 𝑛, the same conclusions hold with H3b1 replaced by 

H3c and H7b by H7a. 

4.2 Streaming gCCA 

Consider the generalized canonical correlation analysis (gCCA) defined by Carroll (1968). 

Suppose the set of components of a random vector 𝑍 in ℝ  is partitioned in 𝑞 subsets of real 

random variables {𝑍 , … , 𝑍 }, 𝑘 ∈ {1, … , 𝑞}, ∑ 𝑝 = 𝑝. Let 𝑍  be the random vector in 

ℝ  whose components are 𝑍 , … , 𝑍 , 𝐶 = 𝐶𝑜𝑣𝑎𝑟[𝑍 ] its covariance matrix, 𝐶 = 𝐶𝑜𝑣𝑎𝑟[𝑍] 

that of 𝑍. Assume there is no affine relation between the components of 𝑍 (H7c). Thus the 

matrices 𝐶 , 𝑘 ∈ {1, … , 𝑞}, and 𝐶 are invertible. Let for 𝑘 ∈ {1, … , 𝑞}, 𝑍 = 𝑍
1

, 𝜆  be the 

smallest eigenvalue of 𝐸 𝑍 𝑍 , 𝜆 = 𝑚𝑖𝑛(𝜆 , … , 𝜆 ) in Assumption H3b1. 

In gCCA, for 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ min 𝑝 , … , 𝑝 , are determined at step 𝑖:  

- a linear combination of variance 1 of the centered components of Z, 𝑈 = 𝜃т(𝑍 − 𝐸[𝑍]), 

uncorrelated with 𝑈 , … , 𝑈 , called 𝑖  general component,  

- for 𝑘 ∈ {1, … , 𝑞}, a linear combination of variance 1 of the centered components of 

𝑍 , 𝑉 = 𝜂
т

𝑍 − 𝐸[𝑍 ] , called 𝑖  canonical component in 𝑍 , 

- maximizing ∑ 𝜌 𝑈 , 𝑉 .  

Let 𝑀 be the block diagonal (𝑝, 𝑝) matrix whose 𝑘  diagonal block is 𝐶 .  

Let 𝜃 = 𝜃 … 𝜃 , 𝑑𝑖𝑚 𝜃 = 𝑝 . It is shown (Monnez 2008, 2022b): 

Proposition 2. For 𝑖 ∈ {1, … , 𝑟},  𝑟 ≤ min 𝑝 , … , 𝑝 , 𝜃  is a 𝐶-normed eigenvector of  the 

matrix 𝐵 = 𝑀𝐶 corresponding to its 𝑖  largest eigenvalue 𝜈 = ∑ 𝜌 𝑈 , 𝑉 , 𝑈  is collinear 

with the 𝑖  principal component 𝑐т(𝑍 − 𝐸[𝑍]) of the PCA of 𝑍 in (ℝ  , 𝑀), 𝑐 = 𝜈 𝜃 ; for 𝑘 ∈

{1, … , 𝑞},  𝜂 =
т

 , 𝑈 = ∑ 𝜃
т
𝐶 𝜃  𝑉 . 

The covariance matrix 𝐶 = 𝐶𝑜𝑣𝑎𝑟[𝑍] can be subdivided into 𝑞  (𝑝 , 𝑝 ) covariance matrices 

𝐶 = 𝐶𝑜𝑣𝑎𝑟[𝑍 , 𝑍 ], 𝑘, 𝑙 ∈ {1, … , 𝑞}. Likewise, the matrix 𝐵 = 𝑀𝐶 can be subdivided into 𝑞  

(𝑝 , 𝑝 ) matrices 𝐵 = 𝐶 𝐶  with 𝐵 = 𝐼 , the identity matrix of order 𝑝 . 



 

Stochastic approximation of general components of gCCA 

Consider the sequence SEQ (S4.1) of i.i.d. observations of 𝑍, with 𝑍 = 𝑍
т

… 𝑍
т т

, 

𝑍 (𝑝 , 1), 𝑘 ∈ {1, … , 𝑞}. For 𝑘 ∈ {1, … , 𝑞}, let �̅�  be the mean of the sample 𝑍 , … , 𝑍  of 

𝑍 , 𝐶 = ∑ ∑ 𝑍 𝑍
т

− �̅� �̅�
т
 with 𝜇 = ∑ 𝑚  its covariance matrix, both 

recursively computed. Let 𝑄  be the block diagonal (𝑝, 𝑝) matrix whose 𝑘  diagonal block is 

𝐶 , 𝑘 ∈ {1, … , 𝑞}. 𝑄  is positive definite symmetric from a certain rank. Under H3c and H7a:  

𝑄 → 𝑀 , ∑ 𝑎 ‖𝑄 − 𝑀 ‖ < ∞ a.s. 

Let 〈. , . 〉  be the inner product and ‖. ‖  the norm induced by 𝑄  in ℝ .  

We define stochastic approximation processes 𝐵  of 𝐵 , 𝑘, 𝑙 ∈ {1, … , 𝑞}, similar to those 

defined for 𝑞 = 2 in the case of CCA (S4.1) and for 𝑛 ≥ 1, the (𝑝, 𝑝) random matrix 𝐵  

subdivided into the 𝑞  (𝑝 , 𝑝 ) blocks 𝐵  . Under H3b1 and H7b,c: 

𝐵 ⟶ 𝐵 , ∑ 𝑎 𝐵 − 𝐵 < ∞ a.s., 𝐵 → 𝐵, ∑ 𝑎 ‖𝐵 − 𝐵‖ < ∞ a.s. 

For 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ min 𝑝 , … , 𝑝 , we define the processes 𝑋 , 𝑌 , 𝑋  in ℝ   and apply 

Lemma 1 with 𝑉 = 𝐵 : 

𝑌 = (𝐼 + 𝑎 𝐵 )𝑋 ,   𝑋 = 𝑌 − ∑ 〈𝑌 , 𝑋 〉 𝑋 ,  𝑋 = . 

Theorem 4. Let 𝜆  be the smallest eigenvalue of 𝐸 𝑍 𝑍 , 𝑘 ∈ {1, … , 𝑞}, 𝜆 =

𝑚𝑖𝑛(𝜆 , … , 𝜆 ). Under H1b, H2a, H3b1, H5, H7b,c, for 𝑖 ∈ {1, … , 𝑟}, 𝑋  converges to 𝑐 =

𝜈 𝜃  or −𝑐 , 〈𝐵 𝑋 , 𝑋 〉  to 𝜈 , ∑ 𝑎 〈𝐵 𝑋 , 𝑋 〉 − 𝜈 < ∞ a.s. When 𝜔 = 0 for all 𝑛, the 

same conclusions hold with H3b1 replaced by H3c and H7b by H7a. 

 

CCA as particular case of gCCA 

For 𝑞 = 2: 𝑍 = 𝑍
𝑍

, 𝐵 = 𝑀𝐶 =
(𝐶 ) 0

0 (𝐶 )
𝐶 𝐶
𝐶 𝐶

=
𝐼 𝐵

𝐵 𝐼
. 

For CCA, under the conditions (4.1.1), (4.1.2), (4.1.3), with 𝜂 =
𝜂

𝜂
, we have: 

(𝜂 ) 𝑀 𝜂 = 2,  (𝜂 ) 𝑀 𝜂 = 0, 𝑗 ∈ {1, … , 𝑖 − 1}, (𝜂 ) 𝐶𝜂 = 2 + 2 cos 𝑉 , 𝑉 . 

We have to maximize (𝜂 ) 𝐶𝜂 . By Lemma 2: 

Proposition 3. 𝜂 , of squared 𝑀 -norm 2, is an eigenvector of 𝐵 = 𝑀𝐶 corresponding to its 𝑖  

largest eigenvalue 𝜈 = 1 + 𝜌 𝑉 , 𝑉 . 

Thus 
√

(𝜂 ) (𝑍 − 𝐸[𝑍]) is the i  principal component of the PCA of Z in (ℝ , M) of variance 

𝜈 , collinear with the 𝑖  general component U  of the gCCA of Z of variance 1, 



 U = (𝜂 ) (𝑍 − 𝐸[𝑍]) = V + V , 𝜈 = 1 + 𝜌 𝑉 , 𝑉 = ∑ 𝜌 𝑈 , 𝑉 . 

𝑉  and 𝑉  are the first canonical components of the gCCA of Z. 

We can use the stochastic approximation processes 𝑋  of 𝑐 =
√

𝜂

𝜂
 in ℝ  , 𝑖 ∈ {1, … , 𝑟}, 

defined for gCCA, and apply Theorem 4 for 𝑞 = 2. 

5. Stochastic approximation for streaming factorial correspondence analysis 

5.1 Streaming FCA 

In the case of FCA, 𝑍  and 𝑍  are random vectors in ℝ  and ℝ  respectively, defined on the 

same probability space (Ω, 𝒜, 𝑃), whose respective components 𝑍 , … , 𝑍  and  𝑍 , … , 𝑍   

are the indicators of the exclusive modalities of two categorical variables. We have 𝑢 𝑍 =

1, 𝑘 ∈ {1,2}, 𝑢  being the vector in ℝ  whose all components are equal to 1; a linear 

combination of the components of 𝑍 − 𝐸[𝑍 ] is a linear combination of the components of 𝑍  

orthogonal to 1. Let 𝐸  be the subspace of 𝐿 (Ω, 𝒜, 𝑃) generated by the components of 𝑍 , 𝑘 ∈

{1,2}; 1 ∈ 𝐸 . Let for 𝑘 ≠ 𝑙 ∈ {1,2}:  

𝐶 =  𝐸 𝑍 𝑍 , 𝐶 (𝑖, 𝑖) = 𝑃 𝑍 = 1 , 𝐶 = 𝐸 𝑍 𝑍 ,  𝐵 = 𝐶 𝐶 , 

𝐶 (𝑖, 𝑗) = 𝑃 𝑍 = 1, 𝑍 = 1 , 𝐵 (𝑖, 𝑗) = 𝑃 𝑍 = 1|𝑍 = 1 . 

 

FCA consists in determining at step 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 − 1, 𝑝 − 1), for 𝑘 ∈ {1,2}, an 

element of 𝐸 , called 𝑖  canonical component in 𝑍 , 𝑉 = 𝜂 𝑍 ,  

- centered: 𝜂 𝐸[𝑍 ] = 𝜂 𝐶 𝑢 = 0  (a), 

- of variance 1: 𝐸 𝑉 = 𝜂 𝐶 𝜂 = 1  (5.1.1), 

- uncorrelated with 𝑉 , 𝑗 ∈ {1, … , 𝑖 − 1}: 𝐸 𝑉 𝑉 =  𝜂 𝐶 𝜂 = 0  (5.1.2), 

- maximizing 𝜌 𝑉 , 𝑉 = 𝐸 𝑉 𝑉 = cos 𝑉 , 𝑉   (5.1.3). 

A trivial solution to (5.1.3) is 𝑉 = 𝑢 𝑍 = 1, 𝑘 ∈ {1,2}, 𝐸[𝑉 𝑉 ] = 1.  

For 𝑘 ≠ 𝑙 ∈ {1,2}, for fixed 𝑉  of norm 1, 𝑉  of norm 1 which maximizes cos 𝑉 , 𝑉  

is collinear with 𝐸 𝑉 |𝑍 = 𝐸 𝑉 |𝑍  = 𝜂 𝐸[𝑍 |𝑍 ] which is centered, and: 

𝑐𝑜𝑠 𝑉 , 𝑉 = 𝐸 𝐸 𝑉 |𝑍 = 𝑉𝑎𝑟 𝐸 𝑉 |𝑍 = 𝑟 𝑉 |𝑍 , 

the squared correlation ratio of  𝑉  with respect to 𝑍 .  



Under (a), (5.1.1), (5.1.2), (5.1.3), 𝐸 𝑉 |𝑍  is the 𝑖  principal component of the PCA of 

𝐸[𝑍 |𝑍 ] in ℝ , 𝐶 , of maximum variance 𝑟 𝑉 |𝑍 , and 𝑉  of variance 1 is equal to 

|
𝐸 𝑉 |𝑍 . By S3.2.2 and Lemma 2: 

𝐸 𝑉 |𝑍 = 𝜂 𝐶 𝐶 𝑍 , 

𝑟 𝑉 |𝑍 = 𝐸 𝐸 𝑉 |𝑍 = 𝜂 𝐶 𝐶 𝐶 𝜂 . 

𝜂  is an eigenvector of the 𝐶 -symmetric matrix 𝐶 𝐶 𝐶 𝐶 = 𝐵 𝐵 , as 𝑢  (since 

𝐵 𝑢 = 𝑢 ) that corresponds to the largest eigenvalue 1 to be removed. The other eigenvectors 

are 𝐶 -orthogonal to 𝑢 , thus condition (a) holds.  

Proposition 4. For 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 − 1, 𝑝 − 1), for 𝑘 ≠ 𝑙 ∈ {1,2}, 𝜂  is a 𝐶 -normed 

eigenvector of the 𝐶 -symmetric matrix 𝐶 𝐶 𝐶 𝐶 = 𝐵 𝐵  corresponding to its 𝑖  

largest eigenvalue 𝑟 𝑉 |𝑍  after removing the eigenvalue 1  and 𝜂 =
|

𝐶 𝐶 𝜂 =

|
𝐵  𝜂 . 

 

Stochastic approximation of canonical components of FCA 

Consider the sequence SEQ (S4.1) of i.i.d. observations of 𝑍 = 𝑍
𝑍

 with 𝑍 =
𝑍

𝑍
, 

𝑍 (𝑝 , 1), 𝑘 ∈ {1,2}. Let 𝜇 = ∑ 𝑚 . Let 𝜆  be the smallest eigenvalue of 𝐶 , 𝑘 ∈ {1,2}, 𝜆 =

𝑚𝑖𝑛(𝜆 , 𝜆 ) in Assumption H3b1. For 𝑘 ≠ 𝑙 ∈ {1,2}, we define: 

𝐹 = ∑ ∑ 𝑍 𝑍 , 𝐺 = ∑ ∑ 𝑍 𝑍 , 

𝐹 = ∑ 𝑍 𝑍 , 𝐺 = ∑ 𝑍 𝑍 , 

and the stochastic approximation processes 𝐵 , ℎ ∈ {1,2}, and 𝐵   in ℝ × : 

𝐵 , = 𝐵 − 𝑎 𝐹 𝐵 − 𝐺 , 

𝐵 = 𝜔 𝐵 + 𝜔 𝐵 , 𝜔 ≥ 0, 𝜔 ≥ 0, 𝜔 + 𝜔 = 1. 

By Corollaries 3, 4, under H3b1, 𝐵 ⟶ 𝐵 , ∑ 𝑎 𝐵 − 𝐵 < ∞ a.s. and: 

𝐵 = 𝐵 𝐵 ⟶ 𝐵 = 𝐵 𝐵 , ∑ 𝑎 𝐵 − 𝐵 < ∞ a.s. 

When 𝜔 = 0 for all 𝑛, H3b1 can be replaced by H3c. 

Let 〈. , . 〉 ,  be the inner product and ‖. ‖ ,  the norm induced by 𝐹  in ℝ . Under H3c:  

𝐹 ⟶ 𝐶 , ∑ 𝑎 𝐹 − 𝐶 < ∞ a.s. For 𝑘 ∈ {1,2}, 𝑖 ∈ {1, … , 𝑟 + 1}, we define the processes 

𝑋 , 𝑌 , 𝑋  in ℝ  and apply Lemma 1 with 𝑉 = 𝐵 , 𝐵 = 𝐵 : 

𝑌 = 𝐼 + 𝑎 𝐵 𝑋 , 𝑋 = 𝑌 − ∑ 〈𝑌 , 𝑋 〉 , 𝑋 , 𝑋 =
,

. 



Theorem 5. Let 𝜆  be the smallest eigenvalue of 𝐶 , 𝑘 ∈ {1,2}, 𝜆 = 𝑚𝑖𝑛(𝜆 , 𝜆 ). Under H1b, 

H2a, H3b1, H5, for 𝑘 ≠ 𝑙 ∈ {1,2}, for 𝑖 ∈ {1, … , 𝑟}, 𝑋 ,  converges to 𝜂  or 

−𝜂 , 〈𝐵 𝑋 , , 𝑋 , 〉  converges to 𝑟 𝑉 |𝑍 , 
,

〈 , 〉

 to 𝜂  or −𝜂 , 

∑ 𝑎 〈𝐵 𝑋 , , 𝑋 , 〉 − 𝑟 𝑉 |𝑍 < ∞ a.s. When 𝜔 = 0 for all 𝑛, the same 

conclusions hold with H3b1 replaced by H3c. 

5.2 Streaming MCA 

Multiple correspondence analysis (MCA) can be considered as a particular case of gCCA of a 

random vector 𝑍 = ((𝑍 ) , … , (𝑍 ) )  (Subsection 4.2) with, for 𝑘 ∈ {1, … , 𝑞}: 

- the 𝑝  components of 𝑍  are the indicators of the exclusive modalities of a categorical variable, 

𝑍 𝑢 = 1, 𝑍 𝑢 = 𝑞, all components of  𝑢  in ℝ  and 𝑢 in ℝ  being 1; 

- 𝐶 =  𝐸 𝑍 𝑍 ,  𝐶 = 𝐸[𝑍𝑍 ], 𝐶 = 𝐸 𝑍 𝑍 , λ  the smallest eigenvalue of 

𝐸 𝑍 𝑍 , 𝑀 the block diagonal matrix whose 𝑘  diagonal block is 𝐶 ; 

- the centered 𝑖  general component of variance 1 𝑈 = (𝜃 ) 𝑍, (𝜃 ) 𝐶𝑢 = 0, and the centered 

canonical component in 𝑍 , 𝑉 = 𝜂 𝑍 , 𝜂 𝐶 𝑢 = 0, are such that: 

∑ 𝜌 𝑈 , 𝑉 max ⟺ 𝑉  collinear with 𝐸[𝑈 |𝑍 ], 𝑘 ∈ {1, … , 𝑞}  

⟺ ∑ 𝐸 𝐸[𝑈 |𝑍 ] max ⟺ ∑ 𝑟 U |𝑍  𝑚𝑎𝑥; 

- applying Proposition 2, 𝜃  is a 𝐶-normed eigenvector of  the matrix 𝐵 = 𝑀𝐶; since 𝐵 𝑢 = 𝑢 , 

the largest eigenvalue of 𝐵 = 𝑀𝐶 is 𝑞, corresponding to the eigenvector 𝑢 and to the trivial 

solution U = 𝑢 𝑍 = 1, 𝑉 = 𝑢 𝑍 = 1, 𝑘 ∈ {1, … , 𝑞}; the eigenvectors 𝜃  are 𝑀 -

orthogonal to 𝑢, thus (𝜃 ) 𝐶𝑢 = 0, and: 

Proposition 5. For 𝑖 ∈ {1, … , 𝑟},  𝑟 ≤ min 𝑝 − 1, … , 𝑝 − 1 , 𝜃  is a 𝐶-normed eigenvector of  

the matrix 𝐵 = 𝑀𝐶 corresponding to its 𝑖  largest eigenvalue 𝜈 = ∑ 𝜌 𝑈 , 𝑉  after 

removing the eigenvalue 𝑞, 𝑈  is collinear with the 𝑖  principal component 𝑐т(𝑍 − 𝐸[𝑍]) of the 

PCA of 𝑍 in (ℝ  , 𝑀), 𝑐 = 𝜈 𝜃 ; for 𝑘 ∈ {1, … , 𝑞},  𝜂 =
т

 ,  

𝑈 = ∑ 𝜃
т
𝐶 𝜃  𝑉 . 

 

Stochastic approximation of general components of MCA 

Defining the processes 𝐵 , 𝑘, 𝑙 ∈ {1, … , 𝑞}, as in S5.1 for FCA, the processes 𝑋  in ℝ  as 

in S4.2 for gCCA, we have by Theorem 4: 



Theorem 6. Let 𝜆 = 𝑚𝑖𝑛(𝜆 , … , 𝜆 ). Under H1b, H2a, H3b1, H5, for 𝑖 ∈ {1, … , 𝑟}, 𝑋  

converges to 𝑐 = 𝜈 𝜃  or −𝑐 , 〈𝐵 𝑋 , 𝑋 〉  to 𝜈 , ∑ 𝑎 〈𝐵 𝑋 , 𝑋 〉 − 𝜈 < ∞ a.s. 

When 𝜔 = 0 for all 𝑛, the same conclusions hold with H3b1 replaced by H3c. 

 

FCA as particular case of MCA 

For 𝑞 = 2: 𝑍 = 𝑍
𝑍

, 𝐵 = 𝑀𝐶 =
(𝐶 ) 0

0 (𝐶 )
𝐶 𝐶
𝐶 𝐶

=
𝐼 𝐵

𝐵 𝐼
. 

For FCA, under the conditions (5.1.1), (5.1.2), (5.1.3), with 𝜂 =
𝜂

𝜂
, using the same 

argumentation as that in the case of CCA particular case of gCCA (S4.2) gives: 

Proposition 6. For 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 − 1, 𝑝 − 1), 𝜂 , of squared 𝑀 -norm 2, is an 

eigenvector of 𝐵 = 𝑀𝐶 corresponding to its 𝑖  largest eigenvalue 𝜈 = 1 +  𝑟 𝑉 |𝑍  after 

removing the eigenvalue 2. 

The 𝑖  general component  U  of variance 1 of the MCA of 𝑍 is 

U = (𝜂 ) (𝑍 − 𝐸[𝑍]) = V + V , 𝜈 = 1 + 𝑟 𝑉 |𝑍 = ∑ 𝑟 U |𝑍 . 

𝑉  and 𝑉  are the first canonical components of the MCA of Z.  

We can use the stochastic approximation processes 𝑋  of 𝑐 =
√

𝜂

𝜂
 in ℝ   defined for MCA, 

and apply Theorem 6 for 𝑞 = 2. 

6. Stochastic approximation for streaming factorial discriminant analysis 

Let 𝑍  and 𝑍  be random vectors in ℝ  and ℝ  respectively, defined on the same probability 

space (Ω, 𝒜, 𝑃). Assume there is no affine relation between the components of  𝑍  and that the 

components  𝑍 , … , 𝑍  of 𝑍  are the indicators of the exclusive modalities of a categorical 

variable. Let 𝑢  be the vector in ℝ  whose all components are equal to 1; (𝑢 ) 𝑍 = 1; a linear 

combination of the components of 𝑍 − 𝐸[𝑍 ] is a linear combination of the components of 𝑍  

orthogonal to 1. Let the matrices  

𝐶 =  𝐸[(𝑍 − 𝐸[𝑍 ])(𝑍 − 𝐸[𝑍 ]) ], 𝐶 = 𝐸[𝑍 (𝑍 ) ], 

 𝐶 = 𝐸[(𝑍 − 𝐸[𝑍 ])(𝑍 ) ], 𝐶 = (𝐶 ) . 

Factorial discriminant analysis consists in determining at step 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 , 𝑝 − 1), 

a linear combination of the centered components of 𝑍 , called 𝑖  discriminant component, 𝑉 =

𝜂 (𝑍 − 𝐸[𝑍 ]), 

- of variance 1: 𝐸 𝑉 = 𝜂 𝐶 𝜂 = 1  (6.1.1), 

- uncorrelated with 𝑉 , 𝑗 ∈ {1, … , 𝑖 − 1}: 𝐸 𝑉 𝑉 =  𝜂 𝐶 𝜂 = 0  (6.1.2), 



- maximizing the squared correlation ratio of 𝑉  with respect to 𝑍 , 

𝑟 𝑉 |𝑍 =  𝐸 𝐸 𝑉 |𝑍 = 𝑉𝑎𝑟 𝜂 𝐸[𝑍 |𝑍 ]   (6.1.3). 

We use a classical presentation of FDA. This analysis can also be presented, as CCA and FCA, 

as a canonical analysis consisting in determining at step 𝑖 a couple 𝑉 , 𝑉 , with 𝑉 = 𝜂 𝑍 , 

maximizing 𝑐𝑜𝑠 𝑉 , 𝑉 , but we are only interested in determining 𝑉 . 

Under (6.1.1), (6.1.2), (6.1.3), 𝐸 𝑉 |𝑍  is the 𝑖  principal component of the PCA of 𝐸[𝑍 |𝑍 ] 

in (ℝ , (𝐶 ) ). By S3.2.2 and Lemma 2: 

𝐸 𝑉 |𝑍 =  𝐸 𝜂 𝐸[𝑍 − 𝐸[𝑍 ]|𝑍 ] = 𝜂 𝐶 (𝐶 ) 𝑍 , 

𝑟 𝑉 |𝑍 = 𝐸 𝐸 𝑉 |𝑍 = 𝜂 𝐶 (𝐶 ) 𝐶 𝜂 , 

𝜂  is a 𝐶 -normed eigenvector of the 𝐶 -symmetric matrix (𝐶 ) 𝐶 (𝐶 ) 𝐶  corresponding 

to its 𝑖  largest eigenvalue 𝑟 𝑉 |𝑍 . But: 

𝐶 (𝐸[𝑍 (𝑍 ) ]) 𝐸[𝑍 ] = 𝐶 𝑢 = 𝐸 𝑍 − 𝐸[𝑍 ] = 0 

⟹ (𝐶 ) 𝐶 (𝐶 ) 𝐶 = (𝐶 ) 𝐶 (𝐶 )  𝐸[𝑍 (𝑍 ) ] = 𝐵 𝐵 , 

𝐵 = (𝐶 ) 𝐶 , 𝐵 = (𝐶 )  𝐸[𝑍 (𝑍 ) ]. 

Proposition 7. For 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 , 𝑝 − 1), 𝜂  is a 𝐶 -normed eigenvector of the 𝐶 -

symmetric matrix (𝐶 ) 𝐶 (𝐶 )  𝐸[𝑍 (𝑍 ) ] = 𝐵 𝐵  corresponding to its 𝑖  largest 

eigenvalue 𝑟 𝑉 |𝑍 .  

 

Stochastic approximation of discriminant components of FDA 

Consider the sequence SEQ (S4.1) of i.i.d. observations of 𝑍 = 𝑍
𝑍

 with 𝑍 =
𝑍

𝑍
, 

𝑍 (𝑝 , 1), 𝑘 ∈ {1,2}. Let 𝑍 = 𝑍
1

 and for 𝑖 ≥ 1, 𝑗 ∈ {1, … , 𝑚 }, 𝑍 =
𝑍

1
. Let 𝜇 =

∑ 𝑚 . Let 𝜆  and 𝜆  be respectively the smallest eigenvalue of  𝐸[𝑍 (𝑍 ) ] and 𝐶 , 𝜆 =

𝑚𝑖𝑛(𝜆 , 𝜆 ) in Assumption H3b1. 

We define the process (𝐵 ) in ℝ ×  as in S4.1 for CCA and the process (𝐵 ) in ℝ ×  as in 

S5.1 for FCA. 

By Corollaries 1, 2, 3, 4, under H3b1 and H7b,c restricted to 𝑍 , for 𝑘 ≠ 𝑙 ∈ {1,2}: 

𝐵 ⟶ 𝐵 , ∑ 𝑎 𝐵 − 𝐵 < ∞ a.s. 

𝐵 = 𝐵 𝐵 ⟶ 𝐵 = 𝐵 𝐵 , ∑ 𝑎 ‖𝐵 − 𝐵 ‖ < ∞ a.s. 

When 𝜔 = 0 for all 𝑛, H3b1 can be replaced by H3c and H7b by H7a. 

Let �̅�  be the mean of the sample 𝑍 , … , 𝑍  of 𝑍  and 𝐶  its covariance matrix, 𝐶 =

∑ ∑ 𝑍 𝑍 − �̅� (�̅� ) , both recursively computed. The matrix 𝐶  is positive definite 



from a certain rank. Let 〈. , . 〉 ,  be the inner product and ‖. ‖ ,  the norm induced by 𝐶  in 

ℝ . For 𝑖 ∈ {1, … , 𝑟}, 𝑟 ≤ 𝑚𝑖𝑛(𝑝 , 𝑝 − 1), we recursively define the processes 

𝑋 , 𝑌 , 𝑋  in ℝ  and apply Lemma 1 with 𝑉 = 𝐵 , 𝐵 = 𝐵 : 

𝑌 = (𝐼 + 𝑎 𝐵 )𝑋 , 𝑋 = 𝑌 − ∑ 〈𝑌 , 𝑋 〉 , 𝑋 , 𝑋 =
,

. 

Theorem 7. Let 𝜆  and 𝜆  be respectively the smallest eigenvalue of  𝐸[𝑍 (𝑍 ) ] and  𝐶 , 𝜆 =

𝑚𝑖𝑛(𝜆 , 𝜆 ). Under H1b, H2a, H3b1, H5, H7b,c restricted to 𝑍 , for 𝑖 ∈ {1, … , 𝑟}, 𝑋  converges 

to 𝜂  or −𝜂 , 〈𝐵 𝑋 , 𝑋 〉  converges to 𝑟 𝑉 |𝑍 , ∑ 𝑎 〈𝐵 𝑋 , 𝑋 〉 − 𝑟 𝑉 |𝑍 < ∞ a.s. 

When 𝜔 = 0 for all 𝑛, the same conclusions hold with H3b1 replaced by H3c and H7b by H7a. 

7. Proofs 

We use the Hilbert-Schmidt inner product 〈. , . 〉 and  norm ‖. ‖ in a space of matrices. If ‖𝐴‖  is 

the spectral norm of the matrix 𝐴, ‖𝐴𝐶‖ ≤  ‖𝐴‖ ‖𝐶‖ ≤ ‖𝐴‖‖𝐶‖. 

Lemma A (Robbins-Siegmund 1971). Let (𝛺, 𝒜, 𝑃) be a probability space, (𝑇 ) a non-

decreasing sequence of sub-𝜎-fields of 𝒜. Assume for all 𝑛, 𝑧 , 𝛼 , 𝛽 , 𝛾  are four integrable 𝑇 -

measurable random variables defined on (𝛺, 𝒜, 𝑃) such that: 

𝐸[𝑧 |𝑇 ] ≤ 𝑧 (1 + 𝛼 ) + 𝛽 − 𝛾  a.s. 

Then, in the set {∑ 𝛼 < ∞, ∑ 𝛽 < ∞}, (𝑧 ) converges to a finite random variable and 

∑ 𝛾 < ∞ a.s. 

Lemma B. Let 𝜈 > 0, 𝑐 > 0, two sequences of positive numbers (𝑎 ) and (𝑑 ) such that: 

𝑑 ≤ (1 − 𝜈𝑎 )𝑑 + 𝑐𝑎 , 

∑ 𝑎 = ∞, 𝑎 = 𝑜(1) ,
 

≤ 1 + 𝛾𝑎 + 𝛾 , 0 < 𝛾 < 𝜈, 𝛾 ≥ 0, ∑ 𝛾 < ∞. 

Then there exists 𝑏 > 0 such that, for all 𝑛, 𝑑 ≤ 𝑏𝑎 . 

The proof of Lemma B for 𝜈 = 2 is a part of the proof of Lemma 3 in (Monnez 2022a). The proof 

for any 𝜈 > 0 is similar. 

Proof of Theorem 1 

The writing of 𝜔 belonging to the intersection of the almost sure convergence sets is omitted. Let 

𝜆 and 𝜆  be respectively the smallest and the largest eigenvalue of 𝐹. Since 𝑎 = 𝑜(1), from 

a certain rank 𝑎 < , then all the eigenvalues of 𝐼 − 𝑎 𝐹 are positive and the spectral norm 

‖𝐼 − 𝑎 𝐹‖  is equal to 1 − 𝑎 𝜆. 

𝐴 − 𝐴 = (𝐼 − 𝑎 𝐹 )(𝐴 − 𝐴) − 𝑎 (𝐹 − 𝐹)𝐴 + 𝑎 (𝐺 − 𝐺). 

‖𝐴 − 𝐴‖ ≤ ‖𝐼 − 𝑎 𝐹 ‖ ‖𝐴 − 𝐴‖ + 𝑎 ‖𝐹 − 𝐹‖‖𝐴‖ + 𝑎 ‖𝐺 − 𝐺‖. 

For 0 < 𝜀 < 𝜆, since ‖𝐹 − 𝐹‖ =  𝑜(1) by A1, for 𝑛 sufficiently large: 

‖𝐼 − 𝑎 𝐹 ‖ ≤ ‖𝐼 − 𝑎 𝐹‖ + 𝑎 ‖𝐹 − 𝐹‖ ≤ 1 − 𝑎 (𝜆 − 𝜀), 

‖𝐴 − 𝐴‖ ≤ ‖𝐴 − 𝐴‖ + 𝑎 ‖𝐹 − 𝐹‖‖𝐴‖ + 𝑎 ‖𝐺 − 𝐺‖ − 𝑎 (𝜆 − 𝜀)‖𝐴 − 𝐴‖. 



By A2 and A3a, applying Lemma A with 𝑇 =  𝒜 for all 𝑛 yields: 

∃𝑇 ≥ 0: ‖𝐴 − 𝐴‖ ⟶ 𝑇, 𝑎 ‖𝐴 − 𝐴‖ < ∞ ⟹ 𝑇 = 0. 

Proof of Theorem 2 

𝐴 − 𝐴 = (𝐼 − 𝑎 𝐹)(𝐴 − 𝐴) − 𝑎 𝑈 , 

𝑈 = (𝐹 − 𝐹)(𝐴 − 𝐴) + (𝐹 − 𝐹)𝐴 − (𝐺 − 𝐺), 𝐸[𝑈 |𝑇 ] = 0 a.s. (B1) 

⟹ 𝐸[‖𝐴 − 𝐴‖ |𝑇 ] = ‖(𝐼 − 𝑎 𝐹)(𝐴 − 𝐴)‖ + 𝑎 𝐸[‖𝑈 ‖ |𝑇 ] a.s. 

‖(𝐼 − 𝑎 𝐹)(𝐴 − 𝐴)‖ ≤ ‖𝐼 − 𝑎 𝐹‖ ‖𝐴 − 𝐴‖ = (1 − 𝑎 𝜆)‖𝐴 − 𝐴‖. 

. Let 𝑑 = 3𝑓‖𝐴‖ + 3𝑔. By B2: 

𝐸[‖𝑈 ‖ |𝑇 ] ≤ 3𝑓‖𝐴 − 𝐴‖ + 3𝑓‖𝐴‖ + 3𝑔 = 3𝑓‖𝐴 − 𝐴‖ + 𝑑 a.s. 

𝐸[‖𝐴 − 𝐴‖ |𝑇 ] ≤ (1 + 𝑎 𝜆 + 3𝑎 𝑓)‖𝐴 − 𝐴‖ + 𝑑 𝑎 − 2𝑎 𝜆‖𝐴 − 𝐴‖  a.s. 

By H3a, applying Lemma A yields: 

∃𝑇 ≥ 0: ‖𝐴 − 𝐴‖ ⟶ 𝑇, ∑ 𝑎 ‖𝐴 − 𝐴‖ < ∞ ⟹ 𝑇 = 0 a.s. 

Taking the expectation of 𝐸[‖𝐴 − 𝐴‖ |𝑇 ] gives: 

𝐸[‖𝐴 − 𝐴‖ ] ≤ (1 + 𝑎 𝜆 + 3𝑎 𝑓)𝐸[‖𝐴 − 𝐴‖ ] + 𝑑 𝑎 − 2𝑎 𝜆𝐸[‖𝐴 − 𝐴‖ ]. 

By H3a, applying the deterministic version of Lemma A yields: 

∃𝑡 ≥ 0: 𝐸[‖𝐴 − 𝐴‖ ] ⟶ 𝑡, ∑ 𝑎 𝐸[‖𝐴 − 𝐴‖ ] < ∞ ⟹ 𝑡 = 0. 

Thus, there exists 𝑐 > 0 such that: 

𝐸[‖𝐴 − 𝐴‖ ] ≤ (1 − 2𝑎 𝜆)𝐸[‖𝐴 − 𝐴‖ ] + 𝑐 𝑎 . 

By H3b1, applying Lemma B yields: 

∃𝑏 > 0: 𝐸[‖𝐴 − 𝐴‖ ] ≤ 𝑏𝑎  ⟹ ∑ 𝑎 𝐸[‖𝐴 − 𝐴‖] < ∞, ∑ 𝑎 ‖𝐴 − 𝐴‖ < ∞ a.s. 

 

References 

1. Balsubramani, A., S. Dasgupta and Y. Freund. 2013. The fast convergence of incremental PCA. 

Adv. Neural Inf. Syst. 26:3174-3182. 

2. Bar, R. 2013. Développement de méthodes d’analyse de données en ligne. Thèse de Doctorat 

de l’Université de Lorraine. hal.science/tel-01750512   

3. Benzécri, J.P. 1969. Approximation stochastique dans une algèbre normée non commutative. 

Bull. Soc. Math. France 97:225-241. 

4. Cardot, H., P. Cénac and J.M. Monnez. 2012. A fast and recursive algorithm for clustering 

large datasets with k-medians. Comput. Statist. Data Anal. 56:1434-1449.  

5. Cardot, H. and D. Degras. 2018. Online principal component analysis in high dimension: which 

algorithm to choose? Internat. Statist. Rev. 86:29-50. 

6. Carroll, J.D. 1968. A generalization of canonical correlation analysis to three or more sets of 

variables. In Proceedings of the 76th Convention American Psychological Association, 

227-228. 



7. Duarte, K., J.M. Monnez and E. Albuisson. 2018. Sequential linear regression with online 

standardized data. PLoS ONE 13 (1):e0191186. 

8. Duflo, M. 1997. Random Iterative Models. Applications in Mathematics, 34, Springer-Verlag, 

Berlin. 

9. Lalloué, B., J.M. Monnez and E. Albuisson. 2022. Streaming constrained binary logistic 

regression with online standardized data. J. Applied Statistics 49 (6):1519-1539.  

10. Ljung, L., G.C. Pflug and H. Walk. 1992. Stochastic Approximation and Optimization of 

Random Systems. DMV Seminar, 17, Birkhaüser, Basel. 

11. Monnez, J.M. 2006. Almost sure convergence of stochastic gradient processes with matrix 

step sizes. Stat. Proba. Letters 76:531-536.  

12. Monnez, J.M. 2008. Stochastic approximation of the factors of a generalized canonical 

correlation analysis. Stat. Proba. Letters 78:713-722.  

13. Monnez, J.M. 2010. ACP projetée de données séquentielles. 42èmes Journées de Statistique, 

Marseille. inria-00494695 

14. Monnez, J.M. 2022a. Stochastic approximation of eigenvectors and eigenvalues of the Q-

symmetric expectation of a random matrix. Accepted in Communications in Statistics-

Theory and Methods. hal-03956687 

15. Monnez, J.M. 2022b. Analyse des données en flux. Analyse en composantes principales et 

méthodes dérivées. Lecture. hal-03690459 

16. Monnez, J.M. and A. Skiredj. 2021. Widening the scope of an eigenvector stochastic 

approximation process and application to streaming PCA and related methods. J. 

Multivariate Anal. 182:104694. hal-03038206 

17. Oja, E. and J. Karhunen. 1985. On stochastic approximation of the eigenvectors and 

eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl. 106:69-84. 

18. Robbins, H. and D. Siegmund. 1971. A convergence theorem for nonnegative almost 

supermartingales and some applications. In Optimizing Methods in Statistics, ed. J.S. 

Rustagi, 233-257. New-York: Academic Press. 


