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ABOUT THE DETERMINANT OF COMPLETE

NON-AMBIGUOUS TREES

JEAN-CHRISTOPHE AVAL

Abstract. Complete non-ambiguous trees (CNATs) are combinatorial ob-
jects which appear in various contexts. Recently, Chen and Ohlig studied the
notion of permutations associated to these objects, and proposed a series of
nice conjectures. Most of them were proved by Selig and Zhu, through a con-
nection with the abelian sandpile model. But one conjecture remained open,
about the distribution of a natural statistic named determinant. We prove this
conjecture, in a bijective way.

1. Introduction

Non-ambiguous trees (NATs) were first defined in [1] and may be seen as a
proper way to draw a binary tree on a square grid (see Definition 2.1). They were
put to light as a special case of tree-like tableaux, which have been found to have
applications in the PASEP model of statistical mechanics [5, 3]. The initial study
of NATs revealed nice properties, mostly in an enumerative context [1, 2]. This
includes enumeration formulas with respect to fixed constraints, and new bijective
proofs of combinatorial identities. When the undelying binary tree is complete,
we are led to complete non-ambiguous trees (CNATs). These objects were first
considered in [1], where it was proved that their enumerating sequence is related
to the formal power series of the logarithm of the Bessel function of order 0. An
extension to higher dimension was proposed in [8].

Recent papers have revealed new facets of these objects. In [6], striking math-
ematical cross-connections were obtained, such as a bijection between CNATs and
fully-tiered trees of weight 0. In [7], CNATs were linked to the abelian sandpile
model. In the same article, it was noticed that if we restrict a CNAT to its leaf
dots, we obtain a permutation. This link was investigated in [4], where nice proper-
ties were derived, and several conjectures proposed. By using the connection with
the abelian sandpile model, a large number of conjectures were proved very recently
in [9], but one conjecture remained open. It asserted that when considering the set
of CNATs of a fixed odd size, the number of them having an underlying permu-
tation with even and odd determinant (signature) are equal. We give a bijective
proof of this (Theorem 2.8), and include the case of even size, which was suggested
in [4].

2. Definitions and statement of the result

We first recall the definition of (complete) non-ambiguous trees, as in [1].

Definition 2.1. A non-ambiguous tree (NAT) T is a filling of an m×n rectangular
grid, where each cell is either dotted or not, satisfying the following conditions:
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Existence of a root: The top-left cell is dotted; we call it the root of T .
Non ambiguity: Aside from the root, every dotted cell of T has either a

dotted cell above it in the same column, or a dotted cell to its left in the
same row, but not both.

Minimality: Every row and every column of T contains at least one dotted
cell.

Remark 2.2. The use of the word tree to describe these objects comes from the
following observation. Given a NAT T , we connect every dot d different from the
root to its parent dot p(d), which is the dot immediately above it in the same
column, or to its left in the same row (because of the condition of non ambiguity,
exactly one of these must exist).

Definition 2.3. A complete non-ambiguous tree (CNAT) is a NAT whose under-
lying tree is complete, i.e. in which every dot has either both a dot below it in the
same column and a dot to its right in the same row (in which case the dot is said to
be an internal dot), or neither of these (in which case the dot is said to be a leaf).

The size of a CNAT is its number of leaf dots, or equivalently one more than its
number of internal dots.

We denote by Tn the set of CNATs of size n and Tn = |Tn|.

Figure 1 gives an example of this notion.

1 2 3 4 5
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3

4

5

Figure 1. A CNAT of size 5. Leaf dots are represented in blue, and internal dots
in black.

As in this figure, it will be convenient to label by integers the rows and columns
respectively from top to bottom and from left to right, in such a way that the root
appears in the cell (1, 1). Moreover, given a dot d in a CNAT, we denote by c(d)
and r(d) the label of its column and row. For a given internal dot, its child in the
same row is called its right child and its child in the same column is called its left
child.

Remark 2.4. We may observe that any right leaf l in a CNAT T is the only dot
in its column: there is no dot above l because this would contradict the minimality
condition of Definition 2.3, and there is no dot below l because l is a leaf. In the
same way, any left leaf l in T is the only dot in its row.
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We may see a CNAT T as a matrix M(T ) where dotted cells are 1’s and undotted
cells are 0’s For example, the CNAT of Figure 1 is encoded by the following matrix:













1 0 1 1 0
1 1 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0













.

The number Tn of CNATs of size n appears as the series A002190 in [10]. As
proved in [1], these numbers give a combinatorial interpretation for the development
of the Bessel function J0.

Let us now introduce the notion of permutation associated to a CNAT.

Definition 2.5. Let T be a CNAT of size n. It is clear that in any column of T the
bottom-most dot of is a leaf, as well as the right-most dot of any row. Thus every
row and every column must have exactly one leaf dot. As such, the set of leaf dots
of a CNAT T of size n forms the graphical representation of an n-permutation. We
define π(T ) as the permutation whose j-th entry is the row index of the bottommost
dot that appears in column j, and call it the permutation associated to the CNAT
T .

For example, the CNAT of Figure 1 has associated permutation π(T ) = 43512.

Definition 2.6. We recall that an inversion in a permutation σ is a pair of entries

σi > σj with i < j. The sign of σ is defined by: sgn(σ) = (−1)inv(σ), where inv(σ)
is the number of inversions of σ.

A careful study of permutations associated to CNATs was initiated in [4], where
the following proposition was proved.

Proposition 2.7. Let T be a CNAT. We have:

detM(T ) = sgnπ(T ).

For ǫ = ±1, let us denote by T (n; ǫ) the number of CNATs of size n with
determinant equal to ǫ. We are now in a position to state the main result of this
article.

Theorem 2.8. If n > 1 is odd:

(1) T (n; +1) = T (n;−1) =
Tn

2
.

If n is even (let us set n = 2p):

(2) T (2p; +1) =
T2p + (−1)pTp

2
and T (2p;−1) =

T2p − (−1)pTp

2
.

The odd case corresponds to Conjecture 2.6 in [4], the even case to Remark 2.7
in the same paper.

3. A bijective proof of Theorem 2.8

This section is devoted to proving our main result. This proof is bijective. More
precisely, we shall:

(1) introduce a subset A2p ⊂ T2p of CNATs of even size, with |A2p| = Tp, and
such that for any T ∈ A2p we have sgnπ(T ) = (−1)

p
;
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(2) construct an involution Φ on the set of CNATs such that if T is not in any
of the sets A2p we have:

sgnπ(Φ(T )) = − sgnπ(T ).

We first introduce a useful notion on the leaves of CNATs.

Definition 3.1. A leaf in a CNAT is said to be short if its parent is in a cell
adjacent to it. Otherwise the leaf is said to be long. Moreover, we denote by An

the set of CNATs of size n with only short leaves.

Figures 2 illustrates this notion.

Figure 2. (Left) A CNAT with short leaves in blue and long leaves in red.
(Right) An element of A6.

The elements of Ap are designed to be the fixed points of our involution Φ.
We treat their case with two propositions, for which the technical key point is the
following lemma.

Lemma 3.2. Let T be a CNAT. Suppose that T has an internal dot with a leaf
and an internal dot as children. Then T contains at least one long leaf.

Proof. Let us consider the set C of internal dots with a leaf and an internal dot as
children. Among C, we consider an element c which has no descendant in C, i.e.
there is no element in C lower than c in the tree. By symmetry, we suppose that
c has an internal dot as right child, and a leaf as left child. We refer to Figure 3
which shows only the part of T of interest for the proof.

c c′

Figure 3. Proof of Lemma 3.2.

Consider the right-most internal dot c′ in the same row as c, which implies that
its right child is a leaf. By hypothesis, c′ is not in C, thus its left child is a leaf.
Then it is impossible for c and c′ to have both a short left leaf, because these two
leaves would lie in the same row. �

Proposition 3.3. When the size n = 2p+1 is odd, the set A2p+1 is empty. When
the size n = 2p is even, the set A2p is in bijection with Tp.
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Proof. Let us first consider the case of odd size, and let T be a CNAT of size
n = 2p + 1. Since T has an odd number of leaves, there must be an internal dot
in T which has as children an internal dot and a leaf. Because of Lemma 3.2, T
contains at least one long leaf. Thus A2p+1 is empty.

Now, let us suppose that the size is even. We consider an element T of A2p.
Lemma 3.2 implies that any internal dot of T has as children: either two internal
dots, or two (short) leaves. Thus T has exactly p internal dots with two short
leaves. Now we shall erase all the leaves to get an element T ′ ∈ Tp. Thanks to
Remark 2.4, we may erase every right leaf in T together with its column, and every
left leaf in T together with its row. Let us call this operation R. By doing this, we
get an element T ′ = R(T ) ∈ Tp, see Figure 4.

Figure 4. The operation R applied to the element of A6 in Figure 2 (Right).

We claim that R is a bijection from A2p to Tp. Let us describe the reverse
bijection. Consider an element T ′ ∈ Tp. For every leaf l′ in T ′, we first add an
empty column just to the right of l′ and an empty row just below l′, and then two
leaves as the children of l′. It is clear that by doing this, we get an element T ∈ A2p

such that R(T ) = T ′. �

Proposition 3.4. Let T be an element of A2p, its determinant is given by:

sgnπ(T ) = (−1)
p
.

Proof. We shall use the notations used in the proof of Proposition 3.3, and consider
T ∈ A2p and T ′ ∈ Tp with T ′ = R(T ). We shall also set: σ = π(T ) and σ′ = π(T ′).
For the example of Figures 2 and 4, we have: σ = 436521 and σ′ = 231. We observe
that σ and σ′ are closely related. If σ′ = σ′

1σ
′

2 . . . σ
′

p, then

σ = (2σ′

1)(2σ
′

1 − 1)(2σ′

2)(2σ
′

2 − 1) . . . (2σ′

p)(2σ
′

p − 1).

Thus any inversion j > i in σ′ gives rise to four inversions in σ: (2j− 1) > (2i− 1),
(2j) > (2i− 1), (2j − 1) > (2i), (2j) > (2i). To which we have to add p inversions:
(2σ′

1) > (2σ′

1 − 1), (2σ′

2) > (2σ′

2 − 1), . . . (2σ′

p) > (2σ′

p − 1). Thus we are led to the
following relation:

inv σ = 4 inv σ′ + p

which implies that sgnσ = (−1)
p
. �

We now come to the definition of a function Φ on Tn, which is the key construc-
tion of this work. We first introduce the following notion.

Definition 3.5. Let T be a CNAT. Let l1 and l2 be two leaves in T with respective
parents p1 and p2. If l1 and l2 are both left leaves, they are said to be interacting if

r(p1) < r(l2) < r(l1) or r(p2) < r(l1) < r(l2).

The definition is similar for right leaves.
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p1

l1

l2

Figure 5. Interacting leaves.

This notion is illustrated by Figure 5.
The interest of this notion of interacting leaves is put to light by the following

operation.

Definition 3.6. For two interacting left leaves l1 and l2 in a CNAT T , we define
the switch of these two leaves as the exchange of the row labels of l1 and l2. More
precisely:

• we erase l1 and we put a new leaf l′1 in the same column, in row r(l2);
• we erase l2 and we put a new leaf l′2 in the same column, in row r(l1).

By doing this, we obtain an object T ′ = S(T, l1, l2).
We have the same operation for right (interacting) leaves.

Remark 3.7. An easy observation is that after switching, l′1 and l′2 are interacting
leaves in T ′.

This notion is illustrated by Figure 6.

l1

l2 l′1

l′2

Figure 6. Switching interacting leaves.

Proposition 3.8. Let T be in Tn. For two interacting leaves l1 and l2 in T ,
S(T, l1, l2) is in Tn.

Proof. The only condition in Definition 2.1 that is not trivially satisfied in non
ambiguity. This is a direct consequence of Remark 2.4. �

The technical part of the construction of Φ now relies on the two following
lemmas.

Lemma 3.9. Consider a CNAT T . Suppose that there is an internal dot which
holds as children a leaf and an internal dot. Then T has at least two interacting
leaves.

Proof. We refer to Figure 7. By symmetry, we may assume that we have an internal
dot p1 with a left leaf l1 and an internal dot as right child.

Let us suppose that we do not have interacting leaves. Let us denote by p2 the
right-most internal dot in the same row as p1. Then the right child of p2 has to be a
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p1 p2

p3 p4

l1

l2

l3

l4

Figure 7. Proof of Lemma 3.9.

leaf l2. And its left child has to be an internal dot: if it was a leaf, this leaf would be
interacting with l1. We may now iterate, and consider p3 the bottom-most internal
dot in the same column as p2. For the same reason, p3 holds as children: a left leaf
l3 and an internal dot as right child. We are thus led to an infinite series of internal
dots in T , which is absurd.

Thus there are at least two intersecting leaves. �

Lemma 3.10. Any CNAT with a long leaf has at least two interacting leaves.

Proof. Consider a CNAT T with a long leaf l. We suppose that l is a left leaf, and
denote by p its parent. Since l is a long leaf, we have: r(l)− r(p) ≥ 2. We examine
the row with label r(l)− 1. This row has to contain a leaf l′. If l′ is a left leaf, we
are done (this is the case illustrated by Figure 5). If l′ is a right leaf, we call its
parent p′ (see Figure 8).

p

p′

l

l′

l′′

Figure 8. Proof of Lemma 3.10.

We have r(p′) = r(l′) = r(l)−1. If the left child of p′ is a leaf l′′ then r(l′′) > r(l)
which implies that l and l′′ are interacting. And if the left child of p′ is an internal
dot, we are in the case of Lemma 3.9 which asserts that T contains two interacting
leaves. �

Let us now make precise the construction of Φ : Tn −→ Tn. First of all, we
define Φ(T ) = T for any T ∈ An. With this done, we are reduced to the case where
T has at least one long leaf. By Lemma 3.10, T contains interacting leaves. To
define Φ for such a T , we want to choose a pair of interacting leaves. Since the
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set of interacting leaves may change when we switch leaves, we have to choose in
such a way that we create an involution. If T contains left interacting leaves, we
consider the (non-empty) set {(r(l1), r(l2)) : l1 and l2 interacting} and choose l1
and l2 which correspond to the lexicographical maximum of this set. Let us call
these interacting leaves active. This done, we set Φ(T ) = S(T, l1, l2). And if T

contains only right interacting leaves, we consider the lexicographical maximum of
{(c(l1), c(l2)); l1 and l2 interacting} to choose the pair of active leaves.

Proposition 3.11. The function Φ is an involution on Tn. Moreover, if T 6∈ An

then sgnπ(Φ(T )) = − sgnπ(T ).

Proof. By definition of an involution, we want to prove that for any T ∈ Tn:

Φ ◦ Φ(T ) = T.

If T ∈ An, then it is trivial.
Let us consider T 6∈ An, and set T ′ = Φ(T ). We want to prove that if l1 and l2

are the two active leaves in T , then l′1 and l′2 are the two active leaves in T ′. By
Remark 3.7, we have that l′1 and l′2 are interacting leaves in T ′.

By symmetry, we focus on the case where we have left leaves. We want to prove
that if we consider 3 left leaves l1, l2 and l3 such that r(l1) > r(l3) > r(l2) then
if l1 and l2 are interacting then l1 and l3 are also interacting. First of all, since
r(l2) < r(l1) the fact that l1 and l2 are interacting implies that r(p1) < r(l2) < r(l1)
(p1 denotes the parent of l1). Whence r(p1) < r(l3) < r(l1), which was to be proved.
This implies that if l1 and l2 are the two active leaves in T , then l′1 and l′2 are the
two active leaves in T ′.

This implies that when we apply Φ to T ′, we switch l′1 and l′2, and we get:
Φ(T ′) = Φ ◦ Φ(T ) = T . Thus Φ is an involution.

Now the assertion about the determinant comes from the easy observation that
π(Φ(T )) and π(T ) differ by exactly a transposition. �

Figure 9 shows an example of the application of Φ.

Figure 9. A CNAT and its image under Φ. Active leaves appear in red.

We can now conclude the proof of our main result.

Proof of Theorem 2.8. It is a consequence of Propositions 3.3, 3.4 and 3.11. �
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