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Abstract

Research on automatic hate speech (HS) detec-
tion has mainly focused on identifying explicit
forms of hateful expressions on user-generated
content. Recently, a few works have started to
investigate methods to address more implicit
and subtle abusive content. However, despite
these efforts, automated systems still struggle
to correctly recognize implicit and more veiled
forms of HS. As these systems heavily rely on
proper textual representations for classification,
it is crucial to investigate the differences in em-
bedding implicit and explicit messages. Our
contribution to address this challenging task is
fourfold. First, we present a comparative anal-
ysis of transformer-based models, evaluating
their performance across five datasets contain-
ing implicit HS messages. Second, we examine
the embedding representations of implicit mes-
sages across different targets, gaining insight
into how veiled cases are encoded. Third, we
compare and link explicit and implicit hateful
messages across these datasets through their
targets, enforcing the relation between explicit-
ness and implicitness and obtaining more mean-
ingful embedding representations. Lastly, we
show how these newer representation maintains
high performance on HS labels, while improv-
ing classification in borderline cases.

1 Introduction

The proliferation of hate speech (HS) on social
media platforms has become a pressing concern
in online social communities. While significant
progress has been made in the development of HS
detection methods, current SOTA models focus on
detecting explicit HS, leaving implicit hate cases
undetected (ElSherief et al., 2021; Ocampo et al.,
2023). This issue is aggravated by the sheer volume
of implicit hate speech content being spread across
various online platforms, necessitating automated
approaches to detect them effectively.

Implicit HS detection poses unique challenges
compared to its explicit counterpart: it contains

coded, ambiguous or indirect language that does
not immediately denote hate, but still disparages
a person or a group based on protected charac-
teristics such as race, gender, cultural identity, or
religion (e.g., “I think it is a bit late to think to
look after the safety and the future of white peo-
ple in South-Africa" - the White Supremacy Forum
Dataset (de Gibert et al., 2018)). The performance
of current HS systems heavily relies on how coded
language is represented and how well classifiers
can capture the underlying semantic meaning of
messages through embeddings. Hence, obtaining
better text representation becomes crucial in effec-
tively identifying implicit HS messages.

In this direction, the goal of our work is to bridge
the gap between explicit and implicit messages,
aiming to enhance the embedding representations
of SOTA models. Our contribution is fourfold: i)
We analyze the embedding representations of five
benchmark datasets with veiled hateful content,
examining the levels of explicitness and implicit-
ness, through cross-evaluation using state-of-the-
art transformer models. ii) We examine the embed-
ding representations of implicit messages across
different target groups. Through this analysis, we
gain insights into how implicit HS messages are en-
coded based on their target groups. iii) We propose
a novel approach to link explicit and implicit HS
messages in the representation space. iv) We illus-
trate that the newer representation space preserves
strong efficacy for HS labels, while also refining
classification in borderline instances. Using con-
trastive learning techniques (Gunel et al., 2020;
Rethmeier and Augenstein, 2021; Kim et al., 2022;
Tian et al., 2020), we aim to push explicit and im-
plicit messages effectively enforcing the uncovered
relation between these two notions and thereby ob-
taining more meaningful representations than those
obtained through fine-tuning learning methods.1

1The accompanying software can be found at: https://
github.com/benjaminocampo/bridging_ie_hs_embs.
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NOTE: This paper contains examples of language
which may be offensive to some readers. They do
not represent the views of the authors.

2 Related Work

HS detection has been extensively studied by the
research community providing multiple resources,
such as lexicons (Wiegand et al., 2018; Bassig-
nana et al., 2018), datasets (Zampieri et al., 2019;
Basile et al., 2019; Davidson et al., 2017; Founta
et al., 2018), and supervised methods (Park and
Fung, 2017; Gambäck and Sikdar, 2017; Wang
et al., 2020; Lee et al., 2019) (for a survey, see
(Poletto et al., 2021)). These studies provide a
solid starting point to examine the problem of abu-
sive language, especially in social media messages.
Lately, there has been growing interest in the detec-
tion of implicit HS, which provides additional chal-
lenges. Datasets specifically designed for implicit
HS (Ocampo et al., 2023; Hartvigsen et al., 2022;
ElSherief et al., 2021; Vidgen et al., 2021; Sap
et al., 2020), more solid veiled detectors (Han and
Tsvetkov, 2020), guided augmentation strategies
(Nejadgholi et al., 2022; Roychowdhury and Gupta,
2023), and theoretical analysis (Jurgens et al., 2019;
Waseem et al., 2017; Wiegand et al., 2021) have
been recently proposed to advance in this direction.

However, little attention has been dedicated to
effectively represent implicit messages through
embeddings on these benchmarks. Embeddings
play a crucial role in the performance of classi-
fiers (Pavlopoulos et al., 2017; Kshirsagar et al.,
2018; Ocampo et al., 2023), yet their application to
capture the implicit nature of HS has been under-
investigated. In this direction, (Kim et al., 2022)
tackles cross-dataset underperforming issues on
HS classifiers and proposes a contrastive learning
method that encodes a hateful post and its corre-
sponding implication close in representation space,
closely depending on the annotated implications
and without contra positioning explicitness with
implicitness. (Bourgeade et al., 2023) captures
topic-generic and topic-specific knowledge when
trained on different data to improve generalization.

3 Implicit and Explicit HS Embeddings

3.1 Research Questions
We will focus on the behavior of SOTA models in
cross-evaluation settings, specifically on datasets
containing implicit hate. The study explores the
models’ behavior on different HS classes, including

both explicit and implicit hate. In particular, we
target the following research questions (RQ):
RQ1: How do the models’ embeddings capture the
HS classes? Are explicit and implicit hateful mes-
sages encoded differently across different datasets?
What is the extent of this variation?
RQ2: Does grouping the test sets by target result
in similar encoding patterns for explicit HS and
distinct encoding patterns for implicit HS in the
embeddings? RQ2 builds upon the analysis con-
ducted in RQ1, but with a focus on target groups.
RQ3: Can we link and bring explicit and implicit
embedding representations closer together within
the learned embedding space through their target
groups?
RQ4: How do these newer embedding representa-
tions capture HS classes in comparison with RQ1?

3.2 Datasets

We carried out our analysis on the following stan-
dard datasets, containing implicit HS messages: Im-
plicit Subtle Hate (ISHate) (Ocampo et al., 2023),
Social Bias Inference (SBIC) (Sap et al., 2020),
Implicit Hate Corpus (IHC) (ElSherief et al., 2021),
Dynahate (DYNA) (Vidgen et al., 2021), and Toxi-
gen (TOX) (Hartvigsen et al., 2022). We ensured
that the definitions of HS were consistent across the
datasets. Specifically, for the SBIC dataset, mes-
sages are considered as HS if labeled as offensive
and target a specific group. As for the explicit-
implicit HS labeling across all datasets, the pro-
vided implicit labels are used for IHC and ISHate
datasets. For SBIC, DYNA, and TOX, we com-
puted the percentage of HS implicit messages as
the ones where none of the words of the Google pro-
fanity words resource was present2. The datasets
were divided into train, dev, and test sets. Existing
dataset splits were retained, while datasets with-
out predefined splits were divided using a stratified
splitting method with a 60% train, 20% dev, and
20% test ratio. Table 4 in Appendix shows the per-
centage of implicit/explicit instances per dataset.

3.3 Experimental Settings

Concerning our research questions (Section 3.1), to
answer to RQ1 we performed fine-tuning on two
state-of-the-art models commonly used for HS de-
tection: BERT and HateBERT (Caselli et al., 2021).
Both models were fine-tuned on each dataset using

2List of swear words banned by Google: https://
github.com/RobertJGabriel/Google-profanity-words
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a two-label classification approach, distinguishing
between non-HS and HS messages. To ensure ro-
bustness and account for randomness in the train-
ing process, we repeated the fine-tuning procedure
five times, each time employing a different random
seed. This allowed us to evaluate the performance
of the models consistency. To assess the perfor-
mance of the models, we cross-evaluate the bench-
marks calculating the average F1-score across all
fine-tuning runs. Additionally, we calculated the
standard deviation to quantify the variability in
performance observed across the different runs. Fi-
nally, we calculated the embeddings of these mod-
els using TSNE highlighting how explicit and im-
plicit messages were encoded. We used the base
versions size of these models with batch size of 32,
weight decay of 0.01, 4 epochs, and a learning rate
of 2e-5. As for TSNE, we use perplexity of 30, and
1000 maximum iterations for convergence.

For RQ2, we grouped the embeddings per target
in the plots. To ensure consistency across datasets,
we standardized the target names, addressing la-
bel variations, e.g., we resolved differences like
"asian" and "asian people" by using a unified la-
bel. Moreover, when a message targeted multiple
offensive groups (e.g. Asians and Migrants), we
selected the label corresponding to the predomi-
nant target (among MUSLIMS, WOMEN, JEWS,
LGBTQ+, BLACK PEOPLE, WHITE PEOPLE,
IMMIGRANTS, ASIAN, and DISEASE).

For RQ3, we aim to validate the potential link-
age between explicit and implicit messages through
their target groups. To achieve this, we employ con-
trastive learning techniques on the pre-trained and
fine-tuned models. Contrastive learning involves
defining pairs of positive and negative samples and
training the model using a modified loss function.
In our experimental settings, we designate pairs of
implicit and explicit messages with the same tar-
get as positive samples. For each implicit ones, a
randomly selected explicit message with the same
target is paired. In cases where they are unavail-
able or when the implicit instance lacks a target
label, we randomly assign any explicit message.
Negative samples consist of pairs of HS and Non-
HS instances. For every Non-HS instance, one HS
instance is randomly selected. Using contrastive
learning facilitates the training process by pushing
positive pairs closer together while pushing nega-
tive pairs further apart within the embedding space.

The contrastive loss is defined as follows:

loss_cont = mean
(
(1− l) · s2

+ l · (max(0,m− s))2
) (1)

Where l represents the label pair (1 for positive
pairs, 0 for negative pairs), s is the cosine simi-
larity between paired messages, and m is the mar-
gin hyper-parameter. For classification, the cross-
entropy loss is:

loss_clf = −
N−1∑

i=0

(gilog(pi)

+ (1− gi)log(1− pi))

(2)

Where g is the gold label (labels of the dataset on
which the model is fine-tuned) and p is the predic-
tion. The final loss is:

total_loss = loss_cont + loss_clf (3)

By combining them, we optimize both the model’s
understanding of embeddings and classification.

For RQ4, we fine-tuned both BERT and Hate-
BERT using our enhanced embeddings (same set-
tings of our initial RQs). Additionally, to gain more
targeted diagnostic insights, models’ accuracy was
evaluated on three categories defined on the SBIC
dataset (Non-HS, Explicit HS, and Implicit HS),
and the HateCheck dataset (Röttger et al., 2021), a
suite of functional tests for HS detection models.

3.4 Obtained Results and Discussion

Figure 1: RQ1: TSNE embeddings of the SBIC test set
using HateBERT fine-tuned on DYNA.

Regarding RQ1, Table 1a shows that training
and evaluating HateBERT (BERT results can be
found in the Appendix) on the same dataset yields
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Train
Test IHC SBIC DYNA ISHate TOX

IHC 0,7618 ± 0,0027 0,6824 ± 0,0129 0,5679 ± 0,0522 0,6959 ± 0,0238 0,5896 ± 0,0119
SBIC 0,6385 ± 0,0310 0,8632 ± 0,0099 0,6355 ± 0,0399 0,7522 ± 0,0153 0,6998 ± 0,0086
DYNA 0,6717 ± 0,0310 0,7473 ± 0,0357 0,7860 ± 0,0111 0,7602 ± 0,0025 0,7526 ± 0,0075
ISHate 0,6188 ± 0,0052 0,7209 ± 0,0400 0,6190 ± 0,0064 0,8684 ± 0,0035 0,6034 ± 0,0045
TOX 0,5063 ± 0,0140 0,5428 ± 0,0133 0,4952 ± 0,0197 0,5900 ± 0,0195 0,7650 ± 0,0102

(a) Cross-evaluation results with HateBERT.

Train
Test IHC SBIC DYNA ISHate TOX

IHC 0,7433 ± 0,0107 0,6618 ± 0,0173 0,5415 ± 0,0092 0,6678 ± 0,0058 0,5843 ± 0,0153
SBIC 0,6593 ± 0,0095 0,8620 ± 0,0064 0,6591 ± 0,0069 0,7583 ± 0,0086 0,6742 ± 0,0208
DYNA 0,6520 ± 0,0102 0,7323 ± 0,0116 0,7831 ± 0,0030 0,7566 ± 0,0135 0,7147 ± 0,0075
ISHate 0,6253 ± 0,0060 0,6753 ± 0,0442 0,6165 ± 0,0116 0,8394 ± 0,0064 0,5973 ± 0,0210
TOX 0,5354 ± 0,0210 0,5637 ± 0,0346 0,5202 ± 0,0098 0,6180 ± 0,0256 0,7610 ± 0,0103

(b) Cross-evaluation results with Contrastive HateBERT. Bold values indicate improvements compared to Table 1a.

Table 1: HateBERT and Contrastive HateBERT cross-evaluation results with five different run seeds.

Figure 2: RQ2: TSNE embeddings of the SBIC test set
using HateBERT fine-tuned on DYNA based on their
target groups. Non-HS are excluded from the plot.

better results overall, as could be expected. How-
ever, even in cross-evaluation scenarios, reasonable
performances are observed. Notably, among the
most generalizable models, HateBERT trained on
DYNA exhibits better generalization. We therefore
selected HateBERT trained on DYNA as the best
configuration and we plot the embeddings for the
test sets of all the datasets, applying the TSNE algo-
rithm. Figure 1 shows how explicit HS and non-HS
messages are encoded with clear separation, result-
ing in a noticeable distance between them.3 On the
other hand, implicit HS instances tend to be inter-
twined with both non-HS and explicit HS messages.
This pattern holds true across all 5 datasets.

As for the results for RQ2, Figure 2 shows ex-
3Due to space constraints, we show only the plots of the

TSNE embeddings of the SBIC test set using HateBERT fine-
tuned on DYNA. The plots showing the embeddings for all
the other test sets can be found in the Appendix.

plicit and implicit text representations per target
group highlighting how, in general, embeddings
of explicit and implicit messages tend to be linked
by their target groups in representation spaces. Fi-
nally, as for RQ3, Figure 3 demonstrates that the
embedding representations of explicit and implicit
instances starts to overlap across all datasets when
using HateBERT trained on DYNA. Additionally,
Figure 4 highlights that by leveraging the targets of
HS using contrastive learning, explicit and implicit
messages exhibit a similar representation.

Figure 3: RQ3: TSNE embeddings of the SBIC test
set using HateBERT fine-tuned on DYNA and linking
explicit and implicit instances.

As for RQ4, Table 1b illustrates that the
novel representation enhances the F1-score for
certain datasets, such as SBIC, TOX, and ISHate.
Conversely, for other datasets like IHC and
DYNA, the performance remains comparable
to that of the non-contrastive approach. Table
2 shows higher capability of the contrastive
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Test Case
HateBERT

IHC
Contrastive

IHC
HateBERT

SBIC
Contrastive

SBIC
HateBERT

DYNA
Contrastive

DYNA
HateBERT

ISHate
Contrastive

ISHate
HateBERT

TOX
Contrastive

TOX
counter_quote_nh .486 ± .082 .499 ± .085 .276 ± .213 .422 ± .114 .857 ± .048 .962 ± .027 .379 ± .079 .524 ± .160 0 ± 0 .010 ± .009

counter_ref_nh .576 ± .045 .617 ± .086 .240 ± .168 .393 ± .144 .882 ± .018 .902 ± .037 .387 ± .038 .521 ± .187 .177 ± .043 .295 ± .117
ident_pos_nh .441 ± .020 .446 ± .136 .301 ± .076 .361 ± .038 .849 ± .021 .767 ± .099 .272 ± .071 .350 ± .101 .470 ± .126 .575 ± .133

negate_neg_nh .502 ± .054 .517 ± .134 .120 ± .060 .161 ± .104 .448 ± .037 .486 ± .040 .164 ± .030 .211 ± .106 .087 ± .036 .194 ± .077
profanity_nh .796 ± .036 .774 ± .076 .922 ± .099 .994 ± .005 1 ± 0 1 ± 0 .992 ± .004 .996 ± .005 .292 ± .101 .456 ± .105

slur_homonym_nh .353 ± .061 .413 ± .084 .393 ± .162 .513 ± .099 .813 ± .030 .787 ± .073 .680 ± .056 .827 ± .101 .320 ± .051 .473 ± .064
slur_reclaimed_nh .217 ± .045 .277 ± .084 .472 ± .196 .711 ± .117 .891 ± .018 .879 ± .044 .741 ± .070 .802 ± .113 .272 ± .031 .346 ± .067
target_group_nh .710 ± .036 .700 ± .027 .623 ± .328 .810 ± .072 .968 ± 0 .971 ± .021 .448 ± .027 .561 ± .085 0 ± 0 .006 ± .014
target_indiv_nh .538 ± .049 .572 ± .104 .655 ± .451 .951 ± .028 1 ± 0 1 ± 0 .782 ± .032 .809 ± .061 .003 ± .007 .003 ± .007
target_obj_nh .637 ± .042 .622 ± .105 .923 ± .086 .966 ± .037 .969 ± .011 .985 ± .015 .735 ± .013 .757 ± .073 .006 ± .008 .034 ± .035

Table 2: Comparative accuracy performance of HateBERT vs Contrastive HateBERT trained in each dataset and
evaluated across various test cases on HateCheck.

Train Explicit Implicit Non-HS
IHC 0.8832 0.8842 0.4659
SBIC 0.8971 0.8440 0.8568
DYNA 0.6071 0.6665 0.8314
ISHate 0.5515 0.4676 0.8768
TOX 0.7938 0.8617 0.3439

Table 3: Contrastive HateBERT avg accuracy across
Explicit, Implicit, and Non-HS (SBIC test set).

Figure 4: RQ3: TSNE embeddings of the SBIC test set
using HateBERT fine-tuned on DYNA based on their
target groups. Non-HS are excluded from the plot.

HateBERT in accurately classifying challenging
Non-HS messages across all five datasets. A
significant reduction in false positives is also
observed in HateCheck categories such as
quoted announcements (counter_quote_nh),
direct references (counter_ref_nh), pos-
itive identifiers (ident_pos_nh), negated
hateful remarks (negate_neg_nh), non-
hateful profanity (profanity_nh), reclaimed
slurs (slur_reclaimed_nh), homonym slurs
(slur_homonym_nh), as well as targeted abuse
directed at individuals (target_indiv_nh),
objects (target_obj_nh), and non-protected
groups (target_group_nh). Additionally, Table
3 indicates that both Explicit and Implicit cat-
egories exhibit similarly high accuracy levels,

highlighting their nearly indistinguishable impact
on the model’s aggregate performance. Also, the
importance of the Non-HS category is underscored,
varying with different training datasets, yet
remaining a critical component.

Hence, our experiments emphasize the impor-
tance of studying implicit representations, as classi-
cal training strategies cannot encode them properly
(RQ1). We showed that implicit and explicit mes-
sages share a connection conveying similar mes-
sages to the same target (RQ2) and how contrastive
learning effectively forces that property by bridg-
ing explicit and implicit instances through their
targets (RQ3), thereby obtaining more meaningful
representations that the ones obtained through fine-
tuning. Finally, we reduced biases in non-hateful
implicit cases often misclassified due to trigger
words or nuanced content. Our enhanced method
maintains high performance on HS labels while im-
proving classification in borderline cases, proving
its robustness and precision (RQ4).

4 Conclusions

Our contribution in this study is fourfold: i) We
studied how models’ embeddings capture HS w.r.t.
explicitness and implicitness, ii) We showed how
explicit and implicit HS messages result in similar
encodings if grouped by their protected target, iii)
We analyzed a contrastive learning method to force
this property when representing implicit text. We
prove our research hypothesis on 5 HS benchmarks,
moving a step forward in bridging the gap between
explicitness and implicitness, and iv) We show how
the newer representation space maintains high per-
formance on HS labels while improving classifi-
cation in borderline cases. In future work, we’ll
refine contrastive learning, delving into contextual
pairing based on other semantic dependencies be-
tween explicit and implicit cues, aiming to sharpen
nuanced hate speech detection.
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Limitations

In this study, we are aware of some key issues, one
of which pertains to the selection of positive and
negative samples in contrastive learning. The effec-
tiveness of the algorithm heavily relies on the care-
ful selection of these pairs. While our investigation
demonstrates that explicit and implicit messages
exhibit a relationship through their target groups
across five distinct datasets, it is important to ac-
knowledge that this assumption may not always
hold true. Additionally, ensuring a clear separation
between non-hateful and HS instances can be chal-
lenging due to the heterogeneity of each category.

Moreover, the efficacy of our approach is con-
tingent upon the availability and alignment of tar-
get information across the datasets. While target
information is commonly provided in benchmark
datasets, different datasets may address various pro-
tected characteristics. Our approach assumes that
there is some degree of overlap in terms of target
groups among the selected datasets.

Furthermore, the selection of pairs when linking
explicit and implicit messages can vary in terms
of the number of combinations. However, it is
important to note that as the number of pairs in-
creases, the training requirements tend to grow sig-
nificantly, resulting in slower training processes.
This trade-off between the number of pairs and
training efficiency should be carefully considered
when implementing the approach.

Ethics Statement

This paper uses a collection of HS examples ex-
tracted from linguistic resources commonly em-
ployed for HS detection, ensuring their indepen-
dence from the authors’ personal opinions. The
datasets used in this study have been meticulously
handled to address privacy concerns associated
with user data. While we acknowledge the poten-
tial for misuse, we firmly believe that developing
robust HS classifiers is essential in combating the
proliferation of harmful content. In this regard, our
work represents a significant contribution towards
this objective and encourages further exploration
and investigation within the scientific community.
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A Datasets Statistics and Details

Table 4 displays statistics related to the datasets
used in our study, including IHC, SBIC, DYNA,
TOX, and ISHate. The table presents the percent-
age of implicit and explicit instances per dataset,
along with their distribution across set partitions,
and target groups distribution.

B Evaluation results with BERT

In this section we show the evaluation of the BERT
and Contrastive BERT models for RQ1 and RQ4
specified in sections 3.1 and 3.3.

Table 5a demonstrates BERT’s efficacy in cross-
evaluation contexts, mirroring the results seen
with HateBERT. Among the models, SBIC stands
out, displaying superior generalization capabilities.
Conversely, Table 5b illustrates that while models
like SBIC, IHC, and TOX reap advantages from
contrastive learning, others experience a slight dip
in performance, though maintaining an overall
high-quality output.

Moving on to Table 6, it’s evident that a seg-
ment of the enhancement is attributed to the precise
categorization of challenging Non-HS messages
prevalent across all five datasets. This precision
underscores a more conservative and meticulous
approach in classifying a message as Hateful.

Finally, Table 7 highlights BERT’s consistent
performance, boasting high accuracy in handling
Non-HS instances for each dataset. This is
achieved without compromising the emphasis on
discerning between Explicit and Implicit labels,
thereby ensuring that the model maintains a bal-
anced focus on varied content nuances.

C TSNE embeddings for RQ1, RQ2, and
RQ3 in all datasets

This section presents the TSNE results for each
research questions RQ1, RQ2, and RQ3, illustrated
in Figures 5, 6, 7, and 8. These visualizations are
generated from the embeddings captured by Hate-
BERT, specifically trained on the DYNA dataset
and evaluated on all datasets.
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Datasets Source Size % Implicit % Explicit % Hate Class
IHC Twitter 21480 86,7017 13,2983 38,1238
SBIC Social Media 144649 58,9586 41,0414 38,9667
DYNA Human-Machine Adv. 41144 58,0654 41,9346 53,8961
ISHate Social Media 53073 71,5686 28,4314 66,3313
TOX GPT-3 9866 42,381 57,619 48,956

Table 4: Comparing toxic language datasets. % Hate Class, % Implicit, and % Explicit are the percent labeled as
hate, implicit hate, and explicit hate, respectively.

Train Test IHC SBIC DYNA ISHate TOX
IHC 0,7625 ± 0,0063 0,6891 ± 0,0072 0,5511 ± 0,0077 0,6824 ± 0,0068 0,6074 ± 0,0329
SBIC 0,6603 ± 0,0301 0,8568 ± 0,0092 0,6500 ± 0,0310 0,7581 ± 0,0167 0,6939 ± 0,0086
DYNA 0,6660 ± 0,0046 0,7412 ± 0,0098 0,7831 ± 0,0027 0,7515 ± 0,0039 0,7501 ± 0,0036
ISHate 0,6214 ± 0,0040 0,7480 ± 0,0058 0,6279 ± 0,0056 0,8635 ± 0,0029 0,6012 ± 0,0090
TOX 0,5455 ± 0,0091 0,5855 ± 0,0312 0,5193 ± 0,0204 0,6140 ± 0,0275 0,7824 ± 0,0094

(a) Cross-evaluation results with BERT.

Train Test IHC SBIC DYNA ISHate TOX
IHC 0.7418 ± 0.0066 0.6877 ± 0.0157 0.5463 ± 0.0183 0.6748 ± 0.0117 0.6141 ± 0.0100
SBIC 0.6630 ± 0.0049 0.8602 ± 0.0034 0.6390 ± 0.0056 0.7493 ± 0.0093 0.6574 ± 0.0145
DYNA 0.6431 ± 0.0074 0.6973 ± 0.0241 0.6979 ± 0.0080 0.7414 ± 0.0124 0.7001 ± 0.0145
ISHate 0.6202 ± 0.0156 0.6808 ± 0.0398 0.6233 ± 0.0078 0.8350 ± 0.0097 0.5797 ± 0.0206
TOX 0.5501 ± 0.0396 0.5741 ± 0.0410 0.5611 ± 0.0264 0.6086 ± 0.0349 0.7645 ± 0.0103

(b) Cross-evaluation results with Contrastive BERT. Bold values indicate improvements compared to Table 5a.

Table 5: BERT and Contrastive BERT cross-evaluation results with five different run seeds.

Test Case
BERT
IHC

Contrastive
IHC

BERT
SBIC

Contrastive
SBIC

BERT
DynaHate

Contrastive
DynaHate

BERT
ISHate

Contrastive
ISHate

BERT
ToxiGen

Contrastive
ToxiGen

counter_quote_nh .297 ± .095 .410 ± .070 .282 ± .143 .414 ± .095 .843 ± .057 .870 ± .082 .319 ± .044 .434 ± .050 .097 ± .051 .109 ± .121
counter_ref_nh .329 ± .055 .467 ± .049 .201 ± .093 .264 ± .073 .848 ± .033 .908 ± .018 .410 ± .033 .555 ± .072 .380 ± .152 .359 ± .193
ident_pos_nh .340 ± .039 .406 ± .088 .233 ± .085 .361 ± .165 .846 ± .044 .808 ± .137 .317 ± .060 .454 ± .046 .556 ± .130 .624 ± .194

negate_neg_nh .346 ± .054 .427 ± .132 .048 ± .031 .128 ± .077 .406 ± .055 .502 ± .062 .093 ± .022 .194 ± .098 .218 ± .146 .262 ± .176
profanity_nh .810 ± .054 .822 ± .052 .946 ± .115 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 .780 ± .203 .688 ± .168

slur_homonym_nh .513 ± .045 .500 ± .120 .520 ± .090 .513 ± .112 .860 ± .037 .875 ± .057 .880 ± .038 .953 ± .038 .667 ± .100 .667 ± .113
slur_reclaimed_nh .165 ± .060 .215 ± .094 .398 ± .113 .481 ± .081 .815 ± .045 .815 ± .035 .694 ± .064 .790 ± .049 .430 ± .050 .420 ± .156
target_group_nh .684 ± .031 .716 ± .049 .732 ± .267 .771 ± .070 .987 ± .013 .992 ± .016 .416 ± .031 .529 ± .080 .048 ± .036 .084 ± .119
target_indiv_nh .557 ± .063 .498 ± .135 .797 ± .351 .938 ± .038 1 ± 0 1 ± 0 .695 ± .028 .818 ± .077 .142 ± .127 .074 ± .073
target_obj_nh .677 ± .067 .711 ± .111 .988 ± .028 .978 ± .018 1 ± 0 1 ± 0 .785 ± .031 .855 ± .056 .228 ± .182 .218 ± .175

Table 6: Comparative accuracy performance of BERT vs Contrastive BERT trained in each dataset and evaluated
across various test cases on HateCheck.

Train Explicit Implicit Non-HS
IHC 0.8754 0.8678 0.5206
SBIC 0.8920 0.8348 0.8607
DYNA 0.5796 0.6113 0.8068
ISHate 0.5542 0.4387 0.9067
TOX 0.6892 0.7727 0.4408

Table 7: Contrastive BERT avg accuracy across Explicit, Implicit, and Non-HS (SBIC test set).
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(a) DYNA→ IHC (b) DYNA→ SBIC (c) DYNA → DYNA

(d) DYNA→ ISHate (e) DYNA→ TOX

Figure 5: RQ1: TSNE embeddings of the test sets for all the datasets using HateBERT fine-tuned on DYNA.

(a) DYNA→ IHC (b) DYNA→ SBIC (c) DYNA → DYNA

(d) DYNA→ ISHate (e) DYNA→ TOX

Figure 6: RQ2: TSNE embeddings of the test sets for all the datasets using HateBERT fine-tuned on DYNA based
on their target groups. Non-hateful instances are excluded from these plots.
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(a) DYNA→ IHC (b) DYNA→ SBIC (c) DYNA → DYNA

(d) DYNA→ ISHate (e) DYNA→ TOX

Figure 7: RQ3: TSNE embeddings of the test sets for all the datasets using HateBERT fine-tuned on DYNA and
linking explicit and implicit instances

(a) DYNA→ IHC (b) DYNA→ SBIC (c) DYNA → DYNA

(d) DYNA→ ISHate (e) DYNA→ TOX

Figure 8: RQ3: TSNE embeddings of the test sets for all the datasets using HateBERT fine-tuned on DYNA based
on their target groups. Non-hateful instances are excluded from these plots.
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