

Infering meteorological information at different scales from several sources of data

Didier Josselin, Matthieu Vignal, Nicolas Viaux, Delphine Blanke, Céline

Lacaux

► To cite this version:

Didier Josselin, Matthieu Vignal, Nicolas Viaux, Delphine Blanke, Céline Lacaux. Infering meteorological information at different scales from several sources of data. ECTQG'2023, Université de Braga (Portugal), Sep 2023, Braga, Portugal. 2 p. hal-04351525

HAL Id: hal-04351525 https://hal.science/hal-04351525v1

Submitted on 18 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ECTQ2023: Braga (Portugal) 14 -17 September 2023

UNIVERSIDADE Ð COIMBRA

Infering meteorological information at different scales from several sources of data

Didier Josselin*, Matthieu Vignal*, Nicolas Viaux*, Delphine Blanke**, Céline Lacaux**

* UMR ESPACE, CNRS, France ** Laboratoire de Mathématique d'Avignon, France

Outline

- Effect of the support on spatial statistics
- Data aggregation through scales
- Eliminating the spatial support effect by resampling and *Relative Scalar Deviation* calculation
- Conclusion

Effect of the spatial support

Spatial (dis)aggregation

[Openshaw, 1974]

Josselin & Louvet, 2016

....

UNIVERSITÉ

CÔTE D'AZUF

Objectives of the research

- Studying the relationship between climatic statistical data and aggregation scales
- Finding an accurate and relevant scale for climatic data, at a given level (*i.e.* administrative division)
- Generalizing a method of resampling to eliminate the spatial support effect in rescaling procedures

Data aggregation through scales

Data used (over 30 years)

Aggregation process

Calculation without partition (*e.g.* global average M)

No resampling, we compute the clue on observed data without spatial partition

Calculation considering the partition (*e.g.* aggregated average M)

We compute the clue on the observed data for each aggregate, and then aggregate them

Scalogram of temperatures

Scalogram of temperatures

Observations

- There are significant gaps of mean temperatures according to partitions (up to 3.5 or 8 °C)
- Statistical dispersion decreases when number of aggregates increase
- We observe a peak where mean T° is maximal
- But: we need a reference to allow comparison between partitions

Eliminating the spatial support effect by resampling and Relative Deviation calculation (Josselin et al., 2012, 2023)

Resampling procedure

- We randomly permute *N times* the observed temperatures without changing the spatial partition
- We re-compute statistical clues for each partition
- This is our "control tube" that draws a random spatial distribution of the temperature, without spatial autocorrelation any more

Spatial structure of measures does not change, but values are permuted (drawing without replacement)

Relative Scalar Deviation

$$RSD(\%) = 100 * \frac{T_{obs} - T_{rand}}{T_{rand}}$$

- Due to permutations, the normalized difference between the observed and the randomized clue allows to eliminate the change of support problem because its effect is similar in both cases (for a given scale/partition)
- The Relative Scalar Deviation reflects the effective part of the geography in the measured values (e.g. Temperature), because the random process deleted all the spatial autocorrelation

Scalogram with Relative Scalar Deviation

Median Temperature (°C)

ALADIN climatic model from CRNM in region **Provence Alpes** Côte d'Azur

1976 to 2005

Maximal in April

Minimal in April

RAND

RSD

OBS

Scalogram with Relative Scalar Deviation

Mean Temperature (°C)

Minimal during the year

France)

en région

Maximal during the year

Conclusion

- A proposition to eliminate the Change of Spatial Support Problem
- The County scale seems to be the partition the furthest from a random distribution of mean T°
- It was shown that different scales can appear as relevant depending on the tackled topic
- The Relative Scalar Deviation being generalized

Josselin *et al.*, 2023, Uncertainties related to real estate price estimation scales, in *Geographic Data Imperfection 2* (Eds.: Batton-Hubert & Pinet) ISTE Wiley

Thank you for your attention

Didier.josselin@univ-avignon.fr

ONE SAMPLE

	Sick due to pesticide	Not sick	TOTAL
Orsini Viper	200	800	1000
Apollon Butterfly	50	950	1000
TOTAL	250	1750	2000

Probability to be sick for vipers: 200/1000 = 0,20 = 20 %

Probability to be sick for butterflies: 50/1000 = 0.05 = 5 %

Relative Risk = 0,20/0,05 = 4

(4 times more for vipers)

TWO SEPARATED SAMPLES

<u>Sample 1</u>	Sick	OK	TOTAL
Viper	193	224	417
Butterly	39	45	84
TOTAL	232	269	501

Relative Risk = (193/417) / (39/84) = 1

<u>Sample 2</u>	Sick	OK	TOTAL
Viper	7	576	583
Butterfly	11	905	916
TOTAL	18	1481	1499

Relative Risk = (7/583) / (11/916) = 1

TWO SEPARATED SAMPLES

•

JNIVERSITÉ

OTE D'AZU

Aix*Marseille

<u>Sample 1</u>	Sick	OK	TOTAL
Viper	193	224	417
Butterly	39	45	84
TOTAL	232	269	501

Relative Risk = (193/417) / (39/84) = 1

<u>Sample 2</u>	Sick	OK	TOTAL
Viper	7	576	583
Butterfly	11	905	916
TOTAL	18	1481	1499

Aggregated Relative Risk = 1

J

AVIGNO

(same risk)

TWO SEPARATED SAMPLES

	Sick due to pesticide	Not sick	TOTAL	
Orsini Viper	200	800	1000	≠ !
Apollon Butterfly	50	950	1000	
TOTAL	250	1750	2000	
ONE SAMP	LE			

J

AVIGNO

Aix*Marseille

JNIVERSITÉ

OTE D'AZU

(same risk)

<u>Sample 1</u>	Sick	OK	TOTAL
Viper	193	224	417
Butterly	39	45	84
TOTAL	232	269	501

Relative Risk = (193/417) / (39/84) = 1

<u>Sample 2</u>	Sick	OK	TOTAL
Viper	7	576	583
Butterfly	11	905	916
TOTAL	18	1481	1499

Relative Risk = (7/583) / (11/916) = 1

Aggregated Relative Risk = 1 +

