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An extended Oja process for streaming canonical analysis

Canonical components of the canonical analysis of two random vectors are
collinear with principal components of a PCA of the multidimensional linear
regression function of one vector with respect to the other. In the context of
streaming data, we estimate online in parallel this regression function and
components of a canonical correlation analysis, taking into account at each step a
mini-batch of current data or all the data up to the current step to have a faster
convergence, and using extended Oja processes. We extend this approach to
generalized canonical correlation analysis and deal with the cases of streaming
factorial correspondence analysis, multiple correspondence analysis and factorial

discriminant analysis.

Keywords: incremental learning; projected PCA; stochastic approximation;

streaming linear regression, streaming canonical analysis

1. Introduction

Let Q be a positive definite symmetric (p, p) matrix called metric, ., .) be the inner product and
[|. ]| the norm induced by Q. For vectors in RP, Q-orthogonal and Q-normed respectively denote
orthogonal and normed with respect to the metric Q. Recall that a (p, p) matrix B is Q-symmetric
if @B is symmetric; then B has p real eigenvalues and there exists a Q-orthonormal basis of RP
comprised of eigenvectors of B. Let RP*? be the space of (p, q) matrices. Let A" denote the
transpose of a matrix A. Let (-) denote a sequence of matrices or vectors or reals depending on
the context. Let RP* be the dual space of RP. The abbreviation a.s. stands for almost surely and

Si.j.k for Subsection i.j.k.

In the context of streaming data or big data processed sequentially as a data stream, that can
oversize memory storage or computation capacity, stochastic approximation algorithms can be
used to estimate online statistical parameters. For example: parameters of a regression function
(Ljung, Pflug and Walk 1992, Duarte, Monnez and Albuisson, 2018, Lalloué, Monnez and
Albuisson 2022); centers of clusters in unsupervised classification (Monnez 2006, Cardot, Cénac
and Monnez 2012); principal components in principal component analysis (PCA) (Benzécri 1969,
Duflo 1997, Cardot and Degras 2018, Monnez 2022a and references therein). The incoming
observation vectors are used to update the estimate sequence until the latter converges to the
quantity of interest. When using such processes, it is not necessary to store the data and, due to

the relative simplicity of the computation involved, a much greater number of data than with non-



sequential methods can be taken into account during the same amount of time. Moreover, this
type of method uses less memory space than a batch method (Balsubramani, Dasgupta and Freund
2013, for PCA).

To estimate online eigenvectors corresponding to eigenvalues in decreasing order of a Q-
symmetric matrix B, @ and B being unknown, we define in (Monnez 2022a) an extension of the
Oja process (Oja and Karhunen 1985). In the Oja process, the authors supposed that B is the
expectation of a random matrix of which one observation is used at each step and that Q = 1. A
corollary of the almost sure convergence theorem of (Monnez 2022a) recalled in Section 2
(Lemma 1) applies to the case where there exist two sequences of observable random matrices
(V,,m = 1) and (Q,,n = 1) converging almost surely to B and Q respectively. If the estimator
I, of B is determined sequentially by a stochastic approximation process, we can perform in
parallel the online estimation of B and that of eigenvectors and eigenvalues of B. We apply this
principle to the online estimation of canonical components of a streaming canonical analysis (CA)
of two random vectors.

CA of Z' and Z? consists in determining at step i € {1, ...,7} a couple of canonical components
(Vil,VL-Z) that are affine combinations of the components of two random vectors Z! and Z2
respectively, centered, of variance 1, uncorrelated respectively with the previous components,
maximizing E [Vi1 Vl-z]. Particular cases are:

- canonical correlation analysis (CCA) when there is no affine relation between the components
of (Z1,7%);

- factorial correspondence analysis (FCA) when the components of Z! and Z? are respectively
the indicators of the exclusive modalities of two categorical variables;

- factorial discriminant analysis (FDA) when there is no affine relation between the components
of Z1 and the components of Z?2 are the indicators of the exclusive modalities of a categorical
variable.

Canonical components are collinear with principal components of a PCA of the multidimensional
linear regression function of one vector with respect to the other or projected PCA. The stochastic
approximation of this regression function and that of the principal components of its PCA can be
implemented in parallel (Monnez 2008, 2010, Bar 2013). In these references are defined
stochastic approximation processes with one observation per step for estimating a linear
regression function and processes of the Krasulina type for estimating principal components. Here
we use processes using at each step all observations up to this step (A) or a mini-batch of current
observations (B) for linear regression, and extended Oja processes for principal components.
Previous experiments conducted in the application to streaming linear regression or streaming

PCA led to the conclusion that type A processes generally converge faster than type B processes



(Duarte, Monnez and Albuisson 2018, Monnez and Skiredj 2021). Moreover we study the
extension to generalized canonical correlation analysis and multiple correspondence analysis.

Section 3 (S3) is devoted to the estimation of a regression function. We first give two almost sure
convergence theorems of stochastic approximation processes to the solution of a linear system
FX = G, F and G being respectively unknown (p,p) and (p, q) matrices (Theorems 1,2). We
apply them to the estimation of the multidimensional linear regression function E[S|R] of a
random vector S with respect to a random vector R, in the case where there is no affine relation
between the components of R (Corollaries 1,2) and the case where the components of R are the
indicators of the exclusive modalities of a categorical variable (Corollaries 3,4). Corollaries 1,3
apply when at each step of the process all observations of (R,S) up to this step are used,
Corollaries 2,4 when only the current observations are used. In S4, we present algorithms for
estimating online canonical components of a CCA (Theorem 3) and general components of a
generalized canonical correlation analysis (gCCA) (Theorem 4). We present in S5 algorithms for
estimating online canonical components of a FCA (Theorem 5) and general components of a
multiple correspondence analysis (MCA) (Theorem 6), and in S6 discriminant components of a

FDA (Theorem 7). The proofs of Theorems 1,2 are in S7.

2. An extension of the Oja process

Let B be a (p, p) Q-symmetric matrix, fori € {1, ...,7},7 < p, 4; be its ith largest eigenvalue and
v; a Q-normed eigenvector corresponding to A;, B and Q being unknown. The Oja process (Oja
and Karhunen 1985) for estimating online eigenvectors of B is restricted to the case where the
metric Q is known and B is the expectation of a random matrix of which independent observations

are used in the construction of the process.

We suppose here that there exist two sequences of observable random matrices (V,,,n = 1) and
(Qn,n = 1) converging almost surely respectively to B and Q. For a random metric Q,, in R?, let
(., )n be the inner product and ||. ||, the norm induced by Q,,. Let (a,) be a sequence of positive
numbers. For i € {1,..,7},r <p, we recursively define the processes (X3),(¥;}),(X})in

RP such that, forn > 1:

. i i o Gi oy j AP T
Yorr = U+ anV)Xn, Xnia = Yowr = XjcilVnrn, Xy e Xop Xnia = ||)?riz+nl+||1 '
n+1

The set of vectors (X1,1, ..., X1, 1) is obtained by Gram-Schmidt orthonormalization with respect
o1 -

10 Quy1 Of (The, o, i),

Assume, using the same numbering of assumptions as in (Monnez 2022a):

(H1a) B is Q-symmetric. (H1b) The r largest eigenvalues of B are simple.

(H2a) For alln, I + a,V, is invertible.



(H2b) V;, — B, Y7 a,llV,, — B|| < o0 a.s.

(H3a) a, > 0,59 @y = 0,57 al < oo,

(H4) Qn — QX7 anllQn — Qll < as.

(H5) X!,i € {1,...,7}, is an absolutely continuous random variable with respect to the
Lebesgue measure, independent of the sequence (By,).

Applying Corollary 4 of (Monnez 2022a) yields:

Lemma 1. Under Hla,b on B, H2a,b on V,,, H3a on a,,, H4 on Q,, and H5 on Xli,fori e{1,..,r}
X5 converges to v; or —vy, (Vo X5, X5y to Ay, TF an|[ (VX X5y — 44| < o0 as.
If a convergent recursive estimator (1},) of B can be constructed, this extension of the Oja process

can be used in parallel to estimate online eigenvectors of B.
3. Stochastic approximation for streaming multidimensional linear regression

3.1 Stochastic approximation of the solution of a linear system

Let F be an unknown positive definite symmetric (p, p) matrix with smallest eigenvalue A and G
an unknown (p, q) matrix. Let A = F~1G be the solution of the linear system FX = G, with X a
(p, @) matrix. Let (F,,n = 1) and (G, n = 1) be sequences of (p, p) and (p, q) random matrices
respectively, (a,,n=1) be a sequence of positive numbers. Consider the stochastic
approximation process (A,,n = 1) in RP*? and assume:
Apsr = An — an(FyAn — Gp).

(A1) FE, = F as. (A2) X7 apllE, — Fl| < 0,7 a,l|G, — G| < o a.s.

(A3a)a, >0,a, =0(1),X7a, = .
Theorem 1. Under Al, A2, A3a, A, — A, YT ayllA, — A|l < w0 a.s.
Theorem 1 complements Theorem 9 of (Duarte, Monnez and Albuisson 2018).
Let T,, be the o-field generated by A4, Fy, G4, ..., Fy_1, Gy,—1. Assume:

(B1) E[E,|T,,] = F,E[G,|T,] = G as.

(B2)3f, g > 0: supy E[lIF, — FI|T,] < f, supn E[llG, — GII?|Ta] < g ass.

(H3bl)a, > 0,52 a, = 0,52 a>? <00, <1+4ya, +¥,0<y <24 ¥, =0,

An+1
27 Vn < .
Theorem 2. Let A be the smallest eigenvalue of F. Under Bl, B2, H3a, A,, — A a.s. and in g.m.,
Y an E[|lA, — All?] < o, H3bI replacing H3a, there exists b > 0 such that E[||A, — A||*] <
ba,, ¥T a,|l4A, — Al < © a.s.
For a, = %, H3b1 is verified from a certain rank ny for g <a<1landifa> % fora = 1.

Theorem 2 complements Theorem 2 of (Monnez 2008) for the choice of (a,,).



3.2 Application to streaming least square multidimensional linear regression

Let R and S be two random vectors in RP and R respectively, defined on the same probability
space. Assume:
(A4a) The 4" moments of (R, S) exist. (A4b) ||R|| and ||S|| are a.s. bounded.

(A4c) There is no affine relation between the components of R.

3.2.1 Case where assumption A4c holds

1) Let ||. || be the Euclidean norm in R?. The least square multidimensional linear regression of §
with respect to R consists in determining the (p, q) matrix A and the (g, 1) matrix D minimizing

E[|IS — ATR — D||?]. Let the covariance matrices

F = Covar [R] = E[(R — E[RD(R — E[RDT],
G = Covar[R,S] = E[(R — E[R])(S — E[SDT].
Under A4c, the matrix F is positive definite and:
A=F"'G,D = E[S] — ATE[R].
The multidimensional linear regression function of S with respect to R is
E[S|R]1=ATR + D = Covarl[S,R](Covar [R])"*(R — E[R]) + E[S].

A
DT

E[SIR] = (4)"Ry = E[ S(R)T 1(E[Ry(R)TD)™'R;.

LetR, = (}13) in RV, Ay = (1), Fy = E[Ry(R)T], Gy = E[R,ST ]: FiAy = Gy,

2) Let ((Rl-j,Sl-j),i >1,j€{1, ...,mi}) be an i.i.d. sample of (R, S), p, = X1 m; and:

R.:: . .
Ry = ( 1”)»F11 = i ?:1 ZT:H Rlij(Rlij)T'Glln = i ?:1 Z;-n;l Ry; (Sij)T >
Fiop = minZT:"l Rlnj(Rlnj)T> Gizn = minZT:"l Rip (Snj)T-

For h € {1,2}, let the stochastic approximation process (A, 1 = 1) of A; in R®+1*a;

Ap
Athnsr = Ain — an(FipnAin — Gipn)s Aipn = ((Dh n)T) v Apn (0, 9), Dpp(q, 1).
n

Apy 1s an estimator of 4, Dy, of D. Under A4a,c:

1 1
Fiin — F1, Gy — G, E[||F11n — Filll = 0 (ﬁ) JE[lG11n — Gl = 0 (ﬁ)

Assume: (A3b) a, > 0,a, =0(1),X7 a, = OO,ZT\‘;—% < oo,

Under A3b and A4a,c, the assumptions of Theorem 1 hold for the process (A115), thus:
Corollary 1. Under A3b and A4a,c, Ajin — A1, 27 anllA1n — A1l < oo, Ay, — A4,
27 anllAry — All < @ as.

Under H3b1 and A4b,c, the assumptions of Theorem 2 hold for the process (A4;2,), thus:



Corollary 2. Let A be the smallest eigenvalue ofE[ RlRlT]. Under H3b1 and A4b,c, A15,, — A4
a.s. and in g.m., 3.5 apllA12n — A1ll < @ as., Ay — Aas. anding.m., Y1 ayl||Ay, — A|l < ©

a.s.

3.2.2 Case where the components RY,...,RP of R are the indicators of the exclusive

modalities of a categorical variable

In this case, the multidimensional linear regression function E[S|R] of S with respect to R is equal
to the conditional expectation

E[S|R] = ¥P 1’;[[5;]] = E[SRT](E[RRT])"'R = ATR, A = (E[RRT])"'E[RST].

Let ((Rij,Sij),i >1,j€{1, ...,mi}) be an i.i.d. sample of (R, S), u, = X1 m; and:

Fin =i ~ ml RLJ(RU) ,Gin =_n ml RLJ(SU)

= Zmn Ry (an)T’ Gon = anZT:ﬁ an(Snj)T-
For h € {1,2}, let the stochastic approximation process (Ap,,n = 1) of A in RP*4:
Apns1 = Ann — A (FanAnn — Gan)-
Corollary 3. Under A3b and A4a, A1y, — A, X7 anllA1n — All < o as.
Corollary 4. Let A be the smallest eigenvalue of E[RRT]. Under H3b1 and A4b, A,, — A a.s.
and in g.m., 7" ap||Ay, — Al < o a.s.

4. Stochastic approximation for streaming canonical correlation analysis

In this section, the numbering of assumptions is the same as in (Monnez 2022a).
Let Z be a random vector in R of covariance matrix C and M a metric in RP possibly depending
on characteristics of Z. In the PCA of Z in (RP, M) (Monnez 2022a,b) is determined at step i a
linear combination ¢ (Z — E[Z]) of the centered components of Z, called i*" principal
component,

- verifying cT M~ 1¢c; = 1 (1),

- uncorrelated with the previous components, ¢/ C¢; = 0, j € {1, ...,i — 1} (2),

- verifying cT M~ 1c; = 0, € {1, ...,i — 1} (2°),

- of maximum variance ¢/ Cc; (3).
Using the method of Lagrange multipliers gives:
Lemma 2. Under (1), (2 0r 2°), (3), c¢; is a M~ -normed eigenvector of the M~ -symmetric matrix

MC, corresponding to its it largest eigenvalue A; = ¢! Cc;.



4.1 Streaming CCA

Let Z! and Z? be random vectors in RP1 and RP2 respectively, defined on the same probability
space (Q, A, P). Assume the components of Z* and Z2 belong to L?((, A, P) equipped with the

inner product (V, W) = E[VW]. Assume there is no affine relation between the components of

1
Z = (g 2). Let EX k € {1,2}, be the subspace of L?(Q,A,P) generated by the centered
components of Z¥: E* n E? = {0}. Let for k # L € {1,2}:

ck=EF [(Zk — E[z%]) (2% - E[Zk])T] K =F [(Zk — E[z¥]) (2" - E[Zl])T].

B2 = (¢1)~1¢12,B?! = (¢?)~1¢2L.

Let p(.,.) be a linear correlation coefficient. Canonical correlation analysis consists in
determining at step i € {1, ...,7},7 < min(py,p,), for k € {1,2}, an element of E¥, called i*"
canonical component in Z¥, V} = (n%‘)T(Z" - E[Z¥]),

- of variance 1: E [(Vik)Z] = (nf‘)TCknf‘ =1 (41.1),

. . . T

- uncorrelated with ij,] ef{l,..,i—1}k E[Vl-ijk] = (nf‘) Ckr];-c =0 (4.1.2),

- maximizing p(V}}, V?) = E[VV?] = cos(VE,V?) (4.1.3).
For k # | € {1,2}, for fixed V{* of norm 1, V} of norm 1 which maximizes the cosine cos(V/¥, Vil)

is collinear with the projection of V* on E* (see $3.2.1),
E[v¥2!] = Covar[VE, 21](cY) ' (2t - E[2Y) = (n¥)" Ez* — E[Z¥]|21],
cos? (V¥ Vi) = E [(E[mzl])z] = Var [(nﬁ‘)TE[ZHZl]].
Under (4.1.1), (4.1.2), (4.1.3), E[V[}|Z"] is the i*" principal component of the PCA of E[Z¥|Z"]
in (RPx, (C*) ™), of maximum variance cos? (V, V) = p? (Vi VZ), and V}

of variance 1 is equal t0 ———3 E[Vk|Zl] By S3.2.1 and Lemma 2:

p(v; VZ)
E[vFIzY] = (n}) Elz* - E[2¥)124) = (n¥)" c*(c!) ™ (2! - E[24),
p2(viVE) = E[(B[vi12'])] = () c(c") " ctens,

Vi = S BVEIZ] = (1) (2 FLZ) o nf = st (€1 et
Proposition 1. For i € {1,...,7}, r <min(p,,p,), for k #1€{1,2}, n¥ is a C*-normed

-1 -1
eigenvector of the C*-symmetric matrix (Ck) Ckl(Cl) Cc* = BK B corresponding

to its it" largest eigenvalue pz(Vil, Viz) and nf = (V1 V) (Cl) Clk f‘ (V ) Bk 771

Stochastic approximation of canonical components



Let SEQ = (le, wor Zimyy o Znts o Lnmyys ...)be a sequence of i.i.d. observations of Z, the

mini-batch (an, ...,ann) being introduced at step n of the processes. Let for i > 1, j €

1

Zij k k
2).25 @i D, 2 = (27).25 = (%), o = B me, 2 be the
7% 1 1

{1; ---:mi}a ke {172}9 le = <
smallest eigenvalue of E [Z{‘ (Zf)T], k € {1,2}, 2 = min(A, A?). Assume:
(H7a) Z has 4" moments. (H7b) ||Z]| is a.s. bounded.

(H7¢) There is no affine relation between the components of Z.

(H3bl)a, > 0,52 a, = 0,52 a>? <00, <1+ya, +¥,0<y <24 ¥, =0,

an41
27 Vn < 0.
(H3c) a, > 0,%% an—OOZ‘”an<0021 a? < o,
H3bl implies H3c. In order to estimate online the canonical components, we define parallel
stochastic approximation processes of B¥! and of eigenvectors of BX = B¥ Bl
For k # 1 € {1,2}, h € {1,2}, we define the random matrices FK, ,GK! . and the stochastic

approximation processes (Blhn) in RPk+DXP1 guch that:
Flkln = 12 th} (th ) Glln = 12 lej(Z >

Flan = _Z Zln](Zln]) GlZn = _Z Zan(Z ])

Bkl
Blhn+1 = Bffn — an(FlhnBlhn 1hn) Bfin <( Kl T)a Bii3, (01, p), Dty (p1, 1).

We define the convex combination BX! in RPk*P,
Bi' = w1 B, + wpn By, Win 2 0,Wzn 2 0,1y + @y = 1.
By Corollary 1, under H3c, H7a,c, B¥. — B*! Y9 an”B{‘}l - Bkl” < @ a.s.
By Corollary 2, under H3b1, H7b,c, B, — B, Y7 a,||B5, — B¥|| < 0 ass.
Thus under H3b1, H7b,c, B¥t — Bk ¥ an”B,’fl — Bkl” < o a.s. and:
B = BX'B}f — B* = B¥' B ¥? a,||BX — B¥|| < 0 ass.

For k € {1,2}, let ZK be the mean of the sample (Zfl, ...,Z,'fmn) of Z¥ and CF its covariance

. 1
matrix, C¥ = —

ml 4 k (Z -7k (Z_,’f)T, both recursively computed. The matrix CF is
positive definite from a certain rank. Let (., . ) 41 be the inner product and ||. || ,+1 the norm
induced by C¥ in RPk. Under assumptions H3c, H7a,c:

ck — c*Ef|lck — c¥|[] = 0 (%), E anllck — €¥|| < 0 as.
Assumption H4 with Q,4; = C¥ holds. For i€ {1,..,7},r < min(p,,p,), we define the
processes (XX1), (Y1), (XX") in RPx and apply Lemma 1 with V, = BX, B = B:



) ) kj ki in
n+1 = (I + a, By )Xn‘, Xn+1 = Z;q( 1 n+1>k,n+1Xn+1'X b1 = [XE :ﬁl
kn+1

Theorem 3. Let A¥ be the smallest eigenvalue of E [Z{c (Zf)T], k € {1,2}, 1 = min(1*,2?).

Under H1b, H2a, H3b1, H5, H7b.c, for k # 1 € {1,2}, fori € {1, ...,r}, XX converges to 77£c or
B XK' ! ]

T lon; or—mn;

[(BEXKL XK en

pz(Vil, Vi2)| < 00 a.s. When wo,, = 0 for all n, the same conclusions hold with H3b1 replaced by

H3c and H7b by H7a.

—nf, (BEXKL X}, to p?(VEVE), P an[(BEXKL XKL, —

4.2 Streaming gCCA

Consider the generalized canonical correlation analysis (gCCA) defined by Carroll (1968).
Suppose the set of components of a random vector Z in IRP is partitioned in g subsets of real
random variables {Z*1, ..., Z*Pk}, k € {1, ..., q},ZZzlpk = p. Let Z¥ be the random vector in
RPk whose components are Z*1, ..., Z¥Pk Ck = Covar[Z¥] its covariance matrix, C = Covar[Z]

that of Z. Assume there is no affine relation between the components of Z (H7¢). Thus the

k
matrices C¥, k € {1, ...,q}, and C are invertible. Let for k € {1, ...,q}, Z¥ = (Zl ), A¥ be the

smallest eigenvalue of E [Z{c (Z{‘)T], A =min(4%, ...,1%) in Assumption H3b1.

In gCCA, fori € {1,...,r},r < min(pl, ...,pq), are determined at step i:
- a linear combination of variance 1 of the centered components of Z, U; = 6 (Z — E[Z]),
uncorrelated with Uy, ..., U;_4, called i*" general component,

- for k € {1, ..., q}, a linear combination of variance 1 of the centered components of
zk vk = (nf‘) (z* — E[Z*]), called i*" canonical component in Z¥,
- maximizing Y1 _, p?(U;, V).
Let M be the block diagonal (p, p) matrix whose k' diagonal block is (C k )_1
Let6," = ((61)" .. (6)"). dim(6) = py. It is shown (Monnez 2008, 2022b):
Proposition 2. For i € {1,...,r}, r < min(p;, ...,pq), 0; is a C-normed eigenvector of the
matrix B = MC corresponding to its i*" largest eigenvalue v; = 22:1 pZ(UL-, Vik), U; is collinear

with the it principal component ¢} (Z — E[Z]) of the PCA of Z in (RP ,M), ¢; = \/V_iOi;for k e

gk T
1,..,q} nf=— U, =31_ I 6k) ckok vk
{ q} n; W i Zk—l ( L) i Vvi

The covariance matrix C = Covar[Z] can be subdivided into g2 (py,p;) covariance matrices

C* = Covar[Z*,Z', k,1 € {1, ..., q}. Likewise, the matrix B = MC can be subdivided into g2

(pk, p;) matrices B¥! = (Ck)_lel with B¥¢ = I, , the identity matrix of order py.



Stochastic approximation of general components of gCCA
T
Consider the sequence SEQ (S4.1) of i.i.d. observations of Z, with Z;; = ((Z ( ) ) ,

Z{‘j(pk, 1),k €{1,..,q}. Fork € {1, ..., q}, let ZK be the mean of the sample (Z¥,, ...,Z,’fmn) of

1

zZk ck =— m‘ Zk (Z ) -7k (Zk) with p, = Yj=,; m; its covariance matrix, both

recursively computed. Let Q,,,1 be the block diagonal (p, p) matrix whose k" diagonal block is
Ck,k €{1,..,q}. Qy is positive definite symmetric from a certain rank. Under H3c and H7a:
Qn = M7, 3% anllQn — MY < 0 as.

Let(.,. )41 be the inner product and ||. ||,,+1 the norm induced by Q,,,1 in RP.
We define stochastic approximation processes (B,’fl) of B¥ k,1 € {1,...,q}, similar to those
defined for ¢ = 2 in the case of CCA (S4.1) and for n > 1, the (p,p) random matrix B,
subdivided into the g% (p, p;) blocks BX! . Under H3b1 and H7b,c:

B} — B¥ ¥ a,||BX — B¥|| < w0 as., B, » B, X5 ayl|B, — Bl <  as.

Fori € {1,..,7}, r < min(py, ..., py ), we define the processes (X}), (Vt), (X;) in RP and apply
Lemma 1 with V,, = B,,:
A YO

- _ . ~ _ 5i . j j
Y7§+1 - (I + aan)Xrlu 711+1 - Yri+1 - Zj<i<yri+1'Xn+1)n+1Xn+1' n+1 — ”XrLlH” .
n+1

Theorem 4. Let A% be the smallest eigenvalue of E [Z{c (Zf)T] kef{l,..,q}, 1=
min(AY, ...,A9). Under Hlb, H2a, H3bl, H5, H7b.c, for i € {1,..,1}, X} converges to c; =
\/71-91- or —c;, {Bp XL, XL ), to v, Y5 an|(BnX,il,X}'l)n — vl-| < o a.s. When w4, = 0 for all n, the
same conclusions hold with H3b1 replaced by H3c and H7b by H7a.

CCA as particular case of gCCA

7 €™ 0 et cy_(l BY
Forq=2:7Z = ,B=MC=< _) = .
(ZZ) 0 (CZ) 1 (C21 Cc? ) BZl [pz

1
For CCA, under the conditions (4.1.1), (4.1.2), (4.1.3), with n; = <7712> we have:
ni

)™My =2, )™M ;= 0,j € {1,...,i = 13, ()" Cn; = 2 + 2 cos(VH, V7).
We have to maximize (;)7Cn;. By Lemma 2:
Proposition 3. 7;, of squared M~ -norm 2, is an eigenvector of B = MC corresponding to its it"
largest eigenvaluev; = 1 + p(Vil, Viz).
Thus \/% )T (Z — E[Z]) is the it? principal component of the PCA of Z in (RP, M) of variance

v;, collinear with the i*" general component U; of the gCCA of Z of variance 1,



i = J%W(Ui)T(Z —E[Z]) = J%W(Vil +V2),v; = 14 p(VLV?E) = iy p2(UL VF).

V! and V7 are the first canonical components of the gCCA of Z.
1
We can use the stochastic approximation processes (X,‘l) of ¢; = %(%) inRP,ie{l,..r}
Ui

defined for gCCA, and apply Theorem 4 for g = 2.
5. Stochastic approximation for streaming factorial correspondence analysis

5.1 Streaming FCA

In the case of FCA, Z! and Z? are random vectors in RP* and RP2 respectively, defined on the

same probability space (Q, A, P), whose respective components Z11, ..., Z'P1 and Z2%,...,Z?%P2

are the indicators of the exclusive modalities of two categorical variables. We have (uk )TZ k=
1, k € {1,2}, u® being the vector in RPx whose all components are equal to 1; a linear
combination of the components of Z¥ — E[Z¥] is a linear combination of the components of Z*
orthogonal to 1. Let E¥ be the subspace of L?(Q, A, P) generated by the components of Z¥, k €
{1,2}; 1 € E*. Letfor k # | € {1,2}:

ck = E[z8(z%)'],ck(i,1) = P(zK = 1),c = E[2%(2Y)"], B = (¢¥)"c*,

CH(i,j) = (24 =1,2Y = 1), B¥(i,)) = P(2Y = 1|z¢ = 1),

FCA consists in determining at step i € {1, ...,7},r < min(p; — 1,p, — 1), for k € {1,2}, an
element of E¥, called i*" canonical component in Z¥ Vk (nf‘) VA

- centered: (Th) E[Z¥] = (n{‘) Cku* =0 (a),

- of variance 1: E [(Vik) ] = (nf‘)TCknf‘ =1 (5.1.1),

- uncorrelated with V¥, j € {1, ...,i — 1}: E[V}V¥] = (nf) c*n¥ = 0 (5.1.2),

- maximizing p(V}}, V?) = E[VV?] = cos(VE,V?) (5.1.3).
A trivial solution to (5.1.3) is V§ = (uk)Tzk =1,k € {1,2}, E[V}VZ] = 1.
For k # | € {1,2}, for fixed V}* of norm 1, V} of norm 1 which maximizes cos(V-k, Vil)
is collinear with E[Vik|Zl] = E[Vik|Z] (77 ) E[Z¥|Z"] which is centered, and:

cos?(VE,v)) = E[(E[vA12'])*] = var [E[v¥|12!]| = 2 (vF12").

the squared correlation ratio of V¥ with respect to Z*.



Under (a), (5.1.1), (5.1.2), (5.1.3), E[V{|ZY] is the i*" principal component of the PCA of
E[Z*|ZY in (]Rpk, (Ck)_ ) of maximum variance 1 (VklZl) and V! of variance 1 is equal to

k|71
o (VF |Zl)E[V |Z!]. By 83.2.2 and Lemma 2:

E[vi2'] = (o) ¢¥(c) 2"
(V2 = E[(EVA2])] = () e (e) ™ et
nl is an eigenvector of the C¥-symmetric matrix (Ck) Ckl(Cl) C”c B¥'BY% as uk (since

BY*y* = y!) that corresponds to the largest eigenvalue 1 to be removed. The other eigenvectors

are C¥-orthogonal to u*, thus condition (a) holds.

Proposition 4. Fori € {1, ...,7}, r < min(p; — 1,p, — 1), fork # 1 € {1,2}, n¥ is a C*-normed
eigenvector of the C*-symmetric matrix (Ck)_lel (Cl)_lClk = B¥' B corresponding to its ith
largest eigenvalue ¢ (Vk |Zl) after removing the eigenvalue 1 and 771 = (V;‘|Zl) (Cl)_lc‘”‘rhl‘ =

1 lk k
Tc(Vik|Zl) B 771

Stochastic approximation of canonical components of FCA

1 Z;.
Consider the sequence SEQ (S4.1) of i.i.d. observations of Z = (g 2) with Z;; = <ZL2]>’
ij

Z{‘j (P> 1), k € {1,2}. Let u,, = ¥, m;. Let A* be the smallest eigenvalue of C¥, k € {1,2}, 1 =
min(A,22) in Assumption H3b1. For k # [ € {1,2}, we define:

Fly = S, 510, 285 (2l AN s zl(2h)

P, = s 2 (2 o = s 2 (2,
and the stochastic approximation processes (Bf}), h € {1 2}, and (BX') in RPK*PL;
Bh 1 = Bl — an(thBhn — Gfy

B = w1, B¥, + Wy, BEL, 01 = 0,020 = 0, 01y + wop = 1.

By Corollaries 3, 4, under H3b1, B! — B!, ¥ a, ||B¥' — B*!|| < o a.s. and:
By = BX'Bl¥ — B* = BK'B  ¥¥ a,||B¥ — B¥|| < w ass.

When w,,, = 0 for all n, H3b1 can be replaced by H3c.

Let {.,.)gn+1 be the inner product and ||. || 41 the norm induced by Ff, in RPk. Under H3c:
Ff, — C*, X7 a,||Ff, — C¥|| < o0 as. Fork € {1,2},i € {1, ..., + 1}, we define the processes
()?,’{i), (V£1), (XX') in RPk and apply Lemma 1 with V, = BY, B = B:

K

k ki yki _ kj X X
n+1 = (I + a, By )an, Xns1 = 2]<l( P n+1>k,n+1 n+1’ ni1 = 1R
kn+1



Theorem 5. Let A¥ be the smallest eigenvalue of C*,k € {1,2}, A = min(A%,1?). Under HIb,
H2a, H3bl, H5 for k+l1e{12}, for i€{l,..,r}, X,’f‘”l converges to 77£c or
Blkxkitt
f(Bf{Xffi.Xr’fi)kn
> anl(B,’fof’iH,X,’f’iH)kn -2 (Vik|Zl)| <o as. When wyy, =0 for all n, the same

conclusions hold with H3b1 replaced by H3c.

-k, (B,’fX,’f’Hl,X,’f’Hl)kn converges  to rCZ(VL-k|Zl), tont  or—nl,

5.2 Streaming MCA

Multiple correspondence analysis (MCA) can be considered as a particular case of gCCA of a

random vector Z = ((ZH)T, ..., (Z9)T)T (Subsection 4.2) with, for k € {1, ...,q}:

- the pj, components of Z¥ are the indicators of the exclusive modalities of a categorical variable,
(Zk)Tuk =1, ZTu = q, all components of u* in RPk and u in RP being 1;
- Ck=FE [Zk(Zk)T], C=E[ZZ"],c" =E [Zk(Zl)T], AX the smallest eigenvalue of
E [Z k (Z R)T], M the block diagonal matrix whose k*"* diagonal block is (C k )_1;
- the centered i*" general component of variance 1 U; = (6;)TZ, (8;,)T Cu = 0, and the centered
canonical component in Z¥, V¥ = (n%‘)TZk, (nf)TCkuk = 0, are such that:

F 1 p?(U, V) max < V[ collinear with E[U;|Z¥],k € {1, ..., q}

oY E [(E[Ul- |Zk])2] max < Y1 _, 12(U;|Z%) max;

- applying Proposition 2, 8; is a C-normed eigenvector of the matrix B = MC, since B®'u! = u¥,
the largest eigenvalue of B = MC is g, corresponding to the eigenvector u and to the trivial
solution Uy =u"Z =1, V§ = (uk)TZk =1, k€{1,..,q}; the eigenvectors 6; are M~1-
orthogonal to u, thus (8;)TCu = 0, and:
Proposition 5. For i € {1,...,r}, ¥ <min(p; — 1, wrPqg — 1), 6; is a C-normed eigenvector of
the matrix B = MC corresponding to its it" largest eigenvaluev; = ZZ=1p2(Ui,Vik) after

removing the eigenvalue q, U; is collinear with the i*" principal component cf(Z — E[Z]) of the

k
PCA of Z in (RP , M), ¢; = \[v;6;; fork € {1,...,q}, n¥ = —2

Jeyeral
Uy = 2:1,’(‘93{)%’(93{ V.

Stochastic approximation of general components of MCA
Defining the processes (B,’fl), k,1 €{1,..,q}, as in S5.1 for FCA, the processes (X,‘l) in R? as
in S4.2 for gCCA, we have by Theorem 4:



Theorem 6. Let A = min(AL, ..., 19). Under H1b, H2a, H3b1, HS, fori € {1, ...,r}, X}*!
converges to ¢; = \[vif; or —c;, (B X5, X1, 10 vy, BT an|(BpXiH, X5t ), — vi| < 0 as.

When wo, = 0 for all n, the same conclusions hold with H3b1 replaced by H3c.

FCA as particular case of MCA

- 12
z* ((Cl) o ) ct ' I, B
F = 2: Z = ,B = MC = = .
orq (ZZ) 0 (CZ)—l (C21 Cc? ) BZl [pz

2
i

1
For FCA, under the conditions (5.1.1), (5.1.2), (5.1.3), with n; = <7h ), using the same
U]

argumentation as that in the case of CCA particular case of gCCA (54.2) gives:

Proposition 6. For i € {1, ...,r}, r < min(p; — 1,p, — 1), n;, of squared M~ -norm 2, is an
eigenvector of B = MC corresponding to its it" largest eigenvalue v; = 1 + T, (Vl-k |Z l) after
removing the eigenvalue 2.

The i*" general component U; of variance 1 of the MCA of Z is

U; = J;—vi(”i)T(Z —E[Z]) = J%W(Vil +V2), v = 1+ 1.(VF|1ZY) = X2, n2(U;125).

V! and V are the first canonical components of the MCA of Z.
1
We can use the stochastic approximation processes (X,‘l) ofc; = % <7712> in RP defined for MCA,
Ui

and apply Theorem 6 for g = 2.

6. Stochastic approximation for streaming factorial discriminant analysis

Let Z! and Z? be random vectors in RP1 and RP2 respectively, defined on the same probability
space (£, A, P). Assume there is no affine relation between the components of Z 1 and that the
components Z2%,...,Z?P2 of Z? are the indicators of the exclusive modalities of a categorical
variable. Let u? be the vector in RP2 whose all components are equal to 1; (u?)TZ? = 1; a linear
combination of the components of Z2 — E[Z?] is a linear combination of the components of Z2
orthogonal to 1. Let the matrices
Ct= E[(Z' - E[Z'D(Z' - E[Z*]D"], ¢* = E[Z2*(Z*)"],
C'?2 = E[(Z' - E[Z'])(ZV)T],C?! = (C1?)T.

Factorial discriminant analysis consists in determining at step i € {1, ..., 7}, < min(p,,p, — 1),

a linear combination of the centered components of Z*, called i** discriminant component, V! =
T
() (' - E(z'D),

- of variance 1: E [(Vil)Z] = (nil)TClnil =1 (6.1.1),

- uncorrelated with le,j e{l,..,i—1}k E[Vill/}-l] = (nil)TClnjl- =0 (6.1.2),



- maximizing the squared correlation ratio of V;* with respect to Z2,
2 T
r2(Viz?) = E [(E[Vi1|ZZ]) ] = Var [(ml) E[Zl|22]] (6.1.3).
We use a classical presentation of FDA. This analysis can also be presented, as CCA and FCA,

as a canonical analysis consisting in determining at step i a couple (Vll, 2) with V2 = (n ) Z2,
maximizing cos(Vil, VL-Z), but we are only interested in determining V;*.

Under (6.1.1), (6.1.2), (6.1.3), E[V}}|Z?] is the i*" principal component of the PCA of E[Z*|Z?]
in (RP1,(C*)™1). By S3.2.2 and Lemma 2:

B[viz?] = () B2t - E1211122] = () ¢ (et 12,

r2(vi12?) = E|(E[v}122])"] = (o) c*2(c®) ¢,
1} is a C-normed eigenvector of the C*-symmetric matrix (C*)~1C*2(C%)~1C?* corresponding
to its i‘" largest eigenvalue 7; (V1|Z 2) But:

C2(E[22(22)T])'E[2%] = CV?u? = E[Z" — E[Z]] = 0

— (CH™1C12(C?)~1¢? = (CH)~1¢12(C?) ! E[z2(Z2Y)T] = B2B%,
2 = (¢1)-1¢12, B2 = (¢2)~L E[22(zD)T].

Proposition 7. Fori € {1, ...,1}, r < min(p,,p, — 1), n} is a C*-normed eigenvector of the C*-
symmetric matrix (CY)™1C'?(C?)"Y E[Z%(Z)T] = B?B?' corresponding to its it" largest

eigenvalue 1 (Vl |Zz)

Stochastic approximation of discriminant components of FDA

) 7L
Consider the sequence SEQ (S4.1) of ii.d. observations of Z = (52) with Z;; =< U>’
ij

1 1
ZE (o, 1, k € (1,2). Let Z} = (21) and for i > 1, j € {1, .., m}, Z&; = (Zlu). Let u, =

> m;. Let At and A2 be respectively the smallest eigenvalue of E[Z1(Z1)T] and C?, 2 =
min(A,A?) in Assumption H3bl.

We define the process (B1?) in RP1%P2 a5 in S4.1 for CCA and the process (B2!) in RP2*P1 as in
S5.1 for FCA.
By Corollaries 1, 2, 3, 4, under H3b1 and H7b,c restricted to Z*, for k # | € {1,2}:
B¥' — B ¥ P a,||BK — B¥|| < 0 as.
B} = Bl?B?1 — B! = B12B21 ¥ q,||B} — BY|| < w a.s.
When w,,, = 0 for all n, H3b1 can be replaced by H3c and H7b by H7a.

Let Z; be the mean of the sample (Z3;, ..., Zjm, ) of Z* and Cj its covariance matrix, Cjy =

=X ml 1Zi L (Z —ZLY(Z)T, both recursively computed. The matrix C;} is positive definite



from a certain rank. Let (.,.); n41 be the inner product and ||. ||1 41 the norm induced by C;i in
RP:. For i€{l,..,r},r <min(p,,p; —1), we recursively define the processes
(X',‘l), (17,{), (X,ll) in RP1 and apply Lemma 1 with V, = BL, B = B:
~: ~ ~ o~ - . . 3 X‘h_
Yop=3U+ anB%)Xrlh ne1 = Yo — Zj<i<yﬁ+1»X7]1+1)1,n+1X7]1+1' Xps1 = W

n 1n+1
Theorem 7. Let A* and A? be respectively the smallest eigenvalue of E[Z1(Z1)T] and C?, A =
min(AY,A2). Under H1b, H2a, H3b1, H5, H7b,c restricted to Z*, for i € {1, ..., 7}, XL converges
to nl-l or —nl-l, (BLXL, XL),, converges tor? (Vil |ZZ), > anl(BrllX,il,X,‘;)n -2 (Vi1 |ZZ)| < 0 qa.s.
When w4, = 0 for all n, the same conclusions hold with H3b1 replaced by H3c and H7b by H7a.

7. Proofs

We use the Hilbert-Schmidt inner product (.,.) and norm [|. || in a space of matrices. If ||A]|, is
the spectral norm of the matrix A, ||AC|| < [lAll2]ICIl < lIAIllIC]].
Lemma A (Robbins-Siegmund 1971). Let (2, A,P) be a probability space, (T,,) a non-
decreasing sequence of sub-a-fields of A. Assume for alln, z,,, &y, By, Vn are four integrable T, -
measurable random variables defined on (2, A, P) such that:

Elzp411Tol < zn(1 + an) + By — vy a.s.
Then, in the set {37 an < 0,37 Bn < o}, (z,) converges to a finite random variable and
Y Vn < 0 as.
Lemma B. Let v > 0, ¢ > 0, two sequences of positive numbers (a,,) and (dy,) such that:

dyi1 < (1 —va,)d, + ca?,

an

<14+ya,+yn0<y<v, ¥, =20,X7 v, <.

An+1

Then there exists b > 0 such that, for alln, d,, < ba,,.

Zio aTl = oo:an = 0(1);

The proof of Lemma B for v = 2 is a part of the proof of Lemma 3 in (Monnez 2022a). The proof
for any v > 0 is similar.

Proof of Theorem 1

The writing of w belonging to the intersection of the almost sure convergence sets is omitted. Let

A and A,,,, be respectively the smallest and the largest eigenvalue of F. Since a,, = 0(1), from

. 1 . ..
a certain rank a, < P then all the eigenvalues of I — a, F are positive and the spectral norm

|| — a,F||, is equal to 1 — a,A.
Apy1 — A= —anF) Ay — A) — an(Fy — F)A + an (G, — G).
lAn+1 — Al < Il = anFull2llAn — All + ayllE, = FIIAI + anllG, — G-
For 0 < € < A, since ||F, — F||, = 0o(1) by Al, for n sufficiently large:
Il = anFallz < 1 = anFllz + apllFy = Fll; < 1 —a,(A = &),
lAn+1 — All < 14n — All + anllFy = FIHIAI + anllGn = Gl — an(A — &) |lA, — All.



By A2 and A3a, applying Lemma A with T, = A for all n yields:
T > 0: |4, — A — T,z a, |4, — Al <00 = T = 0.
1

Proof of Theorem 2
Anp1 — A= - anF)(4y — A) — ayUy,
U,=(F,—F)A4,—A)+ (F,—F)A—- (G, —G),E[U,|T,] = 0as. (Bl)
= E[llAn+1 — AlIPIT,] = | — anF)(An — DII? + aZE[|Up|I?|T,] as.
U = anF)(An — Al < Il = anFll2llAn = All = (1 = an DA, — All.
.Letd = 3f||A||*> + 3g. By B2:
E[UpIIPIT,] < 3f1lA, — AlI* + 3f1lAlI> + 3g = 3fllA, — All* + d ass.
ElllAn+1 — AlPITo] < (1 + af2? + 3a3)lIA, — Al + d af, — 2a,41l14, — All? as.
By H3a, applying Lemma A yields:
AT > 0: |4, —A|? > T,X7 a, |4, — Al? <0 =T =0 as.
Taking the expectation of E[||A,,4+1 — A||?|T,,] gives:
E[llAn+1 — AlI’] < (1 + a2 + 3a2 E[IIA, — AlI’] + d af — 2a,AE[|4, — AlI%].
By H3a, applying the deterministic version of Lemma A yields:
3t > 0:E[||4, — AlI?] = t, X7 a, E[ll4A, — Al?)] < 0o =t =0.
Thus, there exists ¢ > 0 such that:
E[llAn+1 — AllIP] < (1 = 2a,DE[NAn — AllI?] + ¢ .
By H3bl, applying Lemma B yields:
3b > 0: E[||4, — All?] < ba, = X7 anE[llA, — Alll < 0, X7 anll4, — All < 0 as.
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