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Dielectric Spectra Analysis: Reliable Parameter
Estimation Using Interval Analysis

Adrien Brochier, Maélenn Aufray, and Wulff Possart

1 Introduction

Dielectric spectroscopy (DES) is widely applied to polymers, monomers and other
insulating materials because it is an extremely effective method for characteriz-
ing the molecular dynamics over many orders of magnitude of time or frequency,
respectively. In the measurement, the complex dielectric function

¥ (w) = &'(w) — ie" (w) 1)

with the angular frequency w, is measured at constant temperature. This function
is called the dielectric spectrum. Commonly, dielectric spectra are modelled by a
sum of relaxation processes, but the choice of a reasonable physical model for the
relaxator is critical. Most of the usual models, reviewed briefly in the introductory
section, result from phenomenological considerations providing limited physical
foundation. Moreover, the fitting algorithm turns out to be crucial in terms of relia-
bility and unambiguity of the dielectric model function determined. As discussed
in Sect. 2, common softwares use least square approximation fitting algorithms
which need initial values for the fit parameters. This could imply some predesti-
nation of the fit results. In this work, a parameter estimation algorithm which is free
of these limitations will be developed (See Sect. 3). The new algorithm S.A.D.E. not
only provides the chosen dielectric model function by a confidence interval for each
model parameter like the frequency position and the intensity of all relaxations: it
also indicates the number of relaxations that are necessary to model the measured
spectrum.
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1.1 The Dielectric Spectroscopy and Its Models

1.1.1 Relaxations

The Debye relaxators [1] describe the dielectric relaxation response of an ideal, non-
interacting population of freely rotating dipoles to an alternating external electric
field
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Where &g is the static permittivity (es = lim, 0 &'(w)), €x is the optical dielec-
tric constant (e00 = limy_ 00 €' (w)) and tg is the characteristic relaxation time of
the medium. Let us note that the Debye model refers to a well-defined physical situ-
ation. All other relaxator models reported in the literature imply phenomenological
modifications of the Debye relaxator without well-defined physical background.

For example, the Havriliak—-Negami (HN [2]) equation
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is a mixture of the Cole—Cole [3,4] and the Cole-Davidson [5] equations, accounting
for the asymmetry and broadness of the measured dielectric dispersion curve by
the additional phenomenological parameters o and . Developed to describe the
dielectric relaxation of some polymers, the HN function is now one of the most
popular models for dielectric relaxation although no exact physical meaning can
still be given to the coefficients o and S.

Then, for dielectric spectra containing several relaxations, it is possible to sum a
number of relaxation processes, according to Eq. (2) or (3), i.e. irrespective of the
model used. Here is the example, for n relaxations represented by the Debye model,

n
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and the Havriliak—Negami model.
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1.1.2 DC-Conductivity

At high temperatures and w—0, a contribution of a DC-conductivity (opc) can be
observed in the dielectric spectra of real polymer samples. It contributes only to
the imaginary part of the measured complex dielectric permittivity, as long as the
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imaginary part of the generalized complex conductivity can be neglected in the low
frequency region (i.e. 0" < ¢’). With this presumption, the following equation links
the measured quantities &, " to the true dielectric material quantities &', ¢” and the
DC electric conductivity (opc):

~ - o

() = &' () and &' (o) = (o) + 25 6)
weo

At high frequencies, the contribution from the DC-conductivity becomes negli-

gible and hence

lim §"(w) = ¢&" @)
w—> 00
At low frequencies, the &” term is negligible compared to opc, leading to the
equation

. ~1/ ODC
lim log,o(¢"(w)) = logy (—) — logo(w) ®)
0—0 &0
And hence, as a first approximation, the equation

§"(w) - w- ey = 0opc 9)

gives a good fit of the DC-conductivity [6-9]. However, some relaxations can
take place even at these low frequencies. They are very difficult to fit using clas-
sical approaches (i.e. common algorithms) because they can be masked by the
DC-conductivity.

As a consequence, the fitting process has to lead to a set of parameters which
makes the model to fit both the real and the imaginary part, and has to detect hidden
relaxations.

1.1.3 Polarization at Electrodes and Phase Boundaries

Electrode polarization is a parasitic effect in dielectric experiments which can mask
the pure dielectric response of the sample material [10]. Moreover, as described by
Maxwell, Wagner and Sillars (MWS polarization), phases in heterogeneous media
are to be treated as macroscopic volume elements with different £* and conductiv-
ities o* [11-13]. The most basic geometrical situation was considered by Maxwell
[11]. This consists of a plate capacitor filled with n dielectric sheets of non-complex
dielectric properties and DC conductivities €1, o1, €2, 02, ... &, 0. This resulted
in differential equations relating the field across the dielectric as a function of the
current though the strata. Maxwell showed his model to be capable of explaining the
observed data for dielectric relaxation in such systems. By considering small spheres
with material properties €2, o> dispersed so as to preclude electrostatic interaction
with one another through a medium with properties €1, oy Wagner [12] was able
to develop Maxwell’s analysis further. This analysis was developed by Sillars [13]
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for a disperse 2-phase system by assuming that the matrix material behaved as a
perfect dielectric (i.e. o1 = 0). The inclusions are spheroids with axis a in the field
direction, and with b and ¢ equal to one another. The geometry is wholly described
by two variables, ¢, the volume fraction of dielectric 2, and the axial ratio a/b. The
conducting inclusions behave as point dipoles in the dielectric matrix, and a full
analysis yields relations similar to the Debye equations:
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Where A is a particular function of a/b, and e+, N and 7 are given by:
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Sillars includes the dimensionless quantity, ¢, which is a function of the ratio a/b.
The non-linear variation of this quantity implies that little can be deduced about the
dielectric properties of a heterogeneous material unless the shapes of the inclusions
are known. Now, applying an electric voltage to the heterogeneous material, the
mobile charges in phase 2 can be blocked and piled up at the phase boundaries.
This picture also applies to the electrodes on the dielectric sample in the similar
case of polarization at a blocking electrode. The experimental example presented
in the last part of this work reveals that the MWS polarization causes a strong rise
both in the real part (where electrode polarization is more visible) and in the imag-
inary part of the permittivity (where the electrode polarization superimposes to the
DC-conductivity) with decreasing frequency. In this work, the electrode polarization
will be modeled by one strong Debye relaxator (recall that the MWS equation is very
similar to the Debye equation). The only way to separate all the phenomena (elec-
trode polarization, DC-conductivity, and maybe low-frequency dielectric material
relaxations) is a simultaneous fit of the real and imaginary part of the permittivity
using a formula taking all these phenomena into account.

1.2 Modeling Problems: Simultaneous Fit and Choice of the Model

The main problem is that different physical processes can occur at the same fre-
quency and temperature: the example of some small relaxations hidden by the
DC-conductivity is very clear. Therefore, the only way to separate the phenomena
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is a simultaneous fit of the real and imaginary part of the permittivity. So the sim-
ple fit of the imaginary part of the permittivity (used by most of researchers, except
Axelrod et al. [8]) does not give a good solution as relaxations or other phenomena
can be missed. The fit of the complex function of the permittivity will be done by
our algorithm S.A.D.E. presented in the next paragraphs: the relaxations and the
electrode polarization are fitted by the Debye model and the DC-conductivity by
its specific function. Of course, we cannot determine ex ante the number of Debye
relaxations needed to fit our curves, but the program S.A.D.E. will try to fit the curve
using from O to n relaxations and one term due to DC-conductivity.

A,
N (15)

The goal of the data fitting is to find the parameter values of the applied physi-
cal model that match the data most closely. The models to which the data are fitted
depend on adjustable parameters. Therefore, the fitting process requires both the
choice of a physical model and the choice of a suitable computing algorithm. Most
of the scientific softwares fit experimental data by using some variants of the least
squares approximation method but the success of the fit is not guaranteed. The next
section will summarize the least squares approximation method and its disadvan-
tages. A different algorithm will be presented which makes the fit by the Debye
model of experimental data with several relaxations possible in an efficient way,
even if some of them are hidden.

2 Data Fit Methods: From Least Square Approximation
to the Interval Analysis

2.1 Introduction

Let (x;,yi)1<i<n be a set of experimental data, and f{x, p) be a physical model
depending on a vector of parameters p = (p1,...,px). If the measurement accu-
racy is known, it is natural to assume that a given vector of parameters p* leads to
a “good” fit if it makes the model consistent with the measurement error ¢; on each
data point, that is:

VI<i<ny —e <flx.p")<yi+e

A graphical visualization of this criterion is shown in Fig. 1.

Interval analysis makes possible the computation with intervals rather than with
real numbers, and thus it leads to a very similar criterion for checking whether a
“vector of intervals” contains good parameters. Thus, by cutting the multidimen-
sional space in which good parameters are searched into finitely many small pieces
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Experimental data —+— |
Good fitting curve
Curve outside of the confidence intervals
1 1

0.6 -
0 0.5 1 15 2

Fig. 1 Fit and confidence intervals

B

A A A

Fig. 2 Modelization of artificial data using a model depending on two parameters A and B. At
every step of the algorithm, the set of feasible parameters is guaranteed to be contained is the area
covered by gray squares. White squares doesn’t contain any feasible parameters. Thus, at each step
the approximation of the set of feasible parameters becomes more accurate

in a suitable way, it is possible to compute the best approximation of the set of good
parameters. As shown in Fig. 2, this algorithm is global, as at each step the area
covered by gray squares is guaranteed to contain the true set of good parameters.



Dielectric Spectra Analysis 105
2.2 The Least Square Approximation

The main goal of data fitting is to find the parameters that make the model
best describing the data. The commonly used method, namely the Least Square
Approximation, tries to minimize the distance between the measured and the
calculated points, i.e. to find:

min (gv(xi,p) -~ yi)2> (16)

If the model is linear this can be done analytically but if not, some classical min-
imization methods (generally based on gradient descent algorithms) are used. Such
an algorithm takes a set of some initial parameter values as input and generates a
sequence of model parameter vectors which are supposed to converge to one partic-
ular parameter vector producing the minimum according to Eq. (16). This method
has some disadvantages however:

e The choice of initial values: The key for success of this algorithm is the proper
choice of initial values but there is no general method to do that. In some cases,
each single fit needs a patient observation of the data and a large amount of unsuc-
cessful testings before finding good initial values. Moreover, when using HN or
Debye models, the number of relaxations has to be known in advance. If the num-
ber of relaxations is higher than 1 and the relaxations are superimposed, it is very
often impossible to find correct initial values for each relaxation.

e The convergence speed: As the algorithm works as an iterative process, it “jumps”
at each iteration step from one value to another which is closer to a solution. One
critical choice is the size of such a jump. Although this choice is partially done by
the algorithm using the gradient and often some additional methods, for example
the Levenberg—Marquardt algorithm [14,15], the step must be adjusted according
to the nature and the order of magnitude of the parameters.

e The local minimum problem: The algorithm starts from a given vector of param-
eters and tries to “follow the slope” to find a minimum of the function. Thus,
the solution provided by the algorithm could correspond to a local minimum
which seems to be a good fit, whereas only the global minimum is physically
meaningful.

e The complexity of the model: The model has to be well conditioned in order
to make the algorithm work well. If the model is unstable (i.e. if a small vari-
ation of the parameters leads to a big variation of the corresponding computed
value) or if the number of parameters is too large, convergence is not guaran-
teed. In particular, if there are some symmetries (i.e. if some permutation of the
parameters does not change the value of the function) the algorithm could “hesi-
tate” between different correct possibilities and not converge at all. This problem
appears in all cases where we describe the measured dielectric function by a sum
of individual physical model functions of the same mathematical type. There are
two possibilities to solve this problem:
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1. assuming a condition on the parameters which breaks the symmetry, for
example that

U<n<...<T 17

but this is not possible using the least squares approximation, or

2. choose some perfect initial values which clearly distinguish the differ-
ent relaxations, which, as it was already noticed, is often a complicated
problem.

e The measurement accuracy: Although it is possible to attribute a weight factor to
each measured data point according to the accuracy, the quality of the fit result
is not directly linked to the measurement accuracy and there is no guarantee that
the result will be consistent with it. In particular, a result is always provided, even
if no parameter set is consistent with the measurement accuracy (for example if
the chosen number of relaxations is too small to describe the data correctly).
Moreover, the method supposes that the errors are randomly distributed, which is
not always true.

e The bound on the parameters: In general, there is no way to impose some specific
constraints for the parameters (for example that they must not be negative).

2.3 The Interval Analysis

Interval analysis was first introduced in order to have a true representation of real
numbers for numerical computing: for example, assuming that 7 = 3.1415 gen-
erates some numerical error which propagates or amplifies during the computing
process decreasing the quality of the result. By using an interval instead of a float
precision number and assuming that w = [3.1415;3.1416] leads to an interval as
the result of the calculation and this interval is guaranteed to contain the true result.
Therefore, intervals could also be used in order to manipulate a large range of real
numbers simultaneously, and thus to make an approximation of a complex set which
is easily handled in computing.

Let R be the set of real numbers. An interval denoted with [x] is a closed con-
nected subset of R. The lower and upper bound of [x] are denoted by x~ and x*,
respectively. Let IR be the set of all real intervals, then elementary real operations
are extended to intervals according to the following formula:

[xlo[yl={xoy|xe[x], y€[yl}foroe{+ — */} (18)
leading to, for example:
[1;3] +[2:4] = [3;7] (19)

A vector of intervals is called a box, and IIR” denotes the set of all n~—dimensional
boxes. Arithmetic operations with boxes are defined componentwise. The size of an
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interval [x] = [x~;x"] is defined by:
Size([x]) = x7 —x~ (20)

The size of a box is the size of its greatest component. A bisection procedure
will also be used, which cuts a box into two parts and returns the two parts. For a
given box [p] = ([p1], [p2]. - - -, [pk]), the procedure finds the index i of the greatest
component, and returns 2 boxes:

(p1l.Ip2l- Iy spy + 0 —pi)/2), . b)) 1)

and

(p1l.[p2ls- o lpr + @ —pi)/2:p . IpkD) (22)

Let us keep in mind that we do not always get an interval when we calculate the
image of an interval by a real function. For example,

VI4:9] =[-3:-2]U[2:3] (23)

provides not one but two intervals. Thus, for more complicated operations, some
approximations have to be applied in order to keep a consistent representation for
computing. In this case for example, the only possible choice is to take the “interval
square root” of [4, 9] to be [—3, 3].

More generally, let

f:R— R 24)
be a real function. A so-called “inclusion function” for fis an interval function

[f1: IR — IR (25)

which verifies

Vx] € IR, f([xD C [£1([xD) (26)

In other word, the image of an interval (or a box) [x] by an inclusion function for
fis always still an interval (or a box) which contains the true image of [x]. Of course,
there are infinitely many inclusion functions for a given real function. One of them is
minimal but could be difficult to find. Then, the so-called natural inclusion function
will be used. The natural inclusion function is simply obtained by replacing each
operator in the associated real function by its interval equivalent, and each usual
function (sin, cos, exp, +/ ) by a suitable interval counterpart. It is important to note
that the natural inclusion function depends on how the real function is written and
especially on the repetition of the same variable. For example, the two real functions

fik) =xand fo(x) = x+x—x (27)
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are obviously equal, but their associated natural inclusion function are not. Indeed:

15 2]) = [1;2]

(28)
(210152 = [1:2] + [1:2] = [1; 2] = [0; 3]

To be sure that the inclusion function is an acceptable approximation of the real
one, the inclusion function has to meet two conditions: It has to respect the inclusion

Vix], bl € IR, [x] C [yl = [f1(Ix]D) € [FIyD (29)

and, given a sequence of intervals (or boxes) with a size converging to 0, the size of
the image of this sequence by the inclusion function has to converge to O too.

V([xaDner € IRY, (Size([xa]) — 0) = (Size([f1([xa])) — 0) (30)

2.4 Data Fit and Set Inversion

As outlined in the introducting Sect. 2.1, modelization problems can be reformu-
lated in the language of interval analysis. With (x;, y;)1<i<» being a set of measured
data, (e;)1<i<n being the corresponding measurement accuracy and f(x,p) being a
model depending on several parameters p = (p1,p2, ..., Pk), €ach measured value
is associated with an interval according to the measurement accuracy:

[vil = [yi — ei,yi + eil (31)
Thus, a vector of parameters p is called feasible if

V1s<iz<n, fxp)e i (32)

and is called unfeasible otherwise. This definition has to be extended to the intervals.
Obviously, a box of parameters [p] is feasible if and only if it contains only feasible
parameters, and is unfeasible if it contains only unfeasible parameters. But there is
one more possibility: a box can contain both feasible and unfeasible parameters (see
Fig. 3). Such a box is called indeterminate. More formally, a box [p] is called

e feasible if

VI <i=n, [fIx[pD C [yl (33)

e unfeasible if

3, [flea [pD Oyl =9 (34)

e indeterminate otherwise
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Unfeasible box ——

Indeterminate box

Feasible box

Fig. 3 Feasible, unfeasible and indeterminate boxes; P denotes the complete set of feasible
parameters

Thus, the set P of all feasible parameters can be defined as the inverse image of
the [yi] by a specific function. Thus, let

F:Rf - R (35)
fx1,p)
fGx2,p)

p— : (36)
(Xn,p)

be the function taking a vector of parameter P and returning all the corresponding
calculated values and

[y1]
[y2]

(37)
[yal

the boxes of all measured intervals as defined in Eq. (31). So the set P of all feasible
parameters is exactly:

P=1ip|F(p) eyl =F'yh =) "UyiD (38)

i=1
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where f;(p) = f(x;, p). Thus, the set of feasible parameters can also be considered as
the set of parameters which satisfies a system of constraints.

Theoretically, it is very easy to test if a box of parameters [p] is feasible or not
but in practice it requires the ability to calculate f(x;, [p]) which is not always an
interval or easy to calculate. That is why the (natural) inclusion function [f] will be
used instead.

3 From S.I.V.I.A. to S.A.D.E.

S.ILV.ILA. (Set Inversion Via Interval Analysis) is a set inversion algorithm intro-
duced by Jaulin [16, 17]. The algorithm is able to solve a large range of various
problems by finding a list of boxes approximating the inverse image of a given
set of real numbers or vectors (i.e. a subset of R¥) by a given function. S.I.V.LA.
is a “branch and bound” algorithm: it first tests if a given box is feasible or
unfeasible. If the box is indeterminate, the box is cut into 2 parts and each
part is tested recursively. As S.I.V.I.A. has exponential complexity, a subrou-
tine called contractor, which increases the speed of the main algorithm, is first
presented.

3.1 Contractor
Given a box [p], a contractor (C) is a subroutine which decreases the size of [p] by

removing some unfeasible parameters (as illustrated in the Fig. 4). So a function C
is a contractor if and only if:

Vip] € IRY, C(Ip]) < [p] and C(Ip)) N P = [pI N P (39)

T~

P

Fig. 4 Action of a contractor: it reduces the size of the current box without removing any feasible
parameter. Thus, the resulting box fits the set P of feasible parameters more accurately
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There are several ways to implement a contractor. One of them uses a
“forward-backward propagation”. Let [pg] be a box of parameters and

fGxr,p) € il

fGa2,p) € 2]
) (40)

fCn,p) € [yl

be the system of constraints corresponding to a fit problem. For each single con-
straint, the value of f(x;, [po]) is calculated (forward propagation) and compared to
the interval [y;]. Then, the difference is propagated back to the parameter box [pg].
Finally, the found box is contracted using the following constraint, and so on. This
process is repeated as long as the contraction has a significant effect. For example,
let

[p1] x [p2] = [2;3] x [0 1] (41
be a box of parameters,
[y] = [6;10] (42)
be an interval,
f(p1.p2) = p1 x exp(p2) (43)
be a real function and
fp1,p2) € bl (44)

be a single constraint. The aim of the contractor is to remove some values from [p]
and [p2] which do not satisfy the constraint:

e Forward propagation: The expression is simply calculated but in order to make

the backward propagation possible, each partial calculation is stored as some
variable.

(45)

[z] = exp([p2]) = [exp(0); exp(1)] = [1;2.7183]
ypl = [p1] % [z] = [2;3] x [1;2.7183] = [2; 8.1549]

o the values from [yp] which do not satisfy the constraint are removed

"] = [yp] N [y] = [2:8.1549] N [6; 10] = [6; 8.1549] (46)
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e backward propagation: the result is propagated back to remove any inconsistent
value from the initial parameters:

(P11 = (*1/[zD O [p1] = [2.2072; 3]
[z*] = (" 1/[pTD N [z] = [2;2.7183] (47)
(P31 = (log([z*])) N [p2] = [0.6931; 1]

Thus, this process returns a new box [2.2072; 3] x [0.6931; 1] which is smaller
than the initial one, but contains exactly the same feasible parameters.

3.2 Set Inversion Via Interval Analysis (SIVIA)

It is now possible to describe the S.I.V.ILA. algorithm. An initial box [Pg] which
represents the initial search space is taken as input: The initial box is chosen large
enough to be sure that the expected solution set P of parameters satisifes the con-
dition P C [Po]. The second input value is a small positive real number n which
determines the precision of the algorithm. If a box is indeterminate but smaller than
n, this box is still accepted. This guarantees that the algorithm terminates. The fact
that the inclusion function satisfies the conditions (29) and (30) guarantees also the
correctness of the algorithm, i.e. that by choosing the value of n small enough, it is
possible to make the approximation of P as precise as desired. The original version
of S.I.LVI.A. returns an inner and an outer approximation of the set P of all feasi-
ble parameters, but for the sake of simplicity, the algorithm presented in this article
only returns an outer approximation. Some basic structures used in the algorithm
are defined here:

e A List is a structure which can store a list of elements. An element is added to
the list with the function Push (List, element).

e A Stack is a LIFO (Last In, First Out) structure. The function Push (Stack, ele-
ment) adds an element to the top of the Stack, and the function Pop (Stack) returns
the element which is on the top of the stack and removes it from the stack.

The precise description of the algorithm is given Fig. 5. S.I.V.I.A. (Set Inversion
Via Interval Analysis) has some advantages compared to LSA (Least Squares
Approximation):

e This is a global algorithm. If there are some parameters which satisfy the
constraints, they will all be found.

e Conversely, if there is no parameter which satisfies the constraints, an empty set
will be returned. Therefore, S.I.V.I.A. also gives a strong criterion to estimate the
number of relaxations for a given dielectric spectrum.

e All the returned parameters belong to the initial search space. So there is no risk
to find non-sense parameters, such as negative values.
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e It is possible to add some arbitrary constraints that the parameters have to sat-
isfy. It is also possible to use in only one step, several systems of constraints
coming from different sources (for example to fit simultaneously the real and
imaginary part of a set of data) or to use several sets of data coming from repeated
measurements (data accumulation) in order to increase the quality of the result.

e The returned list of boxes can be reinterpreted to find an interval for each param-
eter, which is guaranteed to contain the true parameter value, and which size is
directly linked to the measurement accuracy.

Fig.5 S.IV.ILA. (Set

. . List L
Inversu.)n Via Interval Stle:ck S
Analysis) Push (S, [P])

While Not (is Empty (S) )
[pc] < Pop (S)
Contract ( [p.])
If [p.]is feasible
Push (L, [p.])
End If
If [p.] isindeterminate
If Size ([p]) <7
Push (L, [p.])
Else
{ [p1], [p21} = Bisection ([p])
Push (S, [p1])
Push (S, [pa])
End If
End If
End While
Return L

Figure 6 shows a symbolic set of parameters approximated by a list of boxes
which entirely cover the parameter set with an accuracy determined by the cho-
sen value for the algorithm parameter n (the maximal size of indeterminate boxes
which are still accepted). The list of boxes has to be post-processed in order to

P Boxes

P AN
z =

Fig. 6 The complicated set |

P is approximated by many I
boxes which are easier to &Ff ==
handle
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obtain an interval for each parameter of the applied physical model. Thus, S.I.V.I.A.
is really efficient for a broad range of hard problems, such as robots localization,
parameter estimation or stability analysis, and especially for very badly conditioned
problems. For such problems, S.I.V.I.A. provides a detailed description of the part
of the parameter space which solves the problem. However, in the specific case
of experimental data fitting using a physical model with a lot of parameters, this
feature of S..LV.LLA. results in some redundancy of the parameters. This is caused
by the symmetry of the model, i.e. the set P is not a connected set but it contains
several connected components that correspond to all possible permutations of the
parameters which let the model invariant. Then, the post-processing of the list could
be time-consuming. So it is necessary to find a way to select a single connected
component.

3.3 How to Modify S.I.V.ILA. for Dielectric Spectroscopy

In dielectric spectroscopy, the dielectric function &* measured as a function of fre-
quency provides the experimental data set which consists of the two sub-sets for
the real and the imaginary parts ¢ and &”, respectively. For dielectric data fit, the
results given by S.I.V.I.A. are too precise: the list S.I.V.ILA. returns is not easy to
process and a perfect approximation of P is not necessary as only an interval for
each parameter is needed. Thus, it is possible to modify this algorithm to make it
applicable to most complex cases.

3.3.1 Returned Values

As only an interval is needed for each parameter, the first idea is to approximate the
bounding box of P, instead of P itself. The bounding box of P is simply the smallest
box [P] containing P. Each time the algorithm finds a feasible box of parameters, it
will store the convex union of the current result and the newly found box instead of
pushing this new box into a List. The convex union of 2 intervals is defined by:

[[x1U Y]] = [Min(x~,y7); Max(x", yH)] (48)

The convex union of 2 boxes is defined componentwise. In other words, the con-
vex union of 2 boxes is the bounding box of the classical union of the 2 boxes. Thus,
the returned value is not a List anymore, but a single box. The occupied memory
space depends only on the size of the Stack, which is generally negligible.

Another positive consequence is, as the convex union of 2 boxes is bigger (in the
sense of inclusion) than the standard union, that some parameters can already belong
to the currently found box without having been processed before. This situation
appears very frequently, so before contracting and testing a box, the algorithm will
first check if the box which will be tested, already belongs to the currently found
box. If yes, then the algorithm has nothing to do and can move along to the following
box in the Stack saving a lot of computing time (see Fig. 7).
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Fig.7 A and B are feasible C
boxes. C is accepted without A
having been processed as it

already belongs to the convex

union of A and B

Convex union
of Aand B

The computing time decreases a lot by using this simple technique. However,
this technique is not justified if P is a non-connected parameter set. Indeed, the
bounding box of a non-connected set includes all the connected components of the
set which are generally far from each other. Thus, having a method to select one
single connected component is now not only a question of saving computing time,
but also a question of relevance of the result (as illustrated by Fig. 8).

3.3.2 Dealing with Symmetry

It is now necessary to find a way to select one single connected component from
the set of feasible parameters. The easiest way is to assume that, for example (in the
case of r relaxation times 7; associated with r dielectric relaxations),

Vie{l...r—1}, 7 < tiy1 (49)

[P]

Fig. 8 Bounding box of a

non-connected set. Because —P
of the symmetries, the set of
feasible parameters is divided

into two components which
are far one from the other.
Thus, the bounding box of the
whole set is not relevant at
all, whereas the bounding box
of one of the components is
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But, as the algorithm deals with intervals, this constraint cannot be applied
directly. However, it is obvious that this relation implies that the upper bound of [1;]
cannot be greater than the upper bound of [7;41], and conversely the lower bound of
[ti+1] cannot be smaller than the lower bound of [7;]. So the algorithm will remove
some (and potentially all) values from [z;] by using:

Fori=1Tor—1, [t] < [¢7;min(z;", 71 ))] (50)
and

Fori=1Tor—1, [t41] < [max(z; .77 )it ] (51)
Again, there is a positive consequence of that. The size of [7;] could decrease by
this process, or [7;] could become empty. Obviously, there are much more param-
eters which do not satisfy this constraint than parameters which do, so a lot of
boxes will be simply removed during this process (namely, when riil < 7T ,o0r
when 7,7 > rii | for some i) even if they are mathematically feasible, decreasing
considerably the computing time. Moreover, the proportion of boxes which do not
satisfy this constraint increases when the number of parameters increases. Then,
the increase of computing time due to the increase of the number of parameters is

partially compensated by the decrease of computing time due to this process.

3.3.3 Bisection

As the parameter t; (relaxation times) and the corresponding interval [z;] could
cover many orders of magnitude it makes no sense to cut this interval in the mid-
dle. Their size will often be greater than the size of the measured parameter [Ag;]
[see Eq. (15)]. Thus, plenty of computing time would be wasted by making a lot of
useless bisections. Instead, it will be useful to define a specific size and a specific
bisection for 7;. So, by rewriting

[4] = [107 ;1071 ] (52)
the size of 1; is defined by:
Size([t;]) = T;F = T/~ (53)
and the bisection by:
Bisection([z;]) = [107 ; 107 +T=T/2) (1077 +@ =T0/2, 10T (54

So, exactly for the same reason that it is reasonable to use a logarithmic axis for the
frequency to plot a function, the algorithm will use a “logarithmic bisection” for [t;].
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3.4 S.A.D.E. Algorithm

By using these modifications, it is possible to give a new algorithm, S.A.D.E. (as
S.ILV.ILA. Applied to DiElectric spectroscopy) which will also find the optimum
number of relaxations. This algorithm is described in Fig. 9. The algorithm will
loop until it finds the minimum number of relaxations which make the result being
non-empty. Note that if it is possible to fit the data with r relaxations, trying to
fit it with more than r relaxations will give too many degrees of freedom and will
lead to a very bad result. In fact, if there are more than r relaxations, the additional
relaxations are masked by the measurement errors. Then, the numbers of relaxations
provided by S.A.D.E. should be considered as optimum.

4 S.A.D.E. Examples

4.1 A First Test by Using Home-Made Data

First, the widely used Havriliak-Negami function was tested. Using fixed parameters
for only one relaxation (oo = 4, Ae =2, 7 = 15, = 0.5 and B = 0.5), a perfect
data set was created using the Havriliak—Negami model [according to Eq. (3)]. Of
course, as it was a “home-made” data set, the experimental error on data points
would be zero. Hence, this data set was tested as a real measured data set by adding

Box [P] « ¢
Integer relaxation Number « 1
Stack S
While [P] =9
Push (S, [Pg])
While Not (is Empty (S) )
[pc] < Pop (S)
If Not ([p] < [P])
Break Symetries ([ p.])
Contract ([p.])
If [ p.] is feasible,
[P] < [[P1U [p.]]
End If
If [pJ isindeterminate
If Size ([p])<n
[P] « [[P] U [p]

Else
{[p, 1.[p, 1}=Bisection ([p.])
Push (S, [p 1)
Push (S, [p,])
End If
End If
End If
. End While
,Flg' 9, SADE (as Set . relaxation Number < relaxation Number + 1
inversion via interval analysis End While
Applied to DiElectric Return [P]

spectroscopy)
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Table 1 Calculated

parameters, from a “home Parameter Interval
made” Havriliak—Negami
relaxation ¢ €oo 3.96 4.04
Aeg 1.9853 2.0538
T 0.983181 s 1.013406 s
o 0.4847 0.5112
B 0.4836 0.5059

an accuracy of 1%. Then, with a 0.01 box size (1, described in Sect. 3.2) and within
less than 1 second computing time on a common desktop computer, the resulting
parameter intervals were obtained by S.A.D.E. and presented in Table 1.

This result is very promising since the boundaries of the intervals deviate by
less than 4% from the exact parameter values and hence it validates the program
S.A.D.E..

Secondly, the Debye function was tested. This function is the only one having
a physical meaning and will be used for our experiments in the next part. Using
fixed parameters for only one relaxation (g0 = 2, Ae = 3,7 = 10_6s), a perfect
data set for the Debye model (see equation (2)) was created. Of course, as it was a
“home-made” data set, the experimental error on data points would be zero. Again,
this data set was tested as a real measured data set by adding an arbitrary error of
1%. With a 0.1 box size and with less than 1 second computing time on a common
desktop computer, the resulting parameter intervals were calculated and presented
in Table 2.

As for the previous example, this result is very promising since the boundaries
of the intervals deviate by less than 2% from the exact parameter values. Moreover,
as this model was simpler than the HN model (less parameters), S.A.D.E. was able
to calculate the parameters with a smaller error although the box size was ten times
bigger.

Table 2 Calculated

parameters, from a “home Parameter Interval
made” Debye relaxation fn 1.97963 202038
Ag 2.93991 3.05322
T 0.89954 x 1077 s 1.01024 x 1076 s

4.2 Test with Real Experimental Curves

4.2.1 Experimental Details

The pure diglycidylether of bisphenol A (DGEBA) DER 332 from DOW Chemical
was studied by dielectric broadband measurements in a frequency range of 0.7 Hz
to 10® Hz using a Novocontrol High Resolution Dielectric Alpha Analyser with
automatic temperature control by a Quatro cryosystem. For the examples presented
here, 200 data points were measured in the frequency range at —90 and 60°C.
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The viscous DGEBA was placed between stainless steel electrodes, with a teflon
spacer in order to have a well-defined geometry.

As the number of relaxations is higher for real data points than for Home-made
curves, the common desktop computer was changed to a Dual Opteron machine
containing two 2.4 GHz/64 Bits CPUs and at least 4 GB of RAM. The operating
system was Suse Linux 10.0. A parallelized version of the algorithm was imple-
mented (in the C++ programming language) in order to take advantage of the two
CPUs.

4.2.2 Application of S.A.D.E. to Multiple Relaxations Data

Figures 10 and 11 show ¢” and ¢” as measured at —90°C for pure DGEBA. By eye,
only two relaxation processes would be recognized for the curves. However, the
shape of the spectra is complex. We choose a sum of Debye relaxators to describe it
[see Eq. (15)]. Then, S.A.D.E. identifies the five relaxations represented in Figs. 10
and 11. The five relaxation curves were drawn using the middle point of each com-
puted interval (in the logarithmic sense for the parameters ;). With a 0.1 box size
and with 382 s computing time on the cluster, the resulting parameter intervals were
calculated and presented in Table 3.

This result is very promising since the boundaries of each of the intervals are not
far apart. Of course, the width of the intervals can be reduced further as they depend
on the error of the experimental data points and on the given box. But the smaller
the box 7 is made, the higher the calculation time will be. Let us note that S.A.D.E.
tries first to fit these data points by only one Debye relaxator. As the fit failed, it tries
with two to five relaxations (using five Debye relaxators lead to the determination
of eleven parameter intervals!). If we try to fit the data points with more than 5

@ Experimental points with error bars

5.2 — Debye relaxations calculated by S.A.D.E

5.0 1

4.8

4.6

PP TP
107" 10° 10" 102 10®  10* 10° 108
Frequency [Hz]

Fig. 10 Dielectric spectroscopy real permittivity of the DGEBA DER 332 prepolymer at —90°C
and the corresponding five Debye relaxations as calculated by S.A.D.E.
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® Experimental points with error bars
— Debye relaxations calculated by S.A.D.E

107" 10 10" 10® 10° 10* 105 10® 107
Frequency [Hz]

Fig. 11 Dielectric spectroscopy imaginary permittivity of the DGEBA DER 332 prepolymer at
—90°C and the corresponding five Debye relaxations as calculated by S.A.D.E.

Table 3 Calculated

parameters, using the Parameter Interval

equation (4), from

egperime;tz\i data set Eoo 4.50144 4.60168

o . Agq 0.176763 0.270755

at —90°C presented in the _3 7

Figs. 10 and 11 T1 723 x107°s 124 x 107" s
Agy 0.164731 0.269318
%) 154 x 1076 s 221 x 1076
Aeg3 0.0771269 0.133832
73 274 x 1077 s 470 x 1075 s
Aégy 0.0239589 0.0437055
7 1.19709 x 1073s  2.05353 x 1073 5
Ags 0.0321849 0.0524569
75 3.69994 x 1072 5 6.26434 x 1072 s

relaxations, the additional relaxations will be masked by the measurement errors.
Then, the numbers of relaxations provided by S.A.D.E. is considered as optimum.
It is worth noting that these parameters were not found by classical least square
approximation fitting routines.

4.2.3 Application of S.A.D.E. to the Global Problem: Data with Relaxations,
Conductivity and Electrode Polarization

Figures 12 and 13 show &’ and ¢’ measured at 60°C for the pure DGEBA DER
332. At first glance, only conductivity, electrode polarization and the beginning of a
relaxation process (at high frequencies) can be identified for that measured dielectric
spectrum. But two relaxations are found by S.A.D.E., and the DC-conductivity is
well defined. As for the previous figures, the relaxation curves were drawn using the
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® Experimental points with error bars

10.6 — Relaxations calculated by S.A.D.E

Electrode polarization

W 10.4 4

10" 102 10% 10* 10° 105 107
Frequency [Hz]

Fig. 12 Dielectric spectroscopy real permittivity of the DGEBA DER 332 prepolymer at 60°C
and the corresponding two Debye relaxations as calculated by S.A.D.E.

® Experimental points with error bars
— Relaxations calculated by S.A.D.E
—-— dc-conductivity calculated by S.A.D.E

1E-3

1E-4

10 102 10%  10* 105 108 107
Frequency [Hz]

Fig. 13 Dielectric spectroscopy imaginary permittivity of the DGEBA DER 332 prepolymer at
60°C and the corresponding two Debye relaxations as calculated by S.A.D.E.

middle point of each computed interval (in the logarithmic sense for the parameters
7;). With a 0.1 box size and with 4336 s computing time on the cluster, the resulting
parameter intervals were calculated and presented in Table 4.

The first relaxation (at high frequencies, with the smaller relaxation time 77)
corresponds to a dipole relaxation of the material. By just looking at the curve, it
is not possible to say if some relaxators take place as only conductivity and elec-
trode polarization could be identified, but S.A.D.E. clearly identified this material
relaxation. In addition, the second relaxation (at low frequencies, with the higher
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Table 4 Calculated
parameters, using the Eq.
(15), from experimental data

Parameter Interval

. ! £oo 10.169 10.2691
;‘j‘gf‘ 163 ai dpﬁsemed in the Agy 0.0308334 0.123296

T 1.56023 x 1078 s 6.97831 x 1078 s

Ags 0.222722 0.671

) 1.00487 x 1073 s 4.17685 x 1073 s

ope 3.95878 x 10788 x m~! 4.9343 x 10788 x m~!

relaxation time 1) corresponds to the electrode polarization. As mentioned in the
paragraph “Polarization at electrode and phase boundaries” (see Sect. 1.1.3), the
electrode polarization is well modeled as a strong Debye relaxator. In fact, close
to the electrodes the mobile charges can be blocked and piled up at the phase
boundaries, as described by Maxwell, Wagner, and Sillars [11-13], whose relation is
similar to the Debye equation (see Egs. (2) and (10)). Electrode polarization is rea-
sonable since the DGEBA contains traces of ions from synthesis. Let us note that
these relaxations were not visible in the data plot (Figs. 12 and 13) and not possible
to fit by classical ways. Finally, the DC-conductivity was calculated simultaneously
with the Debye relaxations: it perfectly fits the rise observed in the imaginary part
of the material permittivity (Fig. 13).

In conclusion, as S.A.D.E. found some Debye-like relaxations we can be sure
that a Debye relaxator also describes electrode polarization reasonably well.

5 Conclusion

Dielectric spectroscopy is an extremely versatile method for characterizing the
molecular dynamics over a large range of time scales. Unfortunately, the extraction
of model parameters by data fitting is still a crucial problem which is now solved by
our program S.A.D.E.

S.A.D.E. is based on the algorithm S.I.V.I.LA. which was proposed and imple-
mented by Jaulin [16,17] in order to solve constraint satisfaction problems. The
problem of dielectric data analysis is reduced to a problem of choosing the appro-
priate physical model. In this article, Debye relaxations were used and validated to
fit the relaxations of a DGEBA prepolymer and the polarization of the spectrometer
electrodes. The conductivity was evaluated too.
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Software Availability

S.A.D.E. is freely available on the website of M. Aufray (http://maelenn.aufray.free.fr). S.A.D.E.
is protected by copyright (c) 2006 Brochier, and is distributed under the terms of the GNU general
public license.
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