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Introduction

We consider the following initial value problem (IVP) for two coupled nonlinear Schrödinger equations (NLS)

   iu t + u xx = (α|u| 2p + β|u| q |v| q+2 )u, iv t + v xx = (α|v| 2p + β|v| q |u| q+2 )v, u(x, 0) = u 0 (x), v(x, 0) = v 0 (x), (1.1) 
where α, β, p, q, t, x ∈ R, p > 0 and q > 0. u = u(x, t), v = v(x, t) are complex unknown functions. The parameter β is a real positive constant has to be interpreted as the birefringence intensity and describes the coupling between the two component of the electric-field envelope. Taking α = 1 and q = p -1. The system (1.1) leads to the following system    iu t + u xx = (|u| 2p + β|u| p-1 |v| p+1 )u, iv t + v xx = (|v| 2p + β|v| p-1 |u| p+1 )v, u(x, 0) = u 0 (x), v(x, 0) = v 0 (x).

(1.2)

In general a single mode fiber can support two distinct modes of polarization which are orthogonal to each other. This phenomenon is known as birefringence. Among these two modes one corresponds to the ordinary ray (O-ray) in which the refractive index of the medium is constant along every direction of the incident ray. The other is the extraordinary ray (E-ray) whose refractive index for the medium varies with the direction of the incident ray. In an ideal fiber these two modes are degenerate, while in a real fiber due to the fiber nonlinearity this degeneracy is broken and the phenomenon is known as modal birefringence [START_REF] Agarwal | Nonlinear Fiber Optics[END_REF]. The focusing nonlinear terms in (1.2) describes the dependence of the refraction index of material on the electric field intensity and the birefringence effects.The study of the propagation of pulses in nonlinear optical fiber has been of great interest in the last years. I. P. Kaminov [START_REF] Kaminow | Polarization in optical fibers[END_REF] showed that single-mode optical fibers are not really single-mode but actually bimodal due to the presence of birefringence which can deeply influence the way in which an optical evolves during the propagation along the fiber. Indeed, it can occur that the linear birefringence makes a pulse split in two, while nonlinear birefringence traps them together against splitting. In 1979, T. Kato [START_REF] Kato | On the Cauchy problem for the ( generalized ) Korteweg -de Vries equations[END_REF] established a remarkable result for the regularizing property of solutions to the initial value problem for the KdV equation. He proved that if the initial function u 0 (x) ∈ L 2 b = H 2 (R) ∩ L 2 (e bx dx) (b > 0), then the solution u(t) is C ∞ (R) for t > 0. A main ingredient in the proof was the fact that formally the semigroup e -t∂ 3

x in L 2 b is equivalent to U b = e -t(∂x-b) 3 in L 2 when t > 0. A number of results concerning the gain in regularity for various nonlinear evolution equations have appeared from different points view. It is shown that C ∞ solutions u(x, t) are obtained for all t > 0 if the initial data ϕ(x) decays faster than polynomially on R + and has certain initial Sobolev regularity. Here we quantify the gain of each derivative by the degree of vanishing of the initial data at infinity. The gain of regularity for a higher order Schrödinger equation has been also proved in [START_REF] Alves | Smoothing properties for a higher order nonlinear Schrödinger equation with constant coefficients[END_REF]. In 1986, N. Hayashi et al. [START_REF] Hayashi | On solutions on the initial value problem for the nonlinear Schrödinger equations in One Space Dimension[END_REF][START_REF] Hayashi | On solutions of the initial value problem for nonlinear Schrödinger equations[END_REF] showed that if the initial data u 0 (x) decreases rapidly enough, then the solution of the Schrödinger equation

iu t + u xx = λ|u| p u, x ∈ R, t ∈ R u(x, 0) = u 0 (x), x ∈ R (1.3)
with λ ∈ R, p > 1 and u = u(x, t) is a complex unknown function that becomes smooth for t = 0, provided that the initial functions in H 1 (R) decay rapidly enough as |x| → +∞.

In 1986, N. Hayashi et al. [START_REF] Hayashi | On solutions of the initial value problem for nonlinear Schrödinger equations[END_REF] studied the more general case. Indeed, they considered the initial value problem

iu t + ∆u = f (|u| 2 u) , x ∈ R n , t ∈ R u(x, 0) = u 0 (x), x ∈ R n (1.4)
and they showed that if the initial u 0 (x) decreases sufficiently rapidly, then the solution of (1.4) becomes smooth for t = 0, provided the nonlinear term f (|u| 2 u) is smooth. In J. C. Ceballos et. al. [START_REF] Ceballo | Gain in regularity for a coupled nonlinear Schrödinger system[END_REF] the authors studied the gain in regularity for the system (case p = 1)

     iu t + u xx + |u| 2 u + β|v| 2 u = 0 iv t + v xx + |v| 2 v + β|u| 2 v = 0 u(x, 0) = u 0 (x), v(x, 0) = v 0 (x) (1.5)
where (x, t) ∈ R × R. u = u(x, t) and v = v(x, t) are complex unknown functions and β is a real positive constant which depends on the anisotropy of the fiber. C. R. Menyuk [START_REF] Menyuk | Nonlinear pulse propagation in birefringence optical fiber[END_REF][START_REF] Menyuk | Pulse propagation in an elliptically birefringent Kerr medium[END_REF] showed that the evolution of two orthogonal pulse envelopes in birefringent optical fiber is governed by the coupled nonlinear Schrödinger system (1.5). If β = 0 the equations in (1.5) are two copies of a single nonlinear Schrödinger equation which is integrable; when β = 1, (1.5) is known as a Manakov system [START_REF] Manakov | On the theory of two-dimensional stationary self-focusing of electromagnetic waves[END_REF]. In all the other cases the situation is much more complicated from different points of view. The Cauchy problem for the system (1.5) has been studied by many authors and over different point views see [START_REF] Cazenave | An introduction to nonlinear Schrödinger equations[END_REF][START_REF] Ceballo | Gain in regularity for a coupled nonlinear Schrödinger system[END_REF][START_REF] Chen | Blow-up profile to the solutions of two-coupled Schrödinger equation with harmonic potencial[END_REF][START_REF] Ma | On global rough solutions to a non-linear Schrödinger system[END_REF][START_REF] Roberts | Finite-time collapse of N classical fields described by coupled nonlinear Schrödinger equations[END_REF] and references therein. Thus, it is natural to ask whether the equation (1.2) has a gain in regularity. It might be expected that the Schrödinger systems have an analogous regularizing effect as that of the (1.3) equation. This is our motivation for the study of gain in regularity. Our aim in this paper is to show that the Schrödinger systems have a regularizing effect. Indeed, that all solutions of finite energy to (1.2) are smooth for t = 0 provided that the initial functions in H 1 (R) decay rapidly enough as |x| → +∞. For to prove this result, the main tool is to use a operator J defined by

Ju = e ix 2 /4t (2it)∂ x (e -ix 2 /4t u) = (x + 2it∂ x )u.
which commute with the operator of Schrödinger.

This paper is organized as follows: Before describing the main results, in Section 2 we briefly outline the notation and terminology to be used later on and we present some Theorems. In Section 3 we find estimates of finite energy. In Section 4 we find estimates for the operator J. In Section 5 we prove our main result. Our main result is Main Theorem.

1. Let p > 1 odd integer number, (u 0 , v 0 ) ∈ H 1 (R)×H 1 (R) and (x n u 0 , x n v 0 ) ∈ L 2 (R)× L 2 (R) for some n ∈ N. Then, there exists a unique solution (u(x, t), v(x, t)) of (1.2) satisfying (u, v) ∈ C b (R : H 1 (R)) × C b (R : H 1 (R)) (1.6) (J m u, J m v) ∈ C(R : L 2 (R)) × C(R : L 2 (R)), m = 1, 2, . . . , n.
(1.7)

Moreover (u, v) satisfies the integral identities: Densities Conservation

u L 2 (R) = u 0 L 2 (R) and v L 2 (R) = v 0 L 2 (R) .
Energy Conservation

u x 2 L 2 (R) + v x 2 L 2 (R) + 1 p + 1 u 2(p+1) L 2(p+1) (R) + 1 p + 1 v 2(p+1) L 2(p+1) (R) + 2β p + 1 R |u| p+1 |v| p+1 dx = u 0x 2 L 2 (R) + v 0x 2 L 2 (R) + 1 p + 1 u 0 2(p+1) L 2(p+1) (R) + 1 p + 1 v 0 2(p+1) L 2(p+1) (R) + 2β p + 1 R |u 0 | p+1 |v 0 | p+1 dx. 2. Let (u 0 , v 0 ) ∈ H 1 (R) × H 1 (R) with (x n u 0 , x n v 0 ) ∈ L 2 (R) × L 2 (R) and p > 1 odd integer number. Then there exists a positive constant C m depending on u 0 H 1 (R) , v 0 H 1 (R) and x n u 0 L 2 (R) , x n v 0 L 2 (R) but independent of t such that J m u L 2 (R) ≤ C m e t and J m v L 2 (R) ≤ C m e t , (1.8) 
for m = 1, 2, ..., n.

Let

β < 1, p > 1 odd integer number, (u 0 , v 0 ) ∈ L 2(p+1) (R) × L 2(p+1) (R) , (u 0 , v 0 ) ∈ H 1 (R) × H 1 (R) and (xu 0 (x), xv 0 (x)) ∈ L 2 (R) × L 2 (R).
Then, for all t = 0 we have

u L ∞ (R) ≤ C t 1/4 and v L ∞ (R) ≤ C t 1/4 and u L 2(p+1) (R) ≤ C t 2(p+1) and v L 2(p+1) (R) ≤ C t 2(p+1) .
Throughout this paper C is a generic constant, not necessarily the same. at each occasion (it will change from line to line), which depends in an increasing way on the indicated quantities.

Preliminares

In this section, some notations will be introduced. The Lebesgue space L p (R), 1 ≤ p ≤ +∞, with norm denoted by • L p will be used. Let m be a positive integer, i.e., m ∈ N,

the usual Sobolev spaces W m,p (R) = {u ∈ L p (R) : D α u L p < +∞, ∀|α| ≤ m}, with norm denoted by • W m,p is considered. When p = 2, it is stablished H m (R) := W m,2 (R) denoting the respective norm by • H m .
For any interval I of R and any Banach space X with the norm • X , we denote C(I : X) (respectively C b (I : X)) the space of continuous (respectively bounded continuous) functions from I to X. We denote C k (I : X) (k ≥ 1) the space of k-times continuously differentiable functions from I to X. If X is a Banach space, L p (I : X) indicates the space of valued functions in X defined on the interval I that are integrable in the Bochner sense, and its norm will be denoted by • L p (X) .

Remark. We only consider the case t > 0. The case t < 0 can be treated analogously.

The following results are going to be used several times from now on.

Theorem 2.1 (The Gagliardo-Nirenberg inequality) Let q, r be any real numbers satisfying 1 ≤ q, r ≤ +∞ and let j and m be non-negative integers such that j ≤ m. Then

D j u L p (R) ≤ C D m u a L r (R) u 1-a L q (R) , (2.1) 
where

1 p = j + a 1 r -m + (1 -a) 1 q , (2.2) 
for all a in the interval j m ≤ a ≤ 1, and C is a positive constant depending only m, j, q, r, and a.

Proof. See [START_REF] Friedman | Partial Differential Equations[END_REF]. How consequence the theorem (2.1) we have the following corollary.

Corollary 2.2 For all u, v ∈ H 1 (R) we have u 2 L ∞ (R) ≤ C u L 2 (R) u x L 2 (R) (2.3) Lemma 2.
3 Let u and v be the solutions of (1.2), then we have

(a) d dt (|u| 2 ) = 2Im(uu xx ) and (b) d dt (|v| 2 ) = 2Im(vv xx )
Proof. Caso (a) Multiplying (1.2) 1 by u we have

iu u t + u u xx = (|u| 2p + β|u| p-1 |v| p+1 )|u| 2 . (2.4)
Applying conjugate in the above equation

-iu u t + u u xx = (|u| 2p + β|u| p-1 |v| p+1 )|u| 2 .
(2.5) Subtracting (2.4) with (2.5) we obtain

i d dt (|u| 2 ) + uu xx -uu xx = 0 ⇐⇒ i d dt (|u| 2 ) = uu xx -uu xx = 2iIm uu xx ⇐⇒ d dt (|u| 2 ) = 2Im uu xx . (2.6) 
In a similar way we obtain (b).

The operator J commutes with the operator L defined by

L = (i∂ t + ∂ 2 x ), that is, LJ -JL ≡ [L, J] = 0. In general, J m (u) = e ix 2 /4t (2it) m ∂ m x (e -ix 2 /4t u) = (x + 2it∂ x ) m u, m ∈ N, where J m (u) = J(J m-1 u), m ∈ N. Hence, applying J m to be equations (1.2) i(J m u) t + (J m u) xx = J m (|u| 2p u) + βJ m (|u| p-1 |v| p+1 u), t > 0, x ∈ R i(J m u) t + (J m u) xx = J m (|v| 2p v) + βJ m (|v| p-1 |u| p+1 v), t > 0, x ∈ R J m u(x, 0) = x m u 0 (x), J m u(x, 0) = x m v 0 (x), x ∈ R. (2.7)
which allows us to get the estimates of the Main Theorem.

Finite energy solutions

We begin obtaining estimates for the norm-H 1 (R). To estimate in H 1 (R) is important because in R we have the following Sobolev immersion (continuous injection)

H 1 (R) → L ∞ (R). Lemma 3.1 (Densities conservation). Let (u, v) be the solution to (1.2). Let (u 0 , v 0 ) ∈ L 2 (R) × L 2 (R), then u L 2 (R) = u 0 L 2 (R) and v L 2 (R) = v 0 L 2 (R) . (3.1) 
Proof. Integrating (2.6) over x ∈ R and using integrating by parts

d dt u 2 L 2 (R) = -2Im R |u x | 2 dx = 0 ⇐⇒ d dt u 2 L 2 (R) = 0
and integrating over t ∈ [0, T ] we get the first term. Similarly for v. The lemma follows.

Lemma 3.2 (Energy conservation). Let (u, v) be the solution to

(1.2). Let (u 0 , v 0 ) ∈ L 2(p+1) (R) × L 2(p+1) (R), (u 0 , v 0 ) ∈ H 1 (R) × H 1 (R) and p > 1 odd integer number, then u x 2 L 2 (R) + v x 2 L 2 (R) + 1 p + 1 u 2(p+1) L 2(p+1) (R) + 1 p + 1 v 2(p+1) L 2(p+1) (R) + 2β p + 1 R |u| p+1 |v| p+1 dx = u 0x 2 L 2 (R) + v 0x 2 L 2 (R) + 1 p + 1 u 0 2(p+1) L 2(p+1) (R) + 1 p + 1 v 0 2(p+1) L 2(p+1) (R) + 2β p + 1 R |u 0 | p+1 |v 0 | p+1 dx. (3.2)
Proof. Applying ∂ x over (1.2) 1 we have

iu xt + u xxx = (|u| 2p ) x u + β(|u| p-1 |v| p+1 ) x u + (|u| 2p + β|u| p-1 |v| p+1 )u x .
Multiplying the above equation by u x we have

iu x u xt + u x u xxx = (|u| 2p ) x uu x + β(|u| p-1 |v| p+1 ) x uu x + |u| 2p |u x | 2 + β|u| p-1 |v| p+1 |u x | 2 . Integrating over R yields i R u x u xt dx + R u x u xxx dx = R (|u| 2p ) x uu x dx + R |u| 2p |u x | 2 dx + β R (|u| p-1 ) x |v| p+1 uu x dx + β R |u| p-1 (|v| p+1 ) x uu x dx + β R |u| p-1 |v| p+1 |u x | 2 dx.
Integrating by parts the second term in the left hand side we obtain

i R u x u xt dx - R |u xx | 2 dx = R (|u| 2p ) x uu x dx + R |u| 2p |u x | 2 dx + β R (|u| p-1 ) x |v| p+1 uu x dx + β R |u| p-1 (|v| p+1 ) x uu x dx + β R |u| p-1 |v| p+1 |u x | 2 dx.
Applying conjugate

-i R u x u xt dx - R |u xx | 2 dx = R (|u| 2p ) x uu x dx + R |u| 2p |u x | 2 dx + β R (|u| p-1 ) x |v| p+1 uu x dx + β R |u| p-1 (|v| p+1 ) x uu x dx + β R |u| p-1 |v| p+1 |u x | 2 dx.
Subtracting the above equations

d dt R |u x | 2 dx =2Im R (|u| 2p ) x uu x dx + 2βIm R (|u| p-1 ) x |v| p+1 uu x dx + 2βIm R |u| p-1 (|v| p+1 ) x uu x dx.
Integrating by parts

d dt R |u x | 2 dx = -2Im R |u| 2p uu xx dx + 2βIm R (|u| p-1 ) x |v| p+1 uu x dx + 2βIm R |u| p-1 (|v| p+1 ) x uu x dx.
Then

d dt R |u x | 2 dx = - R |u| 2p (2Imuu xx )dx + 2βIm R (|u| p-1 |v| p+1 ) x uu x dx.
Using Lemma 2.3 we obtain

d dt R |u x | 2 dx = - R |u| 2p d dt (|u| 2 )dx -2βIm R |u| p-1 |v| p+1 uu xx dx where d dt R |u x | 2 dx + 1 p + 1 d dt R |u| 2(p+1) dx + β R |u| p-1 |v| p+1 d dt (|u| 2 )dx = 0. Hence d dt R |u x | 2 dx + 1 p + 1 R |u| 2(p+1) dx + β R |u| p-1 |v| p+1 d dt (|u| 2 )dx = 0. Thus d dt R |u x | 2 dx + 1 p + 1 R |u| 2(p+1) dx + β R 2 p + 1 d dt ((|u| 2 ) p+1 2 )|v| p+1 dx = 0.
Thereby

d dt R |u x | 2 dx + 1 p + 1 R |u| 2(p+1) dx + 2β p + 1 R d dt (|u| p+1 )|v| p+1 dx = 0. (3.3)
Similarly we have

d dt R |v x | 2 dx + 1 p + 1 R |v| 2(p+1) dx + 2β p + 1 R d dt (|v| p+1 )|u| p+1 dx = 0. (3.4)
Adding (3.3) with (3.4) we obtain

d dt R |u x | 2 dx + R |v x | 2 dx + 1 p + 1 R |u| 2(p+1) dx + 1 p + 1 R |v| 2(p+1) dx + 2β p + 1 R |u| p+1 |v| p+1 dx = 0.
Therefore, we obtain

d dt u x 2 L 2 (R) + v x 2 L 2 (R) + 1 p + 1 u 2(p+1) L 2(p+1) (R) + 1 p + 1 v + 2β p + 1 R |u| p+1 |v| p+1 dx = 0. (3.5)
Integrating over t ∈ [0, T ] the result follows.

Remark. Integrating (3.5) over t ∈ [0, T ] we have

u x 2 L 2 (R) + v x 2 L 2 (R) + 1 p + 1 u 2(p+1) L 2(p+1) (R) + 1 p + 1 v 2(p+1) L 2(p+1) (R) + 2β p + 1 R |u| p+1 |v| p+1 dx = u 0x 2 L 2 (R) + v 0x 2 L 2 (R) + 1 p + 1 u 0 2(p+1) L 2(p+1) (R) + 1 p + 1 v 0 2(p+1) L 2(p+1) (R) + 2β p + 1 R |u 0 | p+1 |v 0 | p+1 dx.
Then

u x 2 L 2 (R) + v x 2 L 2 (R) + 1 p + 1 u 2(p+1) L 2(p+1) (R) + 1 p + 1 v 2(p+1) L 2(p+1) (R) = u 0x 2 L 2 (R) + v 0x 2 L 2 (R) + 1 p + 1 u 0 2(p+1) L 2(p+1) (R) + 1 p + 1 v 0 2(p+1) L 2(p+1) (R) + 2β p + 1 R |u 0 | p+1 |v 0 | p+1 dx - 2β p + 1 R |u| p+1 |v| p+1 dx
Then using the Young inequality, we have

u x 2 L 2 (R) + v x 2 L 2 (R) + 1 p + 1 u 2(p+1) L 2(p+1) (R) + 1 p + 1 v 2(p+1) L 2(p+1) (R) ≤ u 0x 2 L 2 (R) + v 0x 2 L 2 (R) + 1 p + 1 u 0 2(p+1) L 2(p+1) (R) + 1 p + 1 v 0 2(p+1) L 2(p+1) (R) + 2β p + 1 R |u 0 | p+1 |v 0 | p+1 dx + β p + 1 R |u| 2(p+1) dx + β p + 1 R |v| 2(p+1) dx ≤ u 0x 2 L 2 (R) + v 0x 2 L 2 (R) + 1 p + 1 u 0 2(p+1) L 2(p+1) (R) + 1 p + 1 v 0 2(p+1) L 2(p+1) (R) + β p + 1 u 0 2(p+1) L 2(p+1) (R) + β p + 1 v 0 2(p+1) L 2(p+1) (R) + β p + 1 u 2(p+1) L 2(p+1) (R) + β p + 1 v 2(p+1) L 2(p+1) (R) .
Thus, we obtain

u x 2 L 2 (R) + v x 2 L 2 (R) + 1 -β p + 1 u 2(p+1) L 2(p+1) (R) + 1 -β p + 1 v 2(p+1) L 2(p+1) (R) ≤ u 0x 2 L 2 (R) + v 0x 2 L 2 (R) + 1 + β p + 1 u 0 2(p+1) L 2(p+1) (R) + 1 + β p + 1 v 0 2(p+1) L 2(p+1) (R) . (3.6) 
We follows that, if 0 < β < 1 then, for all 1 < p < +∞ we have u, v ∈ L 2(p+1) (R).

A priori estimates

In the proof stated below it is shown that L ∞ (R) estimates of solutions lead to obtain a priori estimates of Ju. We estimate a Gronwall's inequality type and we establish decay of perturbed solutions.

Theorem 4.1 Let β < 1, p > 1 odd integer number (u 0 , v 0 ) ∈ L 2(p+1) (R) × L 2(p+1) (R), (u 0 , v 0 ) ∈ H 1 (R) × H 1 (R) and (xu 0 (x), xv 0 (x)) ∈ L 2 (R) × L 2 (R). Then u L ∞ (R) ≤ C t 1/4 , v L ∞ (R) ≤ C t 1/4 (4.1)
and

u L 2(p+1) (R) ≤ C t 2(p+1) , v L 2(p+1) (R) ≤ C t 2(p+1) . (4.2)
Proof. We rewrite the equation (1.2) 1 as

Lu = |u| 2p u + β|u| p-1 |v| p+1 u.
Then we consider the operator J such that LJ = JL, thus

L(Ju) = J(|u| 2p u) + βJ(|u| p-1 |v| p+1 u). Thus i(Ju) t + (Ju) xx = J(|u| 2p u) + βJ(|u| p-1 |v| p+1 u).
Multiplying the above equation by (Ju) we have

i(Ju)(Ju) t + (Ju)(Ju) xx = J(|u| 2p u)(Ju) + βJ(|u| p-1 |v| p+1 u)(Ju). (4.3) Applying conjugate -i(Ju)(Ju) t + (Ju)(Ju) xx = J(|u| 2p u)(Ju) + βJ(|u| p-1 |v| p+1 u)(Ju). (4.4) 
Integrating over x ∈ R, subtracting and dividing by i, we have

d dt Ju 2 L 2 (R) = 2Im R J(|u| 2p u)(Ju)dx + 2βIm R J(|u| p-1 |v| p+1 u)(Ju)dx. (4.5)
We estimate the two terms on the right hand side of (4.5)

J(|u| 2p u) = x|u| 2p u + 2it(|u| 2p ) x u + 2it|u| 2p u x , and 
Ju = xu -2itu x .
Then

J(|u| 2p u)(Ju) = x 2 |u| 2p+2 -2itx|u| 2p uu x + 2itx(|u| 2p ) x |u| 2 + 4t 2 (|u| 2p ) x uu x + 2itx|u| 2p uu x + 4t 2 |u| 2p |u x | 2 .
Hence

J(|u| 2p u)(Ju) = x 2 |u| 2p+2 + 4t 2 |u| 2p |u x | 2 + 4t 2 (|u| 2p ) x uu x + 2itx(|u| 2p ) x |u| 2 + 2itx|u| 2p (uu x -uu x ).
Taking Imaginary part

Im[J(|u| 2p u)(Ju)] = 2tx(|u| 2p ) x |u| 2 + 4t 2 Im[(|u| 2p ) x uu x ]. Integrating over x ∈ R 2Im R J(|u| 2p u)(Ju)dx = 4t R x d dx (|u| 2p ) |u| 2 dx + 8t 2 Im R d dx (|u| 2p ) uu x dx = 4pt (p + 1) R x d dx (|u| 2p ) (p+1) p dx -8t 2 Im R |u| 2p uu xx dx = - 4pt (p + 1) R |u| 2(p+1) dx -4t 2 R |u| 2p 2Im(uu xx )dx. Using Lemma 2.3 2Im R J(|u| 2p u)(Ju)dx = - 4pt (p + 1) R |u| 2(p+1) dx -4t 2 R |u| 2p d dt (|u| 2 )dx = - 4pt (p + 1) R |u| 2(p+1) dx - 4t 2 (p + 1) d dt R |u| 2(p+1) dx.
On the other hand, using the identity

- 4t 2 (p + 1) d dt R |u| 2(p+1) dx = 8t (p + 1) R |u| 2(p+1) dx - d dt 4t 2 (p + 1) R |u| 2(p+1) dx we have 2Im R J(|u| 2p u)(Ju)dx = - 4pt (p + 1) u 2(p+1) L 2(p+1) (R) + 8t (p + 1) u 2(p+1) L 2(p+1) (R) - d dt 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) . Thereby 2Im R J(|u| 2p u)(Ju)dx = 4(2 -p)t (p + 1) u 2(p+1) L 2(p+1) (R) - d dt 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) . (4.6) 
Now we estimate the second term in the right hand side of (4.5), that is, 2βIm

R J(|u| p-1 |v| p+1 u)(Ju)dx J(|u| p-1 |v| p+1 u) = x|u| p-1 |v| p+1 u + 2it(|u| p-1 ) x |v| p+1 u + 2it|u| p-1 (|v| p+1 ) x u + 2it|u| p-1 |v| p+1 u x .
Then

J(|u| p-1 |v| p+1 u)Ju = x 2 |u| p-1 |v| p+1 |u| 2 + 4t 2 |u| p-1 |v| p+1 |u x | 2 + 2itx(|u| p-1 ) x |v| p+1 |u| 2 + 2itx|u| p-1 (|v| p+1 ) x |u| 2 -2itx|u| p-1 |v| p+1 (uu x -uu x ) + 4t 2 (|u| p-1 |v| p+1 ) x uu x = x 2 |u| p-1 |v| p+1 |u| 2 + 4t 2 |u| p-1 |v| p+1 |u x | 2 + 2itx(|u| p-1 |v| p+1 ) x |u| 2 + 4tx|u| p-1 |v| p+1 Im(uu x ) + 4t 2 (|u| p-1 |v| p+1 ) x uu x .
Taking the imaginary part

Im[J(|u| p-1 |v| p+1 u)Ju] = 2tx(|u| p-1 |v| p+1 ) x |u| 2 + 4t 2 (|u| p-1 |v| p+1 ) x Im(uu x ). Integrating over x ∈ R 2βIm R J(|u| p-1 |v| p+1 u)Ju dx = 4βt R x d dx (|u| p-1 |v| p+1 ) |u| 2 dx + 8βt 2 R d dx (|u| p-1 |v| p+1 ) Im(uu x ) dx = -4βt R |u| p-1 |v| p+1 |u| 2 dx -4βt R x|u| p-1 |v| p+1 d dx (|u| 2 )dx -4βt 2 R |u| p-1 |v| p+1 2Im(uu xx ) dx.
Hence using Lemma 2.3 we have 2βIm

R J(|u| p-1 |v| p+1 u)Judx = -4βt R |u| p+1 |v| p+1 dx -4βt R x|u| p-1 d dx (|u| 2 ) |v| p+1 dx -4βt 2 R |u| p-1 |v| p+1 d dt (|u| 2 )dx = -4βt R |u| p+1 |v| p+1 dx - 8βt (p + 1) R x d dx (|u| p+1 ) |v| p+1 dx - 8βt 2 (p + 1) R d dt (|u| p+1 ) |v| p+1 dx. (4.7) 
Replacing (4.6) and (4.7) into (4.5) it follows that

d dt Ju 2 L 2 (R) = 4(2 -p)t (p + 1) u 2(p+1) L 2(p+1) (R) - d dt 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) -4βt R |u| p+1 |v| p+1 dx - 8βt (p + 1) R x d dx (|u| p+1 ) |v| p+1 dx - 8βt 2 (p + 1) R d dt (|u| p+1 ) |v| p+1 dx or d dt Ju 2 L 2 (R) + 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) = 4(2 -p)t (p + 1) u 2(p+1) L 2(p+1) (R) -4βt R |u| p+1 |v| p+1 dx - 8βt (p + 1) R x d dx (|u| p+1 ) |v| p+1 dx - 8βt 2 (p + 1) R d dt (|u| p+1 )|v| p+1 dx. (4.8)
Performing similar calculations for the equation (1.2) 2 we obtain

d dt Jv 2 L 2 (R) + 4t 2 (p + 1) v 2(p+1) L 2(p+1) (R) = 4(2 -p)t (p + 1) v 2(p+1) L 2(p+1) (R) -4βt R |u| p+1 |v| p+1 dx - 8βt (p + 1) R x|u| p+1 d dx (|v| p+1 )dx - 8βt 2 (p + 1) R d dt (|v| p+1 )|u| p+1 dx. (4.9) 
Adding (4.8) with (4.9) it follows that

d dt Ju 2 L 2 (R) + Jv 2 L 2 (R) + 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) + 4t 2 (p + 1) v 2(p+1) L 2(p+1) (R) = 4(2 -p)t (p + 1) u 2(p+1) L 2(p+1) (R) + 4(2 -p)t (p + 1) v 2(p+1) L 2(p+1) (R) -8βt R |u| p+1 |v| p+1 dx - 8βt (p + 1) R x d dx (|u| p+1 ) |v| p+1 dx - 8βt (p + 1) R x |u| p+1 d dx (|v| p+1 )dx - 8βt 2 (p + 1) R d dt (|u| p+1 ) |v| p+1 dx - 8βt 2 (p + 1) R |u| p+1 d dt (|v| p+1 )dx.
Then using integrating by part

d dt Ju 2 L 2 (R) + Jv 2 L 2 (R) + 4t 2 (p + 1) |u 2(p+1) L 2(p+1) (R) + 4t 2 (p + 1) v 2(p+1) L 2(p+1) (R) = 4(2 -p)t (p + 1) u 2(p+1) L 2(p+1) (R) + 4(2 -p)t (p + 1) v 2(p+1) L 2(p+1) (R) - 8βpt (p + 1) R |u| p+1 |v| p+1 dx - 8βt 2 (p + 1) d dt R |u| p+1 |v| p+1 dx. (4.10)
On the other hand, using the identity

-8βt 2 (p + 1) d dt R |u| p+1 |v| p+1 dx = 16βt (p + 1) R |u| p+1 |v| p+1 dx - d dt 8βt 2 (p + 1) R |u| p+1 |v| p+1 dx .
Replacing the above equality into (4.10) we obtain

d dt Ju 2 L 2 (R) + Jv 2 L 2 (R) + 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) + 4t 2 (p + 1) v 2(p+1) L 2(p+1) (R) = 4(2 -p)t (p + 1) u 2(p+1) L 2(p+1) (R) + 4(2 -p)t (p + 1) v 2(p+1) L 2(p+1) (R) - 8βpt (p + 1) R |u| p+1 |v| p+1 dx + 16βt (p + 1) R |u| p+1 |v| p+1 dx - d dt 8βt 2 (p + 1) R |u| p+1 |v| p+1 dx . Thus d dt Ju 2 L 2 (R) + Jv 2 L 2 (R) + 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) + 4t 2 (p + 1) v 2(p+1) L 2(p+1) (R) + 8βt 2 (p + 1) R |u| p+1 |v| p+1 dx = 4(2 -p)t (p + 1) u 2(p+1) L 2(p+1) (R) + 4(2 -p)t (p + 1) v 2(p+1) L 2(p+1) (R) + 8β(2 -p)t (p + 1) R |u| p+1 |v| p+1 dx.
But, 2 -p < 1, because p > 1. Then performing straightforward estimates in the above equation we have

d dt Ju 2 L 2 (R) + Jv 2 L 2 (R) + 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) + 4t 2 (p + 1) v 2(p+1) L 2(p+1) (R) + 8βt 2 (p + 1) R |u| p+1 |v| p+1 dx ≤ 4t (p + 1) u 2(p+1) L 2(p+1) (R) + 4t (p + 1) v 2(p+1) L 2(p+1) (R) + 8βt (p + 1) R |u| p+1 |v| p+1 dx. (4.11) Therefore d dt Ju 2 L 2 (R) + Jv 2 L 2 (R) + t 2 f (t) ≤ tf (t), (4.12) 
where

f (t) = 4 (p + 1) u 2(p+1) L 2(p+1) (R) + v 2(p+1) L 2(p+1) (R) + 2β R |u| p+1 |v| p+1 dx .
Integrating (4.12) over t ∈ [0, T ], with T arbitrary, using the positivity of the two first terms and performing straightforward calculations we have

t 2 f (t) ≤ Ju 2 L 2 (R) + Jv 2 L 2 (R) + t 2 f (t) ≤ xu 0 2 L 2 (R) + xv 0 2 L 2 (R) + t 0 s f (s)ds. (4.13)
Which we can rewrite as

t 2 f (t) ≤ Υ + t 1 sf (s)ds, (4.14) 
where

Υ = xu 0 2 L 2 (R) + xv 0 2 L 2 (R) + 1 0 s f (s)ds . Using (3.6) of the Lemma 3.2 it is easy to see that Υ ≤ Θ(β, p, u 0 L 2(p+1) (R) , v 0 L 2(p+1) (R) , xu 0 L 2 (R) , xv 0 L 2 (R) , u 0x L 2 (R) , v 0x L 2 (R) ).
Thereby, Υ ≤ Θ which is finite by hypothesis. Hence (4.14) can be written in the following way

F (t) ≤ Θ + t 1 G(s)F (s)ds,
for F (t) ≡ t 2 f (t) and

G(t) ≡ 1 t , for t ≥ 1.
Using the Gronwall's inequality, we have F (t) ≤ Θt, ∀ t ≥ 1. Using the hypothesis on u 0 , v 0 and integration of (3.5) together imply that f (t) is uniformly bounded for all t, in particular for 0 ≤ t ≤ 1. This way, there exists a constant

C = C(β, u 0 L 2(p+1) (R) , v 0 L 2(p+1) (R) , xu 0 L 2 (R) , xv 0 L 2 (R) , u 0x L 2 (R) , v 0x L 2 (R) ) such that t 2 f (t) ≤ Ct, for any t > 0 (4.15)
From (4.13) we have

Ju 2 L 2 (R) + Jv 2 L 2 (R) + 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) + 4t 2 (p + 1) v 2(p+1) L 2(p+1) (R) + 8βt 2 (p + 1) R |u| p+1 |v| p+1 dx ≤ Ct, for any t > 0.
Then using that Ju = e ix 2 /4t (2it)∂ x (e -ix 2 /4t u) and Jv = e ix 2 /4t (2it)∂ x (e -ix 2 /4t v) we obtain

4t 2 ∂ x (e -ix 2 /4t u) 2 L 2 (R) + 4t 2 ∂ x (e -ix 2 /4t v) 2 L 2 (R) + 4t 2 (p + 1) u 2(p+1) L 2(p+1) (R) + 4t 2 (p + 1) v 2(p+1) L 2(p+1) (R) + 8βt 2 (p + 1) R |u| p+1 |v| p+1 dx ≤ Ct,
for any t > 0. Then

∂ x (e -ix 2 /4t u) 2 L 2 (R) + ∂ x (e -ix 2 /4t v) 2 L 2 (R) + 1 (p + 1) u 2(p+1) L 2(p+1) (R) + 1 (p + 1) v 2(p+1) L 2(p+1) (R) + 2β (p + 1) R |u| p+1 |v| p+1 dx ≤ Ct -1 .
Using the Young inequality in the last term on the left hand side and performing Straightforward estimates we have for β < 1

∂ x (e -ix 2 /4t u) 2 L 2 (R) + ∂ x (e -ix 2 /4t v) 2 L 2 (R) + (1 -β) (p + 1) u 2(p+1) L 2(p+1) (R) + (1 -β) (p + 1) v 2(p+1) L 2(p+1) (R) ≤ Ct -1 . (4.16) Hence ∂ x (e -ix 2 /4t u) 2 L 2 (R) + ∂ x (e -ix 2 /4t v) 2 L 2 (R) ≤ C t
for any t > 0. Moreover, using the Gagliardo-Nirenberg inequality, we have

e -ix 2 /4t u L ∞ (R) ≤ C ∂ x (e -ix 2 /4t u) 1/2 L 2 (R) u 1/2 L 2 (R)
and

e -ix 2 /4t v L ∞ (R) ≤ C ∂ x (e -ix 2 /4t v) 1/2 L 2 (R) v 1/2 L 2 (R) .
From the above estimates, we deduce

e -ix 2 /4t u 4 L ∞ (R) + e -ix 2 /4t v 4 L ∞ (R) ≤ C t for any t > 0. Therefore, u L ∞ (R) ≤ C t 1/4 and v L ∞ (R) ≤ C t 1/4 . Moreover, (1 -β) (p + 1) u 2(p+1) L 2(p+1) (R) + (1 -β) (p + 1) v 2(p+1) L 2(p+1) (R) ≤ C t .
Then

u L 2(p+1) (R) ≤ C t 2(p+1) and v L 2(p+1) (R) ≤ C t 2(p+1) .
The Theorem 4.1 follows.

Remark Using the Gagliardo-Nirenberg inequality we have

u L p (R) ≤ C u 2/p L 2 (R) u (p-2)/p L ∞ (R) .
Using Lemma 3.1 and (4.1) we deduce the following L p estimate

u L p (R) ≤ C t (p-2)/4p and v L p (R) ≤ C t (p-2)/4p . for 2 < p ≤ +∞. Lemma 4.2 Let k ∈ N, w ∈ L ∞ (R) and its derivatives of order m, ∂ m x w ∈ L 2 (R), then ∂ m x (|w| 2k w) L 2 (R) ≤ C m ∂ m x w L 2 (R) w 2k L ∞ (R) , (4.17) 
where C m is a constant that depends of m.

Proof. By induction over k. If k = 1, we have

∂ m x (|w| 2 w) L 2 (R) = ∂ m x (www) L 2 (R) ≤ ζ 1 +ζ 2 +ζ 3 =m ∂ ζ 1 x w • ∂ ζ 2 x w • ∂ ζ 3 x w L 2 (R) ≤ ζ 1 +ζ 2 +ζ 3 =m ∂ ζ 1 x w L 2m/ζ 1 (R) ∂ ζ 2 x w L 2m/ζ 2 (R) ∂ ζ 3 x w L 2m/ζ 3 (R) ≤ C m ζ 1 +ζ 2 +ζ 3 =m ∂ m x w ζ 1 /m L 2 (R) w (m-ζ 1 )/m L ∞ (R) ∂ m x w ζ 2 /m L 2 (R) w (m-ζ 2 )/m L ∞ (R) ∂ m x w ζ 3 /m L 2 (R) w (m-ζ 3 )/m L ∞ (R) ≤ C m ∂ m x w L 2 (R) w 2 L ∞ (R) .
Suppose it is valid for k, show that it is valid for k + 1.

∂ m x (|w| 2(k+1) w) L 2 (R) = ∂ m x ((|w| 2k w)ww) L 2 (R) ≤ ζ 1 +ζ 2 +ζ 3 =m ∂ ζ 1 x (|w| 2k w) • ∂ ζ 2 x w • ∂ ζ 3 x w L 2 (R) ≤ ζ 1 +ζ 2 +ζ 3 =m ∂ ζ 1 x (|w| 2k w) L 2m/ζ 1 (R) ∂ ζ 2 x w L 2m/ζ 2 (R) ∂ ζ 3 x w L 2m/ζ 3 (R) ≤ C m ζ 1 +ζ 2 +ζ 3 =m ∂ m x (|w| 2k w) ζ 1 /m L 2 (R) |w| 2k w (m-ζ 1 )/m L ∞ (R) ∂ m x w ζ 2 /m L 2 (R) w (m-ζ 2 )/m L ∞ (R) × ∂ m x w ζ 3 /m L 2 (R) w (m-ζ 3 )/m L ∞ (R)
, by induction hypothesis, we get

∂ m x (|w| 2(k+1) w) L 2 (R) ≤ C m ζ 1 +ζ 2 +ζ 3 =m ∂ m x w ζ 1 /m L 2 (R) w 2kζ 1 /m L ∞ (R) w 2k(m-ζ 1 )/m L ∞ (R) w (m-ζ 1 )/m L ∞ (R) × ∂ m x w ζ 2 /m L 2 (R) w (m-ζ 2 )/m L ∞ (R) ∂ m x w ζ 3 /m L 2 (R) w (m-ζ 3 )/m L ∞ (R) ≤ C m ∂ m x w L 2 (R) w 2(k+1) L ∞ (R) .
The Lemma follows.

Lemma 4.3 Let p > 1 an odd integer number, w, z ∈ L ∞ (R) and its derivatives of order

m, ∂ m x w, ∂ m x z ∈ L 2 (R), then ∂ m x (|w| p-1 |z| p+1 w) L 2 (R) ≤ C m ( ∂ m x w L 2 (R) + ∂ m x z L 2 (R) ) (4.18)
where C m is a constant that depends of m.

Proof. Denote by n i=1 ζ i the sum

ζ 1 + ... + ζ n , then we obtain ∂ m x (|w| p-1 |z| p+1 w) L 2 (R) = ∂ m x ((ww) • • • (ww) (p-1)-times w (zz) • • • (zz) (p+1)-times ) L 2 (R) = ∂ m x (w • • • w p-times w • • • w (p-1)-times z • • • z (p+1)-times z • • • z (p+1)-times L 2 (R) = 4p+1 i=1 ζ i =m ∂ ζ 1 x w • • • ∂ ζp x w • ∂ ζ p+1 x w • • • ∂ ζ p+(p-1) x w • ∂ ζ p+(p-1)+1 x z • • • ∂ ζ p+(p-1)+(p+1) x z × ∂ ζ p+(p-1)+(p+1)+1 x z • • • ∂ ζ p+(p-1)+(p+1)+(p+1) x z L 2 (R) ≤ 4p+1 i=1 ζ i =m ∂ ζ 1 x w • • • ∂ ζp x w • ∂ ζ p+1 x w • • • ∂ ζ 2p-1 x w • ∂ ζ 2p x z • • • ∂ ζ 3p x z∂ ζ 3p+1 x z • • • ∂ ζ 4p+1 x z L 2 (R) ≤ 4p+1 i=1 ζ i =m ∂ ζ 1 x w L 2m/ζ 1 (R) • • • ∂ ζp x w L 2m/ζp (R) × ∂ ζ p+1 x w L 2m/ζ p+1 (R) • • • ∂ ζ 2p-1 x w L 2m/ζ 2p-1 (R) • ∂ ζ 2p x z L 2m/ζ 2p (R) • • • ∂ ζ 3p x z L 2m/ζ 3p (R) × ∂ ζ 3p+1 x z L 2m/ζ 3p+1 (R) • • • ∂ ζ 4p+1 x z L 2m/ζ 4p+1 (R) .
Note that in the inequality last we used the Hölder inequality, by the Gagliardo-Nirenberg inequality, we have

∂ m x (|w| p-1 |z| p+1 w) L 2 (R) ≤ C 4p+1 i=1 ζ i =m ∂ m x w ζ 1 /m L 2 (R) w (m-ζ 1 )/m L ∞ (R) • • • ∂ m x w ζp/m L 2 (R) w (m-ζp)/m L ∞ (R) × ∂ m x w ζ p+1 /m L 2 (R) w (m-ζ p+1 )/m L ∞ (R) • • • ∂ m x w ζ 2p-1 /m L 2 (R) w (m-ζ 2p-1 )/m L ∞ (R) × ∂ m x z ζ 2p /m L 2 (R) w (m-ζ 2p )/m L ∞ (R) • • • ∂ m x w ζ 3p /m L 2 (R) w (m-ζ 3p )/m L ∞ (R) × ∂ m x z ζ 3p+1 /m L 2 (R) w (m-ζ 3p+1 )/m L ∞ (R) • • • ∂ m x w ζ 4p+1 /m L 2 (R) w (m-ζ 4p+1 )/m L ∞ (R) = C 4p+1 i=1 ζ i =m ∂ m x w (ζ 1 +...+ζ 2p-1 )/m L 2 (R) w (m-ζ 1 )/m+...+(m-ζ 2p-1 )/m L ∞ (R) × ∂ m x z (ζ 2p +...+ζ 4p-1 )/m L 2 (R) z (m-ζ 2p )/m+...+(m-ζ 4p-1 )/m L ∞ (R)
.

By the Young inequality, we have

∂ m x (|w| p-1 |z| p+1 w) L 2 (R) ≤ C 4p+1 i=1 ζ i =m ζ 1 + . . . + ζ 2p-1 m ∂ m x w L 2 (R) + ζ 2p + . . . + ζ 4p-1 m ∂ m x z L 2 (R) ≤ C m ( ∂ m x w L 2 (R) + ∂ m x z L 2 (R) ).
The Lemma follows.

Theorem 4.4 Let (u 0 , v 0 ) ∈ H 1 (R) × H 1 (R) with (x n u 0 , x n v 0 ) ∈ L 2 (R) × L 2 (R)
and p > 1 odd integer number. Then there exists a positive constant C m depending on

u 0 H 1 (R) , v 0 H 1 (R) and x n u 0 L 2 (R) , x n v 0 L 2 (R) but independent of t such that J m u L 2 (R) ≤ C m e t and J m v L 2 (R) ≤ C m e t , (4.19) 
for m = 1, 2, ..., n.

Proof. From (2.7) 1 we have

i(J m u) t + (J m u) xx = J m (|u| 2p u) + βJ m (|u| p-1 |v| p+1 u).
Multiplying the above equation by (J m u) we have

i(J m u)(J m u) t + (J m u)(J m u) xx = J m (|u| 2p u)(J m u) + βJ m (|u| p-1 |v| p+1 u)(J m u). (4.20)
Applying conjugate in (4.20) we obtain 

-i(J m u)(J m u) t + (J m u)(J m u) xx = J m (|u| 2p u)(J m u) + βJ m (|u| p-1 |v| p+1 u)(J m u). ( 4 
d dt J m u 2 L 2 (R) = 2Im R J m (|u| 2p u)(J m u)dx + 2βIm R J m (|u| p-1 |v| p+1 u)(J m u)dx. (4.22)
In a similar way, using (2.7) 2 we have 

d dt J m v 2 L 2 (R) = 2Im R J m (|v| 2p v)(J m v)dx + 2βIm R J m (|v| p-1 |u| p+1 v)(J m v)dx.
d dt J m u 2 L 2 (R) + J m v 2 L 2 (R) = 2Im R J m (|u| 2p u)(J m u)dx + 2Im R J m (|v| 2p v)(J m v)dx + 2βIm R J m (|u| p-1 |v| p+1 u)(J m u)dx + 2βIm R J m (|v| p-1 |u| p+1 v)(J m v)dx. (4.24)
We estimate the first two terms in the right hand side. Indeed

J m (|u| 2p u) = e ix 2 /4t (2it) m ∂ m x (e -ix 2 /4t |u| 2p u) = e ix 2 /4t (2it) m ∂ m x (|e -ix 2 /4t u| 2p e -ix 2 /4t u) = e ix 2 /4t (2it) m ∂ m x (|w| 2p w)
where w = e -ix 2 /4t u. By Lemma 4.2, we have

J m (|u| 2p u) L 2 (R) ≤ C m (2t) m ∂ m x w L 2 (R) w 2p L ∞ (R) = C m J m u L 2 (R) u 2p L ∞ (R) . (4.25)
In a similar way we obtain

J m (|v| 2p v) L 2 (R) ≤ C m J m v L 2 (R) v 2p L ∞ (R) . (4.26) 
Using Hölder's inequality in the first term of the right hand side in (4.24) we have 2Im

R J m (|u| 2p u)(J m u)dx ≤ 2 J m (|u| 2p u) L 2 (R) J m u L 2 (R) ≤ C m J m u L 2 (R) u 2p L ∞ (R) J m u L 2 (R) ≤ C m J m u 2 L 2 (R) u 2p L ∞ (R) . (4.27)
In a similar way 2Im

R J m (|v| 2p v)(J m v)dx ≤ C m J m v 2 L 2 (R) v 2p L ∞ (R) . (4.28)
On the other hand, now we estimate the third term in (4.24). Using the Hölder inequality we have 2βIm

R J m (|u| p-1 |v| p+1 u)(J m u)dx ≤ 2β J m (|u| p-1 |v| p+1 u) L 2 (R) J m u L 2 (R) . (4.29)
We estimate the J m (|u| p-1 |v| p+1 u) L 2 (R) term. From the definition of J m we obtain

J m (|u| p-1 |v| p+1 u) = e ix 2 /4t (2it) m ∂ m x (e -ix 2 /4t |u| p-1 |v| p+1 u) = e ix 2 /4t (2it) m ∂ m x (|e -ix 2 /4t u| p-1 |e -ix 2 /4t v| p+1 e -ix 2 /4t u) = e ix 2 /4t (2it) m ∂ m x (|w| p-1 |z| p+1 w) (4.30)
where w = e -ix 2 /4t u and z = e -ix 2 /4t v.

Remark. We observe that the power nonlinearity |u| p-1 u is not smooth if p is not an odd integer.

By the Lemma 4.3, we get

J m (|u| p-1 |v| p+1 u) L 2 (R) ≤ C m (2t) m ∂ m x (|w| p-1 |z| p+1 w) L 2 (R) ≤ C m (2t) m ( ∂ m x w L 2 (R) + ∂ m x z L 2 (R) ) = C m ( J m u L 2 (R) + J m v L 2 (R) ),
then by the Young inequality, we have 

J m (|u| p-1 |v| p+1 u) L 2 (R) J m u L 2 (R) ≤ C m ( J m u 2 L 2 (R) + J m v L 2 (R) J m u L 2 (R) ) ≤ C m ( J m u 2 L 2 (R) + J m v 2 L 2 (R) ). ( 4 
[ R J m (|u| p-1 |v| p+1 u)J m udx] ≤ C m ( J m u 2 L 2 (R) + J m v 2 L 2 (R) ). (4.32)
In a similar way 

2βIm[ R J m (|v| p-1 |u| p+1 v)J m udx] ≤ C m ( J m v 2 L 2 (R) + J m u 2 L 2 (R) ). ( 4 
d dt J m u 2 L 2 (R) + J m v 2 L 2 (R) ≤ C m J m u 2 L 2 (R) + J m v 2 L 2 (R) . (4.34)
Integrating over t ∈ [0, T ] with T arbitrary and using Gronwall's inequality it follows that

J m u 2 L 2 (R) + J m v 2 L 2 (R) ≤ x m u 0 2 L 2 (R) + x m v 0 2 L 2 (R) e Cmt .
The result follows.

The Main Result

In this section we state and prove our theorem, which states that all solutions of finite energy to (1.2) are smooth for t = 0 provided that the initial functions in H 1 (R) decay rapidly enough as |x| → +∞.

Lemma 5.1 Let p > 1 odd integer number, we have

(u k , v k ) is a Cauchy sequence in C([0, T ] : H 1 (R)) × C([0, T ] : H 1 (R)) for any T > 0. Moreover u k -u j 2 H 1 (R) + v k -v j 2 H 1 (R) ≤ C(T ) u k 0 -u j 0 2 H 1 (R) + v k 0 -v j 0 2 H 1 (R)
where C(T ) is a positive constant independent of k and j.

Proof. Let (u k , v k ) be the solution of (1.2), then

iu k t + u k xx = |u k | 2p u k + β|u k | p-1 |v k | p+1 u k , iv k t + v k xx = |v k | 2p v k + β|v k | p-1 |u k | p+1 v k , (5.1) 
and

iu j t + u j xx = |u j | 2p u j + β|u j | p-1 |v j | p+1 u j , iv j t + v j xx = |v j | 2p v j + β|v j | p-1 |u j | p+1 v j .
(5.2) Subtracting (5.1) 1 with (5.2) 1 we have

i(u k -u j ) t + (u k -u j ) xx = |u k | 2p u k -|u j | 2p u j + β(|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ). (5.3) 
Multiplying (5.3) by (u k -u j ) we obtain the following equation and the conjugate respectively:

i(u k -u j )(u k -u j ) t + (u k -u j )(u k -u j ) xx = (|u k | 2p u k -|u j | 2p u j )(u k -u j ) +β(|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j )(u k -u j ).
(5.4)

-i(u k -u j )(u k -u j ) t + (u k -u j )(u k -u j ) xx = (|u k | 2p u k -|u j | 2p u j )(u k -u j ) +β (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j )(u k -u j ).
(5.5)

Subtracting and integrating over x ∈ R we have

d dt u k -u j 2 L 2 (R) = 2Im R (|u k | 2p u k -|u j | 2p u j )(u k -u j )dx +2βIm R (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j )(u k -u j )dx. (5.6)
In a similar way and performing straightforward calculations we obtain that

d dt v k -v j 2 L 2 (R) = 2Im R (|v k | 2p v k -|v j | 2p v j )(v k -v j )dx +2βIm R (|v k | p-1 |u k | p+1 v k -|v j | p-1 |u j | p+1 v j )(v k -v j )dx. (5.7)
We estimate the first term on the right hand side in (5.6)

(|u k | 2p u k -|u j | 2p u j )(u k -u j ) = (|u k | p -|u j | p )(|u k | p + |u j | p )u k (u k -u j ) + |u j | 2p u k -u j 2 . Then 2Im R (|u k | 2p u k -|u j | 2p u j )(u k -u j )dx = 2Im R (|u k | p -|u j | p )(|u k | p + |u j | p )u k (u k -u j )dx ≤ 2 u k L ∞ (R) u k p L ∞ (R) + u j p L ∞ (R) R | |u k | p -|u j | p | |u k -u j |dx ≤ M 1 R | |u k | p -|u j | p | |u k -u j |dx (5.8)
where

M 1 = 2 u k L ∞ (R) u k p L ∞ (R) + u j p L ∞ (R) . Moreover, | |u k | p -|u j | p | = | |u k | -|u j | | | |u k | p-1 + |u k | p-2 |u j | + |u k | p-3 |u j | 2 + • • • + |u j | p-1 |.
Using ||a| -|b|| ≤ |a -b| we obtain

| |u k | p -|u j | p | |u k -u j | ≤ |u k -u j | 2 | |u k | p-1 + |u k | p-2 |u j | + |u k | p-3 |u j | 2 + • • • + |u j | p-1 |. Then R | |u k | p -|u j | p | |u k -u j |dx ≤ M 2 R |u k -u j | 2 dx
where

M 2 = u k p-1 L ∞ (R) + u k p-2 L ∞ (R) u j L ∞ (R) + u k p-3 L ∞ (R) u j 2 L ∞ (R) + • • • + u j p-1 L ∞ (R) . Then replacing into (5.8) we obtain 2Im R (|u k | 2p u k -|u j | 2p u j )(u k -u j )dx ≤ M 3 u k -u j 2 L 2 (R) , (5.9) 
where

M 3 = M 1 • M 2 .
In a similar way we estimate the first term in (5.7). That is, 2Im

R (|v k | 2p v k -|v j | 2p v j )(v k -v j )dx ≤ M 3 v k -v j 2 L 2 (R) , (5.10) 
where

M 3 = M 1 • M 2 with M 1 = 2 v k L ∞ (R) v k p L ∞ (R) + v j p L ∞ (R) and M 2 = v k p-1 L ∞ (R) + v k p-2 L ∞ (R) v j | + v k p-3 L ∞ (R) v j 2 L ∞ (R) + • • • + v j p-1 L ∞ (R) .
Now we estimate the second term in (5.6). In fact, 2βIm

R (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j )(u k -u j )dx = 2βIm R |u k | p-1 |v k | p+1 (u k -u j ) + (|u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 )u j (u k -u j )dx = 2βIm R (|u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 )u j (u k -u j )dx.
(5.11)

Similarly we estimate the second term in (5.7). That is, 2βIm

R |v k | p-1 |u k | p+1 v k -|v j | p-1 |u j | p+1 v j (v k -v j )dx = 2βIm R (|v k | p-1 |u k | p+1 -|v j | p-1 |u j | p+1 )v j (v k -v j )dx.
(5.12)

In (5.11) we have 2βIm

R (|u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 )u j (u k -u j )dx = 2βIm R |u k | p-1 (|v k | p+1 -|v j | p+1 ) + |v j | p+1 (|u k | p-1 -|u j | p-1 ) u j (u k -u j )dx ≤ 2β R |u k | p-1 |v k | p+1 -|v j | p+1 + |v j | p+1 |u k | p-1 -|u j | p-1 |u j | |u k -u j |dx (5.13)
Using the identity

|v k | p+1 -|v j | p+1 = (|v k | -|v j |)(|v k | p + |v k | p-1 |v j | + ... + |v k ||v j | p-1 + |v j | p ), |u k | p-1 -|u j | p-1 = (|u k | -|u j |)(|u k | p-2 + |u k | p-3 |u j | + ... + |u k ||u j | p-3 + |u j | p-2 ).
Using ||a| -|b|| ≤ |a -b| and the identity, of (5.13), we have 2βIm

R (|u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 )u j (u k -u j )dx ≤ 2βM 4 R |v k -v j | |u k -u j |dx + 2βM 5 R |u k -u j | 2 dx, (5.14) 
where

M 4 = u k p-1 L ∞ (R) u j L ∞ (R) ( v k p L ∞ (R) + v k p-1 L ∞ (R) v j L ∞ (R) + ... + v k L ∞ (R) v j p-1 L ∞ (R) + v j p L ∞ (R) ) M 5 = v j p+1 L ∞ (R) u j L ∞ (R) ( u k p-2 L ∞ (R) + u k p-3 L ∞ (R) u j L ∞ (R) + ... + u k L ∞ (R) u j p-3 L ∞ (R) + u j p-2 L ∞ (R) ).
By Young inequality, of (5.14), we obtain 2βIm

R (|u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 )u j (u k -u j )dx ≤ βM 4 R |v k -v j | 2 dx + (βM 4 + 2βM 5 ) R |u k -u j | 2 dx ≤ M 6 R |v k -v j | 2 dx + R |u k -u j | 2 dx (5.15)
where

M 6 = max {βM 4 , βM 4 + 2βM 5 }. Similarly we obtain 2βIm R (|v k | p-1 |u k | p+1 -|v j | p-1 |u j | p+1 )v j (v k -v j )dx ≤ M 6 R |u k -u j | 2 dx + R |v k -v j | 2 dx (5.16)
Gathering (5.6), (5.9), (5.10), (5.15) and (5.16)

d dt u k -u j 2 L 2 (R) ≤ M 3 u k -u j 2 L 2 (R) + M 6 v k -v j 2 L 2 (R) + u k -u j 2 L 2 (R) ≤ M 7 v k -v j 2 L 2 (R) + u k -u j 2 L 2 (R)
(5.17

)
where M 7 = max{M 3 , M 6 }. Similarly,

d dt v k -v j 2 L 2 (R) ≤ M 7 v k -v j 2 L 2 (R) + u k -u j 2 L 2 (R)
(5.18)

Adding (5.17) and (5.18) we obtain

d dt u k -u j 2 L 2 (R) + v k -v j 2 L 2 (R) ≤ C u k -u j 2 L 2 (R) + v k -v j 2 L 2 (R) , (5.19) 
where C = max{M 7 , M 7 }.

On the other hand, differentiating (5.3) with respect to the x-variable, we have

i(u k -u j ) xt + (u k -u j ) xxx = (|u k | 2p u k -|u j | 2p u j ) x + β(|u k | p-1 |v k | p+1 u k |u j | p-1 |v j | p+1 u j ) x .
(5.20)

Multiplying (5.20) by (u k -u j ) x it follows that i(u k -u j ) x (u k -u j ) xt + (u k -u j ) x (u k -u j ) xxx = (|u k | 2p u k -|u j | 2p u j ) x (u k -u j ) x + β(|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x
and its conjugate

-i(u k -u j ) x (u k -u j ) xt + (u k -u j ) x (u k -u j ) xxx = (|u k | 2p u k -|u j | 2p u j ) x (u k -u j ) x + β(|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x .
Subtracting and integrating over x ∈ R we have

d dt (u k -u j ) x 2 L 2 (R) = 2Im R (|u k | 2p u k -|u j | 2p u j ) x (u k -u j ) x dx + 2βIm R (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x dx.
(5.21)

In a similar way we obtain that

d dt (v k -v j ) x 2 L 2 (R) = 2Im R (|v k | 2p v k -|v j | 2p v j ) x (v k -v j ) x dx + 2βIm R (|v k | p-1 |u k | p+1 v k -|v j | p-1 |u j | p+1 v j ) x (v k -v j ) x dx. (5.22)
We estimate the first term in (5.21)

(|u k | 2p u k -|u j | 2p u j ) x (u k -u j ) x = |u k | 2p (u k -u j ) + (|u k | 2p -|u j | 2p )u j x (u k -u j ) x = (|u k | 2p ) x (u k -u j ) + |u k | 2p (u k -u j ) x (u k -u j ) x + (|u k | 2p -|u j | 2p ) x u j + (|u k | 2p -|u j | 2p )u j x (u k -u j ) x = (|u k | 2p ) x (u k -u j )(u k -u j ) x + |u k | 2p |(u k -u j ) x | 2 + (|u k | 2p -|u j | 2p ) x u j (u k -u j ) x + (|u k | p + |u j | p )(|u k | p -|u j | p )u j x (u k -u j ) x = (|u k | 2p ) x (u k -u j )(u k -u j ) x + |u k | 2p |(u k -u j ) x | 2 + u j (|u k | 2p ) x -(|u j | 2p ) x (u k -u j ) x + (|u k | p + |u j | p )(|u k | p -|u j | p )u j x (u k -u j ) x . But, (|u k | 2p ) x = 2Re[(u k ) p ((u k ) p ) x ]. Then (|u k | 2p u k -|u j | 2p u j ) x (u k -u j ) x = |u k | 2p |(u k -u j ) x | 2 + (|u k | p ) + |u j | p )(|u k | p -|u j | p )u j x (u k -u j ) x + 2Re[(u k ) p ((u k ) p ) x ](u k -u j )(u k -u j ) x + 2u j Re (u k ) p ((u k ) p ) x -(u j ) p ((u j ) p ) x (u k -u j ) x .
(

Integrating and taking imaginary part over (5.23), we have

Im R (|u k | 2p u k -|u j | 2p u j ) x (u k -u j ) x dx ≤ R | |u k | p + |u j | p | | |u k | p -|u j | p | |u j x | |(u k -u j ) x |dx + 2 R |(u k ) p | |((u k ) p ) x | |u k -u j | |(u k -u j ) x |dx + 2 R |u j | (u k ) p ((u k ) p ) x -(u j ) p ((u j ) p ) x |(u k -u j ) x |dx ≤ |u k | p -|u j | p L ∞ (R) |u k | p L ∞ (R) + |u j | p L ∞ (R) u j x L 2 (R) (u k -u j ) x L 2 (R) + 2 (u k ) p L ∞ (R) u k -u j L ∞ (R) ((u k ) p ) x L 2 (R) (u k -u j ) x L 2 (R) + 2 u j L ∞ (R) (u k ) p L ∞ (R) ((u k ) p ) x L 2 (R) (u k -u j ) x L 2 (R) + 2 u j L ∞ (R) (u j ) p L ∞ (R) ((u j ) p ) x L 2 (R) (u k -u j ) x L 2 (R) . Using that 2ab ≤ a 2 + b 2 it follows that Im R (|u k | 2p u k -|u j | 2p u j ) x (u k -u j ) x dx ≤ N 1 u j x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + N 2 ((u k ) p ) x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + N 3 ((u k ) p ) x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + N 4 ((u j ) p ) x 2 L 2 (R) + (u k -u j ) x L 2 (R) (5.24) 
where

N 1 = |u k | p -|u j | p L ∞ (R) |u k | p L ∞ (R) + |u j | p L ∞ (R) , N 2 = (u k ) p L ∞ (R) u k -u j L ∞ (R) , N 3 = u j L ∞ (R) (u k ) p L ∞ (R) , N 4 = u j L ∞ (R) (u j ) p L ∞ (R) .
In a similar way, we estimate the first term in (5.22), that is,

Im R (|v k | 2p v k -|v j | 2p v j ) x (v k -v j ) x dx ≤ N 1 v j x 2 L 2 (R) + (v k -v j ) x 2 L 2 (R) + N 2 ((v k ) p ) x 2 L 2 (R) + (v k -v j ) x 2 L 2 (R) + N 3 ((v k ) p ) x 2 L 2 (R) + (v k -v j ) x 2 L 2 (R) + N 4 ((v j ) p ) x 2 L 2 (R) + (v k -v j ) x L 2 (R) (5.25) 
where

N 1 = |v k | p -|v j | p L ∞ (R) |v k | p L ∞ (R) + |v j | p L ∞ (R) , N 2 = (v k ) p L ∞ (R) v k -v j L ∞ (R) , N 3 = v j L ∞ (R) (v k ) p L ∞ (R) , N 4 = v j L ∞ (R) (v j ) p L ∞ (R) .
Now we estimate the second term in (5.21)

(|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x = |u k | p-1 |v k | p+1 (u k -u j ) + |u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 u j x (u k -u j ) x = |u k | p-1 |v k | p+1 (u k -u j ) x + |u k | p-1 |v k | p+1 x (u k -u j ) (u k -u j ) x + |u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 u j x (u k -u j ) x + |u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 x u j (u k -u j ) x =|u k | p-1 |v k | p+1 |(u k -u j ) x | 2 + |u k | p-1 x |v k | p+1 (u k -u j )(u k -u j ) x + |u k | p-1 |v k | p+1 x (u k -u j )(u k -u j ) x + |u k | p-1 |v k | p+1 -|u j | p-1 |v j | p+1 u j x (u k -u j ) x + |u k | p-1 |v k | p+1 x -|u j | p-1 |v j | p+1 x u j (u k -u j ) x =|u k | p-1 |v k | p+1 |(u k -u j ) x | 2 + |u k | p-1 x |v k | p+1 (u k -u j )(u k -u j ) x + |u k | p-1 |v k | p+1 x (u k -u j )(u k -u j ) x + |u k | p-1 |v k | p+1 u j x (u k -u j ) x -|u j | p-1 |v j | p+1 u j x (u k -u j ) x + |u k | p-1 x |v k | p+1 + |u k | p-1 |v k | p+1 x u j (u k -u j ) x -|u j | p-1 x |v j | p+1 u j (u k -u j ) x -|u j | p-1 |v j | p+1 x u j (u k -u j ) x . (5.26) But |u k | p-1 x = |u k | 2( p-1 2 ) x = u k u k ( p-1 2 ) x = u k ( p-1 2 ) x u k ( p-1 2 ) + (u k ) ( p-1 2 ) u k ( p-1 2 ) x = u k ( p-1 2 ) x u k ( p-1 2 ) + (u k ) ( p-1 2 ) x u k ( p-1 2 ) =2Re u k ( p-1 2 ) x u k ( p-1 2 ) .
Similarly

|u k | p+1 x = 2Re u k ( p+1 2 ) x u k ( p+1 2 
) .

Replacing into (5.26)

(|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x =|u k | p-1 |v k | p+1 |(u k -u j ) x | 2 + 2Re u k ( p-1 2 ) x u k ( p-1 2 ) |v k | p+1 (u k -u j )(u k -u j ) x + |u k | p-1 2Re v k ( p+1 2 ) x v k ( p+1 2 ) (u k -u j )(u k -u j ) x + |u k | p-1 |v k | p+1 u j x (u k -u j ) x -|u j | p-1 |v j | p+1 u j x (u k -u j ) x + 2Re u k ( p-1 2 ) x u k ( p-1 2 ) |v k | p+1 u j (u k -u j ) x + 2|u k | p-1 Re v k ( p+1 2 ) x v k ( p+1 2 ) u j (u k -u j ) x -2Re u k ( p-1 2 ) x u k ( p-1 2 ) |v j | p+1 u j (u k -u j ) x -2|u j | p-1 Re v j ( p+1 2 ) x v j ( p+1 2 ) u j (u k -u j ) x . (5.27) Then 2βIm R (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x dx ≤ 2β R 2 [(u k ) (p-1)/2 ] x |u k | (p-1)/2) |v k | p+1 |u k -u j | |(u k -u j ) x |dx + 2β R 2|u k | p-1 [(v k ) (p+1)/2 ] x |v k | (p+1)/2 |u k -u j | |(u k -u j ) x |dx + 2β R |u k | p-1 |v k | p+1 |u j x | |(u k -u j ) x |dx + 2β R |u j | p-1 |v j | p+1 |u j x | |(u k -u j ) x |dx + 2β R 2|[(u k ) (p-1)/2 ] x | |u k | (p-1)/2 |v k | p+1 |u j | |(u k -u j ) x |dx + 2β R 2|u k | p-1 |[(v k ) (p+1)/2 ] x | |v k | (p+1)/2 | |u j | |(u k -u j ) x |dx + 2β R 2|[(u k ) (p-1)/2) ] x | |u k | (p-1)/2 |v j | p+1 |u j | |(u k -u j ) x |dx + 2β R 2|u j | p-1 |[(v j ) (p+1)/2 ] x | |v j | (p+1)/2 |u j | |(u k -u j ) x |dx. Hence 2βIm R (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x dx ≤ 4β u k (p-1)/2) L ∞ (R) v k p+1 L ∞ (R) u k -u j L ∞ (R) R [(u k ) (p-1)/2 ] x |(u k -u j ) x |dx + 4β u k p-1 L ∞ (R) v k (p+1)/2 L ∞ (R) u k -u j L ∞ (R) R [(v k ) (p+1)/2 ] x |(u k -u j ) x |dx + 2β u k p-1 L ∞ (R) v k p+1 L ∞ (R) R |u j x ||(u k -u j ) x |dx + 2β u j p-1 L ∞ (R) v j p+1 L ∞ (R) R |u j x ||(u k -u j ) x |dx + 4β u k (p-1)/2 L ∞ (R) v k p+1 L ∞ (R) u j L ∞ (R) R |[(u k ) (p-1)/2 ] x | |(u k -u j ) x |dx + 4β u k p-1 L ∞ (R) v k (p+1)/2 L ∞ (R) | u j | L ∞ (R) R |[(v k ) (p+1)/2 ] x | |(u k -u j ) x |dx + 4β u j (p-1)/2 L ∞ (R) v j p+1 L ∞ (R) u j L ∞ (R) R |[(u k ) (p-1)/2) ] x | |(u k -u j ) x |dx + 4β u j p-1 L ∞ (R) v j (p+1)/2 L ∞ (R) u j L ∞ (R) R |[(v j ) (p+1)/2 ] x | |(u k -u j ) x |dx. Thus 2βIm R (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x dx ≤ 4β u k (p-1)/2) L ∞ (R) v k p+1 L ∞ (R) u k -u j L ∞ (R) [(u k ) (p-1)/2 ] x L 2 (R) (u k -u j ) x L 2 (R) + 4β u k p-1 L ∞ (R) v k (p+1)/2 L ∞ (R) u k -u j L ∞ (R) [(v k ) (p+1)/2 ] x L 2 (R) (u k -u j ) x L 2 (R) + 2β u k p-1 L ∞ (R) v k p+1 L ∞ (R) u j x L 2 (R) (u k -u j ) x L 2 (R) + 2β u j p-1 L ∞ (R) v j p+1 L ∞ (R) u j x L 2 (R) (u k -u j ) x L 2 (R) + 4β u k (p-1)/2 L ∞ (R) v k p+1 L ∞ (R) u j L ∞ (R) [(u k ) (p-1)/2 ] x L 2 (R) (u k -u j ) x L 2 (R) + 4β u k p-1 L ∞ (R) v k (p+1)/2 L ∞ (R) u j L ∞ (R) [(v k ) (p+1)/2 ] x L 2 (R) (u k -u j ) x L 2 (R) + 4β u k (p-1)/2 L ∞ (R) v k p+1 L ∞ (R) u j L ∞ (R) [(u k ) (p-1)/2) ] x L 2 (R) (u k -u j ) x L 2 (R) + 4β u j p-1 L ∞ (R) v j (p+1)/2 L ∞ (R) [(v j ) (p+1)/2 ] x L 2 (R) (u k -u j ) x L 2 (R) .
(5.28)

Therefore 2βIm R (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x dx ≤ R 1 [(u k ) (p-1)/2 ] x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + R 2 [(v k ) (p+1)/2 ] x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + R 3 u j x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + R 4 u j x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + R 5 [(u k ) (p-1)/2 ] x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + R 6 [(v k ) (p+1)/2 ] x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + R 7 [(u j ) (p-1)/2) ] x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) + R 8 [(v j ) (p+1)/2 ] x 2 L 2 (R) + (u k -u j ) x 2 L 2 (R) , (5.29) 
where

R 1 = 2β u k (p-1)/2) L ∞ (R) v k p+1 L ∞ (R) u k -u j L ∞ (R) , R 2 = 2β u k p-1 L ∞ (R) v k (p+1)/2 L ∞ (R) u k -u j L ∞ (R) R 3 = β u k p-1 L ∞ (R) v k p+1 L ∞ (R) , R 4 = β u j p-1 L ∞ (R) v j p+1 L ∞ (R) R 5 = 2β u k (p-1)/2 L ∞ (R) v k p+1 L ∞ (R) u j L ∞ (R) , R 6 = 2β u k p-1 L ∞ (R) v k (p+1)/2 L ∞ (R) u j L ∞ (R) R 7 = 2β u j (p-1)/2 L ∞ (R) v j p+1 L ∞ (R) u j L ∞ (R) , R 8 = 2β u j p-1 L ∞ (R) v j (p+1)/2 L ∞ (R) u j L ∞ (R) . Therefore, from (5.29) 2βIm R (|u k | p-1 |v k | p+1 u k -|u j | p-1 |v j | p+1 u j ) x (u k -u j ) x dx ≤ K 1 + K 2 (u k -u j ) x 2 L 2 (R) .
(5.30)

Similarly 2βIm R (|v k | p-1 |u k | p+1 v k -|v j | p-1 |u j | p+1 v j ) x (v k -v j ) x dx ≤ K 1 + K 2 (v k -v j ) x 2 L 2 (R) .
(5.31) Gathering (5.21), (5.22), (5.24), (5.25), (5.30) and (5.31), we obtain 

d dt (u k -u j ) x 2 L 2 (R) + (v k -v j ) x 2 L 2 (R) ≤ C 0 + C 1 (u k -u j ) x 2 L 2 (R) + (v k -v j ) x 2 L 2 (R) . ( 5 
{(J m u k , J m u k )} is Cauchy sequence in C([0, T ] : L 2 (R)) × C([0, T ] : L 2 (R)) for any T > 0. Moreover J m u k -J m u j 2 L 2 (R) + J m v k -J m v j 2 L 2 (R) ≤ c(T ) x m u k 0 -x m u j 0 2 L 2 (R) + x m v k 0 -x m v j 0 2 L 2 (R)
where c(T ) is a positive constant independent of k and j.

Proof. Let (u k , u j ) solution, then

       i(J m u k ) t + (J m u k ) xx = J m [(|u k | 2p + β|u k | p-1 |v k | p+1 )u k ], i(J m u j ) t + (J m u j ) xx = J m [(|u j | 2p + β|u j | p-1 |v j | p+1 )u j ], i(J m v k ) t + (J m v k ) xx = J m [(|v k | 2p + β|v k | p-1 |u k | p+1 )v k ], i(J m v j ) t + (J m v j ) xx = J m [(|v j | 2p + β|v j | p-1 |u j | p+1 )v j ],
(5.33)

we have

i(J m u k -J m u j ) t + (J m u k -J m u j ) xx =J m (|u k | 2p u k ) + βJ m (|u k | p-1 |v k | p+1 u k ) -J m (|u j | 2p u j ) -βJ m (|u j | p-1 |v j | p+1 u j ).
Multiplying by J m u k -J m u j , we obtain

i(J m u k -J m u j ) t (J m u k -J m u j ) + (J m u k -J m u j ) xx (J m u k -J m u j ) = [J m (|u k | 2p u k ) + βJ m (|u k | p-1 |v k | p+1 u k )](J m u k -J m u j ) + [-J m (|u j | 2p u j ) -βJ m (|u j | p-1 |v j | p+1 u j )](J m u k -J m u j ).
Applying conjugate

-i(J m u k -J m u j ) t (J m u k -J m u j ) + (J m u k -J m u j ) xx (J m u k -J m u j ) = [J m (|u k | 2p u k ) + βJ m (|u k | p-1 |v k | p+1 u k )](J m u k -J m u j ) + [-J m (|u j | 2p u j ) -βJ m (|u j | p-1 |v j | p+1 u j )](J m u k -J m u j ).
Subtracting and integrating over x ∈ R, we have

d dt J m u k -J m u j 2 L 2 (R) = 2 Im R J m (|u k | 2p u k ) -J m (|u j | 2p u j ) (J m u k -J m u j ) dx + 2β Im R [J m (|u k | p-1 |v k | p+1 u k ) -J m (|u j | p-1 |v j | p+1 u j )](J m u k -J m u j ) dx .
By the Hölder inequality

d dt J m u k -J m u j 2 L 2 (R) ≤ C J m (|u k | 2p u k ) L 2 (R) + J m (|u j | 2p u j ) L 2 (R) J m u k -J m u j L 2 (R) + C J m (|u k | p-1 |v k | p+1 u k ) L 2 (R) + J m (|u j | p-1 |v j | p+1 u j ) L 2 (R) J m u k -J m u j L 2 (R) .
(5.34)

Using the Lemma (4.2) and (4.3), of (5.34), we have

d dt J m u k -J m u j 2 L 2 (R) ≤C m J m u k L 2 (R) u k 2p L ∞ (R) + J m u j L 2 (R) u j 2p L ∞ (R) × J m u k -J m u j L 2 (R) + C m J m u k L 2 (R) + J m v k L 2 (R) + J m u j L 2 (R) + J m v j L 2 (R) × J m u k -J m u j L 2 (R) ≤ C m J m u k -J m u j L 2 (R) . (5.35) 
From (5.35) by the Young inequality, we obtain

d dt J m u k -J m u j 2 L 2 (R) ≤ C m + J m u k -J m u j 2 L 2 (R) .
(5.36) Similar way we obtain for v that

d dt J m v k -J m v j 2 L 2 (R) ≤ C m + J m v k -J m v j 2 L 2 (R) .
(5.37) Adding (5.36) and (5.37) we obtain 

d dt J m u k -J m u j 2 L 2 (R) + J m v k -J m v j 2 L 2 (R) ≤C m + J m u k -J m u j 2 L 2 (R) + J m v k -J m v j 2 L 2 (R) . ( 5 
e ix 2 4t u ∈ C(R -{0} : H m (R)), e ix 2 4t v ∈ C(R -{0} : H m (R))
Proof of the main theorem. From Lemma (5.1) and (5.2) we obtain that there exists u = u(x, t) and v = v(x, t) satisfying (1.6)-(1.7) and such that for any T > 0 we have

u k -→ u strongly in C(R : H 1 (R)) v k -→ v strongly in C(R : H 1 (R))
and

J m u k -→ J m u strongly in C(R : L 2 (R)) J m v k -→ J m v strongly in C(R : L 2 (R)).
It is easily verified that (u, v) solves (1.2). The proof then follows.

Corollary 5.3 If the hypotheses in Lemma 5.2 are satisfied, then u ∈

[ n 2 ] m=0 C m (R -{0} : C n-2m-1 (R)) and v ∈ [ n 2 ] m=0 C m (R -{0} : C n-2m-1 (R)). Corollary 5.4 If (x n u 0 , x n v 0 ) ∈ L 2 (R) × L 2 (R) for all n ∈ N in Lemma 5.2 then the solution (u, v) of (1.
2) is infinitely differentiable in x and t for t = 0.

Numerical Experiments

In this section, we will present some numerical simulations which replicate the decay rates proved recently. We will find approximate solutions of (1.2) using a finite differences approach. Due to computational limitations, we will assume from now on that Ω is bounded. The derivatives will be approximated using second-order centered finite differences, and the nonlinear term will be treated as proposed in Delfour [START_REF] Delfour | Finite-Difference Solutions for a Non-linear Schrödinger Equation[END_REF].

We will briefly describe the numerical scheme used to obtain our results. Due to computational limitations, we will consider a bounded domain sufficiently large so that the boundary doest not interfere with our results. Let us denote it by Ω := [x 0 , x f ] ⊂ R. For a given M ∈ N, we will introduce the vector space

X M := y = [y 0 y 1 . . . y M ] T ∈ C M +1 : y 0 = y M -1 = y M = 0
This condition mimicks the boundary conditions y = y(x, t) = 0 for x ∈ {x 0 , x f } and y x = 0 for x = x f . For ∆x :=

x f -x 0 M -1 , we introduce the following classical finite differences operators for complex-valued arrays:

D + u j = D + y j := y j+1 -y j ∆x D -y j = D -y j := y j -y j-1 ∆x D x y := 1 2 D + y + D -y D 2 x y := D + D -y
Our numerical scheme is defined as follows: for u n , v n ∈ X M and t n = n∆t, ∆t < 1:

i u n+1 -u n ∆t + D 2 x u n+ 1 2 = |u n+1 | 2p+2 -|u n | 2p+2 |u n+1 | 2 -|u n | 2 u n+1 + u n 2p + 2 + β |v n+1 | p+1 + |v n | p+1 2 |u n+1 | p+1 -|u n | p+1 |u n+1 | 2 -|u n | 2 u n+1 + u n p + 1 i v n+1 -v n ∆t + D 2 x v n+ 1 2 = |v n+1 | 2p+2 -|v n | 2p+2 |v n+1 | 2 -|v n | 2 v n+1 + v n 2p + 2 + β |u n+1 | p+1 + |u n | p+1 2 |v n+1 | p+1 -|v n | p+1 |v n+1 | 2 -|v n | 2 v n+1 + v n p + 1
This is a nonlinear problem; thus a Picard fixed point iteration is used in each timestep. This leads to the solving of the same linear system of equations many times per step.

As the coefficients matrix is tridiagonal, we use the LAPACK package to solve the linear system via LU factorization. In order to avoid overflow/underflow errors, each code is programmed to include the exact factorization associated to each value of p. For example, when p = 1 we get

i u n+1 -u n ∆t + D 2 x u n+ 1 2 = |u n+1 | 2 + |u n | 2 2 u n+1 + u n 2 + β |v n+1 | 2 + |v n | 2 2 u n+1 + u n 2 i v n+1 -v n ∆t + D 2 x v n+ 1 2 = |v n+1 | 2 + |v n | 2 2 v n+1 + v n 2 + β |u n+1 | 2 + |u n | 2 2 v n+1 + v n 2 ,
which is a classical discretization for the nonlinear term, as proposed in Delfour, Fortin and Payre [START_REF] Delfour | Finite-Difference Solutions for a Non-linear Schrödinger Equation[END_REF]. Regarding the norms to be studied, let us define the discrete L p norm as follows

||u|| p p := ∆x M i=1 |u i | p , for u ∈ C M , p ∈ N.
The discrete L ∞ norm will be defined as

||u|| ∞ = max 1≤i≤M |u i |
Thus, the numerical Energy will be given by 6.1 Example 1: p = 3.

E(u, v) := ||D + x u|| 2 2 +||D + x v|| 2 2 + 1 p + 1 ||u|| 2p+2 2p+2 + 1 p + 1 ||v|| 2p+2 2p+2 + 2β p + 1 ∆x N i=1 |u i | p+1 |v i | p+1 .
Starting with p = 3, and considering u n+ 1 2 = u n+1 + u n 2 , the scheme will be

i u n+1 -u n ∆t + D 2 x u n+ 1 2 = |u n+1 | 2 + |u n | 2 2 |u n+1 | 4 + |u n | 4 2 u n+ 1 2 + β |v n+1 | 4 + |v n | 4 2 
|u n+1 | 2 + |u n | 2 2 u n+ 1 2 i v n+1 -v n ∆t + D 2 x v n+ 1 2 = |v n+1 | 2 + |v n | 2 2 |v n+1 | 4 + |v n | 4 2 v n+ 1 2 + β |u n+1 | 4 + |u n | 4 2 |v n+1 | 2 + |v n | 2 2 v n+ 1 2
The following result is obtained from the initial condition u(x, 0) = 1.2 √ 2e 1.3i x 4 sech 1.2x + 10 , v(x, 0) = √ 2e -1.3i x 4 sech x -10 , which is a classical solution of the NLS equation [START_REF] Polyanin | Handbook of Nonlinear Partial Differential Equations: Exact Solutions, Methods, and Problems[END_REF] for p = 2, and in practice it corresponds to a soliton collision due to the differences in their velocities. Our computations consider the domain Ω = [-100, 100], ∆t = 0.1, ∆x = 200 2 13 ≈ 0.024414, ans β = 1. Figure 2 and 3 illustrates the time evolution of the L ∞ and L 2p+2 norms respectively. Figure 4 shows the evolution of the preserved quantities. The energy and the L 2 norm remain numerically preserved, while the L ∞ and L 2p+2 norms decay following a power law but with a steeper slope than the one predicted by theory for the L ∞ norm. This might be due to numerical dispersion effects that contribute to its decay (for a detailed study, see [START_REF] Fibich | Discretization effects in the Nonlinear Schrödinger equation[END_REF]). Figure 1 illustrates the numerical solutions obtained. With that value for p, the scheme becomes 

34

v n+1 + v n 2
For this example we will consider as initial condition the expressions (60a) and (60b) from Menyuk [START_REF] Menyuk | Pulse propagation in an elliptically birefringent Kerr medium[END_REF], and corresponds to another soliton collision. As parameters, we have chosen A 1 = 1 4 , A 2 = 1 2 , s 1 = 8, s 2 = -5, and δ = 0. The domain, timestep and mesh size are the same from the previous example. Figure 6 illustrates the evolution of the L ∞norm, while Figure 7 does for L 2p+2 -norm. They decay acording to the a power law, as expected. Figure 8 shows the time evolution of the preserved quantities. We can see that, at a numerical level, they are preserved as well. Figure 5 shows the numerical solutions obtained. 

( 4 .

 4 23) Adding (4.22) and (4.23) it follows that
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 1 Figure 1: Modulus of the numerical solution, Example 1.
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 2 Figure 2: L ∞ norm evolution, Example 1.
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 3 Figure 3: L 2p+2 norm evolution, Example 1.
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 45 Figure 4: Energy and L 2 -norm time evolution, Example 1.
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 6 Figure 6: L ∞ norm evolution, Example 2.
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 7 Figure 7: L 2p+2 norm evolution, Example 2.
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 8 Figure 8: Energy and L 2 -norm time evolution, Example 2.

  Let p > 1 odd integer number, for m = 1, 2, 3, ..., n, we have
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	From (5.19) and (5.32) the Lemma following.
	Lemma 5.2
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	i	v n+1 -v n ∆t	+ D 2 x v n+ 1 2 =

2(p+1) L 2(p+1) (R)
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